WO2019186016A1 - Composition d'acier - Google Patents

Composition d'acier Download PDF

Info

Publication number
WO2019186016A1
WO2019186016A1 PCT/FR2019/050573 FR2019050573W WO2019186016A1 WO 2019186016 A1 WO2019186016 A1 WO 2019186016A1 FR 2019050573 W FR2019050573 W FR 2019050573W WO 2019186016 A1 WO2019186016 A1 WO 2019186016A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
advantageously
weight
composition according
content
Prior art date
Application number
PCT/FR2019/050573
Other languages
English (en)
Inventor
Jacques Bellus
Atman BENBAHMED
Johanna Andre
Fredrik SANDBERG
Original Assignee
Aubert & Duval
Erasteel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert & Duval, Erasteel filed Critical Aubert & Duval
Priority to PL19742812.1T priority Critical patent/PL3765646T3/pl
Priority to US16/980,168 priority patent/US20210010116A1/en
Priority to EP19742812.1A priority patent/EP3765646B1/fr
Priority to ES19742812T priority patent/ES2960814T3/es
Publication of WO2019186016A1 publication Critical patent/WO2019186016A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a new low carbon and high cobalt type lOCrMoNiVCo type steel for thermochemical treatment, particularly intended for the field of transmissions such as bearings and gears.
  • the alloy according to the invention can also be used for other applications requiring a high surface hardness combined with a good tenacity at heart, for example in the case of injection systems.
  • Bearings are mechanical devices to ensure relative movements and constraints in orientation and direction between two parts.
  • the bearings comprise several components: inner ring, outer ring as well as rolling bodies (ball or cylinder) arranged between these two rings. To ensure reliability and performance over time, it is important that these elements have good properties in rolling fatigue, wear, etc., ...
  • Gears are mechanical power transmission devices. To ensure a favorable power density (power ratio transmitted by the size of the gears) and the reliability of operation, the gears must have good structural fatigue properties (tooth foot) and contact fatigue (tooth blanks).
  • Conventional techniques for making these metal components use electrical steelmaking processes followed by possible remelting operations, or single or multiple vacuum rejections.
  • the ingots thus produced are then shaped by hot transformation processes such as rolling or forging in the form of bar, tube or ring. There are two types of metallurgy to ensure the final mechanical properties.
  • 1st type the chemical composition of the component makes it possible to obtain the mechanical properties directly after suitable heat treatment.
  • 2nd type the component requires a thermochemical treatment to enrich the surface with interstitial chemical elements such as carbon and / or nitrogen. This enrichment in general superficial then allows to obtain high mechanical properties after heat treatment on depths of a few millimeters maximum. These steels generally have better ductility properties than the first type steels.
  • thermochemical processes applied to steels of the first type aimed at enriching the surface with nitrogen to obtain very high mechanical properties.
  • Type 1 and Type 2 steels generally have surface hardness levels greater than 58 HRC.
  • the most widespread shades known as M50 (0.8% C-4% Cr-4.2% Mo-1% V) or 50NiL (0.12% C-4% Cr-4.2% Mo -3.4% Ni-1% V) do not exceed after possible thermochemical treatment and heat treatment adapted a surface hardness of 63 HRC.
  • Obtaining hardnesses greater than 64 HRC is now required to significantly improve the properties of the component.
  • GB2370281 discloses a valve seat steel by powder metallurgy technology compacted from powder mixtures of an iron base and harder particles.
  • the matrix which constitutes a part of the steel, having the following composition, in percentages by weight of the total composition:
  • Chromium 1.0-9.0;
  • Molybdenum 1.0-9.0;
  • Tungsten 1.0-3.0;
  • Vanadium 0, 1-1.0
  • Nickel + Cobalt + Copper 3.0-15.0;
  • this matrix comprises from 5 to 40% by volume of perlite, which results in a lack of ductility of this matrix and therefore embrittlement.
  • the material also contains porosity (up to 10%) which does not achieve good properties in mechanical strength and fatigue.
  • this document does not suggest using low copper content and on the contrary indicates that its content can be up to 15% by weight.
  • a high copper content is not desired for the applications of the present invention because copper is a known embrittler whose content should not exceed 0.5% by weight relative to the total weight of the composition of the steel. .
  • Chromium 2.5-5.0
  • Molybdenum 4-6;
  • Tungsten 2-4.5;
  • Vanadium 1-3; Nickel: 2-4;
  • Niobium 0-2;
  • Nitrogen 0-0.5;
  • composition grade MIX5 (0.18% C-3.45% Cr-4.93% Mo-3.05% W-2.09% V-0.30% Si-2.89% Ni -5.14% Co-0.27% Mn) which is the most interesting because it has the greatest surface hardness.
  • This grade makes it possible to reach a surface hardness after solution treatment at 1150 ° C. and returned at 560 ° C. to a maximum hardness level of about 800 HV, ie an equivalent of 64 HRC maximum.
  • this request indicates that the content of Co must be limited to at most 8% and even it is preferable that it is at most 7% and even more preferred at most 6% because the Co increases the level of hardness base material which causes a decrease in toughness.
  • the MIX5 grade which is preferred thus has a Co content of 5.14%.
  • the patent application WO2017216500 describes a rolling steel having the following composition, in percentages by weight of the total composition:
  • Chromium 2.50-5.00, preferably 3.0-4.5;
  • Molybdenum 4.0-6.0;
  • Tungsten 0.01 - 1.8, preferably 0.02-1.5; Vanadium: 1.0-3.0, preferably 1.5-2.5;
  • Cobalt 2.0-8.0, preferably 3.0-7.0;
  • Niobium ⁇ 2.0;
  • Nitrogen ⁇ 0.50, preferably ⁇ 0.20;
  • Silicon ⁇ 0.70, preferably 0.05-0.50;
  • Manganese ⁇ 0.70, preferably 0.05-0.50;
  • Aluminum ⁇ 0.15, preferably ⁇ 0.10;
  • Niobium + Vanadium content being in the range 1.00-3.50;
  • the composition grade C (0.18-0.20% C-3, 90-4.00% Cr-5, 00-5, 20% Mo-0, 10-0, 20% W-2, 10-2, 30% V-O, 14-0.16% Si-3, 05-3, 09% Ni-5, 00-5, 40% Co-O, 18-0, 22% Mn-O, 03-0, 05% AI) is the preferred because having the greatest surface hardness.
  • This grade makes it possible to reach a surface hardness after solution treatment at 1100 ° C.-1150 ° C. and returned at 500 ° C. to a maximum hardness level of about 66-67 HRC, which is much greater than the surface hardness.
  • the obtaining of superficial hardnesses greater than 67 HRC, in particular using a solution heat treatment at a temperature below or equal to 1160 ° C, is therefore difficult to obtain whereas they would make it possible to improve significantly the properties of the component.
  • the inventors have surprisingly found that by increasing the cobalt content of the steel described in the applications WO2015 / 082342 and WO2017216500 to a content between 9 and 12.5%, while maintaining the carbon content at a level less than or equal to 0.2% (new balancing carbon / cobalt), the steel obtained had, after thermochemical treatment, in particular carburizing and / or nitriding, a very high surface hardness and even greater than 67 HRC, in particular greater than or equal to 68 HRC and 1mm hardness greater than 860 HV (corresponding to approximately 66HRC according to the ASTME140-12b standard published in May 2013) after a solution heat treatment at a temperature in the range 1100 ° C - 1160 ° C and returned at a temperature greater than
  • US Pat. No. 815,791 discloses a Ni-Co type steel having a cobalt content of between 9.9 and 10% and a carbon content of between 0.1 and 0.12% and having a high surface hardness of the order from 68-69 HRC.
  • a steel has a high content of chromium (5.3- 5.4%), a low content of vanadium (0.20-0.21%) and of molybdenum (2.5-2.52%) and does not contain tungsten.
  • This equilibrium balancing leads after thermochemical treatment and associated quality treatment (including quenching at 1110 ° C. and tempering at 482 ° C.) at an interesting surface hardness but which decreases very rapidly with depth, so it is from 600 pm of depth already identical to that of the base metal ( Figure 1).
  • Claim 1 of this patent stipulates a carbon content in the cemented layer limited to about 0.8%. Indeed graphite could appear from 1% by weight of C in the cemented layer (surface layer obtained after cementation).
  • Chromium 2.5-5.5; Tungsten equivalent (2xMo + W): 12.5-20;
  • Nickel max 5.0;
  • This grade is subjected to carburizing or carbonitriding.
  • this application only describes the surface hardness properties of 66-69 HRC and only describes the tenacity qualitatively. Balancing this very low carbon content, ⁇ 0.05% by weight, requires limiting the vanadium content to ⁇ 1.5% by weight so as not to degrade the tenacity, and vanadium is an interesting element. to improve the wear resistance.
  • This request does not describe either the hardness at heart (reflecting the mechanical strength) of this grade, and given the very low level of carbon it is expected that it degrades the mechanical strength.
  • this application does not describe any deep layer carburizing profile.
  • a high hardness in all this depth also allows to have more tolerance when it comes to removing material for repair or grinding during a machining, and it is all the more useful for the application transmission of power that is not mentioned in JPH11-210767.
  • the inventors have realized that it is possible to obtain a different balance from that proposed by JPH 11-210767 with a higher carbon content, at least 0.06% by weight, and a range of cobalt between 9.0 and 12.5% by weight which allows (a) to obtain a good compromise between hardness and toughness, that is to say a good compromise between mechanical strength and toughness, and (b) to admit more vanadium in its composition without degrade toughness, which is favorable for wear resistance.
  • the present invention therefore relates to a steel composition, advantageously cementable and / or nitrurable, more advantageously cementable, comprising, advantageously consisting essentially of, in particular consisting of, in percentages by weight of the total composition:
  • Chromium 2.5-5.0, preferably 3.0-4.5;
  • Molybdenum 4.0-6.0;
  • Tungsten 0.01-3.0;
  • Vanadium 1.0-3.0, preferably 1.50-2.50;
  • Cobalt 9.0-12.5, preferably 9.5-11.0;
  • Niobium ⁇ 2.0;
  • Nitrogen ⁇ 0.50, preferably ⁇ 0.20;
  • Silicon ⁇ 0.70, preferably 0.05-0.50
  • Manganese ⁇ 0.70, preferably 0.05-0.50
  • Aluminum ⁇ 0.15, preferably ⁇ 0.10;
  • Niobium + Vanadium content being in the range 1, 0-3.5;
  • a particularly advantageous composition comprises, advantageously consists essentially of, in particular consists of, in percentages by weight of the total composition:
  • Chromium 3.0-4.4, preferably 3.5-4.5;
  • Molybdenum 4.0-6.0, preferably 4.5-5.5;
  • Vanadium 1.5-2.5, preferably 2.0-2.3;
  • Nickel 2.0-4.0, preferably 2.5-3.5;
  • Cobalt 9.5-12.5, preferably 9.5-10.5;
  • Niobium ⁇ 2.0;
  • Silicon ⁇ 0.70, preferably 0.05-0.50;
  • Manganese ⁇ 0.70, preferably 0.05-0.50;
  • Niobium + Vanadium content being in the range 1.00-3.50;
  • the composition according to the invention comprises at most 1% by weight of unavoidable impurities, advantageously at most 0.75% by weight, still more advantageously at most 0.50% by weight, relative to the total weight of the composition.
  • the carbide-forming elements which also have a stabilizing effect on ferrite, so-called alphagenes, are essential to the steel composition according to the invention so as to provide sufficient hardness, resistance to heat and wear. .
  • stabilizing elements of the austenite so-called gammagenic elements.
  • austenite stabilizing elements carbon, nickel, cobalt and manganese
  • stabilizing elements of ferrite mobdenum, tungsten, chromium, vanadium and silicon
  • the steel composition according to the invention therefore comprises carbon (C) in a content in the range 0.06-0.20%, preferably 0.07-0.20%, in particular 0.08-0. , 20%, more particularly 0.08-0.18%, by weight relative to the total weight of the composition.
  • Carbon (C) stabilizes the austenitic phase of the steel at the treatment temperatures thermal and is essential for the formation of carbides which provide the mechanical properties in general including mechanical strength, high hardness, resistance to heat and wear.
  • the presence of a small amount of carbon in a steel is beneficial to avoid the formation of undesirable and fragile intermetallic particles and to form small amounts of carbides to prevent excessive growth of grain size during solution dissolution prior to quenching operation.
  • the initial carbon content should not be too high since it is possible to increase the surface hardness of the components formed from the steel composition by carburizing. It is also known that in general the increase in the carbon content makes it possible to significantly increase the level of hardness, which is generally disadvantageous with respect to ductility properties. It is for this reason that the carbon content is limited to 0.20% maximum to obtain a hardness level at the core of the material of at most 650 HV.
  • the carbon is implanted in the surface layers of the component, so as to obtain a hardness gradient.
  • Carbon is the main element for controlling the hardness of the martensitic phase formed after cementation and heat treatment. In case-hardened steel, it is essential to have a core portion of the material with a low carbon content while having a hard surface with a high carbon content after thermochemical carburizing treatment.
  • the steel composition according to the invention further comprises chromium (Cr) in a content in the range of 2.5-5.0%, preferably 3.0-4.5%, even more preferred 3.5. -4.5%, still more preferably 3.8-4.0% by weight relative to the total weight of the composition.
  • Chrome contributes to the formation of carbides in steel and is one of the main elements that controls the hardenability of steels.
  • chromium can also promote the appearance of ferrite and residual austenite.
  • the chromium content of the steel composition according to the invention should not be too high.
  • the steel composition according to the invention also comprises molybdenum (Mo) in a content in the range of 4.0-6.0%, preferably 4.5-5.5%, even more preferably 4, 8- 5, 2%, by weight relative to the total weight of the composition.
  • Mo molybdenum
  • Molybdenum improves the resistance to wear, wear resistance and hardness of steel. However, molybdenum has a strong stabilizing effect on the ferrite phase and must not be present in excessive amounts in the steel composition according to the invention.
  • the steel composition according to the invention further comprises Tungsten (W) in a content in the range 0.01-3.0%, preferably 0.01-1.5%, even more preferred 0.01 -1.4%, advantageously 0.01-1.3%, by weight relative to the total weight of the composition.
  • W Tungsten
  • Tungsten is a stabilizer for ferrite and a strong carbide-forming element. It improves resistance to heat treatment and wear and hardness by carbide formation. However, it can also lower the surface hardness of the steel and especially the properties of ductility and toughness. For this element to play its full role, it is necessary to carry out high temperature dissolution.
  • the steel composition according to the invention further comprises vanadium (V) in a content in the range of 1.0-3.0%, preferably 1.5-2.5%, even more preferably 1, 7. -3.0%, advantageously 1.7-2.5%, more preferably 1.7-2.3%, still more preferably 2.00-2.3%, especially 2.0-2.2%, by weight relative to the total weight of the composition.
  • Vanadium stabilizes the ferrite phase and has a strong affinity for carbon and nitrogen. Vanadium provides resistance to wear and tear by forming hard vanadium carbides. Vanadium may be partly substituted by niobium (Nb), which has similar properties.
  • the combined Niobium + Vanadium content must therefore be in the range 1.0-3.5% by weight relative to the total weight of the composition, advantageously in the range 1.7-3.5% by weight relative to total weight of the composition.
  • the steel composition according to the invention does not comprise Niobium.
  • the steel composition according to the invention also comprises nickel (Ni) in a content in the range 2.0-4.0%, preferably 2.5-3.5%, even more preferably 2, 7- 3, 3%, advantageously 3, 0-3, 2%, by weight relative to the total weight of the composition.
  • Nickel promotes the formation of austenite and therefore inhibits the formation of ferrite. Another effect of Nickel is to decrease the temperature Ns, ie the temperature at which transformation from austenite to martensite begins during cooling. This can prevent the formation of martensite. The quantity of nickel must therefore be controlled to avoid the formation of residual austenite in cemented components.
  • the steel composition according to the invention further comprises cobalt (Co) in a content within the range of 9.0-12.5%, preferably 9.5-12.5%, advantageously 9.5-11. , 0%, more preferably 9.5-10.5%, by weight relative to the total weight of the composition.
  • cobalt content is measured according to the standards ASTM-E1097-12 published in June 2017 and ASTM E1479_16 published in December 2016.
  • the measurement error of the cobalt content of the steel according to the invention is thus ⁇ 2, About 5% relative and evaluated according to IS05724-1 (December 1994), IS05725-2 (December 1994), IS05725-3 (December 1994), IS05725-4 (December 1994), IS05725-5 (December 1994), IS05725 -6 (December 1994) and the standard NF ISO / IEC Guide 98-3 of July 11, 2014.
  • Cobalt is a highly stabilizing element of austenite that prevents the formation of undesirable ferrite. Unlike Nickel, Cobalt increases the Ms temperature, which in turn decreases the amount of residual austenite. Cobalt, in combination with nickel, allows the presence of ferrite stabilizers such as the carbide-forming elements Mo, W, Cr and V.
  • the carbide-forming elements are essential for the steel according to the invention because of their effect on hardness, resistance to heat and wear. Cobalt has a small effect of increasing hardness on steel. However, this increase in hardness is correlated with the decrease in toughness. It is therefore not necessary for the steel composition according to the invention to contain an excessive amount of cobalt.
  • Co makes it possible to limit the C content while avoiding the promotion of ferrite for a composition according to the invention (containing the contents of Cr, Mo, V, Ni and W as described above). This limitation in carbon makes it possible to compensate the increase in hardness related to the addition of Co.
  • the steel composition according to the invention may further comprise silicon (Si) in a content ⁇ 0.70%, by weight relative to the total weight of the composition.
  • Si silicon
  • it comprises silicon, in particular in a content in the range 0.05-0.50%, preferably 0.05-0.30%, advantageously 0.07-0.25%, more advantageously 0 , 10-0.20%, by weight relative to the total weight of the composition.
  • the steel composition according to the invention may further comprise manganese (Mn) in a content ⁇ 0.70%, by weight relative to the total weight of the composition.
  • Mn manganese
  • it comprises manganese, in particular in a content in the range 0.05-0.50%, preferably 0.05-0.30%, advantageously 0.07-0.25%, even more advantageously 0 , 10-0.22%, more particularly 0.10-0.20% by weight relative to the total weight of the composition.
  • Manganese stabilizes the austenite phase and decreases the Ms temperature in the steel composition.
  • Manganese is generally added to steels during their manufacture because of its affinity for sulfur, so manganese sulphide is formed during solidification. it eliminates the risk of formation of iron sulphides which have an adverse effect on the hot machining of steels.
  • Manganese is also part of the deoxidation step like Silicon. The combination of manganese with silicon gives deoxidation more efficient than each of these elements alone.
  • the steel composition according to the invention may comprise nitrogen (N), in a content ⁇ 0.50%, preferably ⁇ 0.20%, by weight relative to the total weight of the composition.
  • Nitrogen promotes the formation of austenite and lowers the transformation of austenite to martensite. Nitrogen can to a certain extent replace the carbon in the steel according to the invention to form nitrides. However, the carbon + nitrogen content must be in the range 0.06-0.50% by weight relative to the total weight of the composition.
  • the steel composition according to the invention may comprise aluminum (Al), in a content of ⁇ 0.15%, preferably ⁇ 0.10%, by weight relative to the total weight of the composition. .
  • Aluminum (Al) can indeed be present during the steel manufacturing process according to the invention and contributes very effectively to the deoxidation of the liquid steel. This is particularly the case during reflow processes such as the VIM-VAR process.
  • the aluminum content is generally higher in the steels produced using the VIM-VAR process than in the steels obtained by the powder technology. Aluminum causes difficulties during the atomization by obstruction of the casting nozzle by oxides.
  • a low oxygen content is important for good micro-cleanliness as well as good mechanical properties such as fatigue resistance and mechanical strength.
  • the oxygen content obtained by ingot is typically less than 15 ppm.
  • the composition according to the present invention is cementable, that is to say it can undergo a cementation treatment, and / or nitrurable, that is to say it can undergo nitriding treatment and even advantageously it can undergo a thermochemical treatment, in particular chosen from carburizing, nitriding, carbonitriding and cementation followed by nitriding.
  • the surface (preferably a superficial layer having a thickness of 100 microns) is thus advantageously enriched with carbon to obtain a final carbon content (final carbon content) of 0.5% - 1.7% by weight, more preferably 0% by weight. , 8% - 1.5% by weight, more preferably at least 1% by weight, in particular 1-1.3% by weight, more preferably still> 1.1% by weight, still more particularly between 1 , 2 and 1.5% by weight.
  • the surface carbon content will be understood to have been determined using a sampling of a surface layer to a depth of 100 microns.
  • nitriding it is the nitrogen content that increases on the surface of the steel, and therefore also the surface hardness. If carbonitriding or cementation followed by nitriding are used, it is the carbon and nitrogen contents on the surface of the steel which are increased and thus also the surface hardness.
  • the steel composition according to the invention after a thermochemical treatment, advantageously carburizing or nitriding or carbonitriding or carburizing and then nitriding, followed by a heat treatment, a superficial hardness superior at 67HRC, in particular greater than or equal to 68 HRC, measured according to ASTM E18 published in July 2017 or equivalent standard.
  • 910HV approximately 67.25 HRC according to the ASTM E140-12b standard published in May 2013
  • 920 HV in particular greater than or equal to 940HV
  • 930 HV corresponding to approximately 67.75 HRC according to the ASTM E140-12b standard published in May 2013
  • 940 HV corresponding to 68 HRC depending on the ASTM E140-12b standard published in May 2013
  • 950 HV measured according to the ASTM E384 standard published in August 2017 or equivalent standard after dissolution at a temperature of 1150 ° C.
  • the steel composition obtained by these treatments advantageously has a surface carbon concentration (final surface content) of 1-1.3% by weight.
  • Said heat treatment may comprise:
  • a first cooling in particular under a neutral gas at, for example, a pressure of 2 bar (2 ⁇ 10 5 Pa), advantageously up to room temperature (this phase makes it possible to obtain a mainly martensitic microstructure with residual austenite.
  • This residual austenite is a function of the cooling temperature: the content decreases with the cooling temperature),
  • the steel of interest according to the invention is therefore to obtain high levels of hardness with a limited thermal treatment (temperature between 1090 ° C-1160 ° C, preferably between 1100 ° C-1160 ° C, more preferably between 1100 ° C-1155 ° C, in particular between 1100 ° C-1150 ° C, more particularly 1150 ° C).
  • the steel composition according to the invention after a thermochemical treatment, advantageously carburizing or nitriding or carbonitriding or carburizing and then nitriding, followed by a heat treatment, a martensitic structure having a residual austenite content less than 10% by weight, more preferably less than 0.5% by weight, and free of ferrite and perlite, known phases to reduce the surface hardness of steel.
  • Said heat treatment may be as described above.
  • the present invention furthermore relates to a method for manufacturing a steel blank having the composition according to the invention, characterized in that it comprises:
  • step d) of the process according to the present invention is as described above.
  • thermochemical treatment of step c) of the process according to the present invention consists of a carburizing or nitriding or carbonitriding or cementation and then nitriding treatment, advantageously it is a case hardening treatment, more particularly allowing a surface carbon enrichment resulting in a final carbon content of at least 1% by weight, still more preferably> 1.1% by weight.
  • step b) of the method according to the present invention consists of a rolling step, forging and / or spinning, advantageously forging.
  • step a) of developing the process according to the present invention is carried out by means of a conventional arc furnace refining and conductive slag remelting (ESR) process, or by a VIM or VIM-VAR process, possibly with a conductive slag (ESR) and / or vacuum (VAR) remelting step, or by powder metallurgy such as gas atomization and hot isostatic compaction compression (HIP) ).
  • ESR arc furnace refining and conductive slag remelting
  • VIM-VAR conductive slag
  • VAR conductive slag
  • VAR vacuum
  • powder metallurgy such as gas atomization and hot isostatic compaction compression (HIP)
  • the steel according to the present invention can be produced by a VIM-VAR process.
  • This process makes it possible to obtain a very good inclusion cleanliness and improves the chemical homogeneity of the ingot. It is also possible to carry out a conductive slag remelting path (ESR: Electro Slag Remelting) or to combine ESR and VAR operations (vacuum remelting).
  • ESR Electro Slag Remelting
  • This steel can also be obtained by metallurgy powders. This process makes it possible to produce high purity metal powder by atomization, preferably gas atomization, making it possible to obtain low oxygen contents.
  • the powder is then compressed using, for example, hot isostatic compaction (HIP).
  • HIP hot isostatic compaction
  • the present invention also relates to a steel blank that can be obtained by the process according to the invention.
  • This blank is made of steel having the composition according to the present invention and as described above.
  • a mechanical member advantageously a transmission element, in particular a gear, a transmission shaft or a bearing, more particularly a bearing or a gear, more particularly a bearing, made of steel having the composition according to the invention or obtained from a steel blank according to the invention.
  • a steel injection system having the composition according to the invention or obtained from a steel blank according to the invention.
  • the Nb content is below the limit of detection. Nb ⁇ 0.005% for all examples.
  • Comparative Example 1 These compositions are very similar with the exception of Comparative Example 1.
  • the main notable differences between Comparative Example 1 and Example 1 are the content of V, Mo and Cr.
  • the cemented bars were treated with (1) solution at 1100 ° C or 1150 ° C, (2) hold for 15 min at this temperature for austenitization, (3) cooling under a neutral gas at a pressure between 2 and 6 bar (2 x 10 5 and 6 x 10 5 Pa), (4) a period at room temperature, (5) cooling at -70 ° C for 2 hours, and (6) 3 incurring at a temperature of 500 ° C for 1 hour each.
  • the HV hardness profiles measured according to ASTM E384 published in August 2017 of Examples 1 to 6 and Comparative Example 1 are shown in Tables 2 and 3.
  • the surface hardness after carburizing exceeds 920 HV for a solution temperature of 1100 ° C and exceeds 930 HV for a dissolution temperature of 1150 ° C.
  • the hardness at 1 mm depth is always greater than 860 HV for a dissolution temperature of 1100 ° C and is always higher than 880 HV for a solution temperature of 1150 ° C. for all the examples except comparative example 1 (effect of the lack of alloying elements).
  • the hardnesses on basic materials are all less than 650 HV.
  • Comparative Example 2 shows delta ferrite after heat treatment, in a small amount but sufficient to decrease toughness properties.
  • Example 7 very close to Comparative Example 2 at the level of its W-composition, does not have delta ferrite and makes it possible to obtain tenacity values almost doubled compared with Comparative Example 2 while maintaining a good mechanical strength (Rm) of about 1500 MPa, which was determined according to ASTM E399-17 published in February 2018, is equivalent to a hardness of 450 HV according to ASTM E384 published in August 2017.
  • Rm mechanical strength

Abstract

La présente invention concerne une composition d'acier comprenant, en pourcentages en poids de la composition totale: Carbone : 0,06-0,20 de préférence 0,08-0,18; Chrome : 2, 5-5,0, de préférence 3, 0-4, 5; Molybdène : 4, 0-6,0; Tungstène : 0,01 - 3,0; Vanadium : 1, 0-3,0, de préférence 1,5-2, 5; Nickel : 2, 0-4,0; Cobalt : 9,0-12,5, de préférence 9,5-11,0; Fer : solde ainsi que les impuretés inévitables, optionnellement comprenant en outre, un ou plusieurs des éléments suivants : Niobium : < 2,0; Azote : < 0,50, de préférence < 0,20; Silicium : < 0,70, de préférence 0,05-0,50; Manganèse : < 0,70, de préférence 0,05-0,50; Aluminium : <0,15, de préférence < 0,10; la teneur combinée en Niobium + Vanadium étant comprise dans la gamme 1,0-3, 5; et la teneur en Carbone + Azote étant comprise dans la gamme 0,06-0,50. Elle concerne en outre son procédé de fabrication, l'ébauche d'acier obtenu et un organe mécanique ou un système d'injection le comprenant.

Description

COMPOSITION D'ACIER
La présente invention concerne un nouvel acier de type lOCrMoNiVCo à faible teneur en carbone et haute teneur en cobalt pour traitement thermochimique en particulier destiné au domaine des transmissions telles que les roulements et les engrenages. L'alliage selon l'invention est également utilisable pour d'autres applications requérant une dureté superficielle élevée combinée avec une bonne ténacité à cœur, par exemple dans le cas des systèmes d'injection.
Les roulements sont des organes mécaniques permettant d'assurer des mouvements relatifs et contraints en orientation et direction entre deux pièces. Les roulements comprennent plusieurs composants : bague interne, bague externe ainsi que des corps roulants (bille ou cylindre) disposés entre ces deux bagues. Pour assurer une fiabilité et des performances dans le temps, il est important que ces différents éléments aient de bonnes propriétés en fatigue de roulement, usure, etc.,...
Les engrenages sont des organes mécaniques de transmission de puissance. Pour assurer une densité de puissance favorable (ratio de puissance transmise par l'encombrement des engrenages) et la fiabilité de fonctionnement, les engrenages doivent présenter des bonnes propriétés en fatigue structurale (pied de dent) et fatigue de contact (flans de dent). Les techniques conventionnelles pour réaliser ces composants métalliques ont recours à des procédés d'élaboration d'aciérie électrique suivies d'opérations éventuelles de refusion, ou de refusions sous vide simples ou multiples. Les lingots ainsi réalisés sont ensuite mis en forme par des procédés de transformation à chaud comme le laminage ou le forgeage sous forme de barre, de tube ou de bague. Il existe deux types de métallurgie pour assurer les propriétés mécaniques finales.
1er Type : la composition chimique du composant permet d'obtenir les propriétés mécaniques directement après traitement thermique adapté. 2ème Type : le composant requiert un traitement thermochimique permettant d'enrichir la surface en éléments chimiques interstitiels comme le carbone et/ou l'azote. Cet enrichissement en général superficiel permet alors d'obtenir de hautes propriétés mécaniques après traitement thermique sur des profondeurs de quelques millimètres maximum. Ces aciers présentent en général de meilleures propriétés en ductilité que les aciers du 1er Type.
Il existe aussi des procédés thermochimiques appliqués aux aciers du 1er type visant à enrichir la surface en azote pour obtenir de très hautes propriétés mécaniques.
La première des propriétés requises dans le domaine du roulement ou des engrenages est l'obtention d'un très haut niveau de dureté. Ces aciers de type 1 et de type 2 présentent généralement des niveaux de dureté superficielles supérieures à 58 HRC. Les nuances les plus répandues et connues sous le vocable M50 (0,8%C-4%Cr-4,2%Mo-l%V) ou 50NiL (0,12%C-4%Cr-4,2%Mo-3,4%Ni-l%V) ne dépassent pas après traitement thermochimique éventuel et traitement thermique adapté une dureté superficielle de 63 HRC. L'obtention de duretés supérieures à 64 HRC est maintenant requise pour améliorer significativement les propriétés du composant.
La demande GB2370281 décrit un acier pour siège de soupape par la technologie de la métallurgie des poudres compactée à partir de mélanges de poudre d'une base fer et de particules plus dures. La matrice, qui ne constitue qu'une partie de l'acier, a la composition suivante, en pourcentages en poids de la composition totale :
Carbone : 0, 2-2,0;
Chrome : 1, 0-9,0;
Molybdène : 1, 0-9,0;
Silicium : 0, 1-1,0;
Tungstène : 1, 0-3,0;
Vanadium : 0, 1-1,0;
Nickel+ Cobalt + Cuivre : 3,0-15,0;
Fer : solde
Toutefois cette matrice comprend de 5 à 40% en volume de perlite, ce qui a pour conséquence un manque de ductilité de cette matrice et donc une fragilisation. En outre le matériau contient aussi de la porosité (jusqu'à 10%) qui ne permet pas d'atteindre de bonnes propriétés en résistance mécanique et en fatigue. Enfin ce document ne suggère pas d'utiliser de faible teneur en Cuivre et au contraire indique que sa teneur peut aller jusqu'à 15% en poids. Or une teneur en Cuivre élevée n'est pas recherchée pour les applications de la présente invention car le Cuivre est un fragilisant connu dont la teneur ne devrait pas dépasser 0,5% en poids par rapport au poids total de la composition de l'acier.
La demande de brevet WO2015/082342 décrit un acier pour roulement ayant la composition suivante, en pourcentages en poids de ia composition totale :
Carbone : 0,05-0,5;
Chrome : 2, 5-5,0;
Molybdène : 4-6;
Tungstène : 2-4,5;
Vanadium : 1-3; Nickel : 2-4;
Cobalt : 2-8;
Fer : solde
ainsi que les impuretés inévitables, optionnellement comprenant en outre, un ou plusieurs des éléments suivants :
Niobium : 0-2 ;
Azote : 0-0,5;
Silicium : 0-0,7;
Manganèse : 0-0,7;
Aluminium : 0-0,15;
et en particulier la nuance MIX5 de composition (0,18%C-3,45%Cr- 4,93%Mo-3,05%W-2,09%V-0,30%Si-2,89%Ni-5,14%Co-0,27%Mn) qui est la plus intéressante car présentant la plus grande dureté superficielle. Cette nuance permet d'atteindre une dureté superficielle après traitement de mise en solution à 1150°C et revenu à 560°C à un niveau maximal de dureté d'environ 800 HV, soit un équivalent de 64 HRC maximum. Toutefois cette demande indique que la teneur en Co doit être limitée à au plus 8% et même il est préférable qu'elle soit au plus de 7% et même encore plus préféré d'au plus 6% car le Co augmente le niveau de dureté du matériau de base qui entraîne une décroissance de la ténacité. La nuance MIX5 qui est préférée a ainsi une teneur en Co de 5,14%.
La demande de brevet W02017216500 décrit un acier pour roulement ayant la composition suivante, en pourcentages en poids de la composition totale :
Carbone : 0,05-0,40, de préférence 0,10-0,30 ;
Chrome : 2,50-5,00, de préférence 3,0-4, 5;
Molybdène : 4, 0-6,0;
Tungstène : 0,01 - 1,8, de préférence 0,02-1,5 ; Vanadium : 1, 0-3,0, de préférence 1,5-2, 5;
Nickel : 2, 0-4,0;
Cobalt : 2,0-8, 0, de préférence 3, 0-7,0;
Fer : solde
ainsi que les impuretés inévitables,
optionnellement comprenant en outre, un ou plusieurs des éléments suivants :
Niobium : < 2,0;
Azote : < 0,50, de préférence < 0,20 ;
Silicium : < 0,70, de préférence 0,05-0,50;
Manganèse : < 0,70, de préférence 0,05-0,50;
Aluminium : <0,15, de préférence < 0,10 ;
la teneur combinée en Niobium + Vanadium étant comprise dans la gamme 1,00-3,50 ;
et la teneur en Carbone + Azote étant comprise dans la gamme 0,05-0,50. En particulier dans les exemples, la nuance C de composition (0,18- 0,20%C-3, 90-4, 00%Cr-5, 00-5, 20%Mo-0, 10-0, 20%W-2, 10-2, 30%V-0, 14- 0,16%Si-3, 05-3, 09%Ni-5, 00-5, 40%Co-0, 18-0, 22%Mn-0, 03-0, 05%AI) est la préférée car présentant la plus grande dureté superficielle. Cette nuance permet d'atteindre une dureté superficielle après traitement de mise en solution à 1100°C-1150°C et revenu à 500°C à un niveau maximal de dureté d'environ 66-67 HRC qui est bien supérieur à la dureté superficielle obtenue avec une nuance selon la demande WO2015/082342 (nuance A : figure 1). Toutefois cette demande indique également que la teneur en Co doit être limitée à au plus 8% et même il est préférable qu'elle soit au plus de 7% et même encore plus préféré d'au plus 6% car il augmente le niveau de dureté du matériau de base qui entraîne une décroissance de la ténacité. La nuance C qui est préférée a ainsi une teneur en Co de 5,00-5,40%.
L'obtention de duretés superficielles supérieures à 67 HRC, en particulier à l'aide d'un traitement thermique de mise en solution à une température inférieure ou égale à 1160°C, est donc difficile à obtenir alors qu'elles permettraient d'améliorer significativement les propriétés du composant. Les inventeurs se sont aperçus de façon surprenante qu'en augmentant la teneur en cobalt de l'acier décrit dans les demandes WO2015/082342 et W02017216500 à une teneur comprise entre 9 et 12,5%, tout en maintenant la teneur en carbone à un niveau inférieur ou égal à 0,2% (nouvel équilibrage Carbone/Cobalt), l'acier obtenu présentait, après traitement thermochimique, en particulier de cémentation et/ou nitruration, une dureté superficielle très élevée et même supérieure à 67 HRC, en particulier supérieure ou égale à 68 HRC et une dureté à 1mm supérieure à 860 HV (ce qui correspond à environ 66HRC selon la norme ASTME140-12b publiée en mai 2013 ) après un traitement thermique de mise en solution à une température comprise dans la gamme 1100°C - 1160°C et revenu à une température supérieure ou égale à 475°C, tout en présentant un niveau de dureté du matériau de base comprise entre 400 et 650 HV.
Ceci n'était pas du tout évident au vu de ces documents qui incitaient à utiliser une teneur peu élevée en cobalt telle que dans la nuance MIX5 (5,14% de cobalt) et dans la nuance C (5,00-5,40% de cobalt) qui sont considérées comme les compositions présentant la meilleure dureté.
Le brevet US8157931 décrit un acier de type Ni-Co ayant une teneur en cobalt comprise entre 9,9 et 10% et une teneur en carbone comprise entre 0,1 et 0,12% et présentant une forte dureté superficielle de l'ordre de 68-69 HRC. Toutefois un tel acier a une forte teneur en chrome (5,3- 5,4%), une faible teneur en vanadium (0,20-0,21%) et en Molybdène (2,5-2,52%) et ne contient pas de tungstène. Cet équilibrage de nuance conduit après traitement thermochimique et traitement de qualité associé (comprenant une trempe à 1110°C et un revenu à 482°C) à une dureté superficielle intéressante mais qui diminue très rapidement avec la profondeur, elle est ainsi à partir de 600 pm de profondeur déjà identique à celle du métal de base (figure 1). Cela est probablement dû à la plus faible teneur en carbone dans la couche cémentée que peut supporter la nuance afin d'éviter tout risque de formation de phase graphite fragilisante. La revendication 1 de ce brevet stipule ainsi une teneur en carbone dans la couche cémentée limitée à environ 0,8%. En effet du graphite pourrait apparaître dès 1% en poids de C dans la couche cémentée (couche de surface obtenue après cémentation).
II n'est donc pas évident de trouver le bon équilibrage de la nuance (dont Cr, Mo, V, W, C) au vu de ce document pour arriver à une optimisation à la fois de la dureté superficielle, du profil de dureté (profondeur) et de la ténacité (dont on a une idée par la dureté à cœur). En outre il n'était pas évident au vu de ce document d'arriver à réaliser une couche de cémentation profonde qui permette d'introduire bien plus de carbone que les nuances de l'état de l'art (jusqu'à 1,5% en poids de C) tout en limitant le risque d'apparition du graphite.
La demande de brevet JPH11-210767 décrit une famille d'acier pour application roulement aéronautique avec une durée de vie améliorée ayant la composition suivante, en pourcentages en poids de la composition totale :
Carbone : maxi 0,05;
Chrome : 2, 5-5, 5; Tungstène équivalent (2xMo+W): 12,5-20;
Vanadium : maxi 1,5;
Nickel : maxi 5,0;
Cobalt : maxi 20,0;
Silicium : 0,15 - 1,0
Manganèse : 0,15-1,5
Fer : solde
Cette nuance est soumise à une cémentation ou à une carbonitruration. Toutefois cette demande ne décrit que les propriétés de dureté superficielle de 66-69 HRC et ne décrit que la ténacité de façon qualitative. L'équilibrage de cette nuance à très faible carbone, < 0,05% en poids, nécessite de limiter la teneur en vanadium à < 1,5% en poids de façon à ne pas dégrader la ténacité, or le vanadium est un élément intéressant permettant d'améliorer la résistance à l'usure.
Cette demande ne décrit pas non plus la dureté à cœur (traduisant la résistance mécanique) de cette nuance, et étant donné le très faible niveau de carbone il est attendu que cela dégrade la résistance mécanique.
Egalement, cette demande ne décrit aucun profil de cémentation sur couche profonde. Or il serait intéressant d'avoir une dureté élevée dans toute la profondeur allant jusqu'à 400 microns de la surface qui correspond à la zone dite de Hertz, zone sollicitée par des contraintes de cisaillement très élevées. Une dureté élevée dans toute cette profondeur permet aussi d'avoir plus de tolérance quand il s'agit d'enlever de la matière pour réparation ou rectification lors d'un usinage, et c'est d'autant plus utile pour l'application transmission de puissance qui n'est pas mentionnée dans JPH11-210767. Les inventeurs se sont aperçus qu'il était possible d'obtenir un équilibrage différent de celui proposé par JPH 11-210767 avec une plus haute teneur en carbone, au moins 0,06% en poids, et une gamme de cobalt entre 9,0 et 12,5% en poids qui permettent (a) d'obtenir un bon compromis entre dureté à cœur et ténacité, autrement dit un bon compromis entre résistance mécanique et ténacité, et (b) d'admettre plus de vanadium dans sa composition sans dégrader la ténacité, ce qui est favorable pour la résistance à l'usure.
La présente invention concerne donc une composition d’acier, avantageusement cémentable et/ou nitrurable, plus avantageusement cémentable, comprenant, avantageusement constituée essentiellement de, en particulier constituée de, en pourcentages en poids de la composition totale:
Carbone : 0,06-0,20 de préférence 0,08-0,18;
Chrome : 2, 5-5,0, de préférence 3, 0-4, 5;
Molybdène : 4, 0-6,0;
Tungstène : 0,01-3,0;
Vanadium : 1, 0-3,0, de préférence 1,50-2,50;
Nickel : 2, 0-4,0;
Cobalt : 9,0-12,5, de préférence 9,5-11,0;
Fer : solde
ainsi que les impuretés inévitables,
optionnellement comprenant en outre, un ou plusieurs des éléments suivants :
Niobium : < 2,0;
Azote : < 0,50, de préférence < 0,20;
Silicium : < 0,70, de préférence 0,05-0,50; Manganèse : < 0,70, de préférence 0,05-0,50;
Aluminium : <0,15, de préférence < 0,10;
la teneur combinée en Niobium + Vanadium étant comprise dans la gamme 1, 0-3,5;
et la teneur en Carbone + Azote étant comprise dans la gamme 0,06-0,50.
Une composition particulièrement intéressante comprend, avantageusement est constituée essentiellement de, en particulier est constituée de, en pourcentages en poids de la composition totale:
Carbone : 0,06-0,20, de préférence 0,08-0,18;
Chrome : 3, 0-4, 5, de préférence 3, 5-4,5;
Molybdène : 4, 0-6,0, de préférence 4, 5-5, 5;
Tungstène 0,01 - 3,0;
Vanadium : 1,5-2, 5, de préférence 2, 0-2, 3;
Nickel : 2, 0-4,0, de préférence 2, 5-3, 5;
Cobalt : 9,5-12,5, de préférence 9,5-10,5;
Fer : solde
ainsi que les impuretés inévitables,
optionnellement comprenant en outre, un ou plusieurs des éléments suivants :
Niobium : < 2,0;
Azote : < 0,20;
Silicium : < 0,70, de préférence 0,05-0,50;
Manganèse : < 0,70, de préférence 0,05-0,50;
Aluminium : <0,10;
la teneur combinée en Niobium + Vanadium étant comprise dans la gamme 1,00-3,50 ;
et la teneur en Carbone + Azote étant comprise dans la gamme 0,06-0,50. En particulier les impuretés inévitables, notamment choisies parmi le Titane (Ti), le Soufre (S), le Phosphore (P), le Cuivre (Cu), l'Etain (Sn), le Plomb (Pb), l'Oxygène (O) et leurs mélanges, sont maintenues au plus bas niveau. Ces impuretés sont généralement dues essentiellement au procédé de fabrication et à la qualité de l'enfournement. De façon avantageuse la composition selon l'invention comprend au plus 1% en poids d'impuretés inévitables, avantageusement au plus 0,75% en poids, encore plus avantageusement au plus 0,50% en poids, par rapport au poids total de la composition.
Les éléments formateurs de carbures, qui ont aussi un effet stabilisant sur la ferrite, éléments dits alphagènes, sont essentiels à la composition d'acier selon l'invention de façon à fournir suffisamment de dureté, de résistance à la chaleur et à l'usure. Afin d'obtenir une microstructure exempte de ferrite qui fragiliserait le composant, il est nécessaire d'ajouter des éléments stabilisateurs de l'austénite, éléments dits gammagènes.
Une combinaison correcte d'éléments stabilisateurs de l'austénite (Carbone, Nickel, Cobalt et Manganèse) et d'éléments stabilisateurs de la ferrite (Molybdène, Tungstène, Chrome, Vanadium et Silicium) permet d'obtenir une composition d'acier selon l'invention ayant des propriétés supérieures, en particulier après traitement thermochimique tel que la cémentation.
La composition d’acier selon l’invention comprend donc du carbone (C) en une teneur comprise dans la gamme 0,06-0,20 %, de préférence 0,07- 0,20%, en particulier 0,08-0,20%, plus particulièrement 0,08-0,18 %, en poids par rapport au poids total de la composition. En effet le Carbone (C) stabilise la phase austénitique de l'acier aux températures de traitement thermique et est essentielle pour la formation de carbures qui apportent les propriétés mécaniques en général notamment la résistance mécanique, la haute dureté, la résistance à la chaleur et à l'usure. La présence d'une petite quantité de carbone dans un acier est bénéfique pour éviter la formation de particules intermétalliques indésirables et fragiles et pour former de petites quantités de carbures pour éviter la croissance excessive de la taille de grain pendant la mise en solution avant l'opération de trempe . La teneur initiale en carbone ne devra toutefois pas être trop élevée puisqu'il est possible d'augmenter la dureté superficielle des composants formés à partir de la composition d'acier par cémentation. Il est aussi connu que d'une manière générale l'augmentation de la teneur en carbone permet d'augmenter significativement le niveau de dureté ce qui est en général pénalisant vis-à-vis des propriétés de ductilité. C'est pour cette raison que la teneur en carbone est limitée à 0,20% maximum pour obtenir un niveau de dureté à cœur du matériau d'au maximum 650 HV. Pendant la cémentation, le carbone est implanté dans les couches de surface du composant, de façon à obtenir un gradient de dureté. Le carbone est le principal élément pour le contrôle de la dureté de la phase martensitique formée après cémentation et traitement thermique. Dans un acier cémenté, il est essentiel d'avoir une partie cœur du matériau avec une faible teneur en carbone tout en ayant une surface dure avec une forte teneur en carbone après traitement thermochimique de cémentation.
La composition d’acier selon l’invention comprend en outre du Chrome (Cr) en une teneur comprise dans la gamme 2, 5-5,0%, de préférence 3,0- 4,5%, encore plus préférée 3, 5-4, 5%, encore plus avantageusement 3,8- 4,0% en poids par rapport au poids total de la composition. Le Chrome contribue à la formation de carbures dans l'acier et est l'un des principaux éléments qui contrôle la trempabilité des aciers.
Toutefois le Chrome peut aussi favoriser l'apparition de ferrite et d'austénite résiduelle. La teneur en Chrome de la composition d'acier selon l'invention ne doit donc pas être trop élevée.
La composition d'acier selon l'invention comprend également du Molybdène (Mo) en une teneur comprise dans la gamme 4, 0-6,0%, de préférence 4, 5-5, 5%, encore plus préférée 4, 8-5, 2%, en poids par rapport au poids total de la composition.
Le Molybdène améliore la tenue au revenu, la résistance à l'usure et la dureté de l'acier. Toutefois, le Molybdène a un fort effet stabilisant sur la phase ferrite et ne doit donc pas être présent en trop grande quantité dans la composition d'acier selon l'invention.
La composition d'acier selon l'invention comprend de plus du Tungstène (W) en une teneur comprise dans la gamme 0,01-3,0%, de préférence 0,01-1,5%, encore plus préférée 0,01-1,4%, avantageusement 0,01-1,3%, en poids par rapport au poids total de la composition.
Le tungstène est un stabilisant de la ferrite et un élément fortement formateur de carbures. Il améliore la résistance au traitement thermique et à l'usure et la dureté par formation de carbures. Cependant, il peut abaisser également la dureté superficielle de l'acier et surtout les propriétés de ductilité et ténacité. Pour que cet élément joue pleinement son rôle, il est nécessaire de procéder à des mises en solution à haute température. La composition d'acier selon l'invention comprend en outre du Vanadium (V) en une teneur comprise dans la gamme 1, 0-3,0%, de préférence 1,5- 2,5%, encore plus préférée 1, 7-3,0%, avantageusement 1, 7-2,5%, plus avantageusement 1,7-2, 3%, encore plus avantageusement 2,00- 2,3%, en particulier 2, 0-2, 2%, en poids par rapport au poids total de la composition.
Le Vanadium stabilise la phase ferrite et a une forte affinité avec le carbone et l'azote. Le Vanadium apporte la résistance à l'usure et au revenu par formation de carbures de vanadium durs. Le Vanadium peut être en partie substitué par le niobium (Nb), qui a des propriétés similaires.
La teneur combinée en Niobium + Vanadium doit donc être comprise dans la gamme 1,0-3, 5% en poids par rapport au poids total de la composition, avantageusement dans la gamme 1,7-3, 5% en poids par rapport au poids total de la composition.
Si le Niobium est présent, sa teneur doit être < 2,0% en poids par rapport au poids total de la composition. Avantageusement, la composition d'acier selon l'invention ne comprend pas de Niobium.
La composition d'acier selon l'invention comprend également du Nickel (Ni) en une teneur comprise dans la gamme 2, 0-4,0%, de préférence 2, 5-3, 5%, encore plus préférée 2, 7-3, 3%, avantageusement 3, 0-3, 2%, en poids par rapport au poids total de la composition.
Le Nickel favorise la formation d'austénite et donc inhibe la formation de ferrite. Un autre effet du Nickel est de décroître la température Ns, c'est- à-dire la température à laquelle la transformation d'austénite en martensite commence lors du refroidissement. Cela peut empêcher la formation de martensite. La quantité de Nickel doit donc être contrôlée de façon à éviter la formation d'austénite résiduelle dans les composants cémentés.
La composition d'acier selon l'invention comprend de plus du Cobalt (Co) en une teneur comprise dans la gamme 9,0 -12,5%, de préférence 9,5- 12,5%, avantageusement 9,5-11,0%, plus avantageusement 9,5-10,5%, en poids par rapport au poids total de la composition. La teneur en Cobalt est mesurée selon les normes ASTM-E1097-12 publiée en juin 2017 et ASTM E1479_16 publiée en décembre 2016. L'erreur de mesure de la teneur en Cobalt de l'acier selon l'invention est ainsi de ±2,5% relatif environ et évaluée selon les normes IS05724-1 (décembre 1994), IS05725-2 (décembre 1994), IS05725-3 (décembre 1994), IS05725-4 (décembre 1994), IS05725-5 (décembre 1994), IS05725-6 (décembre 1994) et la norme NF ISO/CEI Guide 98-3 du 11 juillet 2014.
Le Cobalt est un élément fortement stabilisateur de l'austénite qui empêche la formation de ferrite indésirable. Contrairement au Nickel, le Cobalt augmente la température Ms, ce qui à son tour diminue la quantité d'austénite résiduelle. Le Cobalt, en association avec le Nickel, permet la présence de stabilisateurs de ferrite tels que les éléments formateurs de carbures Mo, W, Cr et V. Les éléments formateurs de carbures sont essentiels pour l'acier selon l'invention en raison de leur effet sur la dureté, la résistance à la chaleur et à l'usure. Le Cobalt a un petit effet d'augmentation de la dureté sur l'acier. Toutefois, cette augmentation de la dureté est corrélée à la décroissance de la ténacité. Il ne faut donc pas que la composition d'acier selon l'invention contienne une quantité trop importante de Cobalt. L'ajout du Co permet de limiter la teneur en C en évitant la promotion de la ferrite pour une composition selon l'invention (contenant les teneurs en Cr, Mo, V, Ni et W telles que décrites ci-dessus). Cete limitation en carbone permet de compenser l'augmentation de dureté liée à l'addition de Co.
La composition d'acier selon l'invention peut en outre comprendre du Silicium (Si) en une teneur < 0,70%, en poids par rapport au poids total de la composition. Avantageusement, elle comprend du Silicium, en particulier en une teneur comprise dans la gamme 0,05-0,50%, de préférence 0,05-0,30%, avantageusement 0,07-0,25%, encore plus avantageusement 0,10-0,20%, en poids par rapport au poids total de la composition.
Le Silicium stabilise fortement la ferrite, mais est souvent présent lors du procédé de fabrication de l'acier lors de la désoxydation de l'acier liquide. Des teneurs faibles en oxygène sont en effet également importantes pour obtenir de faibles niveaux d'inclusions non-métalliques et de bonnes propriétés mécaniques telles que la résistance à la fatigue et la résistance mécanique.
La composition d'acier selon l'invention peut en outre comprendre du Manganèse (Mn) en une teneur < 0,70%, en poids par rapport au poids total de la composition. Avantageusement, elle comprend du Manganèse, en particulier en une teneur comprise dans la gamme 0,05-0,50%, de préférence 0,05-0,30%, avantageusement 0,07-0,25%, encore plus avantageusement 0,10-0,22%, encore plus particulièrement 0,10-0,20% en poids par rapport au poids total de la composition.
Le Manganèse stabilise la phase austénite et décroît la température Ms dans la composition d'acier. Le Manganèse est en général ajouté dans les aciers lors de leur fabrication du fait de son affinité pour le Soufre, il se forme ainsi du sulfure de Manganèse pendant la solidification. Cela supprime le risque de formation de sulfures de Fer qui ont un effet défavorable sur l'usinage à chaud des aciers. Le Manganèse fait aussi partie de l'étape de désoxydation comme le Silicium. La combinaison du Manganèse avec le Silicium donne une désoxydation plus efficace que chacun de ces éléments seuls.
Optionnellement, la composition d'acier selon l'invention peut comprendre de l'Azote (N), en une teneur < 0,50%, de préférence < 0,20 %, en poids par rapport au poids total de la composition.
L'Azote favorise la formation d'austénite et abaisse la transformation d'austénite en martensite. L'Azote peut dans une certaine mesure remplacer le Carbone dans l'acier selon l'invention pour former des nitrures. Toutefois la teneur en Carbone + Azote doit être comprise dans la gamme 0,06-0,50% en poids par rapport au poids total de la composition.
De façon optionnelle, la composition d'acier selon l'invention peut comprendre de l'Aluminium (Al), en une teneur < 0,15%, de préférence < 0,10 %, en poids par rapport au poids total de la composition.
L'Aluminium (Al) peut en effet être présent lors du procédé de fabrication de l'acier selon l'invention et contribue de manière très efficace à la désoxydation de l'acier liquide. C'est en particulier le cas lors des procédés de refusion tels que le procédé VIM-VAR. La teneur en Aluminium est en général plus élevée dans les aciers produits en utilisant le procédé VIM- VAR que dans les aciers obtenus par la technologie des poudres. L'Aluminium génère des difficultés au cours de l'atomisation par obstruction de la busette de coulée par des oxydes. Une faible teneur en Oxygène est importante pour obtenir une bonne micro-propreté ainsi que de bonnes propriétés mécaniques telles que la résistance à la fatigue et la résistance mécanique. Les teneurs en Oxygène obtenues par voie lingot sont typiquement inférieures à 15 ppm.
Avantageusement, la composition selon la présente invention est cémentable, c'est-à-dire qu'elle peut subir un traitement de cémentation, et/ou nitrurable, c'est-à-dire qu'elle peut subir un traitement de nitruration et même avantageusement elle peut subir un traitement thermochimique, en particulier choisi parmi la cémentation, la nitruration, la carbonitruration et la cémentation suivie de la nitruration.
Ces traitements permettent d'améliorer la dureté superficielle de l'acier, en ajoutant des éléments carbones et/ou azotes. Ainsi, si la cémentation est utilisée, la teneur en Carbone de la surface de l'acier augmente et donc entraîne une augmentation de la dureté superficielle. La surface (couche superficielle avantageusement ayant une épaisseur de 100 microns) est ainsi avantageusement enrichie en Carbone pour obtenir une teneur finale en carbone (teneur superficielle finale en carbone) de 0,5% - 1,7% en poids, plus particulièrement de 0,8% - 1,5% en poids, plus avantageusement d'au moins 1% en poids, en particulier de 1-1,3% en poids, encore plus avantageusement > 1,1% en poids, encore plus particulièrement entre 1,2 et 1,5% en poids. Dans la suite de ce document, la teneur en carbone superficielle s'entendra avoir été déterminée à l'aide d'un échantillonnage d'une couche superficielle sur une profondeur de 100 microns.
Si la nitruration est utilisée, c'est la teneur en Azote qui augmente à la surface de l'acier, et donc également la dureté superficielle. Si la carbonitruration ou la cémentation suivie de la nitruration sont utilisées, ce sont les teneurs en Carbone et Azote à la surface de l'acier qui sont augmentées et donc également la dureté superficielle.
Ces procédés sont bien connus de l'homme du métier.
Dans un mode de réalisation avantageux, la composition d'acier selon l'invention présente, après un traitement thermochimique, avantageusement de cémentation ou de nitruration ou de carbonitruration ou de cémentation puis de nitruration, suivi d'un traitement thermique, une dureté superficielle supérieure à 67HRC, en particulier supérieure ou égale à 68 HRC, mesurée selon la norme ASTM E18 publiée en juillet 2017 ou norme équivalente. Elle présente en outre avantageusement une dureté superficielle supérieure ou égale à 910HV (environ 67,25 HRC selon la norme ASTM E140-12b publiée en mai 2013), avantageusement, supérieure ou égale à 920 HV, en particulier supérieure ou égale à 940HV, mesurée selon la norme ASTM E384 publiée en août 2017 ou norme équivalente, en particulier après une mise en solution à une température de 1100°C. Elle présente par ailleurs avantageusement une dureté superficielle supérieure ou égale à 930 HV (correspondant à 67,75 HRC environ selon la norme ASTM E140-12b publiée en mai 2013), avantageusement, supérieure ou égale à 940 HV (correspondant à 68 HRC selon la norme ASTM E140-12b publiée en mai 2013), en particulier supérieure ou égale à 950 HV, mesurée selon la norme ASTM E384 publiée en août 2017 ou norme équivalente après une mise en solution à une température de 1150°C.
Elle présente de plus avantageusement une dureté à 1 mm de profondeur supérieure ou égale à 860 HV (ce qui correspond à environ 66 HRC selon la norme ASTM E140-12b publiée en mai 2013), avantageusement, supérieure ou égale à 870 HV, en particulier supérieure ou égale à 880 HV, mesurée selon la norme ASTM E384 publiée en août 2017 ou norme équivalente, en particulier après une mise en solution à une température de 1100°C. Elle présente par ailleurs avantageusement une dureté à 1 mm de profondeur supérieure ou égale à 880 HV, avantageusement, supérieure ou égale à 890 HV, en particulier supérieure ou égale à 900 HV, mesurée selon la norme ASTM E384 publiée en août 2017 ou norme équivalente
Elle présente par ailleurs avantageusement un niveau de dureté du matériau de base (dureté cœur matériau) compris entre 440 et 650 HV, avantageusement entre 440 et 630 HV, mesurée selon la norme ASTM E384 publiée en août 2017 ou norme équivalente.
La composition d'acier obtenue grâce à ces traitements a avantageusement une concentration en carbone en surface (teneur superficielle finale) de 1-1,3% en poids.
Ledit traitement thermique peut comprendre :
- (1) une mise en solution de l'acier à une température comprise entre 1090°C-1160°C, avantageusement entre 1100oC-1160°C, plus avantageusement entre 1100 et 1155°C, en particulier entre 1100 et 1150°C, plus particulièrement de 1150°C,
- (2) suivi avantageusement d'un maintien à cette température jusqu'à austénitisation complète, en particulier pendant une durée de 15 minutes (trempe), (ces 2 phases (1) et (2) permettent la mise en solution totale ou partielle des carbures initialement présents),
- (3) puis éventuellement un premier refroidissement (trempe), en particulier sous gaz neutre à, par exemple, une pression de 2 bars (2xl05 Pa), avantageusement jusqu'à la température ambiante, (cette phase permet d'obtenir une microstructure principalement martensitique avec de l'austénite résiduelle. Cette austénite résiduelle est fonction de la température de refroidissement : la teneur diminue avec la température de refroidissement),
- (4) suivi éventuellement d'un maintien à la température ambiante,
- (5) puis avantageusement d'un deuxième refroidissement à une température inférieure à -40°C, plus avantageusement inférieure à -60°C, encore plus avantageusement d'environ -70°C, en particulier pendant 2 heures (cette phase permet de diminuer la teneur en austénite résiduelle),
- (6) et avantageusement un ou plusieurs revenus, plus avantageusement au moins trois revenus, avantageusement à une température supérieure ou égale à 475°C, plus avantageusement comprise entre 475°C et 530°C, en particulier de 500°C, encore plus particulièrement pendant 1 heure chacun (ce ou ces revenus permettent la précipitation de carbures et la décomposition partielle ou totale de l'austénite résiduelle. Cela permet d'obtenir des propriétés de ductilité).
L'intérêt de l'acier selon l'invention est donc d'obtenir de hauts niveaux de dureté avec un traitement thermique limité (température comprise entre 1090°C-1160oC, avantageusement entre 1100°C-1160°C, plus avantageusement entre 1100°C-1155°C, en particulier entre 1100°C- 1150°C, plus particulièrement de 1150°C).
Dans un mode de réalisation particulièrement avantageux, la composition d'acier selon l'invention présente, après un traitement thermochimique, avantageusement de cémentation ou de nitruration ou de carbonitruration ou de cémentation puis de nitruration, suivi d'un traitement thermique, une structure martensitique ayant une teneur d'austénite résiduelle inférieure à 10% en poids, plus avantageusement inférieure à 0,5% en poids, et exempte de ferrite et de perlite, phases connues pour diminuer la dureté superficielle de l'acier.
Ledit traitement thermique peut être tel que décrit ci-dessus.
La présente invention concerne en outre un procédé de fabrication d'une ébauche en acier ayant la composition selon l'invention, caractérisé en ce qu'il comprend :
a) une étape d'élaboration de l'acier;
b) une étape de transformation de l'acier;
c) un traitement thermochimique;
d) et un traitement thermique.
Avantageusement le traitement thermique de l'étape d) du procédé selon la présente invention est tel que décrit ci-dessus.
De façon avantageuse, le traitement thermochimique de l'étape c) du procédé selon la présente invention consiste en un traitement de cémentation ou de nitruration ou de carbonitruration ou de cémentation puis de nitruration, avantageusement il s'agit d'un traitement de cémentation, plus particulièrement permettant un enrichissement en carbone en surface entraînant une teneur superficielle finale en carbone d'au moins 1% en poids, encore plus avantageusement > 1,1% en poids.
En particulier, l'étape b) du procédé selon la présente invention consiste en une étape de laminage, de forgeage et/ou de filage, avantageusement de forgeage. Ces procédés sont bien connus de l'homme du métier. Dans un mode de réalisation avantageux, l'étape a) d'élaboration du procédé selon la présente invention est mise en œuvre par un procédé d'élaboration conventionnelle en four à arc avec affinage et refusion sous laitier conducteur (ESR), ou par un procédé VIM ou VIM-VAR, avec éventuellement une étape de refusion sous laitier conducteur (ESR) et/ou sous vide (VAR), ou par Métallurgie des poudres telle que l'atomisation par gaz et la compression par compaction isostatique à chaud (HIP).
Ainsi, l'acier selon la présente invention peut être élaboré par un procédé VIM-VAR. Ce procédé permet d'obtenir une très bonne propreté inclusionnaire et améliore l'homogénéité chimique du lingot. Il est aussi possible de procéder à une voie de refusion sous laitier conducteur (ESR : Electro Slag Remelting) ou de combiner des opérations ESR et VAR (refusion sous vide).
Cet acier peut être aussi obtenu par Métallurgie des poudres. Ce procédé permet de produire de la poudre métallique de grande pureté par atomisation, de préférence atomisation par gaz permettant d'obtenir de faibles teneurs en oxygène. La poudre est ensuite comprimée par recours par exemple à une compaction isostatique à chaud (HIP).
Ces procédés sont bien connus de l'homme du métier.
La présente invention concerne également une ébauche d'acier susceptible d'être obtenue par le procédé selon l'invention. Cette ébauche est faite à base d'acier ayant la composition selon la présente invention et telle que décrite ci-dessus.
Elle concerne de plus l'utilisation d'une ébauche selon l'invention ou d'une composition d'acier selon l'invention pour la fabrication d'un organe mécanique ou d'un système d'injection, avantageusement d'un élément de transmission tels qu'un engrenage, un arbre de transmission et/ou un roulement et donc en particulier d'un roulement.
Elle concerne ainsi un organe mécanique, avantageusement un élément de transmission, en particulier un engrenage, un arbre de transmission ou un roulement, plus particulièrement un roulement ou un engrenage, encore plus particulièrement un roulement, en acier ayant la composition selon l'invention ou obtenu à partir d'une ébauche d'acier selon l'invention. Elle concerne enfin un système d'injection en acier ayant la composition selon l'invention ou obtenu à partir d'une ébauche d'acier selon l'invention. En effet, avec la composition d'acier selon l'invention, il est possible de combiner la haute dureté superficielle et la résistance à l'usure de surface après traitement thermochimique avec une partie cœur du matériau ayant une haute résistance à la fatigue et une haute résistance mécanique.
Ces aciers sont donc utilisables dans des domaines exigeants tels que les roulements pour l'aérospatiale ou les systèmes d'injection.
L'invention sera mieux comprise à la lecture des exemples qui suivent qui sont donnés à titre indicatif non limitatif.
Dans les exemples, sauf indication contraire, tous les pourcentages sont exprimés en poids, la température est exprimée en degré Celsius et la pression est la pression atmosphérique.
lère série d'exemples : Sept coulées laboratoires de 9 Kg chacune environ (6 exemples selon l'invention et un exemple comparatif de composition proche de celle du brevet US8157931 : exemple comparatif 1) ont été élaborées par le procédé VIM selon la composition figurant au tableau 1 ci-dessous (en % en poids par rapport au poids total de la composition), le solde étant du Fe:
Tableau 1
Figure imgf000026_0001
La teneur en Nb est en dessous de la limite de détection. Nb <0,005% pour tous les exemples.
Ces compositions sont très similaires à l'exception de l'exemple comparatif 1. Les principales différences notables entre l'exemple comparatif 1 et l'exemple 1 tiennent à la teneur en V, en Mo et en Cr.
Ces coulées laboratoire ont été transformées en barres de diamètre 40 mm par un procédé de forgeage à chaud sous presse de 2000 T. Des barreaux de diamètre 20 mm ont été usinés dans la barre et cémentés.
Les barreaux cémentés ont été traités par (1) une mise en solution à 1100°C ou 1150°C, (2) un maintien pendant 15 min à cette température pour austénitisation, (3) un refroidissement sous gaz neutre à une pression comprise entre 2 et 6 bars (2xl05 et 6X105 Pa), (4) une période à température ambiante, (5) un refroidissement à -70°C pendant 2 heures, et (6) 3 revenus à une température de 500°C pendant 1 heure chacun. Les profils de dureté superficielle en HV mesurés selon la norme ASTM E384 publiée en août 2017 des exemples 1 à 6 et de l'exemple comparatif 1 sont indiqués dans les tableaux 2 et 3.
Tableau 2 (mise en solution à 1100°0
Figure imgf000027_0001
Tableau 3 (mise en solution à 1150°Q
Figure imgf000027_0002
Pour toutes les compositions chimiques sauf pour l'exemple comparatif 1, la dureté superficielle après cémentation dépasse 920 HV pour une température de mise en solution de 1100°C et dépasse 930 HV pour une température de mise en solution de 1150°C. La dureté à 1 mm de profondeur est toujours supérieure à 860 HV pour une température de mise en solution de 1100°C et est toujours supérieure à 880 HV pour une température de mise en solution de 1150°C pour tous les exemples sauf l'exemple comparatif 1 (effet du manque d'éléments d'alliage).
Les duretés sur matériaux de base sont toutes inférieures à 650 HV.
2eme série d'exemples : 2 coulées de 100 Kg chacune (un exemple selon l'invention et un exemple comparatif 2) ont été élaborées par le procédé VIM selon la composition figurant au tableau 4 ci-dessous (en % en poids par rapport au poids total de la composition), le solde étant du Fe:
Tableau 4
Figure imgf000028_0001
Ces coulées laboratoire ont été transformées en barres de diamètre 40 mm par un procédé de forgeage à chaud sous presse de 2000 T. Des barreaux de diamètre 20 mm ont été usinés dans la barre et cémentés.
Les barreaux cémentés ont été traités selon le même procédé que pour la première série d'essai hormis la mise en solution qui a été faite à 1100°C et le triple revenu qui a été opéré à 525°C pendant 1 heure. Le tableau 5 ci-après donne les résultats des essais de ténacité réalisés sur éprouvettes CT10 selon la norme ASTM E399-17 publiée en février 2018.
Tableau 5
Figure imgf000028_0002
L'exemple comparatif 2 présente de la ferrite delta après traitement thermique, en faible quantité mais suffisant pour diminuer les propriétés de ténacité.
L'exemple 7, très proche de l'exemple comparatif 2 au niveau de sa composition au W près, ne présente pas de ferrite delta et permet d'obtenir des valeurs de ténacité presque doublées par rapport à l'exemple comparatif 2 tout en maintenant une bonne résistance mécanique (Rm) d'environ 1500 MPa, qui a été déterminée selon la norme ASTM E399-17 publiée en février 2018, équivalent à une dureté à cœur de 450 HV selon la norme ASTM E384 publiée en août 2017.

Claims

REVENDICATIONS
1. Composition d'acier comprenant, avantageusement constitué essentiellement de, en pourcentages en poids de la composition totale:
Carbone : 0,06-0,20 de préférence 0,08-0,18;
Chrome : 2, 5-5,0, de préférence 3, 0-4, 5;
Molybdène : 4, 0-6,0;
Tungstène : 0,01-3,0;
Vanadium : 1, 0-3,0, de préférence 1,5-2, 5;
Nickel : 2, 0-4,0;
Cobalt : 9,0-12,5, de préférence 9,5-11,0;
Fer : solde
ainsi que les impuretés inévitables,
optionnellement comprenant en outre, un ou plusieurs des éléments suivants :
Niobium : < 2,0;
Azote : < 0,50, de préférence < 0,20;
Silicium : < 0,70, de préférence 0,05-0,50;
Manganèse : < 0,70, de préférence 0,05-0,50;
Aluminium : <0,15, de préférence < 0,10;
la teneur combinée en Niobium + Vanadium étant comprise dans la gamme 1,0-3, 5;
et la teneur en Carbone + Azote étant comprise dans la gamme 0,06-0,50.
2. Composition d'acier selon la revendication 1, caractérisée en ce qu'elle comprend, avantageusement en ce qu'elle est constituée essentiellement de, en pourcentages en poids de la composition totale:
Carbone : 0,06-0,20, de préférence 0,08-0,18; Chrome : 3, 0-4,5, de préférence 3, 5-4, 5;
Molybdène : 4, 0-6,0, de préférence 4, 5-5, 5;
Tungstène 0,01 - 3,0;
Vanadium : 1,5-2, 5, de préférence 2, 0-2, 3;
Nickel : 2, 0-4,0, de préférence 2, 5-3, 5 ;
Cobalt : 9,5-12,5, de préférence 9,5-10,5;
Fer : solde
ainsi que les impuretés inévitables,
optionnellement comprenant en outre, un ou plusieurs des éléments suivants :
Niobium : < 2,0;
Azote : < 0,20;
Silicium : < 0,70, de préférence 0,05-0,50;
Manganèse : < 0,70, de préférence 0,05-0,50;
Aluminium : <0,10;
la teneur combinée en Niobium + Vanadium étant comprise dans la gamme 1,0-3, 5;
et la teneur en Carbone + Azote étant comprise dans la gamme 0,06-0,50.
3. Composition d'acier selon l'une quelconque des revendications 1 ou 2, caractérisée en ce qu'elle comprend au plus 1% en poids d'impuretés inévitables, avantageusement au plus 0,5% en poids.
4. Composition d'acier selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les impuretés inévitables sont choisis parmi le Titane, le Soufre, le Phosphore, le Cuivre, l'Etain, le Plomb, l'Oxygène et leurs mélanges.
5. Composition d'acier selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle est cémentable et/ou nitrurable.
6. Composition d’acier selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle présente, après un traitement thermochimique, avantageusement de cémentation ou de nitruration ou de carbonitruration ou de cémentation puis de nitruration, suivi d'un traitement thermique, une dureté superficielle supérieure à 67 HRC, en particulier supérieure ou égale à 68 HRC et avantageusement une dureté à 1 mm de profondeur supérieure ou égale à 66 HRC.
7. Composition d'acier selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle présente, après un traitement thermochimique, avantageusement de cémentation ou de nitruration ou de carbonitruration ou de cémentation puis de nitruration, suivi d'un traitement thermique, une structure martensitique ayant une teneur d'austénite résiduelle inférieure à 0,5% en poids et exempte de ferrite et de perlite.
8. Composition d'acier selon l'une quelconque des revendications 6 ou 7, caractérisée en ce que le traitement thermique comprend une mise en solution à une température comprise entre 1090°C-1160°C suivi d'une trempe avec éventuellement un refroidissement, avantageusement à une température inférieure à -40°C, et plusieurs revenus, avantageusement au moins trois revenus, à une température comprise entre 475°C et 530°C, en particulier de 500°C.
9. Procédé de fabrication d'une ébauche en acier ayant la composition selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend :
a) une étape d'élaboration de l'acier;
b) une étape de transformation de l'acier;
c) un traitement thermochimique;
d) et un traitement thermique.
10. Procédé de fabrication selon la revendication 9, caractérisé en ce que l'étape c) consiste en un traitement de cémentation ou de nitruration ou de carbonitruration ou de cémentation puis de nitruration, avantageusement il s'agit d'un traitement de cémentation.
11. Procédé de fabrication selon l'une quelconque des revendications 9 ou 10, caractérisé en ce que l'étape c) consiste en un traitement de cémentation permettant un enrichissement en carbone en surface entraînant une teneur superficielle finale en carbone d'au moins 1% en poids, encore plus avantageusement > 1,1% en poids.
12. Procédé de fabrication selon l'une quelconque des revendications 9 à 11, caractérisé en ce que l'étape d) comprend une mise en solution à une température comprise entre 1090°C-1160°C, avantageusement comprise entre 1100°C-1150°C, suivi d'un maintien à cette température jusqu'à austénitisation complète avec éventuellement un refroidissement à une température inférieure à -40°C, avantageusement de -70°C, et plusieurs revenus, avantageusement au moins trois revenus, à une température comprise entre 475°C et 530°C, en particulier de 500°C.
13. Procédé de fabrication selon l'une quelconque des revendications 9 à 12, caractérisé en ce que l'étape b) consiste en une étape de laminage, de forgeage et/ou de filage.
14. Procédé de fabrication selon l'une quelconque des revendications 9 à 13, caractérisé en ce que l'étape a) d'élaboration est mise en œuvre par un procédé d'élaboration conventionnelle en four à arc et avec affinage et refusion sous laitier conducteur (ESR), ou par un procédé VIM ou VIM- VAR, avec éventuellement une étape de refusion sous laitier conducteur (ESR) et/ou sous vide (VAR), ou par Métallurgie des poudres telle que l'atomisation par gaz et la compression par compaction isostatique à chaud (HIP).
15. Ebauche d’acier susceptible d’être obtenue par un procédé selon l’une quelconque des revendications 9 à 14.
16. Utilisation d'une ébauche selon la revendication 15 ou d'une composition d'acier selon l'une quelconque des revendications 1 à 8 pour la fabrication d'un organe mécanique ou d'un système d'injection, avantageusement d'un roulement.
17. Organe mécanique, avantageusement élément de transmission, en particulier roulement ou engrenage, en acier ayant la composition selon l'une quelconque des revendications 1 à 8 ou obtenu à partir d'une ébauche d'acier selon la revendication 15.
18. Système d'injection en acier ayant la composition selon l'une quelconque des revendications 1 à 8 ou obtenu à partir d'une ébauche d'acier selon la revendication 15.
PCT/FR2019/050573 2018-03-14 2019-03-14 Composition d'acier WO2019186016A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL19742812.1T PL3765646T3 (pl) 2018-03-14 2019-03-14 Kompozycja stali
US16/980,168 US20210010116A1 (en) 2018-03-14 2019-03-14 Steel composition
EP19742812.1A EP3765646B1 (fr) 2018-03-14 2019-03-14 Composition d'acier
ES19742812T ES2960814T3 (es) 2018-03-14 2019-03-14 Composición de acero

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852202A FR3078978B1 (fr) 2018-03-14 2018-03-14 Composition d'acier
FR1852202 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019186016A1 true WO2019186016A1 (fr) 2019-10-03

Family

ID=63407283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050573 WO2019186016A1 (fr) 2018-03-14 2019-03-14 Composition d'acier

Country Status (6)

Country Link
US (1) US20210010116A1 (fr)
EP (1) EP3765646B1 (fr)
ES (1) ES2960814T3 (fr)
FR (1) FR3078978B1 (fr)
PL (1) PL3765646T3 (fr)
WO (1) WO2019186016A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273103B (zh) * 2019-07-15 2020-09-25 南京钢铁股份有限公司 一种非调质钢盘条强度均匀性控制方法
CN110527911B (zh) * 2019-09-16 2020-12-18 北京航空航天大学 一种低密度高强高耐蚀齿轮轴承钢及其制备方法
RU2748448C1 (ru) * 2020-06-03 2021-05-25 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Цементуемая теплостойкая сталь
CN113088623B (zh) * 2021-03-31 2022-11-01 安徽富凯特材有限公司 一种超纯G102Cr18Mo不锈轴承钢的制备方法
CN114318151B (zh) * 2021-12-30 2022-11-01 安徽华天机械股份有限公司 一种高强度汽车冷轧卷材分切刀片用钢材料及制备工艺
CN114774771B (zh) * 2022-03-02 2023-09-15 江阴兴澄特种钢铁有限公司 一种大载荷轧机轴承用渗碳轴承钢及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424028A (en) * 1993-12-23 1995-06-13 Latrobe Steel Company Case carburized stainless steel alloy for high temperature applications
JPH11210767A (ja) * 1998-01-27 1999-08-03 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk 転がり軸受
GB2370281A (en) 2000-10-27 2002-06-26 Nippon Piston Ring Co Ltd Iron-based sintered alloy for valve seats
US8157931B2 (en) 2008-07-01 2012-04-17 Northwestern University Case hardenable nickel-cobalt steel
WO2015082342A1 (fr) 2013-12-02 2015-06-11 Erasteel Alliage d'acier et composant comprenant un tel alliage d'acier
WO2017216500A1 (fr) 2016-06-17 2017-12-21 Aubert & Duval Composition d'acier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458703A (en) * 1991-06-22 1995-10-17 Nippon Koshuha Steel Co., Ltd. Tool steel production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424028A (en) * 1993-12-23 1995-06-13 Latrobe Steel Company Case carburized stainless steel alloy for high temperature applications
JPH11210767A (ja) * 1998-01-27 1999-08-03 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk 転がり軸受
GB2370281A (en) 2000-10-27 2002-06-26 Nippon Piston Ring Co Ltd Iron-based sintered alloy for valve seats
US8157931B2 (en) 2008-07-01 2012-04-17 Northwestern University Case hardenable nickel-cobalt steel
WO2015082342A1 (fr) 2013-12-02 2015-06-11 Erasteel Alliage d'acier et composant comprenant un tel alliage d'acier
WO2017216500A1 (fr) 2016-06-17 2017-12-21 Aubert & Duval Composition d'acier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199941, Derwent World Patents Index; AN 1999-489939, XP002787318 *

Also Published As

Publication number Publication date
EP3765646B1 (fr) 2023-08-02
FR3078978B1 (fr) 2020-03-13
PL3765646T3 (pl) 2023-11-27
EP3765646A1 (fr) 2021-01-20
FR3078978A1 (fr) 2019-09-20
ES2960814T3 (es) 2024-03-06
US20210010116A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
EP3765646B1 (fr) Composition d&#39;acier
EP3472363A1 (fr) Composition d&#39;acier
CA2607446C (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
EP2164998B1 (fr) Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
EP2310546B1 (fr) Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
CA2335911C (fr) Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier
FR2885141A1 (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
JP6471914B2 (ja) 鋼合金およびそのような鋼合金を含む部品、鋼合金の製造方法
FR2765890A1 (fr) Procede de fabrication d&#39;une piece mecanique en acier cementee ou carbonitruree et acier pour la fabrication de cette piece
WO2011065593A1 (fr) Lingot pour roulement, et procédé de production d&#39;acier à roulements
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l&#39;utilisant et pieces mecaniques ainsi realisees
FR2500483A1 (fr) Poudre d&#39;acier faiblement allie atomisee a l&#39;huile et son procede de production
WO1999039018A1 (fr) Acier et procede pour la fabrication de pieces de mecanique secables
WO2018186298A1 (fr) PRODUIT D&#39;ALLIAGE À BASE DE Cr-Fe-Ni ET SON PROCÉDÉ DE FABRICATION
JP2006028568A (ja) 高温浸炭用鋼およびその製造方法
FR3056229A1 (fr) Alliage d’acier inoxydable cementable
JP2001240943A (ja) 高疲労強度を有するマルエージング鋼ならびにそれを用いたマルエージング鋼帯
JP2001240944A (ja) 高疲労強度を有するマルエージング鋼ならびにそれを用いたマルエージング鋼帯
JPH0578782A (ja) 転がり軸受
WO2022064124A1 (fr) Procede de forgeage d&#39;une piece en acier maraging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19742812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019742812

Country of ref document: EP

Effective date: 20201014