EP1896624B1 - Zusammensetzung von martensitischem nichtrostendem stahl, verfahren zur herstellung eines mechanischen teils daraus und resultierendes teil - Google Patents

Zusammensetzung von martensitischem nichtrostendem stahl, verfahren zur herstellung eines mechanischen teils daraus und resultierendes teil Download PDF

Info

Publication number
EP1896624B1
EP1896624B1 EP06778669A EP06778669A EP1896624B1 EP 1896624 B1 EP1896624 B1 EP 1896624B1 EP 06778669 A EP06778669 A EP 06778669A EP 06778669 A EP06778669 A EP 06778669A EP 1896624 B1 EP1896624 B1 EP 1896624B1
Authority
EP
European Patent Office
Prior art keywords
traces
steel
steel according
temperature
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06778669A
Other languages
English (en)
French (fr)
Other versions
EP1896624A1 (de
Inventor
Jacques Montagnon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to SI200630767T priority Critical patent/SI1896624T1/sl
Priority to PL06778669T priority patent/PL1896624T3/pl
Publication of EP1896624A1 publication Critical patent/EP1896624A1/de
Application granted granted Critical
Publication of EP1896624B1 publication Critical patent/EP1896624B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a martensitic stainless steel, and in particular to an alloy steel containing mainly chromium, nickel, molybdenum and / or tungsten, titanium, aluminum and optionally manganese elements, and offering a unique combination of corrosion resistance and mechanical strength. high.
  • Low-alloyed carbon martensitic steels that is to say none of the alloying elements exceeds 5% by weight
  • quenched and tempered are most suitable when operating temperatures remain below their temperature. of income.
  • those alloyed with silicon can withstand slightly higher operating temperatures because their tempering temperature to obtain the best compromise between the breaking strength (R m ) and the toughness (K 1C ) is typically located around 250 ° C. / 300 ° C.
  • R m / K 1C compromises of the order of 1900 ⁇ MPa / 70 ⁇ MPa ⁇ m and 2000 ⁇ MPa / 60 ⁇ MPa ⁇ m where m is expressed in meters, are commonly obtained with these categories of steels, through an appropriate development that is now controlled with known industrial means.
  • cadmium is a highly harmful element to the environment, and its use is severely controlled by certain regulations.
  • the solid substrate remains intrinsically very sensitive to the fragile cracking favored by external hydrogen of any source.
  • the aim of the steel composition of the invention is to solve these technical problems by proposing a martensitic stainless steel having an intrinsic resistance to corrosion in an atmospheric medium (marine or urban environment) for which the external source of hydrogen is eradicated , and simultaneously having a high tensile strength (of the order of 1800 MPa and more) and toughness equivalent to that of low alloyed carbon steel and very high strength.
  • Said cryogenic treatment may be a quenching in dry ice.
  • Said cryogenic treatment can be carried out at a temperature of -80 ° C for at least 4 hours.
  • At least one homogenizing heat treatment may be carried out between 1200 and 1300 ° C. for at least 24 hours on the ingot or during its hot transformations into semi-finished product, but before the last of these hot transformations.
  • the invention also relates to a mechanical part made of steel with high resistance to corrosion and mechanical strength, characterized in that it was obtained by the above method.
  • the invention is based primarily on a composition of the steel as defined above. It has particular characteristics as Ni, Al, Ti, Mo, Cr and Mn that are or can be quite high.
  • Thermomechanical treatments are also proposed, whereby the desired properties for the final metal are obtained.
  • the steel of the invention allows a structural hardening by simultaneous precipitation of the secondary phases of ⁇ -NiAl type, ⁇ -Ni 3 Ti and optionally ⁇ -Fe 7 (Mo, W) 6 according to the effect called “maraging", this which gives, after thermal aging, ensuring precipitation, a very high level of mechanical strength of at least 1800 MPa, combined with good resistance to corrosion, in particular to stress corrosion in atmospheric corrosive environments.
  • the steel of the invention has good resistance to heating and can therefore withstand temperatures up to 300 ° C for short durations and of the order of 250 ° C for long periods. Its sensitivity to hydrogen is lower than that of low alloyed steels.
  • Very high strength steels are very sensitive to stress corrosion.
  • the steel composition of the invention is such that the very origin of the stress corrosion fracture, which is the production of hydrogen by the corrosion mechanisms and then the embrittlement of the metal by internal diffusion of this hydrogen, is circumvented in atmospheric environments thanks to an outfit reinforced with corrosion in general.
  • a minimum chromium content of 9 to 11% is necessary to give a steel a protection capacity against corrosion in a humid atmosphere, thanks to the formation on its surface of an oxide film. rich in chromium. But this protective film is insufficient in the case where the atmospheric medium is polluted by sulphate or chloride ions that can develop pitting corrosion and then crevice, both likely to provide hydrogen embrittlement.
  • the molybdenum element has a very favorable effect on the reinforcement of the passive film with respect to corrosion in aqueous media polluted by chlorides or sulphates.
  • the curing effect which gives a very high mechanical strength to the steel is obtained by precipitation of several hardening secondary phases during a thermal heat treatment of a completely martensitic structure.
  • This martensitic structure prior to the income results from a preliminary solution treatment in the austenitic domain, then a cooling (or quenching) until a sufficiently low temperature so that all the austenite is transformed into martensite.
  • the steel of the invention undergoes this hardening thanks to the precipitation of intermetallic prototype phases ⁇ -NiAl, ⁇ -Ni 3 Ti and possibly ⁇ -Fe 7 (Mo, W) 6 .
  • the strongest hardening is achieved with the highest additions of aluminum, titanium and molybdenum.
  • the nickel content must be very precisely adjusted so that the maximum hardening is obtained from a purely martensitic structure, without any residual ferrite or quench austenite.
  • the steel of the invention has maximum ductility and toughness, which are obtained in particular by limiting at best the effects of anisotropy related to the solidification of ingots.
  • the steel must be free of the ⁇ ferrite phase and the residual austenite phase after dissolution and cooling.
  • the steel of the invention does not contain ferrite because its composition meets the conditions described below.
  • the ferrite ⁇ formed transiently during the solidification of the steel of the invention can be completely resorbed during a heat treatment at high temperature and in the solid phase, for example between 1200 and 1300 ° C. , when : Cr eq / Neither eq ⁇ 1 , 05
  • the structural homogeneity of the steel of the invention which is therefore dictated by the solidification conditions, is preferably optimized by means of homogenization heat treatments at very high temperatures, between 1200 and 1300.degree. longer than 24 hours, applied on the ingots and / or the intermediate products, that is to say on the half-products being processed hot. Such treatment should not, however, occur after the last hot transformation, otherwise we would end up with too large grain size before further processing.
  • the best properties of the steel of the invention are obtained after being dissolved between 850 and 950 ° C., in the austenitic field, followed by cooling sufficiently energetic to allow the total transformation of the austenite. in martensite. This transformation must be total for two reasons.
  • the width of the domain of the martensitic transformation of a high-alloy steel a range between the transformation start temperature Ms and the end-of-transformation temperature M f, is approximately 150 ° C., and that This area is all the larger as the structure of the steel is less homogeneous.
  • the temperature Ms of a steel that is cooled to room temperature (about 25 ° C) from its austenitic dissolution range must be at least 175 ° C.
  • the steel of the invention has a balanced composition such that the transformation temperature Ms is ⁇ 50 ° C, and preferably close to or greater than 70 ° C.
  • its cooling to -80 ° C, or lower, in a cooling medium allows the transformation of austenite into martensite. This is made possible by searching for a temperature range Ms-Mf of at least 140 ° C., preferably at least 160 ° C., by the application, after the treatment. dissolving between 850 and 950 ° C, a cooling completed for example in dry ice at -80 ° C or lower, for a time sufficient to ensure complete cooling of the products and a complete transformation of the austenite in martensite.
  • the steel of the invention must have a repetitive and reliable value of Ms which must satisfy the following relationship, a function of all the additive elements included in the steel and which have a significant influence on Ms, y. including the elements present in residual contents but whose effect is strong on the value of Ms.
  • Chromium and molybdenum are the elements that give steel its good resistance to corrosion: molybdenum is also likely to participate, in addition, in hardening during the precipitation of the intermetallic phase Fe 7 Mo 6 .
  • the molybdenum content is at least 1.5% to obtain the desired anticorrosion effect.
  • the maximum content is 3%.
  • the solvus temperature of a ét type molybdenum-rich intermetallic phase, stable at high temperature becomes greater than 950 ° C; in addition, in some cases, the solidification is completed by a eutectic system which produces massive intermetallic phases, rich in molybdenum, and whose subsequent solution requires solution temperatures above 950 ° C.
  • the steel also contains tungsten, it will partially replace the molybdenum at the rate of one tungsten atom for two molybdenum atoms. In this case, the maximum limit of 3% applies to the sum Mo + (W / 2).
  • the chromium and molybdenum contents must make it possible to obtain a pitting index of at least 16.5.
  • the austenite content dispersed in the steel must be limited to a maximum of 10% to maintain very high mechanical strength: the nickel content is, in this perspective, a maximum of 14%; its preferred content between 10.5 and 12.5% is finally adjusted precisely using the two previously described relationships: Cr eq / Ni eq ⁇ 1.05; M s ⁇ 50 ° C;
  • Aluminum is a necessary element for the hardening of steel; the desired maximum resistance levels (Rm ⁇ 1800 MPa) are only achieved with an addition of at least 1% aluminum, and preferably at least 1.2%. Aluminum strongly stabilizes ferrite ⁇ and the steel of the invention can not contain more than 2% of aluminum without appearance of this phase. Thus, the aluminum content is preferably limited to 1.6%, as a precaution, so as to take into account the analytical variations of the other elements which promote ferrite, and which are mainly chromium, molybdenum and titanium.
  • Titanium just like aluminum, is a necessary element for the hardening of steel. It allows its hardening by precipitation of the phase ⁇ - Ni 3 Ti.
  • the increase in titanium Rm strength is approximately 400MPa per percent titanium.
  • the very high strength values referred to are obtained only when the sum Al + Ti is at least equal to 2.25% by weight.
  • titanium very effectively binds the carbon contained in the steel in the form of TiC carbide, which makes it possible to avoid the harmful effects of free carbon as indicated below.
  • solubility of the TiC carbide being quite low, it is possible to precipitate this carbide in a homogeneous manner in the steel during the final stages of the thermomechanical transformation at low temperatures in the austenitic domain of the steel: this avoids the intergranular weakening of the carbide.
  • the titanium content must be between 0.5 and 1.5%, preferably between 0.75 and 1.25%.
  • Cobalt in substitution for nickel in a proportion of 2% by weight of cobalt per 1% of nickel, is advantageous because it makes it possible to stabilize the austenite at the dissolution temperatures, while allowing the solidification of the steel to be maintained.
  • of the invention according to the desired ferritic mode (it very weakly stabilizes the austenite at solidification temperatures): in this, cobalt widens the range of the compositions according to the invention as they are delimited by the Cr eq binding relationships and Neither eq.
  • the substitution of 1% of nickel with 2% of cobalt makes it possible to record the starting point of the martensitic transformation of the steel as clearly as possible. be deduced from Ms.'s calculation formula
  • cobalt gives the martensitic structure a stronger ability to respond to hardening; however, cobalt does not participate directly in precipitation hardening of the ⁇ - NiAl phase and does not have the ductilizing effect of nickel. On the contrary, it favors the precipitation of the ⁇ - FeCr weakening phase at the expense of the ⁇ - Fe 7 Mo 6 phase, which can have a hardening effect.
  • cobalt is limited to 2%, preferably to 0.5% in the restricted range where all the properties of the steel of the invention can be acquired without resorting to the effects of cobalt.
  • Tungsten can be added in substitution for molybdenum because it participates more actively in the hardening of the solid solution of martensite, and it is also likely to participate in the precipitation of the intermetallic phase type ⁇ -Fe 7 (Mo, W). ) 6 .
  • Phosphorus tends to segregate at the grain boundaries, which reduces the adhesion of these joints and decreases the tenacity and ductility of the steels by intergranular embrittlement.
  • a maximum content of 0.02%, preferably 0.01%, is not to be exceeded in the steel of the invention.
  • Sulfur is known to induce strong embrittlement of high strength steels according to various modes such as intergranular segregation and precipitation of sulphide inclusions: the objective is therefore to minimize its content in the steel, according to the means. available. Very low sulfur contents are easily accessible in the raw materials with conventional refining means. It is therefore easy to meet the requirement of the steel of the invention which specifies that the required mechanical properties require a sulfur content of less than 0.0050%, preferably less than 0.0010% and ideally less than 0, 0005%, subject to an appropriate choice of raw materials.
  • the nitrogen content must also be kept at the lowest possible value with the available means of elaboration, firstly to obtain the best ductility of the steel, and secondly to obtain the fatigue endurance limit. the highest possible, especially since the steel contains the titanium element. Indeed, in the presence of titanium, nitrogen forms insoluble cubic TiN nitrides which are extremely harmful by their shape and their physical properties. They constitute systematic primers of fatigue cracking.
  • the industrial vacuum production method makes it possible to obtain residual nitrogen contents of between 0.0030 and 0.0100%, typically centered on 0.0050 to 0.0060% in the case of the steel of the invention. 'invention.
  • the best solution for the steel of the invention is therefore to seek a residual nitrogen content as low as possible, less than 0.0060%.
  • nitrogen contents of less than 0.0030% may be sought by the choice of raw materials and methods of preparation. specific.
  • the maximum carbon content of the steel of the invention is limited to 0.025% at most, preferably 0.0120% at most.
  • Copper which is a residual element found in commercial raw materials, must not be present at more than 0.5%, and preferably a final copper content of 0.25 or less is recommended. % in the steel of the invention. The presence of copper in larger quantities would unbalance the overall behavior of the steel: the copper easily tends to move the mode of solidification out of the desired range, and unnecessarily lowers the point of transformation Ms.
  • Manganese and silicon are commonly present in steels, in particular because they are used as deoxidants of the liquid metal during conventional furnace processes where the liquid steel is in contact with the atmosphere.
  • Manganese is also used in steels to fix free sulfur, extremely harmful, in the form of less harmful manganese sulphides. Since the steel of the invention has very low sulfur contents and that it is developed under vacuum, the elements manganese and silicon are from this point of view of any utility, and their contents can be limited to those of the raw materials.
  • the silicon content must therefore be maintained at most 0.25%, preferably at most 0.10%.
  • the manganese content can also be maintained within these same limits.
  • Manganese widens the austenitic loop, and in particular it lowers the Ac1 temperature almost as much as nickel. Since, moreover, it has a lower effect of lowering Ms than nickel, it may be advantageous to replace part of the nickel with manganese to avoid the presence of ⁇ ferrite and help form reversion austenite when aging curing. This substitution must, of course, be done in compliance with the conditions on Cr eq / Ni eq and Ms as seen above. The maximum Mn content can thus be increased to 3%.
  • the method of production of the steel must be adapted so that this content is well controlled.
  • the oxygen present in the steel of the invention forms oxides that are detrimental to ductility and fatigue strength. For this reason, it is necessary to contain its concentration at the lowest possible value, that is to say at most 0.0050%, preferably below 0.0020%, which is permitted by the industrial means of preparation. under vacuum.
  • the steel of the invention is evacuated according to conventional industrial practices by means of, for example, a vacuum induction furnace or a double vacuum forming phase, for example by forming and molding in a vacuum.
  • a vacuum furnace of a first electrode then by at least one vacuum remelting operation of this electrode to obtain a final ingot.
  • the development of an ingot may comprise a vacuum elaboration phase of an electrode in an induction furnace followed by a remelting phase according to the slag remelting process (ESR ); different ESR or VAR (vacuum arc reflow remelting) methods can be combined.
  • Thermomechanical processes at high temperature allow easy shaping of molded ingots under usual conditions. These processes make it possible to obtain all kinds of semi-finished products with the steel of the invention (plates, bars, blocks, forged or stamped parts, etc.).
  • a good structural homogeneity in the semi-finished products is preferably ensured by means of a homogenization heat treatment between 1200 and 1300 ° C., practiced before and / or during the range of thermomechanical hot transformations, but not after the last hot transformation to avoid that subsequent treatments take place on semi-products too large grain size.
  • the products are then dissolved at a temperature of between 850 and 950 ° C., and the parts are then rapidly cooled to a final temperature of less than or equal to -75 ° C. uninterrupted below the transformation point Ms, possibly by placing an isothermal quenching stage above Ms.
  • Ms point is low, it can easily be hot oil quenched at T ⁇ Ms. This allows to equalize the temperature in massive pieces and, above all, to avoid quenching taps due to the differential martensitic transformation between the surface of the massive pieces and the warm heart of the pieces.
  • the martensitic transformation during the cryogenic passage occurs continuously.
  • the temperature is of the order of -80 ° C. when this quenching is carried out in dry ice.
  • the maintenance at low temperature is of sufficient duration to ensure complete cooling throughout the thickness of the parts. It typically lasts at least 4 hours at -80 ° C.
  • the metal consisting of a ductile martensite and of low hardness, can be optionally cold-formed and, again, dissolved in order to achieve homogeneous properties.
  • Table 1 groups together the compositions of the steels tested.
  • Table 1 Composition of the steels tested References Invention AT B CD E F BOY WUT H I J VS % 0.0080 0.0040 0,013 ⁇ 0.0020 0.0091 0.0028 0.0120 0.0120 0.0044 0.0024 Yes % 0.073 ⁇ 0.030 ⁇ 0.030 ⁇ 0.030 0,021 0,038 0,036 0,038 ⁇ 0.03 0.033 Mn% ⁇ 0.030 ⁇ 0.030 ⁇ 0.030 ⁇ 0.050 0.016 0,019 0,023 ⁇ 0.03 ⁇ 0.030 Neither% 10.71 10.96 10.46 11.83 11.16 10.58 10.85 11,84 10.95 12.47 Cr% 11.53 11,44 10.75 11.63 11.36 11.40 10.89 9.00 10.35 10.00 Mo% 2.01 2.00 3.48 2.34 1.94 1.98 2.45 2.96 2.85 2.00 Al% 1.60 1.43 1.21 1.55 1.35 1.38 1.41 1.33 1.41 Ti% 0.322 0.605 0,321 1.00 1.03
  • the reference samples have compositions which differ from the invention mainly on their too low titanium content (A and C) and / or on their sum Ti + Al too low (A, B, C) or on their point Ms too much low because less than 50 ° C (D).
  • Sample C also has a molybdenum content that is too high.
  • Table 2 Structural and mechanical characteristics of the steels tested. References Invention AT B VS D E F BOY WUT H I J Rm (MPa) 1778 1815 1690 1671 1888 1896 1920 1908 1947 1842 Rp0.2 (MPa) 1667 1710 1595 1439 1763 1800 9822 1795 1895 1661 Z (%) 59 61 61 61 53 56 53 55 50 51 KV (J) 15 14 35 20 9/13 6/7 8/9 8/8 6 - AT (%) 10.9 10.7 10.7 11.5 9.5 9.1 9.2 9.4 9.1 11.7 K 1c (TL) (MPa ) 85 70 101 - - - 46 - - 76
  • the reference steel D of which only the value of Ms does not correspond to the invention, does not reach the desired level of hardening, whereas its sum Al + Ti satisfies the condition Al + Ti ⁇ 2.25. Indeed, it contains 16% residual austenite after the cryogenic treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (26)

  1. Martensitischer Edelstahl, dadurch gekennzeichnet, dass seine Zusammensetzung in Gewichtsprozent ist:
    - 9 % ≤ Cr ≤ 13 %
    - 1,5 % ≤ Mo ≤ 3 %
    - 8 % ≤ Ni ≤ 14 %
    - 1 % ≤ Al ≤ 2 %
    - 0,5 % ≤ Ti ≤ 1,5 % mit Al + Ti ≥ 2,25 %
    - Spuren ≤ Co ≤ 2 %
    - Spuren ≤ W ≤ 1 % mit Mo + (W/2) ≤ 3 %
    - Spuren ≤ P ≤ 0,02 %
    - Spuren ≤ S ≤ 0,0050 %
    - Spuren ≤ N ≤ 0,0060 %
    - Spuren ≤ C ≤ 0,025 %
    - Spuren ≤ Cu ≤ 0,5 %
    - Spuren ≤ Mn ≤ 3 %
    - Spuren ≤ Si ≤ 0,25 %
    - Spuren ≤ O ≤ 0,0050 %
    und derart ist, dass:
    • Ms (°C) = 1302 - 42Cr - 63Ni - 30Mo + 20Al - 15W - 33Mn - 28Si - 30Cu - 13Co+ 10Ti ≥ 50
    • Cr-Äquiv. / Ni-Äquiv. ≤ 1,05
    mit Cr-Äquiv. (%) = Cr + 2Si + Mo + 1,5Ti + 5,5Al + 0,6W Ni-Äquiv. (%) = 2Ni + 0,5Mn + 30C + 25N + Co + 0,3Cu,
    wobei der Rest durch Eisen und unvermeidliche Verunreinigungen gebildet ist.
  2. Stahl nach Anspruch 1, dadurch gekennzeichnet, dass 10 % ≤ Cr ≤ 11,75 %.
  3. Stahl nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass 2 % ≤ Mo ≤ 3 %.
  4. Stahl nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass 10,5 % ≤ Ni ≤ 12,5 %.
  5. Stahl nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass 1,2 % ≤ Al ≤ 1,6 %.
  6. Stahl nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass 0,75 % ≤ Ti ≤ 1,25 %.
  7. Stahl nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Spuren ≤ Co ≤ 0,5 %.
  8. Stahl nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Spuren ≤ P ≤ 0,01 %.
  9. Stahl nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Spuren ≤ S ≤ 0,0010 %.
  10. Stahl nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Spuren ≤ S ≤ 0,0005 %.
  11. Stahl nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass Spuren ≤ N ≤ 0,0030 %.
  12. Stahl nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass Spuren ≤ C ≤ 0,0120 %.
  13. Stahl nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass Spuren ≤ Cu ≤ 0,25 %.
  14. Stahl nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass Spuren ≤ Si ≤ 0,25 %.
  15. Stahl nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass Spuren ≤ Si ≤ 0,10 %.
  16. Stahl nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass Spuren ≤ Mn ≤ 0,25 %.
  17. Stahl nach Anspruch 16, dadurch gekennzeichnet, dass Spuren ≤ Mn ≤ 0,10 %.
  18. Stahl nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass Spuren ≤ O ≤ 0,0020 %.
  19. Verfahren zur Herstellung eines mechanischen Teils aus Stahl mit hoher mechanischer Beständigkeit und Korrosionsbeständigkeit, dadurch gekennzeichnet, dass:
    - ein Halberzeugnis durch Vorbereitung und dann Heißumformung eines Blocks mit einer Zusammensetzung nach einem der Ansprüche 1 bis 18 erstellt wird;
    - eine Wärmebehandlung in Lösung an dem Halberzeugnis zwischen 850 und 950 °C, unmittelbar gefolgt von einer Tiefsttemperaturbehandlung zur schnellen Abkühlung bis auf eine Temperatur kleiner als oder gleich -75 °C ohne Unterbrechung unterhalb des Ms-Umwandlungspunkts und während einer Dauer, die ausreicht, um eine vollständige Abkühlung in der ganzen Dicke des Teils sicherzustellen, ausgeführt wird;
    - eine Alterungsaushärtung zwischen 450 und 600 °C für eine isotherme Haltedauer von 4 bis 32 h ausgeführt wird.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Tiefsttemperaturbehandlung ein Abschrecken in Trockeneis ist.
  21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass die Tiefsttemperaturbehandlung bei einer Temperatur von -80 °C während mindestens 4 h durchgeführt wird.
  22. Verfahren nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass zwischen der Lösungsbehandlung und der Tiefsttemperaturbehandlung ein isothermes Abschrecken bei einer Temperatur, die höher ist als der Ms-Umwandlungspunkt, durchgeführt wird.
  23. Verfahren nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, dass nach der Tiefsttemperaturbehandlung und vor der Alterungsaushärtung eine Kaltformung und eine Lösungswärmebehandlung durchgeführt werden.
  24. Verfahren nach einem der Ansprüche 20 bis 23, dadurch gekennzeichnet, dass mindestens eine Homogenisierungswärmebehandlung zwischen 1200 und 1300 °C während mindestens 24 h an dem Block oder bei seinen Heißumformungen als Halberzeugnis, jedoch vor der letzten dieser Heißumformungen, ausgeführt wird.
  25. Mechanisches Teil aus Stahl mit hoher Korrosionsbeständigkeit und mechanischer Beständigkeit, dadurch gekennzeichnet, dass es durch das Verfahren nach einem der Ansprüche 19 bis 24 erhalten wurde.
  26. Mechanisches Teil nach Anspruch 25, dadurch gekennzeichnet, dass es sich um einen Kasten eines Luftfahrzeugfahrgestells handelt.
EP06778669A 2005-06-28 2006-06-26 Zusammensetzung von martensitischem nichtrostendem stahl, verfahren zur herstellung eines mechanischen teils daraus und resultierendes teil Active EP1896624B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200630767T SI1896624T1 (sl) 2005-06-28 2006-06-26 Zlitina nerjavnega martenzitnega jekla, postopek izdelave mehanskega dela iz njega ter iz njega izveden del
PL06778669T PL1896624T3 (pl) 2005-06-28 2006-06-26 Skład martenzytecznej stali nierdzewnej, sposób wytwarzania części mechanicznej z tej stali i uzyskana w ten sposób część

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0506591A FR2887558B1 (fr) 2005-06-28 2005-06-28 Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue
PCT/FR2006/001472 WO2007003748A1 (fr) 2005-06-28 2006-06-26 Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue

Publications (2)

Publication Number Publication Date
EP1896624A1 EP1896624A1 (de) 2008-03-12
EP1896624B1 true EP1896624B1 (de) 2010-08-18

Family

ID=35744749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778669A Active EP1896624B1 (de) 2005-06-28 2006-06-26 Zusammensetzung von martensitischem nichtrostendem stahl, verfahren zur herstellung eines mechanischen teils daraus und resultierendes teil

Country Status (15)

Country Link
US (1) US8097098B2 (de)
EP (1) EP1896624B1 (de)
JP (1) JP5243243B2 (de)
CN (1) CN101248205B (de)
AT (1) ATE478165T1 (de)
BR (1) BRPI0613291B1 (de)
CA (1) CA2612718C (de)
DE (1) DE602006016281D1 (de)
DK (1) DK1896624T3 (de)
ES (1) ES2349785T3 (de)
FR (1) FR2887558B1 (de)
PL (1) PL1896624T3 (de)
RU (1) RU2415196C2 (de)
SI (1) SI1896624T1 (de)
WO (1) WO2007003748A1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
ES2365284T3 (es) 2007-01-12 2011-09-28 Rovalma Sa Acero de herramientas para trabajo en frío con soldabilidad excepcional.
US8034197B2 (en) 2007-06-19 2011-10-11 Carnegie Mellon University Ultra-high strength stainless steels
EP2366810B1 (de) * 2008-11-27 2019-08-21 Nippon Steel Corporation Elektrostahlblech und herstellungsverfahren dafür
FR2947565B1 (fr) 2009-07-03 2011-12-23 Snecma Traitement cryogenique d'un acier martensitique a durcissement mixte
CN101994066B (zh) * 2009-08-27 2012-07-04 中国科学院金属研究所 一种形变诱发马氏体时效不锈钢及其加工工艺
JP5528986B2 (ja) 2010-11-09 2014-06-25 株式会社日立製作所 析出硬化型マルテンサイト系ステンレス鋼およびそれを用いた蒸気タービン部材
JP5409708B2 (ja) 2011-06-16 2014-02-05 株式会社日立製作所 析出硬化型マルテンサイト系ステンレス鋼と、それを用いた蒸気タービン長翼
RU2453614C1 (ru) * 2011-06-29 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки штамповок кривошипных валов из стали мартенситно-ферритного класса 14х17н2
JP5764503B2 (ja) * 2012-01-19 2015-08-19 三菱日立パワーシステムズ株式会社 析出硬化型マルテンサイト系ステンレス鋼、それを用いた蒸気タービン長翼、タービンロータ及び蒸気タービン
JP6317542B2 (ja) * 2012-02-27 2018-04-25 三菱日立パワーシステムズ株式会社 蒸気タービンロータ
MX353661B (es) * 2012-03-30 2018-01-19 Nippon Steel & Sumitomo Metal Corp Procedimiento para producir junta por soldadura y la junta por soldadura.
JP6111763B2 (ja) 2012-04-27 2017-04-12 大同特殊鋼株式会社 強度及び靭性に優れた蒸気タービンブレード用鋼
JP6113456B2 (ja) * 2012-10-17 2017-04-12 三菱日立パワーシステムズ株式会社 析出硬化型マルテンサイト系ステンレス鋼とそれを用いた蒸気タービン長翼
RU2508410C1 (ru) * 2012-11-23 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки деформируемой коррозионно-стойкой стали 14х17н2
JP6312367B2 (ja) * 2013-04-05 2018-04-18 三菱日立パワーシステムズ株式会社 析出硬化系マルテンサイト系ステンレス鋼、蒸気タービン動翼および蒸気タービン
FR3013738B1 (fr) * 2013-11-25 2016-10-14 Aubert & Duval Sa Acier inoxydable martensitique, piece realisee en cet acier et son procede de fabrication
CN107475488A (zh) * 2017-07-12 2017-12-15 昌河飞机工业(集团)有限责任公司 一种高速钢热处理工艺方法
RU2688017C1 (ru) * 2018-07-19 2019-05-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки жаропрочной стали мартенситного класса
CN109022728B (zh) * 2018-07-20 2020-05-26 西安建筑科技大学 一种亚稳态奥氏体不锈钢的高温淬火-深过冷-低温配分热处理方法及不锈钢
JP7131225B2 (ja) * 2018-09-13 2022-09-06 大同特殊鋼株式会社 析出硬化型マルテンサイト系ステンレス鋼
CN109454211A (zh) * 2018-11-26 2019-03-12 抚顺特殊钢股份有限公司 电炉冶炼高质量齿轮钢的方法
CN110592489B (zh) * 2019-09-12 2021-07-06 张家港海锅新能源装备股份有限公司 一种f6nm马氏体不锈钢泵轴锻件原料的生产方法
SE543967C2 (en) * 2020-02-11 2021-10-12 Blykalla Reaktorer Stockholm Ab A martensitic steel
JP2023515568A (ja) 2020-02-26 2023-04-13 シーアールエス・ホールディングス・リミテッド・ライアビリティ・カンパニー 高破壊靭性かつ高強度の析出硬化型ステンレス鋼
CN112126868A (zh) * 2020-09-14 2020-12-25 高燕仪 一种减少废料的发条制作加工用生产方法
CN112877610B (zh) * 2021-01-12 2022-02-01 安徽工业大学 一种耐点蚀多组元沉淀硬化不锈钢及其热处理工艺
CN113774288A (zh) * 2021-08-25 2021-12-10 哈尔滨工程大学 一种超高强高性能中厚板马氏体时效不锈钢及其制备方法
CN113774281A (zh) * 2021-08-25 2021-12-10 哈尔滨工程大学 一种2000MPa级高塑韧性高耐蚀马氏体时效不锈钢及其制备方法
CN117230360B (zh) * 2023-11-10 2024-03-05 钢铁研究总院有限公司 一种单真空300m钢的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958617A (en) * 1957-07-31 1960-11-01 Armco Steel Corp Method for hardening chromiumnickel stainless steel
US2958618A (en) * 1957-07-31 1960-11-01 Armco Steel Corp Method for hardening chromiumnickel stainless steel
US3151978A (en) * 1960-12-30 1964-10-06 Armco Steel Corp Heat hardenable chromium-nickel-aluminum steel
US3314831A (en) * 1961-10-26 1967-04-18 North American Aviation Inc Heat treatment for precipitationhardening steels
GB988452A (en) * 1962-07-25 1965-04-07 Mini Of Aviat London Stainless steel
FR1399973A (fr) * 1963-07-11 1965-05-21 Deutsche Edelstahlwerke Ag Acier de construction à haute résistance pouvant subir une trempe avec ségrégation
BE651249A (de) * 1963-08-02 1964-11-16
US3342590A (en) * 1964-09-23 1967-09-19 Int Nickel Co Precipitation hardenable stainless steel
US3347663A (en) * 1964-09-23 1967-10-17 Int Nickel Co Precipitation hardenable stainless steel
SE330616B (de) * 1967-06-08 1970-11-23 Uddeholms Ab
JPH02310339A (ja) * 1989-05-24 1990-12-26 Kawasaki Steel Corp 強度、バネ特性及び成形性に優れたマルテンサイト系ステンレス鋼
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
US6537396B1 (en) * 2001-02-20 2003-03-25 Ace Manufacturing & Parts Company Cryogenic processing of springs and high cycle rate items
CA2442068C (en) * 2001-03-27 2010-08-10 Crs Holdings, Inc. Ultra-high-strength precipitation-hardenable stainless steel and elongated strip made therefrom
US7901519B2 (en) * 2003-12-10 2011-03-08 Ati Properties, Inc. High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom
CN1795278A (zh) * 2003-05-27 2006-06-28 艾夫西亚公司 改善金属抗腐蚀性的方法
SE528454C3 (sv) * 2004-12-23 2007-01-09 Sandvik Intellectual Property Utskiljningshärdbart martensitiskt rostfritt stål innefattande titansulfid

Also Published As

Publication number Publication date
ATE478165T1 (de) 2010-09-15
ES2349785T3 (es) 2011-01-11
CA2612718A1 (fr) 2007-01-11
PL1896624T3 (pl) 2010-12-31
CN101248205B (zh) 2014-05-07
FR2887558B1 (fr) 2007-08-17
BRPI0613291A2 (pt) 2010-12-28
DK1896624T3 (da) 2010-09-20
DE602006016281D1 (de) 2010-09-30
SI1896624T1 (sl) 2010-10-29
EP1896624A1 (de) 2008-03-12
US20100139817A1 (en) 2010-06-10
US8097098B2 (en) 2012-01-17
CN101248205A (zh) 2008-08-20
WO2007003748A1 (fr) 2007-01-11
JP5243243B2 (ja) 2013-07-24
FR2887558A1 (fr) 2006-12-29
JP2008546912A (ja) 2008-12-25
BRPI0613291B1 (pt) 2014-08-26
RU2008102988A (ru) 2009-08-10
RU2415196C2 (ru) 2011-03-27
CA2612718C (fr) 2015-01-06

Similar Documents

Publication Publication Date Title
EP1896624B1 (de) Zusammensetzung von martensitischem nichtrostendem stahl, verfahren zur herstellung eines mechanischen teils daraus und resultierendes teil
EP2310546B1 (de) Angelassener martensitischer stahl, verfahren zur herstellung eines teils aus dem stahl und dadurch erhaltenes teil
CA2607446C (fr) Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
EP2164998B1 (de) Gehärteter martensitischer stahl mit geringem oder ohne kobaltanteil, verfahren zur herstellung eines teils aus diesem stahl und in diesem verfahren hergestelltes teil
EP3074544B1 (de) Martensitischer rostfreier stahl, teil aus diesem stahl und verfahren zur herstellung davon
EP1966407B1 (de) Federstahl, verfahren zur herstellung einer feder aus diesem stahl und eine feder aus diesem stahl
CA2506349C (fr) Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue
EP0629714B1 (de) Martensitisches rostfreies Stahl mit verbesserter Bearbeitbarkeit
FR2823226A1 (fr) Acier et tube en acier pour usage a haute temperature
US20080145264A1 (en) Mo-V-Ni high temperature steels, articles made therefrom and method of making
CA2984131A1 (fr) Acier, produit realise en cet acier, et son procede de fabrication
FR2885141A1 (fr) Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l'utilisant et pieces mecaniques ainsi realisees
EP3378957B1 (de) Stahl, herstellungsverfahren von mechanischen teilen aus diesem stahl, und so hergestellte teile
FR2914929A1 (fr) Acier a bonne tenue a l'hydrogene pour le formage de pieces mecaniques a tres hautes caracteristiques.
FR2978969A1 (fr) Acier pour la fabrication de pieces cementees, piece cementee realisee avec cet acier et son procede de fabrication
EP4347903A1 (de) Warmgeformtes stahlteil und herstellungsverfahren
JPH0360899B2 (de)
JPS59173250A (ja) 快削ばね用鋼およびその製造方法
BE504382A (de)
JPH0681083A (ja) 熱間圧延用鍛鋼作動ロール材

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080424

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 602006016281

Country of ref document: DE

Date of ref document: 20100930

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100402070

Country of ref document: GR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20101228

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101220

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006016281

Country of ref document: DE

Effective date: 20110519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: AUBERT & DUVAL; FR

Effective date: 20220610

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230620

Year of fee payment: 18

Ref country code: IE

Payment date: 20230620

Year of fee payment: 18

Ref country code: FR

Payment date: 20230627

Year of fee payment: 18

Ref country code: DK

Payment date: 20230622

Year of fee payment: 18

Ref country code: DE

Payment date: 20230620

Year of fee payment: 18

Ref country code: CZ

Payment date: 20230619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230615

Year of fee payment: 18

Ref country code: SE

Payment date: 20230620

Year of fee payment: 18

Ref country code: PL

Payment date: 20230615

Year of fee payment: 18

Ref country code: GR

Payment date: 20230621

Year of fee payment: 18

Ref country code: FI

Payment date: 20230621

Year of fee payment: 18

Ref country code: AT

Payment date: 20230621

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 18

Ref country code: GB

Payment date: 20230620

Year of fee payment: 18

Ref country code: ES

Payment date: 20230828

Year of fee payment: 18