EP1896624A1 - Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue - Google Patents

Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue

Info

Publication number
EP1896624A1
EP1896624A1 EP06778669A EP06778669A EP1896624A1 EP 1896624 A1 EP1896624 A1 EP 1896624A1 EP 06778669 A EP06778669 A EP 06778669A EP 06778669 A EP06778669 A EP 06778669A EP 1896624 A1 EP1896624 A1 EP 1896624A1
Authority
EP
European Patent Office
Prior art keywords
traces
steel
steel according
treatment
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06778669A
Other languages
German (de)
English (en)
Other versions
EP1896624B1 (fr
Inventor
Jacques Montagnon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to SI200630767T priority Critical patent/SI1896624T1/sl
Priority to PL06778669T priority patent/PL1896624T3/pl
Publication of EP1896624A1 publication Critical patent/EP1896624A1/fr
Application granted granted Critical
Publication of EP1896624B1 publication Critical patent/EP1896624B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • a martensitic stainless steel composition a process for manufacturing a mechanical part from this steel and a part thus obtained.
  • the present invention relates to a martensitic stainless steel, and in particular to an alloy steel containing mainly chromium, nickel, molybdenum and / or tungsten, titanium, aluminum and optionally manganese elements, and offering a unique combination of corrosion resistance and mechanical strength. high.
  • Low-alloyed carbon martensitic steels that is to say none of the alloying elements exceeds 5% by weight
  • quenched and tempered are most suitable when operating temperatures remain below their temperature. of income.
  • those alloyed with silicon can withstand slightly higher operating temperatures because their tempering temperature to obtain the best compromise between the breaking strength (R m ) and the toughness (K-ic) is typically located towards 250/300 0 C.
  • R m / Ki C of the order of 1900MPa / 70MPa Vm and 2000MPa / 60MPa - ⁇ / m where m is expressed in meters, are commonly obtained with these categories of steels, with appropriate development that is today controlled with known industrial means.
  • These classes of steels are extremely sensitive to what is commonly referred to as “stress corrosion”, but which is in fact one of the forms of embrittlement by external hydrogen produced by surface corrosion reactions (pitting, intergranular corrosion). particular).
  • the crack propagation threshold in these steels in the presence of corrosion reactions is much lower than their K-ic value; for low-alloy steels treated above 1600 MPa of Rm, the K-icsc value has a minimum value between ambient temperature and 80 ° C., which is of the order of 20 MPaVm in aqueous media with a low chloride concentration.
  • the fracture facies is typically intergranular in probable relation with entrapment and hydrogen accumulation beyond the critical concentration on the income-producing ⁇ or Fe 3 C intergranular carbides.
  • cadmium is a highly harmful element to the environment, and its use is severely controlled by certain regulations.
  • K-icsc / Kic current steels very high strength are still very significantly lower than unity, unless introduced in these steels, elements of the class of platinoids. These act as a "booster" for hydrogen, but their prohibitive cost now prohibits their use as additives.
  • the aim of the steel composition of the invention is to solve these technical problems by proposing a martensitic stainless steel having an intrinsic resistance to corrosion in an atmospheric medium (marine or urban environment) for which the external source of hydrogen is eradicated , and simultaneously having a high tensile strength (of the order of 1800 MPa and more) and toughness equivalent to that of low alloyed carbon steel and very high strength.
  • the subject of the invention is a martensitic stainless steel, characterized in that its composition is, in weight percentages:
  • Ni eq (%) 2Ni + 0.5Mn + 3OC + 25N + Co + 0.3Cu
  • traces ⁇ N ⁇ 0.0030% Preferably traces ⁇ C ⁇ 0.0120%
  • traces ⁇ Mn ⁇ 0.25% Preferably traces ⁇ Mn ⁇ 0.10%
  • the invention also relates to a method of manufacturing a mechanical part made of steel with high mechanical strength and corrosion resistance, characterized in that: - a semi-finished product is produced by preparation and then hot transformation of an ingot composition as previously described;
  • a solution heat treatment is carried out on said half-product between 850 and 950 ° C., immediately followed by a cryogenic rapid cooling treatment up to a temperature of -75 ° C. or less without interruption below the point Ms transformation and for a time sufficient to ensure complete cooling throughout the thickness of the room;
  • aging is carried out between 450 and 600 ° C. for an isothermal holding time of 4 to 32 hours.
  • Said cryogenic treatment may be a quenching in dry ice.
  • Said cryogenic treatment can be carried out at a temperature of -80 ° C. for at least 4 hours.
  • At least one homogenizing heat treatment may be carried out between 1200 and 1300 ° C. for at least 24 hours on the ingot or during its hot transformations into semi-finished product, but before the last of these hot transformations.
  • the invention also relates to a mechanical part made of steel with high resistance to corrosion and mechanical strength, characterized in that it was obtained by the above method.
  • the invention is based primarily on a composition of the steel as defined above. It has particular characteristics as Ni, Al, Ti, Mo, Cr and Mn that are or can be quite high.
  • Thermomechanical treatments are also proposed, whereby the desired properties for the final metal are obtained.
  • the steel of the invention allows a structural hardening by simultaneous precipitation of the secondary phases of ⁇ -NiAI type, ⁇ -N ⁇ 3Ti and optionally ⁇ -Fe 7 (Mo, W) 6 according to the so-called “maraging effect", which makes it gives after a thermal aging, ensuring the precipitation, a very high level of mechanical resistance of at least 1800MPa, combined with a good resistance to corrosion, in particular corrosion under stress in atmospheric corrosive media. Its resistance in fatigue is also improved by means of the strict control of impurities deemed harmful (nitrogen, oxygen).
  • the steel of the invention has a good resistance to heating and can therefore withstand temperatures up to 300 0 C for short periods of time and of the order of 250 0 C for long periods. Its sensitivity to hydrogen is lower than that of low alloyed steels.
  • Very high strength steels are very sensitive to stress corrosion.
  • the steel composition of the invention is such that the very origin of the stress corrosion fracture, which is the production of hydrogen by the corrosion mechanisms and then the embrittlement of the metal by internal diffusion of this hydrogen, is circumvented in atmospheric environments thanks to an outfit reinforced with corrosion in general.
  • a minimum chromium content of 9 to 11% is necessary to give a steel a protection capacity against corrosion in a humid atmosphere, thanks to the formation on its surface of an oxide film. rich in chromium. But this protective film is insufficient in the case where the atmospheric medium is polluted by sulphate or chloride ions that can develop pitting corrosion and then crevice, both likely to provide hydrogen embrittlement.
  • the molybdenum element has a very favorable effect on the reinforcement of the passive film with respect to corrosion in aqueous media polluted by chlorides or sulphates.
  • the curing effect which gives a very high mechanical strength to the steel is obtained by precipitation of several hardening secondary phases during a thermal heat treatment of a completely martensitic structure. This martensitic structure prior to the income results from a preliminary solution treatment in the austenitic domain, then a cooling (or quenching) until a sufficiently low temperature so that all the austenite is transformed into martensite.
  • the steel of the invention undergoes this hardening thanks to the precipitation of intermetallic prototype phases ⁇ -NiAI, ⁇ -Ni ⁇ Ti and possibly ⁇ -F ⁇ 7 (Mo, W) 6 .
  • the strongest hardening is achieved with the highest additions of aluminum, titanium and molybdenum.
  • the nickel content must be very precisely adjusted so that the maximum hardening is obtained from a purely martensitic structure, without any residual ferrite or quench austenite.
  • the steel of the invention has maximum ductility and toughness, which are obtained in particular by limiting at best the effects of anisotropy related to the solidification of ingots.
  • the steel must be free of the ⁇ ferrite phase and the residual austenite phase after dissolution and cooling.
  • This phase is harmful for two major reasons: i) - it causes a weakening of the metal, ii) - it modifies the response to the hardening of the steel and no longer allows it to achieve its optimal mechanical properties.
  • the steel of the invention does not contain ferrite because its composition meets the conditions described below.
  • the ferrite ⁇ formed transiently during the solidification of the steel of the invention can be completely resorbed during a heat treatment at high temperature and in solid phase, for example between 1200 and 1300 0 C when: Cr eq / Ni eq ⁇ 1, 05
  • the structural homogeneity of the steel of the invention which is therefore dictated by the solidification conditions, is preferably optimized by means of heat treatment homogenization at very high temperatures, between 1200 and 1300 0 C, of longer than 24 hours, applied on the ingots and / or the intermediate products, that is to say on the half-products being processed hot.
  • heat treatment should not, however, occur after the last hot transformation, otherwise we would end up with too large grain size before further processing.
  • the best properties of the steel of the invention are obtained after being dissolved between 850 and 950 ° C., in the austenitic field, followed by cooling sufficiently energetic to allow the total transformation of the austenite. in martensite. This transformation must be total for two reasons.
  • the hardening by precipitation of the intermetallic phases during the subsequent aging only operates from the martensitic structure.
  • all residual austenite ranges not transformed after the end of cooling do not respond to hardening. This strongly affects the overall properties of the steel of the invention, especially since these ranges are very often those resulting from the residual segregation of the ingots and are therefore strongly anisotropic.
  • the best trade-offs between strength, ductility and toughness of the steel are obtained when the aging income allows the simultaneous formation of the hardening precipitates and a small fraction of reversion austenite arranged in films in the defects of the structure such as the interlayer joints of martensite.
  • the sandwich structure consisting of martensite slats separated by reversion austenite films provides high ductility to the hardened steel.
  • this low-level reversion austenite In order for this low-level reversion austenite to form from the martensitic structure, it is imperative that it be martensitic, that is to say, as free as possible of residual non-transformed austenite at the end of the period. cooling since the dissolution cycle. Indeed, at a given aging temperature, there is only one equilibrium austenite content, whether residual type or reversion, the latter being sought.
  • the width of the domain of the martensitic transformation of a high-alloy steel a range between the transformation start temperature Ms and the end-of-transformation temperature Mf, is approximately 150 ° C., and that This area is all the larger as the structure of the steel is less homogeneous.
  • the temperature Ms of a steel which is cooled to ambient temperature (approximately 25 ° C.) from its austenitic dissolution field must be at least 175 ° C.
  • the steel of the invention has a balanced composition such that the transformation temperature Ms is> 50 ° C., and preferably close to or greater than 70 ° C.
  • its cooling at -80 ° C., or lower in a cooling medium allows the transformation of austenite to martensite. This is made possible by searching for a temperature range Ms-Mf of at least 140 ° C., preferably at least 160 ° C., by the application, after the treatment. solution dissolution between 850 and 95O 0 C, a cooling completed for example in dry ice at -80 0 C or lower, for a time sufficient to ensure complete cooling of the products and a complete transformation of the austenite in martensite.
  • the steel of the invention must have a repetitive and reliable value of Ms which must satisfy the following relationship, a function of all the additive elements included in the steel and which have a significant influence on Ms, y. including the elements present in residual contents but whose effect is strong on the value of Ms. This value is calculated by the formula (the contents of the various elements are in% by weight):
  • Ms ( 0 C) 1302 - 42Cr - 63Ni - 30Mo + 20Al - 15W - 33Mn - 28Si - 30Cu - 13Co + 10Ti.
  • Chromium and molybdenum are the elements that give steel its good resistance to corrosion: molybdenum is also likely to participate, in addition, in hardening during the precipitation of the intermetallic phase Fe 7 Mo 6 .
  • the contents of hardening elements AI, Ti and Mo are higher, hence the preferred upper limit in chromium of 11.75%.
  • the molybdenum content is at least 1.5% in order to obtain the desired anticorrosion effect.
  • the maximum content is 3%.
  • the solvus temperature of a ét-type molybdenum rich intermetallic phase, stable at high temperature becomes greater than 950 ° C. in addition, in some cases, the solidification is completed by a eutectic system which produces massive intermetallic phases, rich in molybdenum, and whose subsequent solution requires solution temperatures higher than 950 ° C.
  • the steel also contains tungsten, it will partially replace the molybdenum at the rate of one tungsten atom for two molybdenum atoms. In this case, the maximum limit of 3% applies to the sum Mo + (W / 2).
  • the chromium and molybdenum contents must make it possible to obtain a pitting index of at least 16.5.
  • Nickel is essential for steel to perform three essential functions: - stabilize the austenitic phase at solution temperatures and eliminate any trace of ⁇ ferrite; for this purpose, the steel of the invention must comprise at least 10% nickel and preferably at least 10.5%, unless another gamma element is added to the steel, for example manganese; for a manganese addition of up to 3%, the nickel content can be reduced to 8%;
  • the austenite content dispersed in the steel must be limited to a maximum of 10% to maintain very high mechanical strength: the nickel content is, in this perspective, a maximum of 14%; its preferred content between 10.5 and 12.5% is finally adjusted precisely using the two previously described relationships: Cr eq / Ni eq ⁇ 1.05;Ms> 50 ° C;
  • Aluminum is a necessary element for the hardening of steel; the desired maximum resistance levels (Rm> 1800 MPa) are only achieved with an addition of at least 1% aluminum, and preferably at least 1.2%. Aluminum strongly stabilizes ferrite ⁇ and the steel of the invention can not contain more than 2% of aluminum without appearance of this phase.
  • the aluminum content is preferably limited to 1.6%, as a precaution, so as to take into account the analytical variations of the other elements which promote ferrite, and which are mainly chromium, molybdenum and titanium.
  • Titanium just like aluminum, is a necessary element for the hardening of steel. It allows its hardening by precipitation of the phase ⁇ - Ni 3 i. In PM 13-8Mo type maraging steel and containing more than 1% Al, the increase in titanium Rm strength is approximately 400MPa per percent titanium.
  • the very high strength values referred to are obtained only when the sum Al + Ti is at least equal to 2.25% by weight.
  • titanium very effectively binds the carbon contained in the steel in the form of TiC carbide, which makes it possible to avoid the harmful effects of free carbon as indicated below.
  • solubility of the TiC carbide being quite low, it is possible to precipitate this carbide in a homogeneous manner in the steel during the final stages of the thermomechanical transformation at low temperatures in the austenitic domain of the steel: this avoids the intergranular weakening of the carbide.
  • the titanium content must be between 0.5 and 1.5%, preferably between 0.75 and 1.25%.
  • Cobalt in substitution for nickel in a proportion of 2% by weight of cobalt per 1% of nickel, is advantageous because it makes it possible to stabilize the austenite at the dissolution temperatures, while allowing the solidification of the steel to be maintained.
  • of the invention according to the desired ferritic mode (it very weakly stabilizes the austenite at solidification temperatures): in this, cobalt widens the range of the compositions according to the invention as they are delimited by the Cr eq binding relationships and Neither eq.
  • the substitution of 1% of nickel with 2% of cobalt makes it possible to record the starting point of the martensitic transformation of the steel as clearly as possible. be deduced from Ms.'s calculation formula
  • cobalt gives the martensitic structure a stronger ability to respond to hardening; however, cobalt does not participate directly in precipitation hardening of the ⁇ - NiAI phase and does not have the ductilizing effect of nickel. On the contrary, it favors the precipitation of the ⁇ - FeCr weakening phase at the expense of the ⁇ - Fe 7 Mo 6 phase, which can have a hardening effect. For the latter two reasons, the addition of cobalt is limited to 2%, preferably to 0.5% in the restricted range where all the properties of the steel of the invention can be acquired without resorting to the effects of cobalt.
  • Tungsten can be added in substitution for molybdenum because it participates more actively in the hardening of the solid solution of martensite, and it is also likely to participate in the precipitation of the intermetallic phase type ⁇ -Fe 7 (Mo, W). ) 6 .
  • the required mechanical properties require a sulfur content of less than 0.0050%, preferably less than 0.0010% and ideally less than 0, 0005%, subject to an appropriate choice of raw materials.
  • the nitrogen content must also be kept at the lowest possible value with the available means of elaboration, firstly to obtain the best ductility of the steel, and secondly to obtain the fatigue endurance limit. the highest possible, especially since the steel contains the titanium element. Indeed, in the presence of titanium, nitrogen forms insoluble cubic TiN nitrides which are extremely harmful by their shape and their physical properties. They constitute systematic primers of fatigue cracking.
  • the industrial vacuum production method makes it possible to obtain residual nitrogen contents of between 0.0030 and 0.0100%, typically centered on 0.0050 to 0.0060% in the case of the steel of the invention. 'invention.
  • the best solution for the steel of the invention is therefore to seek a residual nitrogen content as low as possible, less than 0.0060%. If necessary, and where the application requires exceptional fatigue strength, toughness and / or ductility, nitrogen contents of less than 0.0030% may be sought by the choice of raw materials and methods of preparation. specific. Carbon, commonly present in steels, is an undesirable element in the steel of the invention for several reasons:
  • the maximum carbon content of the steel of the invention is limited to 0.025% at most, preferably 0.0120% at most.
  • Copper which is a residual element found in commercial raw materials, must not be present at more than 0.5%, and preferably a final copper content of 0.25 or less is recommended. % in the steel of the invention. The presence of copper in larger quantities would unbalance the overall behavior of the steel: the copper easily tends to move the mode of solidification out of the desired range, and unnecessarily lowers the point of transformation Ms.
  • Manganese and silicon are commonly present in steels, in particular because they are used as deoxidants of the liquid metal during conventional furnace processes where the liquid steel is in contact with the atmosphere. Manganese is also used in steels to fix free sulfur, extremely harmful, in the form of less harmful manganese sulphides. Since the steel of the invention has very low sulfur contents and that it is developed under vacuum, the elements manganese and silicon are from this point of view of any utility, and their contents can be limited to those of the raw materials.
  • the silicon content must therefore be maintained at most 0.25%, preferably at most 0.10%.
  • the manganese content can also be maintained within these same limits.
  • Manganese widens the austenitic loop, and in particular it lowers the temperature Ad almost as much as nickel. Since, moreover, it has a lower effect of lowering Ms than nickel, it may be advantageous to replace part of the nickel with manganese to avoid the presence of ⁇ ferrite and help form reversion austenite when aging curing. This substitution must, of course, be done in compliance with the conditions on Cr eq / Ni eq and Ms as seen above. The maximum Mn content can thus be increased to 3%.
  • the method of production of the steel must be adapted so that this content is well controlled.
  • the oxygen present in the steel of the invention forms oxides that are detrimental to ductility and fatigue strength. For this reason, it is necessary to contain its concentration at the lowest possible value, that is to say at most 0.0050%, preferably below 0.0020%, which is permitted by the industrial means of preparation. under vacuum.
  • concentration at the lowest possible value, that is to say at most 0.0050%, preferably below 0.0020%, which is permitted by the industrial means of preparation. under vacuum.
  • the elements that have not been mentioned are only present as impurities resulting from the elaboration.
  • the steel of the invention is evacuated according to conventional industrial practices by means of, for example, a vacuum induction furnace or a double vacuum forming phase, for example by forming and molding in a vacuum. a vacuum furnace of a first electrode, then by at least one vacuum remelting operation of this electrode to obtain a final ingot.
  • the development of an ingot may comprise a vacuum elaboration phase of an electrode in an induction furnace followed by a remelting phase according to the slag remelting process (ESR ); different ESR or VAR (vacuum arc reflow remelting) methods can be combined.
  • Thermomechanical processes at high temperature allow easy shaping of molded ingots under usual conditions. These processes make it possible to obtain all kinds of semi-finished products with the steel of the invention (plates, bars, blocks, forged or stamped parts, etc.). Good structural homogeneity in the semi-finished products is preferably ensured by means of a heat treatment homogenization between 1200 and 1300 0 C, practiced before and / or during the range of thermomechanical transformations hot, but not after the last hot transformation to avoid that subsequent treatments take place on semi-products too large grain size.
  • the products are then dissolved at a temperature between 850 and 95O 0 C, then the parts are cooled rapidly to a final temperature of less than or equal to -75 0 C, uninterrupted below the transformation point Ms, possibly by placing an isothermal quenching stage above Ms.
  • T> Ms it is easy to do hot oil quenching at T> Ms. This allows to equalize the temperature in massive pieces and, above all, to avoid quenching taps due to the differential martensitic transformation between the surface of the massive pieces and the warm heart of the pieces.
  • the martensitic transformation during the cryogenic passage occurs continuously.
  • the temperature is of the order of -80 ° C. when this quenching is carried out in dry ice.
  • the maintenance at low temperature is of sufficient duration to ensure complete cooling throughout the thickness of the parts. It typically lasts at least 4 hours at -80 ° C.
  • the metal consisting of a ductile martensite and of low hardness, can be optionally cold-formed and then again dissolved in solution. achieve homogeneous properties.
  • the final properties of the steel are finally obtained by an aging income at temperatures between 450 and 600 0 C for isothermal holding time of between 4 and 32 hours, depending on the desired characteristics.
  • the pair of time and aging temperature variables is chosen by considering the following criteria in the range 450-600 0 C:
  • the resistance passes through a maximum for a determined duration, which is called "curing peak"
  • Table 1 groups together the compositions of the steels tested.
  • the reference samples have compositions which differ from the invention mainly on their too low titanium content (A and C) and / or on their sum Ti + Al too low (A, B, C) or on their point Ms too much low because less than 50 0 C (D).
  • Sample C also has a molybdenum content that is too high.
  • thermomechanical a 1t electrode (samples A, D, I and J) or 200kg (the others) in a vacuum oven, electrode then remelted in a consumable electrode oven, and underwent the treatments thermomechanical following:
  • Table 2 Structural and mechanical characteristics of the steels tested.
  • the reference steel D of which only the value of Ms does not correspond to the invention, does not reach the desired level of hardening, whereas its sum Al + Ti satisfies the condition Al + Ti> 2.25. Indeed, it contains 16% residual austenite after the cryogenic treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Composition d'acier inoxydable martensitique, procédé de fabrication d'une pièce mécanique à partir de cet acier et pièce ainsi obtenue.
La présente invention concerne un acier inoxydable martensitique, et en particulier un acier allié contenant principalement les éléments chrome, nickel, molybdène et/ou tungstène, titane, aluminium et éventuellement manganèse, et proposant une combinaison unique de résistance à la corrosion et de résistance mécanique élevées.
Pour certaines applications critiques où les pièces mécaniques en acier sont soumises à des efforts très importants et pour lesquelles la masse de ces pièces est un facteur majeur, par exemple dans les domaines de l'aéronautique (caissons de trains d'atterrissage) ou de l'espace, on doit recourir à des aciers martensitiques à très haute résistance mécanique et, en outre, offrant encore une bonne ténacité telle que mesurée par l'essai de rupture brutale Kic-
Les aciers martensitiques au carbone faiblement alliés (c'est-à-dire dont aucun des éléments d'alliage ne dépasse 5% en masse), trempés et revenus, conviennent la plupart du temps lorsque les températures en service restent en dessous de leur température de revenu. Parmi ces aciers, ceux alliés au silicium peuvent supporter des températures en service un peu plus hautes car leur température de revenu pour obtenir le meilleur compromis entre la résistance à la rupture (Rm) et la ténacité (K-ic) est typiquement située vers 250/3000C.
Lorsque les températures en service dépassent ponctuellement ou de façon permanente ces valeurs, il faut recourir aux aciers « maraging »
(martensitiques à bas carbone durcis par précipitation d'éléments intermétalliques), dont le revenu est effectué à 4500C ou plus en fonction du compromis Rm/KiC recherché.
Des compromis Rm/KiC de l'ordre de 1900MPa/70MPa Vm et 2000MPa/60MPa -\/m où m est exprimé en mètres, sont obtenus couramment avec ces catégories d'aciers, moyennant une élaboration appropriée qui est aujourd'hui maîtrisée avec des moyens industriels connus. Ces classes d'aciers sont extrêmement sensibles à ce qui est couramment dénommé « corrosion sous contrainte », mais qui est en fait l'une des formes de fragilisation par l'hydrogène externe produit par des réactions de corrosion superficielle (piqûres, corrosion intergranulaire en particulier). Le seuil de propagation de fissures dans ces aciers en présence de réactions de corrosion (K1Csc) est très inférieur à leur valeur de K-ic ; pour les aciers faiblement alliés traités au-delà de 1600MPa de Rm, la valeur de K-icsc présente une valeur minimale entre la température ambiante et 800C qui est de l'ordre de 20MPaVm dans des milieux aqueux à faible concentration en chlorures. Le faciès de rupture est typiquement intergranulaire en relation probable avec un piégeage et une accumulation d'hydrogène au-delà de la concentration critique sur les carbures intergranulaires ε ou Fe3C formés au revenu.
La sensibilité des aciers maraging non inoxydables, quoique moins marquée que dans les aciers peu alliés car la diffusion de l'hydrogène dans leur matrice très alliée est plus faible et les modes de piégeage de l'hydrogène sont apparemment moins nocifs, reste aussi très forte à des températures de l'ordre de 20 à 1000C qui correspondent à des phases d'utilisation en service.
Jusqu'à aujourd'hui, le seul moyen de protection contre ces phénomènes très dommageables était la protection des surfaces par des revêtements anticorrosion comme le cadmiage, qui est très utilisé en aéronautique. Ces revêtements posent cependant des problèmes importants.
En effet, ces revêtements sont sujets à Pécaillage et à la fissuration, ce qui impose une surveillance régulière et attentive de l'état de surface.
En outre, le cadmium est un élément fortement nocif vis-à-vis de l'environnement, et son usage est sévèrement contrôlé par certaines réglementations.
Par ailleurs, les différentes opérations de revêtement de type chimique ou électrolytique dégagent de l'hydrogène qui est susceptible d'endommager irrémédiablement les pièces à protéger par le phénomène bien connu de « rupture retardée » ou de « fatigue statique » avant leur mise en service, et les méthodes de prévention sont très lourdes et coûteuses. Dans tous les cas, le substrat massif reste intrinsèquement très sensible à la fissuration fragile favorisée par l'hydrogène externe de provenance quelconque.
Actuellement, aucun acier faiblement allié et à très haute résistance (Rm > 1900MPa) ne présente une valeur de K1Csc dans les milieux aqueux atmosphériques ou urbains qui approcherait la valeur de K-ic mesurée en atmosphère neutre, et l'étude fine des mécanismes de propagation de fissures en présence d'hydrogène interne ou externe tendrait à prouver que les rapports
K-icsc/Kic des aciers actuels à très haute résistance sont toujours très nettement inférieurs à l'unité, sauf en cas d'introduction dans ces aciers, d'éléments de la classe des platinoïdes. Ceux-ci agissent comme « repoussoir » de l'hydrogène, mais leur coût prohibitif interdit aujourd'hui leur utilisation comme éléments d'addition.
Par ailleurs, il existe aussi des aciers maraging, à teneurs élevées en chrome (> 10% Cr) et qui sont considérés inoxydables en atmosphères « urbaines » ; un exemple d'acier représentatif de cette catégorie est décrit dans le document US-A-3 556 776.
Aucun de ces aciers maraging inoxydables actuellement connus ne permet cependant d'atteindre les niveaux de résistance mécanique qu'offrent les aciers maraging sans chrome et les aciers faiblement alliés, à savoir une résistance à la traction Rm de 1900MPa et plus.
La composition d'acier de l'invention a pour but de résoudre ces problèmes techniques en proposant un acier inoxydable martensitique, ayant une résistance intrinsèque à la corrosion en milieu atmosphérique (environnement marin ou urbain) pour lequel la source externe d'hydrogène est éradiquée, et présentant simultanément une résistance à la traction élevée (de l'ordre de 1800MPa et davantage) et une ténacité équivalente à celle des aciers au carbone faiblement alliés et à très haute résistance.
A cet effet, l'invention a pour objet un acier inoxydable martensitique, caractérisé en ce que sa composition est, en pourcentages pondéraux :
- 9% < Cr < 13%
- 1 ,5% ≤ Mo < 3% - 8% < Ni < 14%
- 1% < AI < 2%
- 0,5% < Ti < 1 ,5% avec Al + Ti > 2,25%
- traces < Co < 2% - traces < W < 1 % avec Mo + (W/2) < 3%
- traces < P < 0,02%
- traces < S < 0,0050%
- traces < N < 0,0060%
- traces < C < 0,025% - traces < Cu < 0,5%
- traces < Mn < 3%
- traces < Si < 0,25%
- traces < O < 0,0050% et est telle que : • Ms (0C) ≈ 1302 - 42Cr - 63Ni - 30Mo + 20Al - 15W - 33Mn
28Si - 30Cu - 13Co + 10Ti > 50
• Cr eq / Ni eq < 1,05 avec Cr eq (%) = Cr + 2Si + Mo + 1 ,5Ti + 5,5Al + 0,6W
Ni eq (%) = 2Ni + 0,5Mn + 3OC + 25N + Co + 0,3Cu De préférence 10% < Cr < 11 ,75%.
De préférence 2% < Mo < 3%.
De préférence 10,5% < Ni < 12,5%.
De préférence 1 ,2% < Al < 1 ,6%.
De préférence 0,75% < Ti < 1,25% De préférence traces < Co ≤ 0,5%
De préférence traces < P < 0,01%
De préférence traces < S < 0,0010%
De préférence traces < S < 0,0005%
De préférence traces < N < 0,0030% De préférence traces < C < 0,0120% De préférence traces < Cu < 0,25%
De préférence traces < Si < 0,25%
De préférence traces < Si < 0,10%
De préférence traces < Mn < 0,25% De préférence traces < Mn < 0,10%
De préférence traces < O < 0,0020%.
L'invention a également pour objet un procédé de fabrication d'une pièce mécanique en acier à hautes résistance mécanique et résistance à la corrosion, caractérisé en ce que : - on élabore un demi-produit par préparation puis transformation à chaud d'un lingot de composition telle que précédemment décrite ;
- on exécute un traitement thermique de mise en solution sur ledit demi-produit entre 850 et 9500C, immédiatement suivi par un traitement cryogénique de refroidissement rapide jusqu'à une température inférieure ou égale à -75°C sans interruption en dessous du point de transformation Ms et pendant une durée suffisante pour assurer un refroidissement complet dans toute l'épaisseur de la pièce ;
- on exécute un revenu de vieillissement entre 450 et 6000C pour une durée de maintien isotherme de 4 à 32 h. Ledit traitement cryogénique peut être une trempe dans de la neige carbonique.
Ledit traitement cryogénique peut être effectué à une température de -8O0C pendant au moins 4 h.
Entre ledit traitement de mise en solution et ledit traitement cryogénique, on peut procéder à une trempe isotherme à une température supérieure au point de transformation Ms.
Après le traitement cryogénique et avant le revenu de vieillissement, on peut procéder à une mise en forme à froid et à un traitement thermique de mise en solution. On peut exécuter au moins un traitement thermique d'homogénéisation entre 1200 et 13000C pendant au moins 24 h sur le lingot ou lors de ses transformations à chaud en demi-produit, mais avant la dernière de ces transformations à chaud.
L'invention a également pour objet une pièce mécanique en acier à hautes résistance à la corrosion et résistance mécanique, caractérisée en ce qu'elle a été obtenue par le procédé précédent.
Il s'agit par exemple d'un caisson de train d'atterrissage d'aéronef.
Comme on l'aura compris, l'invention repose en premier lieu sur une composition de l'acier telle que définie ci-dessus. Elle présente notamment comme particularités des teneurs en Ni, Al, Ti, Mo, Cr et Mn qui sont ou peuvent être assez élevées.
Des traitements thermomécaniques sont également proposés, grâce auxquels les propriétés désirées pour le métal final sont obtenues.
L'acier de l'invention permet un durcissement structural par précipitation simultanée des phases secondaires de type β-NiAI, η-NÏ3Ti et éventuellement μ-Fe7(Mo, W)6 selon l'effet dit « maraging », ce qui lui confère après un vieillissement thermique, assurant la précipitation, un très haut niveau de résistance mécanique d'au moins 1800MPa, combiné à une bonne tenue à la corrosion, en particulier à la corrosion sous contrainte en milieux corrosifs atmosphériques. Sa tenue en fatigue est également améliorée moyennant le strict contrôle des impuretés réputées nocives (azote, oxygène).
En outre, l'acier de l'invention possède une bonne résistance à réchauffement et peut donc supporter des températures atteignant 3000C pour de courtes durées et de l'ordre de 2500C pour de longues durées. Sa sensibilité à l'hydrogène est plus faible que celles des aciers faiblement alliés.
L'invention sera mieux comprise à la lecture de la description qui va suivre.
Les aciers à très haute résistance sont très sensibles à la corrosion sous tension. La composition d'acier de l'invention est telle que l'origine même de la rupture par corrosion sous tension, qui est la production d'hydrogène par les mécanismes de corrosion puis la fragilisation du métal par diffusion interne de cet hydrogène, est circonvenue en milieux atmosphériques grâce à une tenue renforcée à la corrosion en général. Dans ce but, les teneurs en chrome et molybdène sont d'au moins respectivement 9% et 1 ,5%, préférentiellement d'au moins 10% et 2% de façon dans ce dernier cas à atteindre un indice de piqûration I. P., défini par I. P. = Cr + 3,3 Mo, d'au moins 16,5, comme celui des aciers inoxydables austénitiques du type AISI 304 à 16-18% Cr. En effet, une teneur en chrome minimale de 9 à 11% est nécessaire pour conférer à un acier une capacité de protection vis-à-vis de la corrosion en atmosphère humide, grâce à la formation à sa surface d'un film d'oxyde riche en chrome. Mais ce film protecteur est insuffisant dans le cas où le milieu atmosphérique est pollué par des ions sulfates ou chlorures qui peuvent développer la corrosion par piqûre puis par crevasse, toutes deux susceptibles de fournir de l'hydrogène fragilisant.
L'élément molybdène a, lui, un effet très favorable sur le renforcement du film passif vis-à-vis de la corrosion en milieux aqueux pollués par des chlorures ou des sulfates. En deuxième lieu, l'effet de durcissement qui procure une très haute résistance mécanique à l'acier est obtenu par précipitation de plusieurs phases secondaires durcissantes lors d'un traitement thermique de revenu d'une structure entièrement martensitique. Cette structure martensitique préalable au revenu résulte d'un traitement de mise en solution préalable dans le domaine austénitique, puis d'un refroidissement (ou trempe) jusqu'à une température suffisamment basse pour que toute l'austénite se transforme en martensite.
L'acier de l'invention subit ce durcissement grâce à la précipitation de phases intermétalliques de prototype β-NiAI, η-NiβTi et éventuellement μ-Fβ7 (Mo, W)6. Le plus fort durcissement est obtenu avec les additions les plus élevées en aluminium, titane et molybdène. La teneur en nickel doit être très précisément ajustée de façon à ce que le durcissement maximal soit obtenu à partir d'une structure purement martensitique, sans ferrite ni austénite résiduelle de trempe.
En troisième lieu, l'acier de l'invention possède une ductilité et une ténacité maximales, qui sont obtenues notamment en limitant au mieux les effets d'anisotropie liés à la solidification des lingots. Dans ce but, l'acier doit être exempt de la phase ferrite δ et de la phase austénite résiduelle après mise en solution et refroidissement.
C'est la raison pour laquelle l'acier de l'invention se caractérise par un équilibrage spécifique de ses éléments d'addition comme cela est décrit ci-après.
Ferrite δ :
Cette phase est néfaste pour deux raisons majeures : i) - elle provoque une fragilisation du métal, ii) - elle modifie la réponse au durcissement de l'acier et ne lui permet plus d'atteindre ses propriétés mécaniques optimales.
L'acier de l'invention ne contient pas de ferrite du fait que sa composition répond aux conditions décrites ci-après.
Les formules qui vont être citées s'appuient sur deux relations entre les éléments d'alliage, l'une étant une somme pondérée des teneurs en % massique des éléments qui stabilisent la ferrite, et exprimée par une variable Cr équivalent (Cr eq), l'autre étant une somme pondérée des teneurs en % massique des éléments qui stabilisent l'austénite, et exprimée par la variable Ni équivalent (Ni eq)
Cr eq = Cr + 2Si + Mo + 1 ,5Ti + 5,5Al + 0,6W Ni eq = 2Ni + 0,5Mn + 3OC + 25N + Co + 0,3Cu
If s'avère que la ferrite δ formée de façon transitoire lors de la solidification de l'acier de l'invention peut être totalement résorbée lors d'un traitement thermique à haute température et en phase solide, par exemple entre 1200 et 13000C, lorsque : Cr eq / Ni eq < 1 ,05
Ségrégation chimique à la solidification :
La ségrégation chimique d'un acier lors de sa solidification est un phénomène inévitable qui résulte du partage des éléments entre la fraction solide et la fraction liquide autour du solide. En fin de solidification, le liquide résiduel se fige dans des zones qui sont classiquement soit intergranulaires, soit interdendritiques, et on retrouve dans ces zones un enrichissement en certains éléments d'alliage, et/ou un appauvrissement en d'autres éléments d'alliage. Les cellules de ségrégation ainsi formées sont ensuite déformées et partiellement réhomogénéisées lors des opérations de transformation thermomécanique. Après ces opérations de déformation, il subsiste une structure dite en « bandes » selon le sens de la déformation, qui est nettement anisotropique. La réponse aux traitements thermiques de ces bandes ségrégées est très différenciée, ce qui aboutit à des propriétés mécaniques inégales en fonction de la direction des efforts exercés : d'une façon quasi-généralisée, les propriétés de ductilité et de ténacité (K-ic) sont amoindries dans tous les cas où les efforts sont exercés plus ou moins perpendiculairement à la structure en bandes.
L'homogénéité structurale de l'acier de l'invention, qui est donc dictée par les conditions de solidification, est de préférence optimisée à l'aide de traitements thermiques d'homogénéisation à très hautes températures, entre 1200 et 13000C, de durée supérieure à 24 h, pratiqués sur les lingots et/ou les produits intermédiaires, c'est-à-dire sur les demi-produits en cours de transformation à chaud. Un tel traitement ne doit, cependant, pas intervenir après la dernière transformation à chaud, sinon on se retrouverait avec une taille de grains trop importante avant la suite des traitements.
Transformation martensitique et austénite résiduelle :
Les meilleures propriétés de l'acier de l'invention sont obtenues à la suite d'une mise en solution entre 850 et 9500C, dans le domaine austénitique, suivie d'un refroidissement suffisamment énergique pour permettre la transformation totale de l'austénite en martensite. Cette transformation doit être totale pour deux raisons.
En premier lieu, le durcissement par précipitation des phases intermétalliques lors du vieillissement ultérieur n'opère qu'à partir de la structure martensitique. Ainsi, toutes les plages d'austénite résiduelle non transformées après la fin du refroidissement ne répondent pas au durcissement. Cela nuit fortement aux propriétés globales de l'acier de l'invention, d'autant plus que ces plages sont très souvent celles issues de la ségrégation résiduelle des lingots et sont donc fortement anisotropes. En second lieu, les meilleurs compromis entre résistance, ductilité et ténacité de l'acier sont obtenus lorsque le revenu de vieillissement permet la formation simultanée des précipités durcissants et d'une faible fraction d'austénite de réversion disposée en films dans les défauts de la structure tels que les joints interlattes de la martensite. La structure sandwich constituée des lattes de martensite séparées par des films d'austénite de réversion procure une grande ductilité à l'acier durci. Pour que cette austénite de réversion en faible quantité puisse se former à partir de la structure martensitique, il faut impérativement que celle-ci soit martensitique, c'est-à-dire exempte le plus possible d'austénite résiduelle non transformée à Ia fin du refroidissement depuis le cycle de mise en solution. En effet, à une température de vieillissement donnée, il n'existe qu'une seule teneur d'austénite à l'équilibre, qu'elle soit de type résiduel ou de réversion, cette dernière étant recherchée.
Il est communément admis que la largeur du domaine de la transformation martensitique d'un acier très allié, domaine compris entre la température de début de transformation Ms et la température de fin de transformation Mf, est d'environ 1500C, et que ce domaine est d'autant plus large que la structure de l'acier est moins homogène. Cela signifie que la température Ms d'un acier que l'on refroidit à température ambiante (environ 25°C) depuis son domaine de mise en solution austénitique, doit être d'au moins 1750C.
Les technologies modernes permettent aisément de refroidir les aciers à des températures inférieures à la température ambiante (traitements dits « cryogéniques ») ce qui permet d'achever la transformation martensitique d'aciers dont la température Ms est inférieure à 175°C ; toutefois, il y a une limite à cela dans le sens où cette transformation de phase, thermiquement activée, est fortement contrariée à de très basses températures.
L'acier de l'invention a une composition équilibrée de telle façon que la température de transformation Ms soit > 500C, et préférentiellement voisine de ou supérieure à 7O0C. Ainsi, son refroidissement à -8O0C, ou plus bas, dans un milieu réfrigérant, permet la transformation de l'austénite en martensite. Cela est rendu possible en recherchant un intervalle de température Ms - Mf d'au moins 1400C, préférentiellement d'au moins 160°C, par l'application, après le traitement de mise en solution entre 850 et 95O0C, d'un refroidissement achevé par exemple dans de la neige carbonique à -800C ou plus bas, pendant une durée suffisante pour assurer le refroidissement complet des produits et une transformation complète de l'austénite en martensite. Pour obtenir cet effet, l'acier de l'invention doit présenter une valeur répétitive et fiable de Ms qui doit répondre à la relation suivante, fonction de tous les éléments d'additions inclus dans l'acier et qui influent notablement sur Ms, y compris les éléments présents en teneurs résiduelles mais dont l'effet est fort sur la valeur de Ms. Cette valeur est calculée par la formule (les teneurs des différents éléments sont en % pondéraux) :
Ms (0C) = 1302 - 42Cr - 63Ni - 30Mo + 20Al - 15W - 33Mn - 28Si - 30Cu - 13Co + 10Ti.
L'analyse statistique de coulées expérimentales a permis de valider cette relation pour des valeurs de Ms de 0 à 2250C, et de déduire la valeur minimale que doit avoir le point Ms pour l'acier de l'invention. Cette valeur est de +500C et préférentiellement +70°C.
Les rôles des éléments d'addition principaux sont détaillés ci-après :
Le chrome et le molybdène sont les éléments qui confèrent à l'acier sa bonne résistance à la corrosion : le molybdène est également susceptible de participer, en outre, au durcissement lors de la précipitation au revenu de la phase intermétallique de type Fe7Mo6.
La teneur en chrome des aciers de l'invention est comprise entre 9 et 13%, de préférence entre 10 et 11 ,75%. Au-delà de 13% de chrome, l'équilibrage global de l'acier n'est plus possible. En effet, en minorant les éléments qui favorisent la ferrite delta résiduelle (Mo = 1 ,5%, Al = 1 ,5% et Ti = 0,75%, Ti + Al = 2,25%), la relation liant Cr eq et Ni eq implique que la teneur en nickel soit d'au moins 11 %. Or, une telle composition, qui se trouve donc en limite des domaines de l'invention ne répond plus à la relation Ms > 5O0C.
Et cela est d'autant plus vrai que les teneurs en éléments durcissants AI, Ti et Mo sont plus élevées, d'où la limite supérieure préférentielle en chrome de 11 ,75%. La teneur en molybdène est d'au moins 1 ,5% pour qu'on puisse obtenir l'effet anticorrosion recherché. La teneur maximale est de 3%. Au-delà de 3% de molybdène, la température de solvus d'une phase intermétallique riche en molybdène de type χ, stable à haute température, devient supérieure à 9500C ; en outre, dans certains cas, la solidification s'achève par un système eutectique qui produit des phases intermétalliques massives, riches en molybdène, et dont la mise en solution ultérieure réclame des températures de mise en solution supérieures à 9500C.
Dans ces deux cas, des températures d'austénisation supérieures à 9500C conduisent à un grossissement exagéré de la structure granulaire, incompatible avec les propriétés mécaniques requises.
Toutefois, si l'acier contient également du tungstène, celui-ci va se substituer partiellement au molybdène à raison d'un atome de tungstène pour deux atomes de molybdène. Dans ce cas, la limite maximale de 3% s'applique à la somme Mo + (W/2).
Comme on l'a dit, de préférence, les teneurs en chrome et molybdène doivent permettre d'obtenir un indice de piqûration d'au moins 16,5.
Le nickel est indispensable à l'acier pour exercer trois fonctions essentielles : - stabiliser la phase austénitique aux températures de mise en solution et éliminer toute trace de ferrite δ ; dans ce but, l'acier de l'invention doit comporter au moins 10% de nickel et de préférence au moins 10,5%, à moins qu'un autre élément gammagène ne soit ajouté à l'acier, par exemple du manganèse ; pour une addition de manganèse allant jusqu'à 3%, on peut descendre la teneur en nickel jusqu'à 8% ;
- favoriser la ductilité de l'acier, en particulier pour les vieillissements à températures supérieures ou égales à 5000C, car il provoque dans ce cas la formation d'une petite fraction d'austénite dite de réversion, très ductile, finement dispersée dans tout l'acier, entre les lattes de la martensite dure et fragile ; toutefois, cet effet ductile est obtenu au détriment de la valeur de la résistance mécanique ; - participer directement au durcissement de l'acier lors du vieillissement par précipitation des phases : β-Ni Ai et η-Ni3Ti.
La teneur en austénite dispersée dans l'acier doit être limitée à 10% maximum pour conserver de très hautes résistances mécaniques : la teneur en nickel est, dans cette perspective, au maximum de 14% ; sa teneur préférée entre 10,5 et 12,5% est finalement ajustée précisément à l'aide des deux relations décrites précédemment : Cr eq / Ni eq < 1 ,05 ; Ms > 5O0C ;
L'aluminium est un élément nécessaire au durcissement de l'acier ; les niveaux de résistance maximale recherchés (Rm > 1800MPa) ne sont atteints qu'avec une addition d'au moins 1 % d'aluminium, et préférentiellement d'au moins 1,2%. L'aluminium stabilise fortement la ferrite δ et l'acier de l'invention ne peut pas comporter plus de 2% d'aluminium sans apparition de cette phase.
Ainsi, la teneur en aluminium est elle de préférence limitée à 1 ,6%, par précaution, de façon à tenir compte des variations analytiques des autres éléments qui favorisent la ferrite, et qui sont principalement le chrome, le molybdène et le titane.
Le titane, au même titre que l'aluminium, est un élément nécessaire au durcissement de l'acier. Il permet son durcissement par précipitation de la phase η - Ni3Ïi. Dans l'acier maraging du type PM 13-8Mo et contenant plus de 1% Al, l'accroissement de la valeur de résistance mécanique Rm procuré par le titane est approximativement de 400MPa par pourcent de titane.
Dans l'acier de l'invention, contenant au moins 1% d'aluminium, les très hautes valeurs de résistance mécanique visées ne sont obtenues que lorsque la somme Al + Ti est au moins égale à 2,25% en poids.
D'autre part, le titane fixe très efficacement le carbone contenu dans l'acier sous forme du carbure TiC, ce qui permet d'éviter les effets nocifs du carbone libre comme indiqué ci-après. En outre, la solubilité du carbure TiC étant assez faible, il est possible de précipiter ce carbure d'une façon homogène dans l'acier lors des phases finales de la transformation thermomécanique à de basses températures dans le domaine austénitique de l'acier : ceci permet d'éviter la précipitation intergranulaire fragilisante du carbure. Pour l'obtention optimale de ces effets, la teneur en titane doit être comprise entre 0,5 et 1,5%, de préférence entre 0,75 et 1,25%
Le cobalt, en substitution au nickel en proportion de 2% en poids de cobalt pour 1 % de nickel, est avantageux car il permet de stabiliser l'austénite aux températures de mise en solution, tout en permettant de conserver une solidification de l'acier de l'invention selon le mode ferritique recherché (il stabilise très faiblement l'austénite aux températures de solidification) : en cela, le cobalt élargit le domaine des compositions selon l'invention telles qu'elles sont délimitées par les relations liant Cr eq et Ni eq. En outre, tout en stabilisant la structure austénitique aux températures de mise en solution, la substitution de 1 % de nickel par 2% de cobalt permet de relever assez nettement le point Ms de début de la transformation martensitique de l'acier, comme cela peut être déduit de la formule de calcul de Ms.
Enfin, le cobalt confère à la structure martensitique une plus forte capacité de réponse au durcissement ; toutefois, le cobalt ne participe pas directement au durcissement par précipitation de la phase β - NiAI et n'a pas l'effet ductilisant du nickel. Au contraire, il favorise la précipitation de la phase fragilisante σ - FeCr au détriment de la phase μ - Fe7Mo6 qui peut avoir un effet durcissant. Pour ces deux dernières raisons, l'addition de cobalt est limitée à 2%, préférentiellement à 0,5% dans le domaine restreint où toutes les propriétés de l'acier de l'invention peuvent être acquises sans avoir recours aux effets du cobalt.
Le tungstène peut être ajouté en substitution au molybdène car il participe plus activement au durcissement de la solution solide de la martensite, et il est aussi susceptible de participer à la précipitation au revenu de la phase intermétallique de type μ - Fe7 (Mo, W)6. On peut en ajouter jusqu'à 1%, si la somme Mo +(W/2) ne dépasse pas 3%.
En général, de petites quantités de certains éléments ou d'impuretés, métalliques, métalloïdes ou non métalliques, peuvent modifier considérablement les propriétés de tous les alliages. Le phosphore tend à ségréger aux joints des grains, ce qui réduit l'adhésion de ces joints et diminue la ténacité et la ductilité des aciers par fragilisation intergranulaire. Une teneur maximale de 0,02%, préférentiellement de 0,01%, est à ne pas dépasser dans l'acier de l'invention. Le soufre est connu pour induire une forte fragilisation des aciers à haute résistance selon divers modes comme la ségrégation intergranulaire et la précipitation d'inclusions de sulfures : l'objectif est donc de minimiser au mieux sa teneur dans l'acier, en fonction des moyens d'élaboration disponibles. De très basses teneurs en soufre sont accessibles assez facilement dans les matières premières avec les moyens d'affinage classique. Il est donc aisé de répondre à l'exigence de l'acier de l'invention qui spécifie que les propriétés mécaniques requises demandent une teneur en soufre inférieure à 0,0050%, préférentiellement inférieure à 0,0010% et idéalement inférieure à 0,0005%, moyennant un choix approprié des matières premières. La teneur en azote doit aussi être maintenue à la plus basse valeur possible avec les moyens d'élaboration disponibles, d'une part pour obtenir la meilleure ductilité de l'acier, et d'autre part pour obtenir la limite d'endurance en fatigue la plus élevée possible, en particulier puisque l'acier contient l'élément titane. En effet, en présence de titane, l'azote forme des nitrures cubiques TiN insolubles qui sont extrêmement nocifs par leur forme et leurs propriétés physiques. Ils constituent des amorces systématiques de fissuration en fatigue.
Toutefois, les concentrations en azote que l'on obtient couramment avec les méthodes industrielles d'élaboration sous vide restent relativement élevées, en particulier en présence d'additions de titane. De très basses teneurs en azote ne peuvent être obtenues qu'avec une sélection soignée de matières premières, en particulier de ferro-chrome à très basses teneurs en azote, ce qui est très onéreux.
Généralement, la méthode industrielle d'élaboration sous vide permet d'obtenir des teneurs en azote résiduel comprises entre 0,0030 et 0,0100%, typiquement centrées sur 0,0050 - 0,0060% dans le cas de l'acier de l'invention. La meilleure solution pour l'acier de l'invention est donc de rechercher une teneur résiduelle en azote aussi basse que possible, soit inférieure à 0,0060%. Si nécessaire, et lorsque l'application requiert des caractéristiques exceptionnelles de tenue en fatigue, de ténacité et/ou de ductilité, on peut rechercher des teneurs en azote inférieures à 0,0030% par le choix de matières premières et de méthodes d'élaboration spécifiques. Le carbone, communément présent dans les aciers, est un élément indésirable dans l'acier de l'invention à plusieurs titres :
- il provoque la précipitation de carbures qui réduisent la ductilité et la ténacité,
- il fixe du chrome sous forme du carbure M23C6, facilement soluble et dont la précipitation lors des divers cycles thermiques de la fabrication se produit en partie dans les joints des grains dont la matrice environnante est ainsi appauvrie en chrome : ce mécanisme est à l'origine du phénomène très nocif et bien connu de la corrosion intergranulaire,
- il durcit la matrice martensitique à l'état de mise en solution et trempe, ce qui la rend plus fragile et notamment plus sensible aux « tapures »
(fissurations superficielles apparaissant lors de la trempe).
Pour toutes ces raisons, la teneur maximale en carbone de l'acier de l'invention est limitée à 0,025% au plus, préférentiellement 0,0120% au plus.
Le cuivre, qui est un élément que l'on trouve de façon résiduelle dans les matières premières commerciales, ne doit pas être présent à plus de 0,5%, et préférentiellement on recommande une teneur finale en cuivre inférieure ou égale à 0,25% dans l'acier de l'invention. La présence de cuivre en plus forte quantité déséquilibrerait le comportement global de l'acier : le cuivre tend facilement à déplacer le mode de solidification en dehors du domaine recherché, et abaisse inutilement le point de transformation Ms.
Le manganèse et le silicium sont communément présents dans les aciers, en particulier parce qu'ils sont utilisés comme désoxydants du métal liquide lors d'élaborations classiques en four où l'acier liquide est en contact avec l'atmosphère. Le manganèse est aussi utilisé dans les aciers pour fixer le soufre libre, extrêmement nocif, sous forme de sulfures de manganèse, moins nocifs. Etant donné que l'acier de l'invention comprend de très faibles teneurs en soufre et qu'il est élaboré sous vide, les éléments manganèse et silicium ne sont de ce point de vue d'aucune utilité, et leurs teneurs peuvent être limitées à celles des matières premières.
D'autre part, ces deux éléments abaissent le point de transformation Ms, ce qui réduit d'autant les concentrations tolérables des éléments favorables aux propriétés mécaniques et anticorrosion (Ni, Mo, Cr) pour maintenir Ms à un niveau suffisamment élevé, comme il est possible de le déduire de la relation entre Ms et la composition chimique.
La teneur en silicium doit donc être maintenue à au plus 0,25%, de préférence à au plus 0,10%. La teneur en manganèse peut aussi être maintenue dans ces mêmes limites.
Toutefois, il est aussi envisageable de jouer sur la teneur en manganèse de l'acier de l'invention pour ajuster le compromis entre une résistance à la traction élevée et une ténacité élevée qu'il est souhaitable d'obtenir pour les applications envisagées. Le manganèse élargit la boucle austénitique, et en particulier il abaisse la température Ad presque autant que le nickel. Comme, de plus, il a un moindre effet d'abaissement de Ms que le nickel, il peut être avantageux de remplacer une partie du nickel par du manganèse pour éviter la présence de ferrite δ et aider à former de l'austénite de réversion lors du vieillissement de durcissement. Cette substitution doit, bien entendu, se faire dans le respect des conditions sur Cr eq / Ni eq et Ms telles que vues plus haut. La teneur maximale en Mn peut ainsi être portée jusqu'à 3%. Dans le cas d'une haute teneur en manganèse, le mode d'élaboration de l'acier doit être adapté pour que cette teneur soit bien contrôlée. En particulier, il pourra être préférable de ne pas effectuer de traitement sous vide postérieurement à l'addition principale de manganèse, cet élément tendant à s'évaporer sous pression réduite.
L'oxygène présent dans l'acier de l'invention forme des oxydes néfastes à la ductilité et à la tenue en fatigue. Pour cette raison, il est nécessaire de contenir sa concentration à la plus basse valeur possible, c'est-à-dire au maximum 0,0050%, préférentiellement en dessous de 0,0020%, ce que permettent les moyens industriels d'élaboration sous vide. Les éléments que l'on n'a pas cités ne sont éventuellement présents qu'en tant qu'impuretés résultant de l'élaboration.
Les teneurs données comme préférentielles pour les divers éléments sont indépendantes les unes des autres. Typiquement, l'acier de l'invention est élaboré sous vide selon des pratiques industrielles traditionnelles au moyen, par exemple, d'un four à induction sous vide ou selon une double phase d'élaboration sous vide, par exemple par élaboration et moulage dans un four sous vide d'une première électrode, puis par au moins une opération de refusion sous vide de cette électrode pour obtenir un lingot final. En cas d'addition volontaire de manganèse, l'élaboration d'un lingot peut comprendre une phase d'élaboration sous vide d'une électrode dans un four à induction suivi d'une phase de refusion selon le procédé de refusion sous laitier (ESR) ; les différentes méthodes de refusion ESR ou VAR (refusion à l'arc sous vide) peuvent être combinées. Les procédés de transformation thermomécanique à haute température, par exemple le forgeage ou le laminage, permettent une mise en forme aisée des lingots moulés, dans des conditions habituelles. Ces procédés permettent l'obtention de toutes sortes de demi-produits avec l'acier de l'invention (plats, barres, blocs, pièces forgées ou matricées...). Une bonne homogénéité structurale dans les demi-produits est, de préférence, assurée à l'aide d'un traitement thermique d'homogénéisation entre 1200 et 13000C, pratiqué avant et/ou pendant la gamme de transformations thermomécaniques à chaud, mais pas après la dernière transformation à chaud afin d'éviter que les traitements ultérieurs n'aient lieu sur des demi-produits à trop forte taille de grains.
Lorsque les opérations de transformation thermomécanique à chaud sont achevées, les produits sont alors mis en solution à une température comprise entre 850 et 95O0C, puis les pièces sont refroidies rapidement jusqu'à une température finale inférieure ou égale à -750C, sans interruption en dessous du point de transformation Ms, éventuellement en plaçant un palier de trempe isotherme au-dessus de Ms. Comme le point Ms est peu élevé, on peut facilement faire des trempes à l'huile chaude à T > Ms. Cela permet d'égaliser la température dans des pièces massives et, surtout, d'éviter les tapures de trempe dues à la transformation martensitique différentielle entre la surface des pièces massives et le cœur chaud des pièces. En outre, en partant d'une pièce égalisée à une température supérieure à Ms, la transformation martensitique lors du passage cryogénique se produit de façon continue. Typiquement la température est de l'ordre de -800C lorsque cette trempe est effectuée dans de la neige carbonique. Le maintien à basse température est d'une durée suffisante pour assurer un refroidissement complet dans toute l'épaisseur des pièces. Il dure typiquement au moins 4h à -8O0C. Après retour à la température ambiante, le métal, constitué d'une martensite ductile et de faible dureté, peut être éventuellement mis en forme à froid puis, de nouveau, mis en solution pour atteindre des propriétés homogènes.
Les propriétés finales de l'acier sont finalement obtenues par un revenu de vieillissement à des températures comprises entre 450 et 6000C pour des durée de maintien isothermes comprises entre 4 et 32h, en fonction des caractéristiques recherchées. En effet, le couple des variables temps et température de vieillissement est choisi en considérant les critères suivants dans le domaine 450-6000C :
- la résistance maximale atteinte diminue lorsque la température de vieillissement croît mais, réciproquement, les valeurs de ductilité et de ténacité croissent,
- la durée de vieillissement nécessaire pour provoquer le durcissement croît lorsque la température diminue,
- à chaque niveau de température, la résistance passe par un maximum pour une durée déterminée, qui est appelé « pic de durcissement »,
- pour chaque niveau de résistance visé, qui peut être atteint par plusieurs couples de variables temps et température de vieillissement, il existe un seul couple temps/température qui confère le meilleur compromis résistance/ductilité à l'acier de l'invention. Ces conditions optimales correspondant à un début de survieillissement de la structure, obtenues lorsqu'on va au-delà du « pic de durcissement » défini ci-dessus. On va à présent décrire des exemples d'aciers selon l'invention et de procédés selon l'invention qui leur sont appliqués, ainsi que des exemples de référence pour comparaison des résultats obtenus.
Le tableau 1 regroupe les compositions des aciers testés.
N3
Tableau 1 : Composition des aciers testés
Les échantillons de référence ont des compositions qui diffèrent de l'invention essentiellement sur leur teneur en titane trop faible (A et C) et/ou sur leur somme Ti + Al trop faible (A, B, C) ou sur leur point Ms trop bas car inférieur à 500C (D). L'échantillon C présente également une teneur en molybdène trop élevée.
Ces échantillons ont été obtenus par élaboration d'une électrode de 1t (échantillons A, D, I et J) ou 200kg (les autres) dans un four sous vide, électrode ensuite refondue dans un four à électrode consommable, et ont subi les traitements thermomécaniques suivants :
- homogénéisation pendant 24 heures à 125O0C ;
- forgeage à leur sortie de four avec une réduction d'épaisseur supérieure ou égale à 4 ;
- forgeage de finition avec un taux de corroyage d'au moins 2 après réchauffage à 95O0C
- mise en solution à des températures de 9000C environ pendant 2h, suivie d'une trempe à l'eau et d'un traitement cryogénique à -800C dans de la neige carbonique pendant 8h (sauf pour l'échantillon I où la mise en solution a été effectuée à 95O0C pendant 1 h30), - revenu de vieillissement à 5100C pendant 8h.
Les principales caractéristiques structurelles et mécaniques des échantillons sont regroupés dans le tableau 2.
Tableau 2 : caractéristiques structurelles et mécaniques des aciers testés.
Les aciers selon l'invention permettent donc :
- d'obtenir les niveaux visés de résistance à la rupture Rm de plus de 1800 MPa, ainsi qu'une limite élastique Rp 0,2 élevée ;
- de maintenir une ductilité qui n'est pas trop dégradée par rapport aux aciers de référence. L'acier de référence D, dont seule la valeur de Ms ne répond pas à l'invention, n'atteint pas le niveau de durcissement désiré, alors que sa somme Al + Ti répond bien à la condition Al + Ti > 2,25. En effet, il contient 16% d'austénite résiduelle après le traitement cryogénique.
Parmi les aciers de l'invention, on peut distinguer deux catégories :
- ceux qui ont une tenue à la corrosion supérieure (chrome et molybdène élevés), mais qui ont une plus grande fragilité car leur teneur en nickel est nécessairement plus basse si on veut respecter la condition sur Ms : E, F, G, H, I relèvent de cette catégorie ;
- ceux qui offrent une meilleure ductilité que les précédents car leur teneur en nickel est élevée, mais dont la tenue à la corrosion est moindre car leurs teneurs en chrome et molybdène sont nécessairement limitées pour que la condition sur Ms soit respectée : J relève de cette catégorie.

Claims

REVENDICATIONS
1. Acier inoxydable martensitique, caractérisé en ce que sa composition est, en pourcentages pondéraux : -9%<Cr<13%
-1,5%<Mo<3%
- 8% < Ni < 14%
- 1 % < A! < 2%
- 0,5% ≤ Ti < 1 ,5% avec Al + Ti > 2,25% - traces < Co < 2%
- traces < W < 1 % avec Mo + (W/2) < 3%
- traces < P < 0,02%
- traces ≤ S < 0,0050% -traces <N<0,0060% - traces < C < 0,025%
- traces < Cu < 0,5%
- traces < Mn < 3%
- traces < Si < 0,25%
- traces < O < 0,0050% et est telle que :
• Ms (0C) = 1302 - 42Cr - 63Ni - 30Mo + 20Al - 15W - 33Mn - 28Si - 30Cu - 13Co + 10Ti ≥ 50
• Creq/Nieq<1,05 avec Cr eq (%) = Cr + 2Si + Mo + 1 ,5Ti + 5,5Al + 0,6W Nieq (%) = 2Ni + 0,5Mn + 3OC + 25N + Co + 0,3Cu.
2. Acier selon la revendication 1, caractérisé en ce que 10% < Cr < 11,75%.
3. Acier-selon la revendication 1 ou 2, caractérisé en ce que 2% < Mo < 3%.
4. Acier selon l'une des revendications 1 à 3, caractérisé en ce que
10,5% < Ni < 12,5%
5. Acier selon l'une des revendications 1 à 4, caractérisé en ce que 1 ,2% ≤ Al < 1,6%
6. Acier selon l'une des revendications 1 à 5, caractérisé en ce que 0,75% < Ti < 1 ,25%
7. Acier selon l'une des revendications 1 à 6, caractérisé en ce que traces < Co < 0,5%
8. Acier selon l'une des revendications 1 à 7, caractérisé en ce que traces < P < 0,01%
9. Acier selon l'une des revendications 1 à 8, caractérisé en ce que traces ≤ S ≤ O.0010%
10. Acier selon l'une des revendications 1 à 9, caractérisé en ce que traces < S < 0,0005%
11. Acier selon l'une des revendications 1 à 10, caractérisé en ce que traces < N < 0,0030%
12. Acier selon l'une des revendications 1 à 11 , caractérisé en ce que traces < C < 0, 0120%
13. Acier selon l'une des revendications 1 à 12, caractérisé en ce que traces < Cu < 0,25%
14. Acier selon l'une des revendications 1 à 13, caractérisé en ce que traces < Si < 0,25%
15. Acier selon l'une des revendications 1 à 14, caractérisé en ce que traces < Si < 0,10%
16. Acier selon l'une des revendications 1 à 15, caractérisé en ce que traces < Mn < 0,25%
17. Acier selon la revendication 16, caractérisé en ce que traces < Mn < 0,10%
18. Acier selon l'une des revendications 1 à 17, caractérisé en ce que traces < O < 0,0020%.
19. Procédé de fabrication d'une pièce mécanique en acier à hautes résistance mécanique et résistance à la corrosion, caractérisé en ce que : - on élabore un demi-produit par préparation puis transformation à chaud d'un lingot de composition selon l'une des revendications 1 à 18 ;
- on exécute un traitement thermique de mise en solution sur ledit demi- produit entre 850 et 9500C, immédiatement suivi par un traitement cryogénique de refroidissement rapide jusqu'à une température inférieure ou égale à -750C sans interruption en dessous du point de transformation Ms et pendant une durée suffisante pour assurer un refroidissement complet dans toute l'épaisseur de la pièce ;
- on exécute un revenu de vieillissement entre 450 et 6000C pour une durée de maintien isotherme de 4 à 32 h.
20. Procédé selon la revendication 19, caractérisé en ce que ledit traitement cryogénique est une trempe dans de la neige carbonique.
21. Procédé selon la revendication 19 ou 20, caractérisé en ce que ledit traitement cryogénique est effectué à une température de -800C pendant au moins 4 h.
22. Procédé selon l'une des revendications 19 à 21 , caractérisé en ce que, entre ledit traitement de mise en solution et ledit traitement cryogénique, on procède à une trempe isotherme à une température supérieure au point de transformation Ms.
23. Procédé selon l'une des revendications 19 à 22, caractérisé en ce que après le traitement cryogénique et avant le revenu de vieillissement, on procède à une mise en forme à froid et à un traitement thermique de mise en solution.
24. Procédé selon l'une des revendications 20 à 23, caractérisé en ce qu'on exécute au moins un traitement thermique d'homogénéisation entre 1200 et 13000C pendant au moins 24 h sur le lingot ou lors de ses transformations à chaud en demi-produit, mais avant la dernière de ces transformations à chaud.
25. Pièce mécanique en acier à hautes résistance à la corrosion et résistance mécanique, caractérisée en ce qu'elle a été obtenue par le procédé selon l'une des revendications 19 à 24.
26. Pièce mécanique selon la revendication 25, caractérisée en ce qu'il s'agit d'un caisson de train d'atterrissage d'aéronef.
EP06778669A 2005-06-28 2006-06-26 Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue Active EP1896624B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200630767T SI1896624T1 (sl) 2005-06-28 2006-06-26 Zlitina nerjavnega martenzitnega jekla, postopek izdelave mehanskega dela iz njega ter iz njega izveden del
PL06778669T PL1896624T3 (pl) 2005-06-28 2006-06-26 Skład martenzytecznej stali nierdzewnej, sposób wytwarzania części mechanicznej z tej stali i uzyskana w ten sposób część

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0506591A FR2887558B1 (fr) 2005-06-28 2005-06-28 Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue
PCT/FR2006/001472 WO2007003748A1 (fr) 2005-06-28 2006-06-26 Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue

Publications (2)

Publication Number Publication Date
EP1896624A1 true EP1896624A1 (fr) 2008-03-12
EP1896624B1 EP1896624B1 (fr) 2010-08-18

Family

ID=35744749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778669A Active EP1896624B1 (fr) 2005-06-28 2006-06-26 Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue

Country Status (15)

Country Link
US (1) US8097098B2 (fr)
EP (1) EP1896624B1 (fr)
JP (1) JP5243243B2 (fr)
CN (1) CN101248205B (fr)
AT (1) ATE478165T1 (fr)
BR (1) BRPI0613291B1 (fr)
CA (1) CA2612718C (fr)
DE (1) DE602006016281D1 (fr)
DK (1) DK1896624T3 (fr)
ES (1) ES2349785T3 (fr)
FR (1) FR2887558B1 (fr)
PL (1) PL1896624T3 (fr)
RU (1) RU2415196C2 (fr)
SI (1) SI1896624T1 (fr)
WO (1) WO2007003748A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722407A3 (fr) * 2012-10-17 2017-10-25 Mitsubishi Hitachi Power Systems, Ltd. Acier martensitique durcissable par précipitation et aube allongée pour turbine de vapeur
CN109454211A (zh) * 2018-11-26 2019-03-12 抚顺特殊钢股份有限公司 电炉冶炼高质量齿轮钢的方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
SI2126150T1 (sl) * 2007-01-12 2011-09-30 Rovalma Sa Orodno jeklo za delo v hladnem z odliäśno moĺ˝nostjo varjenja
US8034197B2 (en) 2007-06-19 2011-10-11 Carnegie Mellon University Ultra-high strength stainless steels
CN102227515B (zh) 2008-11-27 2013-08-21 新日铁住金株式会社 电磁钢板及其制造方法
FR2947565B1 (fr) * 2009-07-03 2011-12-23 Snecma Traitement cryogenique d'un acier martensitique a durcissement mixte
CN101994066B (zh) * 2009-08-27 2012-07-04 中国科学院金属研究所 一种形变诱发马氏体时效不锈钢及其加工工艺
JP5528986B2 (ja) 2010-11-09 2014-06-25 株式会社日立製作所 析出硬化型マルテンサイト系ステンレス鋼およびそれを用いた蒸気タービン部材
JP5409708B2 (ja) * 2011-06-16 2014-02-05 株式会社日立製作所 析出硬化型マルテンサイト系ステンレス鋼と、それを用いた蒸気タービン長翼
RU2453614C1 (ru) * 2011-06-29 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки штамповок кривошипных валов из стали мартенситно-ферритного класса 14х17н2
JP5764503B2 (ja) 2012-01-19 2015-08-19 三菱日立パワーシステムズ株式会社 析出硬化型マルテンサイト系ステンレス鋼、それを用いた蒸気タービン長翼、タービンロータ及び蒸気タービン
JP6317542B2 (ja) * 2012-02-27 2018-04-25 三菱日立パワーシステムズ株式会社 蒸気タービンロータ
CN104245211B (zh) * 2012-03-30 2018-11-20 新日铁住金株式会社 焊接接头的制造方法
JP6111763B2 (ja) 2012-04-27 2017-04-12 大同特殊鋼株式会社 強度及び靭性に優れた蒸気タービンブレード用鋼
RU2508410C1 (ru) * 2012-11-23 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ термической обработки деформируемой коррозионно-стойкой стали 14х17н2
JP6312367B2 (ja) * 2013-04-05 2018-04-18 三菱日立パワーシステムズ株式会社 析出硬化系マルテンサイト系ステンレス鋼、蒸気タービン動翼および蒸気タービン
FR3013738B1 (fr) * 2013-11-25 2016-10-14 Aubert & Duval Sa Acier inoxydable martensitique, piece realisee en cet acier et son procede de fabrication
CN107475488A (zh) * 2017-07-12 2017-12-15 昌河飞机工业(集团)有限责任公司 一种高速钢热处理工艺方法
RU2688017C1 (ru) * 2018-07-19 2019-05-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки жаропрочной стали мартенситного класса
CN109022728B (zh) * 2018-07-20 2020-05-26 西安建筑科技大学 一种亚稳态奥氏体不锈钢的高温淬火-深过冷-低温配分热处理方法及不锈钢
JP7131225B2 (ja) * 2018-09-13 2022-09-06 大同特殊鋼株式会社 析出硬化型マルテンサイト系ステンレス鋼
CN110592489B (zh) * 2019-09-12 2021-07-06 张家港海锅新能源装备股份有限公司 一种f6nm马氏体不锈钢泵轴锻件原料的生产方法
SE543967C2 (en) * 2020-02-11 2021-10-12 Blykalla Reaktorer Stockholm Ab A martensitic steel
EP4110965A1 (fr) 2020-02-26 2023-01-04 CRS Holdings, LLC Acier inoxydable durcissable par précipitation à haute résistance, à ténacité élevée à la fracture
CN112126868A (zh) * 2020-09-14 2020-12-25 高燕仪 一种减少废料的发条制作加工用生产方法
CN112877610B (zh) * 2021-01-12 2022-02-01 安徽工业大学 一种耐点蚀多组元沉淀硬化不锈钢及其热处理工艺
CN113774288A (zh) * 2021-08-25 2021-12-10 哈尔滨工程大学 一种超高强高性能中厚板马氏体时效不锈钢及其制备方法
CN113774281A (zh) * 2021-08-25 2021-12-10 哈尔滨工程大学 一种2000MPa级高塑韧性高耐蚀马氏体时效不锈钢及其制备方法
CN117230360B (zh) * 2023-11-10 2024-03-05 钢铁研究总院有限公司 一种单真空300m钢的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958618A (en) * 1957-07-31 1960-11-01 Armco Steel Corp Method for hardening chromiumnickel stainless steel
US2958617A (en) * 1957-07-31 1960-11-01 Armco Steel Corp Method for hardening chromiumnickel stainless steel
US3151978A (en) * 1960-12-30 1964-10-06 Armco Steel Corp Heat hardenable chromium-nickel-aluminum steel
US3314831A (en) * 1961-10-26 1967-04-18 North American Aviation Inc Heat treatment for precipitationhardening steels
GB988452A (en) * 1962-07-25 1965-04-07 Mini Of Aviat London Stainless steel
FR1399973A (fr) * 1963-07-11 1965-05-21 Deutsche Edelstahlwerke Ag Acier de construction à haute résistance pouvant subir une trempe avec ségrégation
BE651249A (fr) * 1963-08-02 1964-11-16
US3347663A (en) * 1964-09-23 1967-10-17 Int Nickel Co Precipitation hardenable stainless steel
US3342590A (en) * 1964-09-23 1967-09-19 Int Nickel Co Precipitation hardenable stainless steel
SE330616B (fr) * 1967-06-08 1970-11-23 Uddeholms Ab
JPH02310339A (ja) * 1989-05-24 1990-12-26 Kawasaki Steel Corp 強度、バネ特性及び成形性に優れたマルテンサイト系ステンレス鋼
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
US6537396B1 (en) * 2001-02-20 2003-03-25 Ace Manufacturing & Parts Company Cryogenic processing of springs and high cycle rate items
EP1373590B1 (fr) * 2001-03-27 2005-01-12 Crs Holdings, Inc. Acier inoxydable durcissable par precipitation et ultra-resistant et bande allongee produite avec cet acier
US7901519B2 (en) * 2003-12-10 2011-03-08 Ati Properties, Inc. High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom
WO2004106559A2 (fr) * 2003-05-27 2004-12-09 Avecia Inc. Procede permettant d'ameliorer la resistance a la corrosion des metaux
SE528454C3 (sv) * 2004-12-23 2007-01-09 Sandvik Intellectual Property Utskiljningshärdbart martensitiskt rostfritt stål innefattande titansulfid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007003748A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722407A3 (fr) * 2012-10-17 2017-10-25 Mitsubishi Hitachi Power Systems, Ltd. Acier martensitique durcissable par précipitation et aube allongée pour turbine de vapeur
CN109454211A (zh) * 2018-11-26 2019-03-12 抚顺特殊钢股份有限公司 电炉冶炼高质量齿轮钢的方法

Also Published As

Publication number Publication date
ES2349785T3 (es) 2011-01-11
ATE478165T1 (de) 2010-09-15
JP5243243B2 (ja) 2013-07-24
EP1896624B1 (fr) 2010-08-18
RU2415196C2 (ru) 2011-03-27
CA2612718A1 (fr) 2007-01-11
FR2887558B1 (fr) 2007-08-17
FR2887558A1 (fr) 2006-12-29
BRPI0613291A2 (pt) 2010-12-28
US8097098B2 (en) 2012-01-17
DE602006016281D1 (de) 2010-09-30
RU2008102988A (ru) 2009-08-10
WO2007003748A1 (fr) 2007-01-11
CA2612718C (fr) 2015-01-06
BRPI0613291B1 (pt) 2014-08-26
DK1896624T3 (da) 2010-09-20
CN101248205B (zh) 2014-05-07
PL1896624T3 (pl) 2010-12-31
JP2008546912A (ja) 2008-12-25
SI1896624T1 (sl) 2010-10-29
US20100139817A1 (en) 2010-06-10
CN101248205A (zh) 2008-08-20

Similar Documents

Publication Publication Date Title
EP1896624B1 (fr) Composition d&#39;acier inoxydable martensitique, procede de fabrication d&#39;une piece mecanique a partir de cet acier et piece ainsi obtenue
CA2607446C (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
EP2310546B1 (fr) Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
EP2164998B1 (fr) Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
CA2506349C (fr) Procede pour fabriquer une tole en acier resistant a l&#39;abrasion et tole obtenue
CA2930140C (fr) Acier inoxydable martensitique, piece realisee en cet acier et son procede de fabrication
EP0629714B1 (fr) Acier inoxydable martensitique à usinabilité améliorée
FR2823226A1 (fr) Acier et tube en acier pour usage a haute temperature
EP2556175A2 (fr) Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication
FR2885141A1 (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l&#39;utilisant et pieces mecaniques ainsi realisees
FR2914929A1 (fr) Acier a bonne tenue a l&#39;hydrogene pour le formage de pieces mecaniques a tres hautes caracteristiques.
FR2978969A1 (fr) Acier pour la fabrication de pieces cementees, piece cementee realisee avec cet acier et son procede de fabrication
FR2741360A1 (fr) Acier inoxydable a deux phases superplastique ayant une faible resistance a la deformation et d&#39;excellentes proprietes d&#39;allongement
Krishnamoorthy et al. Effect of Gas Content on Mechanical behavior of Case Hardened Boron Steel: Paper No.: 2023-DF-9
EP4347903A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
JPS59173250A (ja) 快削ばね用鋼およびその製造方法
BE504382A (fr)
BE480820A (fr)
BE468057A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080424

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 602006016281

Country of ref document: DE

Date of ref document: 20100930

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100402070

Country of ref document: GR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20101228

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101220

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006016281

Country of ref document: DE

Effective date: 20110519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: AUBERT & DUVAL; FR

Effective date: 20220610

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230620

Year of fee payment: 18

Ref country code: IE

Payment date: 20230620

Year of fee payment: 18

Ref country code: FR

Payment date: 20230627

Year of fee payment: 18

Ref country code: DK

Payment date: 20230622

Year of fee payment: 18

Ref country code: DE

Payment date: 20230620

Year of fee payment: 18

Ref country code: CZ

Payment date: 20230619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230615

Year of fee payment: 18

Ref country code: SE

Payment date: 20230620

Year of fee payment: 18

Ref country code: PL

Payment date: 20230615

Year of fee payment: 18

Ref country code: GR

Payment date: 20230621

Year of fee payment: 18

Ref country code: FI

Payment date: 20230621

Year of fee payment: 18

Ref country code: AT

Payment date: 20230621

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 18

Ref country code: GB

Payment date: 20230620

Year of fee payment: 18

Ref country code: ES

Payment date: 20230828

Year of fee payment: 18