RU2415196C2 - Состав мартенситной нержавеющей стали, способ изготовления механической детали из этой стали и деталь, изготовленная этим способом - Google Patents

Состав мартенситной нержавеющей стали, способ изготовления механической детали из этой стали и деталь, изготовленная этим способом Download PDF

Info

Publication number
RU2415196C2
RU2415196C2 RU2008102988/02A RU2008102988A RU2415196C2 RU 2415196 C2 RU2415196 C2 RU 2415196C2 RU 2008102988/02 A RU2008102988/02 A RU 2008102988/02A RU 2008102988 A RU2008102988 A RU 2008102988A RU 2415196 C2 RU2415196 C2 RU 2415196C2
Authority
RU
Russia
Prior art keywords
traces
steel
temperature
steel according
content
Prior art date
Application number
RU2008102988/02A
Other languages
English (en)
Other versions
RU2008102988A (ru
Inventor
Жак МОНТАНЬОН (FR)
Жак МОНТАНЬОН
Original Assignee
Обер Э Дюваль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Обер Э Дюваль filed Critical Обер Э Дюваль
Publication of RU2008102988A publication Critical patent/RU2008102988A/ru
Application granted granted Critical
Publication of RU2415196C2 publication Critical patent/RU2415196C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области металлургии, а именно к получению мартенситной нержавеющей стали, используемой для изготовления деталей в авиационной и космической промышленности. Отливают слиток, выполненный из стали, содержащей, мас.%: 9≤Сr≤13; 1,5≤Мо≤3; 8≤Ni≤14; 1≤Al≤2; 0,5≤Ti≤1,5 при Al + Ti≥2,25, следы ≤Со≤2, следы ≤W≤1 при Мо + (W/2)≤3, следы ≤Р≤0,02, следы ≤S≤0,0050, следы ≤N≤0,0060, следы ≤С≤0,025, следы ≤Сu≤0,5, следы ≤Мn≤3, следы ≤Si≤0,25, следы ≤O≤0,0050, железо и примеси - остальное. Подвергают слиток горячей обработке с получением полуфабриката, который затем подвергают термообработке на твердый раствор при температуре от 850 до 950°С, с последующей быстрой криогенной обработкой при температуре, не превышающей -75°С, без перерыва ниже температуры превращения Ms и в течение времени, достаточного для обеспечения полного охлаждения по всей толщине детали. Осуществляют отпуск-старение при температуре от 450 до 600°С при продолжительности изотермической выдержки от 4 до 32 часов. Сталь обладает высокой коррозионной стойкостью в сочетании с высокой механической прочностью. 3 н. и 23 з.п. ф-лы, 2 табл.

Description

Изобретение относится к мартенситной нержавеющей стали, в частности легированной стали, в основном содержащей такие элементы, как хром, никель, молибден и/или вольфрам, титан, алюминий, а в случае необходимости марганец, и обладающей уникальным сочетанием свойств высокой коррозионной стойкости и механической прочности.
Для некоторых вариантов применения в критических условиях, при которых механические детали подвергаются воздействию очень больших усилий и для которых масса этих деталей является решающим фактором, например, в области авиационной промышленности (кессоны шасси) или космической промышленности, необходимо использовать мартенситные стали, обладающие сверхвысокой механической прочностью и, кроме того, обладающие хорошей вязкостью, такой как вязкость, измеренная при испытании на внезапное разрушение K.
Низколегированные (то есть стали, в которых содержание ни одного легирующего элемента не превышает 5 мас.%) углеродистые стали, прошедшие закалку и отпуск, в большинстве случаев можно использовать тогда, когда рабочие температуры остаются ниже значения их температуры отпуска.
Среди таких сталей несколько более высокие рабочие температуры могут выдерживать стали, легированные кремнием, так как для получения наилучшего компромисса между прочностью на разрыв (Rm) и вязкостью (K) их температура отпуска обычно составляет около 250/300°С.
Если рабочие температуры временами или постоянно превышают эти значения, необходимо использовать «мартенситно-стареющие» стали (низкоуглеродистые мартенситные стали, упрочненные за счет выделения интерметаллических элементов), отпуск которых производят при 450°С или выше в зависимости от искомого компромисса Rm/K1C.
Компромиссов порядка 1900 МПа/70 МПа√m и 2000 МПа/60 МПа√m, где m выражено в метрах, чаще всего достигают с теми категориями сталей, которые получены соответствующей выплавкой, в настоящее время управляемой известными промышленными средствами.
Стали этих марок чрезвычайно чувствительны к тому, что обычно называют «коррозией под напряжением», но которая на самом деле является одной из форм охрупчивания под влиянием внешнего водорода, появляющегося в результате реакций поверхностной коррозии (питтинговая коррозия, в частности межкристаллитная коррозия). Порог распространения трещин в этих сталях при наличии реакций коррозии (K1СSC) намного ниже их значения K; для низколегированных сталей, имеющих значение Rm выше 1600 МПа, значение K1СSC является минимальным при температурах от окружающей температуры до 80°С и составляет порядка 20 МПа√m в водных средах с низкой концентрацией хлоридов. Обычно поверхность излома является межкристаллитной, возможно, в связи с захватом и накоплением водорода сверх критической концентрации на межкристаллитных карбидах ε или Fе3С, образующихся при отпуске.
Чувствительность некоррозионностойких мартенситно-стареющих сталей, хотя и менее выражена, чем в низколегированных сталях, так как диффузия водорода в их высоколегированной матрице является более слабой, и явления захвата водорода, по всей видимости, являются менее вредными, тем не менее остается очень высокой при температурах порядка 20-100°С, которые соответствуют рабочим фазам их использования в деталях.
До настоящего времени единственным средством защиты от этих очень вредных явлений является предохранение поверхностей при помощи антикоррозийных покрытий, таких как кадмированные покрытия, которые широко используются в авиационной промышленности. Однако эти покрытия создают большие проблемы.
Действительно эти покрытия подвержены расслаиванию и трещинообразованию, что требует постоянного и тщательного контроля за состоянием поверхности.
Кроме того, кадмий является элементом, очень вредным для окружающей среды, и его использование строго регламентировано.
Кроме того, различные операции нанесения химических или электролитических покрытий сопровождаются выделением водорода, который неизбежно приводит к повреждению защищаемых деталей по причине хорошо известного явления «замедленного разрушения» или «статической усталости» до их ввода в эксплуатацию, при этом методы профилактики являются очень сложными и дорогими.
Во всех случаях массивная основа остается очень чувствительной к образованию хрупких трещин, которому способствует внешний водород любого происхождения.
В настоящее время ни одна низколегированная и высокопрочная сталь (Rm>1900 МПа) не имеет значения K в атмосферных или городских водных средах, которое могло бы приблизиться к значению K, измеренному в нейтральной атмосфере, и тщательное исследование механизмов распространения трещин в присутствии внутреннего или внешнего водорода могло бы показать, что соотношения Rm/K в современных высокопрочных сталях все равно остаются значительно ниже на единицу измерения, за исключением случаев включения в эти стали элементов группы платиноидов. Эти элементы выполняют функцию «выдавливания» водорода, однако их высокая цена пока не позволяет использовать их в качестве добавок.
Кроме того, существуют также мартенситно-стареющие стали с повышенным содержанием хрома (>10% Сr), которые считаются коррозионностойкими в условиях «городской» атмосферы; пример стали, относящейся к этой категории, описан в документе US-A-3 556 776.
Однако ни одна из этих известных в настоящее время нержавеющих мартенситно-стареющих сталей не позволяет достичь уровней механической прочности, обеспечиваемых мартенситно-стареющими сталями без хрома и низколегированными сталями, а именно прочности на растяжение Rm порядка 1900 МПа и более.
Состав стали в соответствии с настоящим изобретением должен позволить решить эти технические проблемы, и изобретением предлагается мартенситная нержавеющая сталь, обладающая коррозионной стойкостью в атмосферной среде (морская или городская среда), в которой устраняется внешний источник водорода, и обладающая одновременно повышенной прочностью на растяжение (порядка 1800 МПа и более) и вязкостью, эквивалентной вязкости высокопрочных низколегированных углеродистых сталей.
В этой связи объектом настоящего изобретения является мартенситная нержавеющая сталь, отличающаяся тем, что в ее состав входят, мас.%:
9≤Сr≤13
1,5≤Мо≤3
8≤Ni≤14
1≤Аl≤2
0,5≤Ti≤1,5 при Al+Ti≥2,25
следы≤Co≤2
следы≤W≤1 при Мо+(W/2)≤3
следы≤Р≤0,02
следы≤S≤0,0050
следы≤N≤0,0060
следы≤С≤0,025
следы≤Сu≤0,5
следы≤Мn≤3
следы≤Si≤0,25
следы≤О≤0,0050
при этом:
- Ms(°С)=1302-42Сr-63Ni-30Мо+20Аl-15W-33Мn-28Si-30Сu-13Со+10Ti≥50
- Cr eq/Ni eq≤1,05
при Cr eq (%)=Сr+2Si+Мо+1,5Ti+5,5Аl+06W
Ni eq (%)=2Ni+0,5Mn+30C+25N+Co+0,3Cu
предпочтительно 10%≤Сr≤11,75%
предпочтительно 2≤Мо≤3
предпочтительно 10,5≤Ni≤12,5
предпочтительно 1,2≤Аl≤1,6
предпочтительно 0,75≤Ti≤1,25
предпочтительно следы ≤Со≤0,5
предпочтительно следы ≤Р≤0,01
предпочтительно следы ≤S≤0,0010
предпочтительно следы ≤S≤0,0005
предпочтительно следы ≤N≤0,0030
предпочтительно следы ≤С≤0,0120
предпочтительно следы ≤Сu≤0,25
предпочтительно следы ≤Si≤0,25
предпочтительно следы ≤Si≤0,10
предпочтительно следы ≤Мn≤0,25
предпочтительно следы ≤Мn≤0,10
предпочтительно следы ≤О≤0,0020
Объектом настоящего изобретения является также способ изготовления механической детали из стали, обладающей сверхвысокой механической прочностью и коррозионной стойкостью, отличающийся тем, что:
- получают полуфабрикат путем отливки и последующей горячей обработки слитка, имеющего вышеуказанный состав;
- указанный полуфабрикат подвергают термообработке на твердый раствор при температуре от 850 до 950°С, с немедленным последующим быстрым криогенным охлаждением при температуре, меньшей или равной - 75°С, без перерыва ниже температуры превращения Ms и в течение времени, достаточного для обеспечения полного охлаждения по всей толщине детали;
- осуществляют отпуск-старение при температуре от 450 до 600°С при продолжительности изотермической выдержки от 4 до 32 часов.
Указанной криогенной обработкой может быть закалка в твердой углекислоте.
Указанную криогенную обработку можно осуществлять при температуре - 80°С в течение, по меньшей мере, 4 часов.
Между указанной термообработкой на твердый раствор и указанной криогенной обработкой можно осуществить изотермическую закалку при температуре, превышающей температуру превращения Ms.
После криогенной обработки и перед отпуском старения можно осуществить холодную обработку или термообработку на твердый раствор.
Можно осуществить, по меньшей мере, одну гомогенизацию термообработкой при температуре от 1200 до 1300°С в течение, по меньшей мере, 24 часов на слитке или во время горячей обработки при получении полуфабриката, но перед последней из этих горячих обработок.
Объектом настоящего изобретения является также механическая деталь из высокопрочной и коррозионностойкой стали, отличающаяся тем, что она изготовлена при помощи описанного выше способа.
Например, речь может идти о кессоне шасси летательного аппарата.
Как будет понятно из нижеследующего описания, настоящее изобретение в первую очередь основано на вышеуказанном составе стали. В частности, его отличительным признаком является содержание Ni, Al, Ti, Mo, Cr и Мn, которое может быть или является достаточно высоким.
Предлагаются также виды термомеханической обработки, за счет которых получают необходимые свойства конечного металла.
Сталь в соответствии с настоящим изобретением обеспечивает структурное упрочнение за счет одновременного выделения вторичных фаз типа β-NiАl, η-Ni3Ti и, в случае необходимости, µ-Fe7(Mo, W)6 согласно явлению, называемому «мартенситным старением», что, после термической обработки, обеспечивающей выделение, придает ей очень высокий уровень механической прочности не менее 1800 МПа в сочетании с хорошей коррозионной стойкостью, в частности стойкостью к коррозии под напряжением в атмосферной коррозийной среде.
Улучшается также ее усталостная прочность при условии строгого контроля над примесями, которые считаются вредными (азот, кислород).
Кроме того, сталь в соответствии с настоящим изобретением обладает хорошей высокотемпературной прочностью и может выдерживать температуры краткосрочного воздействия, достигающие 300°С, и температуры длительного воздействия порядка 250°С. Ее чувствительность к водороду ниже, чем у низколегированных сталей.
Настоящее изобретение будет более очевидно из нижеследующего описания.
Высокопрочные стали очень чувствительны к коррозии под напряжением. Во-первых, состав стали в соответствии с настоящим изобретением выбирают таким образом, чтобы сама причина разрушения при коррозии под напряжением, которая появляется в результате получения водорода механизмами коррозии, и затем охрупчивания металла при внутренней диффузии водорода, устранялась бы за счет повышенной коррозионной стойкости в целом. Для этого содержание хрома и молибдена должно составлять, по меньшей мере, 9 и 1,5% соответственно, предпочтительно 10 и 2%, чтобы в последнем случае получить показатель питтинговой коррозии I.P., определяемый отношением I.P.=Сr+3,3 Мо, по меньшей мере, равный 16,5, что соответствует показателю аустенитных нержавеющих сталей типа AlSi 304 с содержанием 16-18% Сr. Действительно, необходимо поддерживать минимальное содержание хрома от 9 до 11%, чтобы придать стали защитные свойства по отношению к коррозии во влажной атмосфере, благодаря образованию на поверхности оксидной пленки с высоким содержанием хрома. Однако такая защитная пленка оказывается недостаточной в случае, если атмосферная среда загрязнена ионами сульфатов или хлоридов, которые могут развивать питтинговую коррозию, а затем щелевую коррозию, при которых образуется охрупчивающий водород.
Элемент молибден производит очень благоприятное действие на усиление пассивной пленки по отношению к коррозии в водных средах, загрязненных хлоридами или сульфатами.
Во-вторых, эффект упрочнения, который приводит к очень высокой механической прочности стали, получают за счет выделения нескольких упрочняющих вторичных фаз во время термической обработки отпуска полностью мартенситной структуры. Эта мартенситная структура, предшествующая отпуску, появляется в результате предварительной термообработки на твердый раствор в аустенитной области с последующим охлаждением (закалкой) до температуры, достаточно низкой, чтобы весь аустенит превратился в мартенсит.
Упрочнение стали в соответствии с настоящим изобретением происходит, благодаря выделению интерметаллических фаз прототипа β-NiAl, η-Ni3Ti и, в случае необходимости, µ-Fe7(Мо, W)6. Наиболее сильное упрочнение получают с помощью наиболее интенсивного добавления алюминия, титана и молибдена. Содержание никеля необходимо регулировать очень точно, чтобы максимальное упрочнение происходило на основе чисто мартенситной структуры без феррита и остаточного закалочного аустенита.
В-третьих, сталь в соответствии с настоящим изобретением обладает максимальными ковкостью и вязкостью, которые получают, в частности, максимально ограничивая явления анизотропии, связанные с отверждением слитков.
Для этого сталь не должна содержать ферритной фазы δ и остаточной аустенитной фазы после термообработки на твердый раствор и охлаждения.
В связи с этим сталь в соответствии с настоящим изобретением отличается специфической балансировкой своих легирующих элементов, что будет описано ниже.
δ-Феррит:
Эта фаза является нежелательной по двум основным причинам:
i) - она способствует охрупчиванию металла,
ii) - она изменяет поведение стали при упрочении и не позволяет ей достигать своих оптимальных механических свойств.
Сталь в соответствии с настоящим изобретением не содержит феррита за счет того, что ее состав отвечает нижеуказанным условиям.
Приведенные ниже формулы основаны на двух соотношениях между легирующими элементами, одно из которых является взвешенной суммой значений содержания в мас.% элементов, которые стабилизируют феррит, выраженной в виде переменной эквивалентного содержания Cr (Cr eq), а другое является взвешенной суммой содержания в мас.% элементов, стабилизирующих аустенит, выраженной в виде переменной эквивалентного содержания Ni (Ni eq):
Cr eq=Cr+2Si+Mo+1,5Ti+5,5Al+0,6W
Ni eq=2Ni+0,5Mn+30C+25N+Co+0,3Cu
Как оказалось, δ-феррит, образовавшийся на переходной стадии во время отверждения стали в соответствии с настоящим изобретением, может быть полностью устранен во время термической обработки при высокой температуре и в твердой фазе, например, при 1200-1300°С, если:
Cr eq/Ni eq≤1,05
Химическая ликвация при отверждении
Химическая ликвация стали во время ее отверждения является неизбежным явлением, которое появляется в результате распределения элементов между твердой фракцией и жидкой фракцией вокруг твердого тела. В конце отверждения остаточная жидкость застывает в зонах, которые классически являются либо межкристаллитными, либо междендритными, и в этих зонах проявляется повышенное содержание определенных легирующих элементов и/или пониженное содержание других легирующих элементов. Образованные, таким образом, ликвационные ячейки впоследствии деформируются и частично повторно гомогенизируются во время операций термомеханической обработки. После этих операций деформации остается так называемая «полосовая» структура согласно направлению деформации, которая является абсолютно анизотропной. Поведение этих ликвационных полос при термической обработке очень разнообразно, что приводит к неравномерным механическим свойствам в зависимости от направления действующих усилий: почти, как правило, свойства ковкости и вязкости (K) снижаются во всех случаях, когда усилия действуют более или менее перпендикулярно к полосовой структуре.
Структурную однородность стали в соответствии с настоящим изобретением, которая диктуется условиями отверждения, предпочтительно оптимизируют при помощи гомогенизации термическими обработками при очень высоких температурах от 1200 до 1300°С в течение времени более 24 часов, осуществляемых на слитках и/или промежуточных продуктах, то есть на полуфабрикатах во время горячей обработки. Однако такую гомогенизационную обработку не следует производить после последней горячей обработки, иначе можно получить слишком большой размер зерен перед последующими обработками.
Мартенситное превращение и остаточный аустенит
Наилучшие свойства стали в соответствии с настоящим изобретением получают в результате обработки на твердый раствор при температуре от 850 до 950°С в аустенитной области с последующим охлаждением, достаточно интенсивным, чтобы обеспечить полное превращение аустенита в мартенсит. Это превращение должно быть полным по двум причинам.
Во-первых, упрочнение за счет выделения интерметаллических фаз во время последующего старения происходит только на мартенситной структуре. Таким образом, все области остаточного аустенита, не превращенного в конце охлаждения, не отвечают требованию упрочнения. Это существенно влияет на общие свойства стали в соответствии с настоящим изобретением тем более, что эти области очень часто появляются в результате остаточной ликвации слитков и, следовательно, являются в большой степени анизотропными.
Во-вторых, наилучший компромисс между прочностью, ковкостью и вязкостью стали достигается, если отпуск-старение обеспечивает одновременное образование упрочняющих дисперсных выделений и небольшой доли аустенита возврата, откладывающегося в виде пленок в дефектах структуры, таких как межпрокладочные соединения мартенсита. Сэндвичевая структура, образованная мартенситными прокладками, разделенными пленками аустенита возврата, придает упрочненной стали высокую ковкость. Чтобы из мартенситной структуры мог образоваться аустенит возврата в небольшом количестве, необходимо, чтобы эта структура обязательно была либо мартенситной, то есть, по возможности, не содержащей остаточного аустенита, не превращенного в конце охлаждения после цикла обработки на твердый раствор. Действительно, при данной температуре старения существует только одно значение содержания аустенита в равновесном состоянии, независимо от того, является ли аустенит остаточным или возвратным, причем последний является предпочтительным.
Общеизвестно, что ширина области мартенситного превращения высоколегированной стали, находящейся в диапазоне от температуры начала превращения Ms до температуры конца превращения Mf, составляет примерно 150°С, и эта область тем шире, чем менее однородна структура стали. Это значит, что температура Ms стали, которую охлаждают при окружающей температуре (примерно 25°С), начиная от ее аустенитной области растворения, должна составлять, по меньшей мере, 175°С.
Современные технологии позволяют легко охлаждать стали при температурах ниже температуры окружающей среды (так называемая «криогенная» обработка), что позволяет завершить мартенситное превращение сталей, температура Ms которых ниже 175°С; однако этому есть предел в том смысле, что это термически активированное фазовое превращение чрезвычайно затруднено при сверхнизких температурах.
Сталь в соответствии с настоящим изобретением имеет состав, сбалансированный таким образом, чтобы температура превращения Ms была ≥50°С и предпочтительно была близкой или превышала 70°С. Таким образом, ее охлаждение при -80°С или ниже в охлаждающей среде обеспечивает превращение аустенита в мартенсит. Это стало возможным при температурном интервале Ms-Mf, по меньшей мере, составляющем 140°С, предпочтительно, по меньшей мере, 160°С, в зависимости от варианта применения, после термообработки на твердый раствор при 850-950°С, при этом охлаждение завершают, например, в твердой углекислоте при -80°С или ниже в течение времени, достаточного для обеспечения полного охлаждения изделий и полного превращения аустенита в мартенсит.
Для достижения этого эффекта сталь в соответствии с настоящим изобретением должна иметь воспроизводимое и надежное значение Ms, которое должно отвечать следующему отношению, зависящему от всех легирующих элементов, включенных в сталь и существенно влияющих на Ms, в том числе элементов, которые присутствуют в виде остаточного содержания, но влияние которых на Ms является сильным. Это значение вычисляют при помощи формулы (содержание различных элементов указано в мас.%):
Ms(°C)=1302-42Cr-63Ni-30Мо+20Al-15W-30Мn-28Si-30Сu-13Со+10Ti.
Статистический анализ экспериментальных отливок позволил подтвердить это отношение для значений Ms от 0 до 225°С и вывести минимальное значение, которое должна иметь точка Ms для стали в соответствии с настоящим изобретением. Это значение равно +50°С и предпочтительно +70°С.
Роль главных легирующих элементов подробно пояснена ниже.
Хром и молибден являются элементами, которые придают стали хорошую коррозионную стойкость, кроме того, молибден может также участвовать в упрочнении во время выделения при отпуске интерметаллической фазы типа Fe7Mo6.
Содержание хрома в сталях в соответствии с настоящим изобретением находится в пределах от 9 до 13%, предпочтительно от 10 до 11,75%. При содержании хрома сверх 13% общая балансировка стали становится невозможной. Действительно, при недооценке элементов, способствующих образованию остаточного дельта-феррита (Мо=1,5%, Аl=1,5% и Ti=0,75%, Ti+Аl=2,25%), отношение, связывающее Сr eq и N1 eq, предусматривает, чтобы содержание никеля было равно, по меньшей мере, 11%. Однако такой состав, который находится на границе областей настоящего изобретения, не отвечает отношению Ms≥50°С.
Это тем более верно, что значения содержания упрочняющих элементов Аl, Ti и Мо являются более высокими, откуда и берется предпочтительный верхний предел содержания хрома в 11,75%.
Содержание молибдена составляет, по меньшей мере, 1,5%, чтобы можно было получить искомый антикоррозийный эффект. Максимальное содержание равно 3%. При содержании молибдена сверх 3% температура сольвуса интерметаллической фазы с высоким содержанием молибдена типа χ, стабильной при высокой температуре, становится выше 950°С; кроме того, в некоторых случаях отверждение завершается эвтектической системой, которая производит массивные интерметаллические фазы с высоким содержанием молибдена, дальнейшее растворение которых требует температур растворения, превышающих 950°С.
В обоих случаях температуры аустенизации, превышающие 950°С, приводят к чрезмерному росту зернистой структуры, не совместимой с требуемыми механическими свойствами.
Вместе с тем, если сталь содержит также вольфрам, он частично замещает молибден из расчета один атом вольфрама на два атома молибдена. В этом случае максимальный предел 3% применяется для суммы Мо+(W/2).
Как было указано выше, предпочтительно содержание хрома и молибдена должно позволять получить показатель склонности к питтинговой коррозии не менее 16,5.
Никель необходим в стали для выполнения трех основных функций:
- стабилизация аустенитной фазы при температурах обработки на твердый раствор и удаление любых следов δ-феррита; для этого сталь в соответствии с настоящим изобретением должна содержать, по меньшей мере, 10% никеля и предпочтительно, по меньшей мере, 10,5%, если только в сталь не добавляют какой-либо другой аустенитообразующий элемент, например марганец; при добавлении марганца до 3% содержание никеля можно снизить до 8%;
- повышение ковкости стали, в частности, для старения при температурах, превышающих или равных 500°С, так как в этом случае он способствует образованию небольшой доли очень ковкого так называемого аустенита возврата, мелко диспергированного во всей стали между прокладками твердого и хрупкого мартенсита; вместе с тем этот эффект ковкости получают в ущерб степени механической прочности;
- непосредственное участие в упрочнении стали во время старения путем выделения фаз β-Ni Al и η-Ni3Ti.
Содержание дисперсного аустенита в стали должно быть ограничено максимальным значением 10% для сохранения сверхвысокой механической прочности: в этой связи содержание никеля должно составлять не более 14%; предпочтительно его содержание составляет от 10,5 до 12,5% и точно регулируется при помощи двух указанных ранее отношений: Cr eq / Ni eq≤1,05; Ms≥50°C.
Алюминий является элементом, необходимым для упрочнения стали; искомые уровни максимальной прочности (Rm≥1800 МПа) достигаются только при добавлении, по меньшей мере, 1% алюминия и предпочтительно, по меньшей мере, 1,2%. Алюминий существенно стабилизирует δ-феррит, и сталь в соответствии с настоящим изобретением не может содержать более 2% алюминия без появления этой фазы. Таким образом, содержание алюминия из предосторожности предпочтительно ограничивают значением 1,6%, чтобы учитывать колебания содержания других элементов, способствующих ферриту, которыми в основном являются хром, молибден и титан.
Титан, так же, как и алюминий, является элементом, необходимым для упрочнения стали. Он обеспечивает ее упрочнение за счет выделения фазы η-Ni3Ti.
В мартенситно-стареющей стали типа РМ 13-8Мо, содержащей более 1% Аl, повышение значения механической прочности Rm, обеспечиваемое титаном, составляет примерно 400 МПа на процент титана.
В стали в соответствии с настоящим изобретением, содержащей, по меньшей мере, 1% алюминия, искомые очень высокие значения механической прочности получают только, когда сумма Аl+Ti равна, по меньшей мере, 2,25 мас.%.
С другой стороны, титан очень эффективно фиксирует углерод, содержащийся в стали в виде карбида TiC, что позволяет избежать вредного влияния свободного углерода, как было указано выше. Кроме того, поскольку растворимость карбида TiC является очень слабой, карбид можно однородно осаждать в стали в виде конечных фаз термомеханической обработки при низких температурах в аустенитной области стали: это позволяет избежать охрупчивающего межкристаллитного выделения карбида.
Для оптимального достижения этих эффектов содержание титана должно находиться в пределах от 0,5 до 1,5%, предпочтительно от 0,75 до 1,25%.
Кобальт, замещающий никель из расчета 2 мас.% кобальта на 1% никеля, является предпочтительным, так как он позволяет стабилизировать аустенит при температурах обработки на твердый раствор и, вместе с тем, позволяет сохранить отверждение стали в соответствии с настоящим изобретением в искомом ферритовом режиме (он очень слабо стабилизирует аустенит при температурах отверждения); при этом кобальт расширяет области составов в соответствии с настоящим изобретением таким образом, что они ограничиваются отношениями, связывающими Cr eq и Ni eq. Кроме того, при стабилизации аустенита при температурах растворения замещение 1% никеля на 2% кобальта позволяет очень четко определить точку Ms начала мартенситного превращения стали, что может быть выведено из формулы вычисления Ms.
Наконец, кобальт придает мартенситной структуре более высокую степень реагирования на отверждение; вместе с тем, кобальт не участвует непосредственно в отверждении выделением фазы β-NiAl и не обладает эффектом повышения ковкости, характерным для никеля. Наоборот, он способствует выделению охрупчивающей фазы σ-FeCr за счет фазы µ-Fe7Mo5, которая может производить упрочняющий эффект.
По этим двум последним причинам добавление кобальта ограничивают значением 2%, предпочтительно 0,5% в ограниченной области, где все свойства стали в соответствии с настоящим изобретением могут быть получены без использования эффектов кобальта.
Вольфрам можно добавлять, замещая молибден, так как он более активно участвует в упрочнении твердого раствора мартенсита и может также участвовать в выделении при отпуске интерметаллической фазы типа µ-Fe7(Mo, W)6. Его можно добавлять до 1%, если сумма Мо+(W/2) не превышает 3%.
Как правило, небольшие количества некоторых металлических, металлоидных или неметаллических элементов или примесей могут значительно изменять свойства всех сплавов.
Фосфор стремится к ликвации на границах зерен, что снижает сцепление на этих границах и снижает вязкость и ковкость сталей за счет межкристаллитного охрупчивания. В стали в соответствии с настоящим изобретением его максимальное содержание не должно превышать 0,02%, предпочтительно 0,01%.
Как известно, сера способствует сильному охрупчиванию высокопрочных сталей по разным причинам, таким как межкристаллитная ликвация и выделение сульфидных включений: поэтому ставится задача сведения к минимуму ее содержания в стали в зависимости от используемых средств выплавки. Низкого содержания серы можно легко добиться уже на стадии сырья при помощи классических средств очистки. Поэтому можно легко удовлетворить требование, предъявляемое к стали в соответствии с настоящим изобретением, согласно которому для необходимых механических свойств требуется содержание серы менее 0,0050%, предпочтительно менее 0,0010% и в идеале - менее 0,0005%, что зависит также от соответствующего выбора сырья.
Содержание азота необходимо тоже поддерживать на самом низком уровне при помощи соответствующих средств выплавки, с одной стороны, чтобы получить наилучшую ковкость стали, и, с другой стороны, чтобы получить максимально высокий предел усталостной прочности, в частности, поскольку сталь содержит титан. Действительно, в присутствии титана азот образует нерастворимые кубические нитриды TiN, которые являются чрезвычайно вредными из-за своей формы и физических свойств. Они являются систематическими источниками усталостного трещинообразования.
Вместе с тем, значения концентрации азота, которых обычно добиваются при помощи промышленных способов вакуумной выплавки, остаются относительно высокими, в частности, в присутствии титановых добавок.
Очень низкие значения содержания азота возможны только при тщательном отборе сырья, в частности феррохрома с очень низким содержанием азота, что требует больших затрат.
Как правило, промышленный способ вакуумной выплавки позволяет получать содержание остаточного азота в пределах от 0,0030 до 0,0100%, обычно около 0,0050-0,0060% в случае стали в соответствии с настоящим изобретением. Таким образом, наилучшим решением для стали в соответствии с настоящим изобретением является достижение как можно меньшего содержания остаточного азота, то есть ниже 0,0060%.
В случае необходимости и если для определенного применения требуются исключительные характеристики по усталостной прочности, вязкости и/или ковкости, можно получить содержание азота менее 0,0030% путем выбора сырья и специальных методологий выплавки.
Обычно присутствующий в сталях углерод является нежелательным в стали в соответствии с настоящим изобретением по многим причинам:
- он приводит к выделению карбидов, которые снижают ковкость и вязкость,
- он фиксирует хром в виде легко растворимого карбида М23С6, выделение которого во время различных термических циклов производства происходит на границах зерен, из-за чего в окружающей их матрице снижается содержание хрома: этот механизм является причиной очень вредного и хорошо известного явления межкристаллитной коррозии,
- он повышает твердость мартенситной матрицы в состоянии растворения и закалки, что делает ее более хрупкой и, в частности, более чувствительной к образованию «закалочных трещин» (поверхностные трещины, появляющиеся во время закалки).
В силу этих причин максимальное содержание углерода в стали в соответствии с настоящим изобретением ограничивают максимальным значением 0,025%, предпочтительно 0,0120%.
Медь, которая находится в виде остаточного элемента в сырье, должна иметь содержание не более 0,5%, предпочтительно конечное содержание меди рекомендуют снижать до 0,25% в стали в соответствии с настоящим изобретением. Присутствие меди в более значительных количествах нарушает баланс общего поведения стали: медь стремится к смещению режима отверждения за пределы требуемой области и снижает температуру превращения Ms.
Обычно в сталях присутствуют марганец и кремний, в частности, поскольку их используют в качестве раскислителей жидкого металла во время классических плавок в печах, где сталь находится в контакте с атмосферой.
Марганец также используют в сталях для фиксирования свободной серы в виде менее вредных сульфидов марганца. Учитывая, что сталь в соответствии с настоящим изобретением содержит серу в очень малых количествах и что ее выплавляют в вакууме, элементы марганец и кремний с этой точки зрения являются совершенно бесполезными, и их содержание можно ограничить количеством, присутствующим в сырье.
С другой стороны, эти оба элемента снижают температуру превращения Ms, что соответственно уменьшает допустимые значения концентрации элементов, способствующих улучшению механических и антикоррозийных свойств (Ni, Mo, Сr), для поддержания Ms на достаточно высоком уровне, что можно вывести из отношения между Ms и химическим составом.
Таким образом, максимальное содержание кремния необходимо поддерживать на уровне 0,25%, предпочтительно 0,10%. Содержание марганца необходимо также поддерживать в этих же пределах.
Вместе с тем, можно также использовать содержание марганца в стали в соответствии с настоящим изобретением для регулирования компромисса между повышенной прочностью на растяжение и повышенной вязкостью, которые необходимо обеспечить для предусматриваемого применения. Марганец расширяет аустенитный контур и, в частности, понижает температуру Асl почти так же, как и никель. Поскольку, кроме того, он обладает меньшим эффектом понижения Ms по сравнению с никелем, то может быть предпочтительным заменить часть никеля марганцем, чтобы избежать присутствия δ-феррита и способствовать образованию аустенита возврата во время упрочняющего старения. Разумеется, это замещение необходимо производить с соблюдением условий по Cr eq / Ni eq и Ms, как было указано выше. Таким образом, можно довести максимальное содержание Мn до 3%. В случае высокого содержания марганца следует выбирать соответствующий способ выплавки стали, чтобы хорошо контролировать это содержание. В частности, может быть предпочтительным не осуществлять вакуумной обработки после основного добавления марганца, поскольку в условиях низкого давления этот элемент стремится к испарению.
Кислород, присутствующий в стали в соответствии с настоящим изобретением, образует оксиды, отрицательно влияющие на ковкость и усталостную прочность. По этой причине необходимо удерживать его концентрацию на максимально низком уровне, то есть при максимальном значении содержания 0,0050%, предпочтительно ниже 0,0020%, что позволяют сделать промышленные средства вакуумной выплавки.
Элементы, которые не были указаны, могут присутствовать в виде примесей, получаемых в результате выплавки стали.
Значения содержания, представленные в качестве предпочтительных для разных элементов, не зависят друг от друга.
Обычно сталь в соответствии с настоящим изобретением выплавляют в вакууме согласно традиционным промышленным технологиям, например, в вакуумно-индукционной печи или при помощи двухступенчатой вакуумной обработки, например, путем выплавки и отливки в вакуумной печи первого электрода, затем при помощи, по меньшей мере, одной операции переплавки в вакууме этого электрода для получения конечного слитка. В случае произвольного добавления марганца изготовление слитка может содержать ступень получения электрода в вакуумно-индукционной печи с последующей ступенью переплавки при помощи способа шлакового переплава (ESR); можно комбинировать различные способы переплавки ESR или VAR (вакуумно-дуговой переплав).
Способы высокотемпературной термомеханической обработки, например ковка или прокатка, позволяют придавать форму отлитым слиткам в обычных условиях. Эти способы позволяют получать полуфабрикаты любой формы из стали в соответствии с настоящим изобретением (плоские профили, бруски, блоки, кованые или штампованные детали и т.д.).
Хорошую структурную однородность в полуфабрикатах предпочтительно обеспечивают при помощи обработки термической гомогенизацией при температуре 1200-1300°С, осуществляемой перед и/или во время цикла горячей термомеханической обработки, но не после последней горячей обработки, чтобы избежать последующих стадий обработки полуфабрикатов со слишком большим размером зерен.
После завершения операций горячей термомеханической обработки изделия подвергают термообработке на твердый раствор при температуре, находящейся в пределах от 850 до 950°С, затем детали быстро охлаждают до конечной температуры, меньшей или равной -75°С без перерыва ниже температуры превращения Ms, в случае необходимости, поднимая ступень изотермической закалки выше Ms. Поскольку точка Ms не является очень высокой, можно легко производить закалку в горячем масле при соблюдении Т≥Ms. Это позволяет уравнивать температуру в массивных деталях и, что особенно важно, избегать появления закалочных трещин в результате дифференциального мартенситного превращения между поверхностью массивных деталей и горячей центральной частью деталей. Кроме того, при работе на детали с выровненной температурой, превышающей Ms, мартенситное превращение во время криогенного пропускания происходит непрерывно. Обычно температура составляет порядка -80°С, если эту закалку осуществляют в твердой углекислоте. Выдержка при низкой температуре имеет продолжительность, достаточную для обеспечения полного охлаждения по всей толщине деталей. Обычно она длится, по меньшей мере, 4 часа при температуре -80°С.
После возврата к температуре окружающей среды металл, содержащий ковкий мартенсит и низкую твердость, в случае необходимости, можно подвергнуть холодной обработке для придания формы, затем снова горячей обработке на твердый раствор, чтобы получить однородные свойства.
Конечные свойства стали в конечном счете получают путем отпуска старением при температурах от 450 до 600°С при продолжительности изотермической выдержки от 4 до 32 часов, в зависимости от требуемых характеристик. Действительно, пару переменных времени и температуры старения выбирают с учетом следующих критериев в области 450-600°С:
- достигнутая максимальная прочность снижается, если температура старения повышается, но в то же время повышаются значения ковкости и вязкости,
- продолжительность старения, необходимая для упрочнения, увеличивается, если температура понижается,
- на каждом температурном уровне прочность проходит через максимум в течение определенного времени, которое называют «пиком упрочнения»,
- для каждого искомого уровня прочности, который может быть достигнут при помощи нескольких переменных времени и температуры старения, существует только одна пара время/температура, которая обеспечивает наилучший компромисс прочность/ковкость для стали в соответствии с настоящим изобретением. Эти оптимальные условия, соответствующие началу перестаривания структуры, получают при переходе через вышеупомянутый «пик упрочнения».
Далее следует описание примеров сталей в соответствии с настоящим изобретением и способов в соответствии с настоящим изобретением, а также примеров контрольных образцов для сравнения полученных результатов.
В таблице 1 приведены составы тестируемых сталей.
Таблица 1
Составы тестируемых сталей
Контрольные образцы Образцы согласно изобретению
A В С D Е F G Н I J
С% 0,0080 0,0040 0,013 <0,0020 0,0091 0,0028 0,0120 0,0120 0,0044 0,0024
Si% 0,073 <0,030 <0,030 <0,030 0,021 0,038 0,036 0,038 <0,03 0,033
Мn% <0,030 <0,030 <0,030 <0,030 <0,050 0,016 0,019 0,023 <0,03 <0,030
Ni% 10,71 10,96 10,46 11,83 11,16 10,58 10,85 11,84 10,95 12,47
Сr% 11,53 11,44 10,75 11,63 11,36 11,40 10,89 9,00 10,35 10,00
Мо% 2,01 2,00 3,48 2,34 1,94 1,98 2,45 2,96 2,85 2,00
Аl% 1,60 1,43 1,21 1,55 1,35 1,38 1,41 1,41 1,33 1,41
Ti% 0,322 0,605 0,321 1,00 1,03 0,961 1,02 0,842 1,22 1,09
W% <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020
N% 0,0012 0,0027 0,0084 0,0026 0,0056 0,0064 0,0032 0,0029 0,0007 0,0007
Со% <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 0,103 0,038
Cu% <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020
S% 0,00027 0,0007 0,0007 0,0002 0,0004 0,0009 0,0006 0,0006 0,0001 0,0001
O% - - - 0,0004 0,0012 0,0014 0,0009 0,0008 - 0,0005
Ti%+Al% 1,922 2,035 1,531 2,55 2,38 2,341 2,43 2,252 2,55 2,50
Ms 113 102 111 32 97 131 124 123 127 75
Cr eq/Ni eq 1,06 1,01 0,99 1,01 0,98 1,05 1,02 0,87 1,01 0,85
Контрольные образцы имеют состав, отличающийся от изобретения в основном слишком низким содержанием титана (А и С) и/или слишком низкой суммой Ti+Al (A, В, С), или слишком низкой температурой Ms, меньшей 50°С (D). Образец С отличается
также слишком высоким содержанием молибдена.
Эти образцы были получены путем плавки электрода весом 1 т (образцы А, D, I и J) или 200 кг (остальные) в вакуумной печи, после чего электрод подвергали переплавке в печи с расходуемым электродом, и прошли следующие виды термомеханической обработки:
- гомогенизация в течение 24 часов при 1250°С;
- ковка на выходе из печи с относительным уменьшением толщины, превышающим или равным 4;
- доводочная ковка с коэффициентом деформации, по меньшей мере, 2 после нагрева до 950°С;
- растворение при температуре примерно 900°С в течение 2 часов с последующей закалкой в воде и криогенной обработкой при -80°С в твердой углекислоте в течение 8 часов (кроме образца I, для которого растворение производили при 950°С в течение 1 часа 30 минут);
- отпуск-старение при температуре 510°С в течение 8 часов.
Основные структурные и механические характеристики образцов приведены в таблице 2.
Таблица 2
Структурные и механические характеристики тестируемых сталей
Контрольные образцы Образцы согласно изобретению
А В С D Е F G Н I J
Rm (МПа) 1778 1815 1690 1671 1888 1896 1920 1908 1947 1842
Rp0,2 (МПа) 1667 1710 1595 1439 1763 1800 1822 1795 1895 1661
Z (%) 59 61 61 61 53 56 53 55 50 51
KV(J) 15 14 35 20 9/13 6/7 8/9 8/8 6 -
А (%) 10,9 10,7 10,7 11,5 9,5 9,1 9,2 9,4 9,1 11,7
К1c (T-L) (МРа √m) 85 70 101 - - - 46 - - 76
Таким образом, стали в соответствии с настоящим изобретением позволяют:
- получать искомые уровни прочности на разрыв Rm более 1800 МПа, а также высокий предел упругости Rp 0,2;
- сохранять ковкость, которая не ухудшается по сравнению с контрольными сталями.
Контрольная сталь D, у которой только значение Ms не соответствует изобретению, не достигает требуемого уровня упрочнения, тогда как сумма Al+Ti отвечает условию Al+Ti≥2,25. Действительно, она содержит 16% остаточного аустенита после криогенной обработки.
Среди сталей в соответствии с настоящим изобретением можно выделить две категории:
- стали с повышенной коррозионной стойкостью (высокое содержание хрома и молибдена), но отличающиеся более высокой хрупкостью, так как содержание никеля в них обязательно является более низким, чтобы соблюдать условие по Ms: к этой категории относятся образцы Е, F, О, Н, I;
- стали с улучшенной ковкостью по сравнению с предыдущими, так как содержание в них никеля выше, но с более низкой коррозионной стойкостью, так как содержание в них хрома и молибдена обязательно ограничивают, чтобы соблюдать условие по Ms: к этой категории относится образец J.

Claims (26)

1. Мартенситная нержавеющая сталь, отличающаяся тем, что в ее состав входят, мас.%:
9≤Сr≤13
1,5≤Мо≤3
8≤Ni≤14
1≤Al≤2
0,5≤Ti≤1,5 при Al + Ti≥2,25
следы ≤Со≤2
следы ≤W≤1 при Мо + (W/2)≤3
следы ≤Р≤0,02
следы ≤S≤0,0050
следы ≤N≤0,0060
следы ≤С≤0,025
следы ≤Сu≤0,5
следы ≤Мn≤3
следы ≤Si≤0,25
следы ≤O≤0,0050,
при этом
Ms(°C)=1302-42Cr-63Ni-30Mo+20Al-15W-33Mn-28Si-30Cu-13Co+10Ti≥50,
-Cr eq/Ni eq≤1,05,
при Сr eq(%)=Cr+2Si+Mo+1,5Ti+5,5Al+0,6W,
Ni eq(%)=2Ni+0,5Mn+30C+25N+Co+0,3Cu.
2. Сталь по п.1, в которой 10%≤Cr≤11,75%.
3. Сталь по п.1, в которой 2%≤Mo≤3%.
4. Сталь по п.1, в которой 10,5%≤Ni≤12,5%.
5. Сталь по п.1, в которой 1,2%≤Al≤1,6%.
6. Сталь по п.1, в которой 0,75%≤Ti≤1,25%.
7. Сталь по п.1, в которой следы ≤Со≤0,5%.
8. Сталь по п.1, в которой следы ≤Р≤0,01%.
9. Сталь по п.1, в которой следы ≤S≤0,0010%.
10. Сталь по п.1, в которой следы ≤S≤0,0005%.
11. Сталь по п.1, в которой следы ≤N≤0,0030%.
12. Сталь по п.1, в которой следы ≤С≤0,0120%.
13. Сталь по п.1, в которой следы ≤Сu≤0,25%.
14. Сталь по п.1, в которой следы ≤Si≤0,25%.
15. Сталь по п.1, в которой следы ≤Si≤0,10%.
16. Сталь по п.1, в которой следы ≤Мn≤0,25%.
17. Сталь по п.16, в которой следы ≤Мn≤0,10%.
18. Сталь по одному из пп.1-17, в которой следы ≤О≤0,0020%.
19. Способ изготовления механической детали из мартенситной стали, обладающей сверхвысокой механической прочностью и коррозионной стойкостью, отличающийся тем, что получают полуфабрикат путем отливки и последующей горячей обработки слитка, имеющего состав, указанный в пп.1-18, указанный полуфабрикат подвергают термообработке на твердый раствор при температуре от 850 до 950°С с последующей быстрой криогенной обработкой при температуре, не превышающей -75°С, без перерыва ниже температуры превращения Ms и в течение времени, достаточного для обеспечения полного охлаждения по всей толщине детали, осуществляют отпуск-старение при температуре от 450 до 600°С при продолжительности изотермической выдержки от 4 до 32 ч.
20. Способ по п.19, отличающийся тем, что указанная криогенная обработка представляет собой закалку в твердой углекислоте.
21. Способ по п.19, отличающийся тем, что указанную криогенную обработку осуществляют при температуре -80°С в течение по меньшей мере 4 ч.
22. Способ по п.19, отличающийся тем, что между указанной термообработкой на твердый раствор и указанной криогенной обработкой осуществляют изотермическую закалку при температуре, превышающей температуру превращения Ms.
23. Способ по п.19, отличающийся тем, что после криогенной обработки и перед отпуском-старением осуществляют холодную обработку и термообработку на твердый раствор.
24. Способ по одному из пп.20-23, отличающийся тем, что осуществляют по меньшей мере одну гомогенизацию термообработкой при температуре от 1200 до 1300°С в течение по меньшей мере 24 ч слитка во время его горячих обработок при получении полуфабриката, но перед последней из этих горячих обработок.
25. Механическая деталь из высокопрочной и коррозионностойкой мартенситной стали, отличающаяся тем, что изготовлена при помощи способа по одному из пп.19-24.
26. Механическая деталь по п.25, отличающаяся тем, что она является кессоном шасси летательного аппарата.
RU2008102988/02A 2005-06-28 2006-06-26 Состав мартенситной нержавеющей стали, способ изготовления механической детали из этой стали и деталь, изготовленная этим способом RU2415196C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0506591A FR2887558B1 (fr) 2005-06-28 2005-06-28 Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue
FR0506591 2005-06-28

Publications (2)

Publication Number Publication Date
RU2008102988A RU2008102988A (ru) 2009-08-10
RU2415196C2 true RU2415196C2 (ru) 2011-03-27

Family

ID=35744749

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008102988/02A RU2415196C2 (ru) 2005-06-28 2006-06-26 Состав мартенситной нержавеющей стали, способ изготовления механической детали из этой стали и деталь, изготовленная этим способом

Country Status (15)

Country Link
US (1) US8097098B2 (ru)
EP (1) EP1896624B1 (ru)
JP (1) JP5243243B2 (ru)
CN (1) CN101248205B (ru)
AT (1) ATE478165T1 (ru)
BR (1) BRPI0613291B1 (ru)
CA (1) CA2612718C (ru)
DE (1) DE602006016281D1 (ru)
DK (1) DK1896624T3 (ru)
ES (1) ES2349785T3 (ru)
FR (1) FR2887558B1 (ru)
PL (1) PL1896624T3 (ru)
RU (1) RU2415196C2 (ru)
SI (1) SI1896624T1 (ru)
WO (1) WO2007003748A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453614C1 (ru) * 2011-06-29 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки штамповок кривошипных валов из стали мартенситно-ферритного класса 14х17н2
RU2508410C1 (ru) * 2012-11-23 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки деформируемой коррозионно-стойкой стали 14х17н2
RU2688017C1 (ru) * 2018-07-19 2019-05-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки жаропрочной стали мартенситного класса

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
JP2010515824A (ja) * 2007-01-12 2010-05-13 ロバルマ,ソシエダッド アノニマ 優れた溶接性を有する冷間工具鋼
US8034197B2 (en) 2007-06-19 2011-10-11 Carnegie Mellon University Ultra-high strength stainless steels
KR101293441B1 (ko) 2008-11-27 2013-08-05 신닛테츠스미킨 카부시키카이샤 전자기 강판 및 그 제조 방법
FR2947565B1 (fr) * 2009-07-03 2011-12-23 Snecma Traitement cryogenique d'un acier martensitique a durcissement mixte
CN101994066B (zh) * 2009-08-27 2012-07-04 中国科学院金属研究所 一种形变诱发马氏体时效不锈钢及其加工工艺
JP5528986B2 (ja) * 2010-11-09 2014-06-25 株式会社日立製作所 析出硬化型マルテンサイト系ステンレス鋼およびそれを用いた蒸気タービン部材
JP5409708B2 (ja) 2011-06-16 2014-02-05 株式会社日立製作所 析出硬化型マルテンサイト系ステンレス鋼と、それを用いた蒸気タービン長翼
JP5764503B2 (ja) * 2012-01-19 2015-08-19 三菱日立パワーシステムズ株式会社 析出硬化型マルテンサイト系ステンレス鋼、それを用いた蒸気タービン長翼、タービンロータ及び蒸気タービン
JP6317542B2 (ja) * 2012-02-27 2018-04-25 三菱日立パワーシステムズ株式会社 蒸気タービンロータ
ES2709028T3 (es) * 2012-03-30 2019-04-12 Nippon Steel & Sumitomo Metal Corp Proceso para la producción de junta soldada
JP6111763B2 (ja) 2012-04-27 2017-04-12 大同特殊鋼株式会社 強度及び靭性に優れた蒸気タービンブレード用鋼
JP6113456B2 (ja) * 2012-10-17 2017-04-12 三菱日立パワーシステムズ株式会社 析出硬化型マルテンサイト系ステンレス鋼とそれを用いた蒸気タービン長翼
JP6312367B2 (ja) * 2013-04-05 2018-04-18 三菱日立パワーシステムズ株式会社 析出硬化系マルテンサイト系ステンレス鋼、蒸気タービン動翼および蒸気タービン
FR3013738B1 (fr) * 2013-11-25 2016-10-14 Aubert & Duval Sa Acier inoxydable martensitique, piece realisee en cet acier et son procede de fabrication
CN107475488A (zh) * 2017-07-12 2017-12-15 昌河飞机工业(集团)有限责任公司 一种高速钢热处理工艺方法
CN109022728B (zh) * 2018-07-20 2020-05-26 西安建筑科技大学 一种亚稳态奥氏体不锈钢的高温淬火-深过冷-低温配分热处理方法及不锈钢
JP7131225B2 (ja) * 2018-09-13 2022-09-06 大同特殊鋼株式会社 析出硬化型マルテンサイト系ステンレス鋼
CN109454211A (zh) * 2018-11-26 2019-03-12 抚顺特殊钢股份有限公司 电炉冶炼高质量齿轮钢的方法
CN110592489B (zh) * 2019-09-12 2021-07-06 张家港海锅新能源装备股份有限公司 一种f6nm马氏体不锈钢泵轴锻件原料的生产方法
SE543967C2 (en) * 2020-02-11 2021-10-12 Blykalla Reaktorer Stockholm Ab A martensitic steel
US11702714B2 (en) 2020-02-26 2023-07-18 Crs Holdings, Llc High fracture toughness, high strength, precipitation hardenable stainless steel
CN112126868A (zh) * 2020-09-14 2020-12-25 高燕仪 一种减少废料的发条制作加工用生产方法
CN112877610B (zh) * 2021-01-12 2022-02-01 安徽工业大学 一种耐点蚀多组元沉淀硬化不锈钢及其热处理工艺
CN113774281A (zh) * 2021-08-25 2021-12-10 哈尔滨工程大学 一种2000MPa级高塑韧性高耐蚀马氏体时效不锈钢及其制备方法
CN113774288A (zh) * 2021-08-25 2021-12-10 哈尔滨工程大学 一种超高强高性能中厚板马氏体时效不锈钢及其制备方法
CN117230360B (zh) * 2023-11-10 2024-03-05 钢铁研究总院有限公司 一种单真空300m钢的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958618A (en) * 1957-07-31 1960-11-01 Armco Steel Corp Method for hardening chromiumnickel stainless steel
US2958617A (en) * 1957-07-31 1960-11-01 Armco Steel Corp Method for hardening chromiumnickel stainless steel
US3151978A (en) * 1960-12-30 1964-10-06 Armco Steel Corp Heat hardenable chromium-nickel-aluminum steel
US3314831A (en) * 1961-10-26 1967-04-18 North American Aviation Inc Heat treatment for precipitationhardening steels
GB988452A (en) * 1962-07-25 1965-04-07 Mini Of Aviat London Stainless steel
FR1399973A (fr) * 1963-07-11 1965-05-21 Deutsche Edelstahlwerke Ag Acier de construction à haute résistance pouvant subir une trempe avec ségrégation
BE651249A (ru) * 1963-08-02 1964-11-16
US3342590A (en) * 1964-09-23 1967-09-19 Int Nickel Co Precipitation hardenable stainless steel
US3347663A (en) * 1964-09-23 1967-10-17 Int Nickel Co Precipitation hardenable stainless steel
SE330616B (ru) * 1967-06-08 1970-11-23 Uddeholms Ab
JPH02310339A (ja) * 1989-05-24 1990-12-26 Kawasaki Steel Corp 強度、バネ特性及び成形性に優れたマルテンサイト系ステンレス鋼
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
US6537396B1 (en) * 2001-02-20 2003-03-25 Ace Manufacturing & Parts Company Cryogenic processing of springs and high cycle rate items
BR0208714A (pt) * 2001-03-27 2004-07-20 Crs Holdings Inc Liga de aço inoxidável martensìtica endurecìvel por precipitação de ultra-alta resistência
US7901519B2 (en) * 2003-12-10 2011-03-08 Ati Properties, Inc. High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom
JP2007503528A (ja) * 2003-05-27 2007-02-22 アベシア・インコーポレーテッド 金属の耐食性を改良する方法
SE528454C3 (sv) * 2004-12-23 2007-01-09 Sandvik Intellectual Property Utskiljningshärdbart martensitiskt rostfritt stål innefattande titansulfid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453614C1 (ru) * 2011-06-29 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки штамповок кривошипных валов из стали мартенситно-ферритного класса 14х17н2
RU2508410C1 (ru) * 2012-11-23 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки деформируемой коррозионно-стойкой стали 14х17н2
RU2688017C1 (ru) * 2018-07-19 2019-05-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки жаропрочной стали мартенситного класса

Also Published As

Publication number Publication date
US8097098B2 (en) 2012-01-17
FR2887558B1 (fr) 2007-08-17
PL1896624T3 (pl) 2010-12-31
CN101248205B (zh) 2014-05-07
JP5243243B2 (ja) 2013-07-24
ATE478165T1 (de) 2010-09-15
FR2887558A1 (fr) 2006-12-29
EP1896624A1 (fr) 2008-03-12
DK1896624T3 (da) 2010-09-20
JP2008546912A (ja) 2008-12-25
BRPI0613291A2 (pt) 2010-12-28
DE602006016281D1 (de) 2010-09-30
US20100139817A1 (en) 2010-06-10
BRPI0613291B1 (pt) 2014-08-26
SI1896624T1 (sl) 2010-10-29
WO2007003748A1 (fr) 2007-01-11
CN101248205A (zh) 2008-08-20
CA2612718A1 (fr) 2007-01-11
ES2349785T3 (es) 2011-01-11
CA2612718C (fr) 2015-01-06
EP1896624B1 (fr) 2010-08-18
RU2008102988A (ru) 2009-08-10

Similar Documents

Publication Publication Date Title
RU2415196C2 (ru) Состав мартенситной нержавеющей стали, способ изготовления механической детали из этой стали и деталь, изготовленная этим способом
RU2696513C2 (ru) Мартенситно-ферритная нержавеющая сталь, изготовленный продукт и способы их применения
KR101322575B1 (ko) 페라이트-오스테나이트계 스테인리스강
JP4337268B2 (ja) 耐食性に優れた高硬度マルテンサイト系ステンレス鋼
EP2699704B1 (en) Method for manufacturing and utilizing ferritic-austenitic stainless steel
AU2014294080B2 (en) High-strength steel material for oil well and oil well pipes
EP2563945B1 (en) Method for manufacturing ferritic-austenitic stainless steel with high formability
EP3246426B1 (en) Method for manufacturing a thick high-toughness high-strength steel sheet
JP6723210B2 (ja) ニッケル基合金
MXPA04008584A (es) Aleaciones de ni-cr-mo resistentes a la corrosion, que se pueden templar por envejecimiento.
CN106893945B (zh) 一种低温用奥氏体不锈钢及其铸件和铸件的制造方法
BRPI0706849A2 (pt) processo de fabricação de uma válvula monobloco de motor a explosão e válvula monobloco de motor à explosão
KR20080073762A (ko) 열간 공구강, 및 이 강으로부터 제조되는 부품, 그 제조방법, 및 그 사용 방법
CN115667570B (zh) 高断裂韧性、高强度、沉淀硬化型不锈钢
JP3379355B2 (ja) 耐硫化物応力割れ性を必要とする環境で使用される高強度鋼材およびその製造方法
US3807991A (en) Ferritic stainless steel alloy
JP2013510952A (ja) デルタフェライト量の小さいステンレス金型鋼
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
US5254184A (en) Corrosion resistant duplex stainless steel with improved galling resistance
JPS61136622A (ja) 高強度低合金鋼極厚鋼材の製造方法
US3392065A (en) Age hardenable nickel-molybdenum ferrous alloys
US2416515A (en) High temperature alloy steel and articles made therefrom
JPH06271975A (ja) 耐水素脆化特性に優れた高強度鋼およびその製法
JPH07188840A (ja) 耐水素脆化特性に優れた高強度鋼およびその製法
JP6828947B2 (ja) 耐食性と比強度に優れた軽量鉄鋼およびその製造方法