EP2556175A2 - Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication - Google Patents
Pièce mécanique en acier à hautes caractéristiques et son procédé de fabricationInfo
- Publication number
- EP2556175A2 EP2556175A2 EP11720141A EP11720141A EP2556175A2 EP 2556175 A2 EP2556175 A2 EP 2556175A2 EP 11720141 A EP11720141 A EP 11720141A EP 11720141 A EP11720141 A EP 11720141A EP 2556175 A2 EP2556175 A2 EP 2556175A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- traces
- part according
- steel
- billet
- bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
Definitions
- the invention relates to steels for mechanical parts with high characteristics, obtained by hot forging or bar machining.
- Certain grades of steel make it possible to obtain high mechanical characteristics on a forged part or a raw rolling bar, without the use of controlled cooling or a subsequent heat treatment. They are based on obtaining a bainitic homogeneous microstructure.
- the object of the invention is to propose mechanical parts made of a given steel grade which, combined with appropriate thermal and thermomechanical treatments, makes it possible simultaneously to obtain mechanical properties (tensile strength Rm, elastic limit Re, ratio Re / Rm, elongation at break A, necking Z) advantageous, and an improved KCU resilience compared to mechanical steel parts known for this same use.
- the subject of the invention is a mechanical part with high characteristics, characterized in that its composition, in percentages by weight, is:
- the remainder being iron and impurities resulting from the preparation, and in that the structure of the steel is bainitic and contains at most 20% in total of martensite and / or pro-eutectoid ferrite and / or perlite.
- the invention also relates to a method of manufacturing a steel part such as a mechanical part with high characteristics, characterized in that it consists of the following steps:
- the billet or hot-formed bar is cooled at a speed giving it a bainitic structure containing at most 20% in total of martensite and / or perlite and / or pro-eutectoid ferrite;
- the billet or hot formed bar can be naturally cooled in still air.
- the billet or hot formed bar can be cooled with air blown.
- the invention is based on a composition of the part and on its combination with a metallurgical structure, barnitic for 80% or more that can be obtained by simple means such as a cooling at the same time. calm or puffed air.
- bainite is meant here as well pure bainite as bainite + residual austenite mixture if the latter is present as is frequently the case, and we include all possible bainite morphologies, including intragranular bainite (also called acicular ferrite). Other phases that may be present, namely martensite, pro-eutectoid ferrite and perlite, must not represent more than 20% of the structure.
- the shades used in the present invention make it possible to obtain, on the basis of a so-called "low-medium” carbon, and by lowering the starting point of transformation mainly by the incorporation of chromium and manganese, tensile strengths. of the order of 1200 MPa or more, for resilience of at least 40 J.cm 2 , up to 70 J.cm 2 .
- the content of C is between 0.05 and 0.25%.
- This interval called “low carbon medium” because its upper limit is in the low zone of the levels considered as carbon means and its lower limit belongs to the field of low carbon, allows a very homogeneous microstructure and hardness even in presence of segregations.
- the hardness of martensitic microstructures that may be present in the segregated zones is only slightly greater than that of the bainitic microstructure.
- these carbon contents allow ductilities and resilience higher than those obtained at the same level of mechanical strength, for contents greater than 0.25%.
- the Mn content is between 1, 2 and 2%.
- Manganese is used, together with chromium, as the main element to lower the formation temperature of bainite (Bs) during continuous cooling. Since a relatively low carbon content is used, relatively high levels of Mn are required, which furthermore must contribute to satisfying the condition imposed on the C, Mn, Cr contents for the calculation of Bs (see below). .
- Manganese is limited to 2% to avoid segregation problems too pronounced.
- the Cr content is between 1, 2 and 2.5%.
- Cr is used in the same way as Mn to lower the bainitic transformation start temperature Bs.
- C, Mn and Cr must be such that 830 - 270 C% - 90 Mn% - 70 Cr% ⁇ 560.
- bainitic transformation start temperature Bs can be classically estimated from the following formula:
- Si can be used to prevent the formation of carbides that would deteriorate resilience during bainitic transformation. At carbon contents below 0.2%, however, this formation of carbides remains weak, and the addition of Si loses its interest from this point of view. On the other hand, by promoting the formation of residual austenite, Si improves fatigue strength for certain applications. In some cases, however, its use can also be excluded by the need to avoid excessive decarburization on the surface.
- Two variants of the invention can therefore be envisaged.
- the Si content results simply from the conditions of preparation, namely the raw materials used and the possible partial oxidation of Si that they brought to the bath of liquid metal, and no significant voluntary addition of Si is performed. In this case, a Si content between traces and 0.3% is typically obtained.
- Si is voluntarily added to obtain a content of 0.8 to 1.5%.
- Ni is between traces and 1%, preferably between traces and 0.5%. It can be present only by its introduction by the raw materials as a residual element, or be added in small quantity to contribute to the decrease of the temperature Bs. But its content is limited to 1%, better 0.5% for reasons of cost, this element being expensive and likely to have its price fluctuate widely on the market.
- Mo is between traces and 0.5%, preferably between 0.04 and 0.5%.
- the role of molybdenum on quenchability is well established: it avoids the formation of ferrite and perlite but does not slow down the formation of bainite. It can therefore be added in variable quantity depending on the diameter of the part.
- a second benefit of molybdenum is to limit susceptibility to reversible brittleness (see Bhadeshia, Mater Sci Forum, High Performance Bainitic Steels, vol 500-501, 2005). Finally, molybdenum strengthens the austenite by passing it in solid solution.
- V is between traces and 0.3%, preferably between 0.05 and 0.3%.
- the addition of vanadium allows additional hardening; however, as compared with ferrito-pearlitic steels, this hardening does not seem to be done by precipitation; it is indeed demonstrated experimentally that after hot deformation (hot forging or rolling) and natural cooling, only a very small fraction of vanadium is in precipitated form.
- vanadium enhances austenite by precipitation and solid solution, and can therefore indirectly contribute to the fineness of the bainitic structure, hence its hardening effect. Its addition is limited to 0.3% for economic reasons.
- Cu is between traces and 1%. It can possibly be used to contribute to hardening, but would lead to implementation difficulties for contents greater than 1%.
- Al is between traces and 0.1%, preferably between 0.005 and 0.1%. Al is optionally added to deoxidize steel and prevent growth excessive austenitic grains during maintenance at high temperature (for example a carburizing treatment) that would be performed on the part after the implementation of the method according to the invention.
- B is between traces and 0.005%, preferably between 0.0005 and 0.005%.
- This optional element can be used for large diameter parts, especially if the Mo content is low, to ensure the homogeneity of the structure (limit the presence of ferrite).
- all the boron will be available to play its role of homogenizer of the structure. It should then have traces ⁇ N ⁇ 0.0080% and Ti% ⁇ 3.5 N%.
- Ti is between traces and 0.03%, preferably between 0.005 and 0.03%. As we have just said, this optional element is to be used mainly for boron shades, with the relationship between Ti% and N% which has just been exposed.
- Nb is between traces and 0.06%. This optional element can be used to refine the austenitic structure after forging or hot rolling, with consequent decrease in bainite package sizes and acceleration of bainite transformation (Bhadeshia, Royal Soc Proc., 2010, Vol 466 p .3).
- S is between traces and 0.1%. As is well known, this element may, if necessary, be left at a relatively high level, or added voluntarily, to improve the machinability of the steel. It is then given a content of 0.005 to 0.1%. Preferably, this significant presence of S is then accompanied by an addition of Ca up to 0.006%, and / or Te up to 0.03%, and / or Se up to 0.05%, and / or or Bi up to 0.05% and / or Pb up to 0.1%.
- This improvement in machinability can be sought in particular for applications where the part is stressed in fatigue, or for applications where its mechanical properties are improved, at least locally, by a sufficient pre-stressing to prevent the propagation of cracks ( crankshaft burnishing, autofrettage of the high-pressure injection rails).
- the other elements contained in the steel according to the invention are iron and impurities resulting from the preparation, present at usual contents.
- the workpiece may be produced by hot forming a billet or bar having the composition described above, such as hot forging or hot rolling, or by machining a bar ready for use. employment.
- the industrial process involves a hot shaping step performed in the austenitic phase (typically 1,100-1250%), followed by natural cooling.
- One of the important points of the invention is the possibility of obtaining high mechanical characteristics without the use of heat treatments after forging or rolling, nor any particular very restrictive control of the rate of cooling which can be carried out naturally, in the air calm. Nevertheless, if the installations allow it, an adaptation of the cooling may in some cases be used, either because of the diameter of the parts (with large parts, too slow cooling can lead to an appearance of ferrite and / or perlite too much), or to obtain mechanical characteristics superior to those which would be obtained by a natural cooling. Air-blast cooling may be sufficient to achieve this objective. Care must be taken, however, that the cooling is not so rapid as to cause a massive appearance of martensite, as a quench would do.
- a low temperature heat treatment (200 to 350 ° C. for periods of 30 minutes to 4 hours) makes it possible to obtain, on the grades according to the invention, a very significant increase in the yield strength. without increasing the hardness and without decreasing the resilience.
- the mechanical characteristics being obtained by natural cooling are also likely to be reached starting from a hot rolled bar ready for use, if it already has the desired metallurgical structure (essentially bainitic) which will be described more far.
- the composition of the steels used in the invention is such that the probability of obtaining the desired structure naturally after a simple air cooling of the hot-rolled bar under usual conditions is not negligible, if the dimensions of the bar lead to an adequate cooling rate.
- results obtained with steel compositions in accordance with the invention and reference compositions are presented. These results are obtained on laboratory castings forged in 40 mm rounds, or on industrial castings forged in circles of equivalent diameter.
- the mechanical characteristics are evaluated after austenitization at ⁇ ⁇ ' ⁇ followed by a natural cooling with calm air or a forced cooling with the blown air.
- two bainitic grades allowing to obtain high mechanical characteristics in the hot forge, and already used on crankshafts, rails and other forgings with high mechanical strength, are added: samples A (corresponding to EP -B-0 787 812) and B (corresponding to EP-A-1 426 453).
- the compositions of these samples are shown in Table 1, along with their bainitic transformation start temperature Bs calculated as previously stated on the basis of C, Mn and Cr contents.
- Ti, Nb and B are typically 0.030%, 0.025% and 0.003% respectively when these elements are present.
- Table 2 presents the mechanical characteristics measured on the products obtained from these samples. It should be emphasized here that the results obtained, in absolute terms, should be analyzed only in the precise context to which they refer. Indeed, it is common to observe differences in the mechanical properties obtained on forgings or rolled parts of the same composition but of different dimensions, generally in the direction of an increase in mechanical characteristics equivalent diameter. The hierarchy between the shades examined will nevertheless remain the same for samples having all the same dimensions, which would be different from those of the examples cited here. The word "AS" after the reference of the sample means that the cooling has, in his case, been led to the supply air. Ech. Structure Re Rm Re / Rm AZ (%) KCU
- the mechanical characteristics of the examples of steels according to the invention C to G thus show a significant increase in the mechanical strength with respect to the medium carbon bainitic grades A and B whose carbon content is in the middle-high carbon category.
- the yield strengths are 60 to 130 MPa higher and the mechanical strengths are 70 to 190 MPa, all things being equal. They also allow an increase of the resilience up to about 100% compared to medium-high carbon grades (C: 50 J / cm 2 against 39 J / cm 2 for A, 32 J / cm 2 for A-As and 27 J / cm 2 for B), always all things being equal.
- the structure is bainitic in all cases, with the exception of E-AS casting cooled with air. This is demonstrated by the ratio Re / Rm which is established at a value of about 0.6, typical of a bainitic structure, except in the case of E-AS where martensite is present and where Re / Rm takes a value. higher.
- a presence of martensite is not in itself prohibitive, insofar as the mechanical characteristics remain very high (in particular the resilience remains greater than 40 J / cm 2 ).
- the fraction of martensite formed is very sensitive to the exact conditions of cooling, one can expect a significant dispersion of the mechanical characteristics on parts made in industrial conditions for which control of room cooling can not always be optimal. It is therefore necessary to set the objective of limiting the total presence of martensite, pro-eutectoid ferrite and perlite to no more than 20%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication Pièce mécanique en acier à hautes caractéristiques, caractérisée en ce que sa composition, en pourcentages pondéraux, est : 0,05% ≤ C ≤ 0,25%; 1,2% ≤ Mn ≤ 2%; 1% ≤ Cr ≤ 2,5%; (830 – 270 C% – 90 Mn% – 70 Cr%) ≤ 560; traces ≤ Si ≤ 1,5%; traces ≤ Ni ≤ 1%; traces ≤ Mo ≤ 0,5%; traces ≤ Cu ≤ 1%; traces ≤ V ≤ 0,3%; traces ≤ Al ≤ 0,1%; traces ≤ B ≤ 0,005%; traces ≤ Ti ≤ 0,03% traces ≤ Nb ≤ 0,06%; traces ≤ S ≤ 0,1%; traces ≤ Ca ≤ 0,006%; traces ≤ Te ≤ 0,03%; traces ≤ Se ≤ 0,05%; traces ≤ Bi ≤ 0,05%; traces ≤ Pb ≤ 0,1%; le reste étant du fer et des impuretés résultant de l'élaboration et en ce que sa structure est bainitique et contient au plus 20% au total de martensite et/ou fernite pro- eutectoïde et/ou perlite. Procédé de fabrication d'une pièce mécanique ayant cette composition.
Description
Pièce mécanique en acier à hautes caractéristiques et son
procédé de fabrication
L'invention concerne les aciers pour pièces mécaniques à hautes caractéristiques, obtenues par forgeage à chaud ou usinage sur barres.
Certaines nuances d'acier permettent d'obtenir des caractéristiques mécaniques élevées sur une pièce forgée ou une barre brute de laminage, sans utilisation d'un refroidissement contrôlé ou d'un traitement thermique ultérieur. Elles reposent sur l'obtention d'une microstructure homogène bainitique.
De telles nuances sont déjà proposées, telles que celles faisant l'objet des documents EP-B1 -0 787 812 ou EP-A-1 426 453, qui sont utilisées industriellement pour la production de pièces forgées pour moteur à explosion. Toutefois, pour obtenir des caractéristiques mécaniques élevées sur les pièces décrites dans ces documents, il est nécessaire, à moins de se limiter à des diamètres de l'ordre de 20 mm, d'utiliser des teneurs en carbone supérieures ou égales à 0,25%.
S'il est aujourd'hui possible de garantir une résistance à la traction de l'ordre de 1200 MPa après un refroidissement naturel, grâce, notamment à des nuances telles que celles décrites dans EP-A-1 426 453, l'obtention de ces caractéristiques mécaniques se fait souvent au prix d'une résilience inférieure ou égale à 30 J.cm"2.
Le but de l'invention est de proposer des pièces mécaniques réalisée en une nuance d'acier déterminée qui, associée à des traitements thermiques et thermomécaniques adéquats, permet d'obtenir simultanément des propriétés mécaniques (résistance à la traction Rm, limite élastique Re, rapport Re/Rm, allongement à la rupture A, striction Z) avantageuses, et une résilience KCU améliorée par rapport aux pièces mécaniques en acier connues pour ce même usage.
A cet effet, l'invention a pour objet une pièce mécaniques à hautes caractéristiques, caractérisé en ce que sa composition, en pourcentages pondéraux, est :
- 0,05% < C < 0,25% ;
- 1 ,2% < Mn < 2% ;
- 1 % < Cr < 2,5% ;
- (830 - 270 C% - 90 Mn% - 70 Cr%) < 560 ;
- traces < Si < 1 ,5% ;
- traces < Ni < 1 % ;
- traces < Mo < 0,5% ;
- traces < Cu < 1 % ;
- traces < V < 0,3% ;
- traces < Al < 0,1 % ;
- traces < B < 0,005% ;
- traces < Ti < 0,03% ;
- traces < Nb < 0,06% ;
- traces < S < 0,1 % ;
- traces < Ca < 0,006% ;
- traces < Te < 0,03% ;
- traces < Se < 0,05% ;
- traces < Bi < 0,05% ;
- traces < Pb < 0,1 % ;
le reste étant du fer et des impuretés résultant de l'élaboration, et en ce que la structure de l'acier est bainitique et contient au plus 20% au total de martensite et/ou ferrite pro-eutectoïde et/ou perlite.
De préférence, traces < Si < 0,3%.
De préférence, 0,8 < Si < 1 ,5%.
De préférence, Ni < 0,5%.
De préférence, 0,04% < Mo < 0,5%.
De préférence, 0,5% < V < 0,3%.
De préférence, 0,005% < Al < 0,1 %.
De préférence, 0,0005% < B < 0,005%, et traces < N < 0,0080% et Ti%≥ 3,5 N%. De préférence, 0,005% < Ti < 0,03%.
De préférence, 0,005% < S < 0,1 %.
L'invention a également pour objet un procédé de fabrication d'une pièce d'acier telle qu'une pièce mécanique à hautes caractéristiques, caractérisé en ce qu'il consiste en les étapes suivantes :
- on prépare un lopin ou une barre d'acier dont la composition est conforme à ce qui a été dit précédemment ;
- on réalise un formage à chaud du lopin ou de la barre dans le domaine austénitique, par forgeage ou laminage ;
- on refroidit le lopin ou la barre formé à chaud à une vitesse lui conférant une structure bainitique renfermant au plus 20% au total de martensite et/ou de perlite et/ou de ferrite pro-eutectoïde ;
- et on procède éventuellement à un ou plusieurs usinages pour conférer à la pièce ses dimensions et son état de surface définitifs.
Avant ou après le ou les usinages, on peut procéder à un revenu effectué entre 200 et 350 °C pendant 30 minutes à 4 heures.
Le lopin ou la barre formé à chaud peut être refroidi naturellement à l'air calme.
Le lopin ou la barre formé à chaud peut être refroidi à l'air soufflé.
Comme on l'aura compris, l'invention repose sur une composition de la pièce et sur son association à une structure métallurgique, barnitique pour 80% ou davantage celle-ci pouvant être obtenue par des moyens simples tels qu'un refroidissement à l'air calme ou soufflé.
Par « bainite », on entend ici aussi bien la bainite pure que le mélange bainite + austénite résiduelle si cette dernière est présente comme c'est fréquemment le cas, et on inclut l'ensemble des morphologies de bainites possibles, dont la bainite intragranulaire (également appelée ferrite aciculaire). Les autres phases pouvant être présentes, à savoir la martensite, la ferrite pro-eutectoïde et la perlite, ne doivent pas représenter plus de 20% de la structure.
Les nuances utilisées dans la présente invention permettent d'obtenir, en se basant sur un carbone dit « bas-moyen », et en abaissant le point de début de transformation principalement par l'incorporation de chrome et de manganèse, des résistances à la traction de l'ordre de 1200 MPa ou plus, pour des résiliences d'au moins 40 J.cm 2, pouvant même atteindre 70 J.cm 2.
Toutefois, ces nuances offrent, dans la chaude de forge ou à l'état brut de laminage, des rapports Re/Rm de l'ordre de 0,6, et donc des limites d'élasticité significativement inférieures à celles obtenues sur des nuances trempées-revenues de même résistance mécanique.
Mais, comme on va le démontrer, il est aussi possible, selon l'invention, par un revenu ultérieur à basse température, d'augmenter très significativement (de l'ordre de 25%) la limite d'élasticité, sans pour autant augmenter la résistance mécanique. Ce type de revenu est à distinguer des revenus parfois utilisés sur les aciers micro-alliés, conduits vers 550-650 °C et qui permettent la précipitation de carbures d'alliage. En effet, alors que ces derniers s'accompagnent souvent d'une perte importante de résilience, les revenus à basse température exécutés dans le cadre de l'invention ont un effet bénéfique sur la résilience (jusqu'à l'augmenter de 30% environ).
On va à présent justifier le choix des gammes de composition pour les divers éléments de la nuance des pièces selon l'invention. Toutes les teneurs sont données en pourcentages pondéraux.
La teneur en C est comprise entre 0,05 et 0,25%. Cet intervalle, dit « bas- moyen carbone» car sa limite supérieure se situe dans la zone basse des teneurs considérées comme des moyens carbones et sa limite inférieure appartient au domaine des bas carbones, permet une microstructure et dureté très homogènes même en
présence de ségrégations. En particulier pour les teneurs en carbone inférieures à 0,2%, la dureté de microstructures martensitiques éventuellement présentes dans les zones ségrégées, n'est que légèrement supérieure à celle de la microstructure bainitique. De plus, ces teneurs en carbone permettent des ductilités et résiliences supérieures à celles obtenues, à même niveau de résistance mécanique, pour des teneurs supérieures à 0,25%.
La teneur en Mn est comprise entre 1 ,2 et 2%. Le manganèse est utilisé, conjointement avec le chrome, comme principal élément pour abaisser la température de début de formation de la bainite (Bs) lors d'un refroidissement continu. Dans la mesure où une teneur en carbone relativement basse est utilisée, des teneurs relativement élevées en Mn sont requises, qui de plus doivent contribuer à satisfaire la condition imposée aux teneurs en C, Mn, Cr pour le calcul de Bs (voir plus loin). Le manganèse est limité à 2% pour éviter des problèmes de ségrégations trop prononcés.
La teneur en Cr est comprise entre 1 ,2 et 2,5%. Dans la présente invention, Cr est utilisé au même titre que Mn, pour abaisser la température de début de transformation bainitique Bs.
Les teneurs en C, Mn et Cr doivent de plus être telles que 830 - 270 C% - 90 Mn% - 70 Cr% < 560.
En effet, la température de début de transformation bainitique Bs peut-être classiquement estimée à partir de la formule suivante :
Bs = 830 - 270 C% - 90 Mn% - 70 Cr% - 37 Ni% - 83 Mo%
où les teneurs sont exprimées en pourcentages pondéraux (voir par exemple Bhadeshia, Bainite in Steels, IOM 2001 ). Dans le cadre de l'invention, compte tenu des relativement faibles teneurs en Ni et Mo de l'acier, on peut se limiter à ne considérer que les contributions de C, Mn et Cr. De toute façon, si Ni et Mo sont présents à des teneurs situées dans le haut des fourchettes qui seront vues plus loin, ils contribueront à abaisser Bs. Il est ainsi assuré que dans tous les cas on obtiendra une Bs inférieure ou égale à 560 <C.
Si est compris entre des traces et 1 ,5%. Le silicium peut être utilisé pour éviter la formation de carbures qui détérioreraient la résilience lors de la transformation bainitique. A des teneurs en carbone inférieures à 0,2% toutefois, cette formation de carbures reste peu marquée, et l'addition de Si perd de son intérêt de ce point de vue. D'autre part, en favorisant la formation d'austénite résiduelle, Si permet d'améliorer la tenue en fatigue pour certaines applications. Dans certains cas toutefois, son utilisation peut également être exclue par la nécessité d'éviter une décarburation trop marquée en surface. On pourra donc envisager deux variantes de l'invention. Dans une première variante, la
teneur en Si résulte simplement des conditions d'élaboration, à savoir des matières premières utilisées et de l'éventuelle oxydation partielle du Si qu'elles ont apporté au bain de métal liquide, et aucun ajout volontaire important de Si n'est effectué. Dans ce cas on obtient typiquement une teneur en Si entre des traces et 0,3%. Dans une deuxième variante on ajoute volontairement du Si pour obtenir de préférence une teneur de 0,8 à 1 ,5%.
Ni est compris entre des traces et 1 %, de préférence entre des traces et 0,5%. Il peut être présent uniquement de par son introduction par les matières premières en tant qu'élément résiduel, ou être ajouté en petite quantité pour contribuer à la diminution de la température Bs. Mais sa teneur est limitée à 1 %, mieux 0,5% pour des raisons de coût, cet élément étant onéreux et susceptible de voir son prix fortement fluctuer sur le marché.
Mo est compris entre des traces et 0,5%, de préférence entre 0,04 et 0,5%. Le rôle du molybdène sur la trempabilité est bien établi : il permet d'éviter la formation de ferrite et de perlite mais ne ralentit pas pour autant la formation de la bainite. Il peut donc être ajouté en quantité variable selon le diamètre de la pièce. Un second intérêt du molybdène est de limiter la sensibilité à la fragilité réversible au revenu (voir Bhadeshia, Mater. Sci. Forum, High Performance Bainitic Steels, vol 500-501 , 2005). Enfin, le molybdène renforce l'austénite par son passage en solution solide. Dans la mesure où la résistance mécanique de l'austénite est un des facteurs principaux gouvernant la finesse de la structure bainitique (Singh et Bhadeshia, Mater. Sci. Eng. A, 1998, Vol 245, p72), l'addition de Mo contribue indirectement à l'obtention d'une structure plus fine. La limite supérieure est établie principalement pour des raisons économiques.
V est compris entre des traces et 0,3%, de préférence entre 0,05 et 0,3%. L'ajout de vanadium permet un durcissement supplémentaire ; toutefois, à rencontre de ce qui se passe avec les aciers ferrito-perlitiques, ce durcissement ne semble pas se faire par précipitation; il est en effet démontré expérimentalement qu'après une déformation à chaud (forgeage à chaud ou laminage) et un refroidissement naturel, seule une très faible fraction du vanadium est sous forme précipitée. Tout comme le molybdène, le vanadium renforce l'austénite par précipitation et solution solide, et il peut donc indirectement contribuer à la finesse de la structure bainitique, d'où son effet durcissant. Son addition est limitée à 0,3% pour des raisons économiques.
Cu est compris entre des traces et 1 %. Il peut éventuellement être utilisé pour contribuer au durcissement, mais entraînerait des difficultés de mise en œuvre pour des teneurs supérieures à 1 %.
Al est compris entre des traces et 0,1 %, de préférence entre 0,005 et 0,1 %. Al est optionnellement ajouté pour assurer la désoxydation de l'acier et éviter la croissance
excessive des grains austénitiques lors d'un maintien à haute température (par exemple un traitement de cémentation) qui serait effectué sur la pièce ultérieurement à la mise en œuvre du procédé selon l'invention.
B est compris entre des traces et 0,005%, de préférence entre 0,0005 et 0,005%. Cet élément optionnel peut être utilisé pour les pièces de gros diamètres, particulièrement si la teneur en Mo est basse, afin de garantir l'homogénéité de la structure (limiter la présence de ferrite). Dans ce cas, sera préférable de coupler l'addition de B avec une addition de Ti qui captera l'azote pour former de nitrures et éviter la formation de nitrures de bore. Ainsi tout le bore sera disponible pour jouer son rôle d'homogénéisateur de la structure. On devra alors avoir traces < N < 0,0080% et Ti%≥ 3,5 N%.
Ti est compris entre des traces et 0,03%, de préférence entre 0,005 et 0,03%. Comme on vient de le dire, cet élément optionnel est à utiliser principalement pour les nuances au bore, avec la relation entre Ti% et N% qui vient d'être exposée.
Nb est compris entre des traces et 0,06%. Cet élément optionnel peut être utilisé pour affiner la structure austénitique après forge ou laminage à chaud, avec pour conséquence la diminution des tailles de paquets de bainite et l'accélération de la transformation bainitique (Bhadeshia, Proc. Royal Soc, 2010, Vol 466 p.3).
S est compris entre des traces et 0,1 %. Comme il est bien connu, cet élément peut, le cas échéant, être laissé à un niveau relativement élevé, voire ajouté volontairement, pour améliorer l'usinabilite de l'acier. On lui confère alors une teneur de 0.005 à 0,1 %. De préférence, on accompagne alors cette présence significative de S par une addition de Ca jusqu'à 0,006%, et/ou de Te jusqu'à 0,03%, et/ou de Se jusqu'à 0,05%, et/ou de Bi jusqu'à 0,05% et/ou de Pb jusqu'à 0,1 %. Cette amélioration de l'usinabilité peut être recherchée en particulier pour les applications où la pièce est sollicitée en fatigue, ou pour les applications où ses propriétés mécaniques sont améliorées, au moins localement, par une mise en précontrainte suffisante pour empêcher la propagation des fissures (galetage des vilebrequins, autofrettage des rails d'injection à haute pression).
Les autres éléments contenus dans l'acier selon l'invention sont du fer et des impuretés résultant de l'élaboration, présentes à des teneurs habituelles.
Les gammes préférentielles citées pour divers éléments sont indépendantes les unes des autres. Un acier qui se situerait dans une seule ou certaines de ces gammes préférentielles et pas dans les autres serait donc à considérer comme faisant partie de l'invention.
Industriellement, la pièce peut être produite par un formage à chaud d'un lopin ou d'une barre présentant la composition décrite précédemment, tel qu'un forgeage à chaud ou un laminage à chaud, ou par un usinage d'une barre prête à l'emploi.
Dans le premier cas, le procédé industriel fait intervenir une étape de mise en forme à chaud effectuée en phase austénitique (typiquement 1 100-1250^), suivie d'un refroidissement naturel. Un des points importants de l'invention est la possibilité d'obtenir des caractéristiques mécaniques élevées sans utilisation de traitements thermiques après le forgeage ou le laminage, ni contrôle particulier très contraignant de la vitesse du refroidissement qui peut être effectué naturellement, à l'air calme. Néanmoins, si les installations le permettent, une adaptation du refroidissement pourra dans certains cas être utilisée, soit du fait du diamètre des pièces (avec des pièces de grandes dimensions, un refroidissement trop lent peut conduire à une apparition de ferrite et/ou de perlite en trop grande quantité), soit pour obtenir des caractéristiques mécaniques supérieures à celles qui seraient obtenues par un refroidissement naturel. Un refroidissement par air soufflé peut suffire à atteindre cet objectif. On devra cependant faire attention à ce que le refroidissement ne soit pas trop rapide au point de provoquer une apparition massive de martensite, comme le ferait une trempe.
De plus, un traitement thermique de revenu à basse température (200 à 350 °C pour des durées de 30 minutes à 4 heures) permet d'obtenir, sur les nuances selon l'invention, une augmentation très significative de la limite d'élasticité sans augmentation de la dureté et sans diminution de la résilience.
Selon les pièces concernées, plusieurs opérations d'usinage peuvent prendre place à la suite du forgeage ou du laminage et avant ou après le revenu pour obtenir les dimensions et caractéristiques de surface précises de la pièce finale.
Les caractéristiques mécaniques étant obtenues par refroidissement naturel, elles sont également susceptibles d'être atteintes en partant d'une barre laminée à chaud prête à l'emploi, si celle-ci présente déjà la structure métallurgique recherchée (essentiellement bainitique) qui sera décrite plus loin. La composition des aciers utilisés dans l'invention est telle que la probabilité de l'obtention naturelle de la structure visée après un simple refroidissement à l'air de la barre laminée à chaud dans des conditions usuelles n'est pas négligeable, si les dimensions de la barre conduisent à une vitesse de refroidissement adéquate.
On présente par la suite des résultats obtenus avec des compositions d'acier conformes à ce qu'exige l'invention et des compositions de référence. Ces résultats sont obtenus sur des coulées de laboratoire forgées en ronds de 40 mm, ou sur des coulées industrielles forgées en ronds de diamètre équivalent. Afin de permettre une comparaison
significative des résultats, les caractéristiques mécaniques sont évaluées après une austénitisation à Ι ΟΟΟ 'Ό suivie d'un refroidissement naturel à l'air calme ou d'un refroidissement forcé à l'air soufflé. On ajoute de plus, à titre de référence, deux nuances bainitiques permettant d'obtenir des caractéristiques mécaniques élevées dans la chaude de forge, et déjà utilisées sur des vilebrequins, rails et autres pièces forgées à haute résistance mécanique : échantillons A (correspondant à EP-B-0 787 812) et B (correspondant à EP-A-1 426 453). Les compositions de ces échantillons sont exposées dans le Tableau 1 , ainsi que leur température de début de transformation bainitique Bs calculée comme précédemment exposé sur la base des teneurs en C, Mn et Cr.
Tableau 1 : Compositions et Bs des échantillons testés
Les teneurs en Ti, Nb et B sont typiquement de 0,030%, 0,025% et 0,003% respectivement lorsque ces éléments sont présents.
Le Tableau 2 présente les caractéristiques mécaniques mesurées sur les produits obtenus à partir de ces échantillons. Il convient ici de souligner que les résultats obtenus, en valeur absolue, ne doivent être analysés que dans le contexte précis auquel ils se réfèrent. En effet, il est fréquent d'observer des écarts dans les propriétés mécaniques obtenues sur des pièces forgées ou laminées de même composition mais de dimensions différentes, allant en général dans le sens d'une augmentation des caractéristiques mécaniques à diamètre équivalent. La hiérarchie entre les nuances examinées demeurera néanmoins identique pour des échantillons ayant tous les mêmes dimensions, qui seraient différentes de celles des exemples cités ici. La mention « AS » après la référence de l'échantillon signifie que le refroidissement a, dans son cas, été conduit à l'air soufflé.
Ech. Structure Re Rm Re/Rm A Z (%) KCU
(MPa) (MPa) (%) (J.cm 2)
A bainite 666 1 1 14 0,60 19 39 39
B bainite 739 1226 0,60 18 41 27
A-AS bainite 694 1 1 19 0,62 14 30 32
C bainite 738 1 185 0,62 15 53 50
D bainite 709 1 173 0,60 14 44 44
D-AS bainite 759 1203 0,63 15 57 69
E bainite 796 1303 0,61 15 39 47
E-AS Bainite + 10% 989 1344 0,74 12 46 58
martensite
F bainite 745 1213 0,61 17 49 44
F-AS bainite 774 1238 0,63 16 50 50
G bainite 769 1212 0,63 17 51
Tableau 2 : Caractéristiques mécaniques des échantillons après austénitisation et refroidissement
Les caractéristiques mécaniques des exemples d'aciers selon l'invention C à G montrent donc une augmentation significative de la résistance mécanique par rapport aux nuances bainitiques moyen carbone A et B dont la teneur en carbone relève de la catégorie moyen-haut carbone. Les limites d'élasticité sont supérieures de 60 à 130 MPa et les résistances mécaniques de 70 à 190 MPa, toutes choses étant égales par ailleurs. Elles permettent également une augmentation de la résilience allant jusqu'à environ 100% par rapport aux nuances moyen-haut carbone (C : 50 J/cm2 contre 39 J/cm2 pour A, 32 J/cm2 pour A-As et 27 J/cm2 pour B), toujours toutes choses étant égales par ailleurs.
Comme l'indique le Tableau 3, la structure est bainitique dans l'ensemble des cas, à l'exception de la coulée E-AS refroidie à l'air soufflé. En témoigne d'ailleurs le rapport Re/Rm qui s'établit à une valeur de 0.6 environ, typique d'une structure bainitique, sauf dans le cas de E-AS où de la martensite est présente et où Re/Rm prend une valeur plus élevée.
Une présence de martensite n'est pas en elle-même rédhibitoire, dans la mesure où les caractéristiques mécaniques restent très élevées (en particulier la résilience demeure supérieure à 40 J/cm2). Par contre, dans la mesure où la fraction de martensite formée est très sensible aux conditions exactes de refroidissement, on peut s'attendre à une dispersion importante des caractéristiques mécaniques sur des pièces réalisées dans
des conditions industrielles pour lesquelles la maîtrise du refroidissement de la pièce ne peut être toujours optimale. Il faut donc se fixer pour objectif de limiter la présence totale de martensite, de ferrite pro-eutectoïde et de perlite à au plus 20%.
Il faut toutefois souligner le rôle important de la dimension des pièces dans l'analyse des caractéristiques mécaniques : ainsi, si la nuance E refroidie à l'air soufflé présente de la martensite sur un rond de 40 mm de diamètre, on a constaté qu'elle permet, à l'inverse, de garantir une structure bainitique homogène sur diamètres de 50 à 300 mm.
Si une valeur de Re particulièrement élevée est recherchée, il est possible d'appliquer à la pièce un revenu à basse température, avant ou après l'usinage final. Comme le montre le Tableau 3, un tel revenu permet d'obtenir une limite d'élasticité supérieure de jusqu'à 200 MPa à celle obtenue après normalisation, et ce en conservant, voire en augmentant, la résilience (jusqu'à +25%) et sans augmentation de la résistance à la traction. L'usinabilité n'en sera pas affectée. On constate de plus que les résultats obtenus varient peu dans une plage de température de 250-350°C pour le revenu. Un traitement industriel pourra donc être réalisé aisément sans qu'une maîtrise très précise des conditions du revenu soit nécessaire.
Tableau 3 : Caractéristiques mécaniques obtenues après revenu
Claims
1 . Pièce mécanique en acier à hautes caractéristiques, caractérisée en ce que sa composition, en pourcentages pondéraux, est :
- 0,05% < C < 0,25% ;
- 1 ,2% < Mn < 2% ;
- 1 % < Cr < 2,5% ;
- (830 - 270 C% - 90 Mn% - 70 Cr%) < 560 ;
- traces < Si < 1 ,5% ;
- traces < Ni < 1 % ;
- traces < Mo < 0,5% ;
- traces < Cu < 1 % ;
- traces < V < 0,3% ;
- traces < Al < 0,1 % ;
- traces < B < 0,005% ;
- traces < Ti < 0,03%
- traces < Nb < 0,06% ;
- traces < S < 0,1 % ;
- traces < Ca < 0,006% ;
- traces < Te < 0,03% ;
- traces < Se < 0,05% ;
- traces < Bi < 0,05% ;
- traces < Pb < 0,1 % ;
le reste étant du fer et des impuretés résultant de l'élaboration, et en ce que sa structure est bainitique et contient au plus 20% au total de martensite et/ou ferrite pro- eutectoïde et/ou perlite.
2. Pièce selon la revendication 1 , caractérisée en ce que traces < Si < 0,3%.
3. Pièce selon la revendication 1 , caractérisée en ce que 0,8 < Si < 1 ,5%.
4. Pièce selon l'une des revendications 1 à 3, caractérisée en ce que Ni < 0,5%.
5. Pièce selon l'une des revendications 1 à 4, caractérisée en ce que 0,04% < Mo < 0,5%.
6. Pièce selon l'une des revendications 1 à 5, caractérisée en ce que 0,05% < V <
0,3%.
7. Pièce selon l'une des revendications 1 à 6, caractérisée en ce que 0,005% < Al < 0,1 %.
8. Pièce selon l'une des revendications 1 à 7, caractérisée en ce que 0,0005% < B
< 0,005% et traces < N < 0,0080% et Ti%≥ 3,5 N%.
9. Pièce selon l'une des revendications 1 à 8, caractérisée en ce que 0,005% < Ti
< 0,03%.
10. Pièce selon l'une des revendications 1 à 9, caractérisée en ce que 0,005% < S
< 0,1 %.
1 1 . Procédé de fabrication d'une pièce d'acier telle qu'une pièce mécanique à hautes caractéristiques, caractérisé en ce qu'il consiste en les étapes suivantes :
- on prépare un lopin ou une barre d'acier dont la composition est conforme à l'une des revendications 1 à 10 ;
- on réalise un formage à chaud du lopin ou de la barre dans le domaine austénitique, par forgeage ou laminage ;
- on refroidit le lopin ou la barre formé à chaud à une vitesse lui conférant une structure bainitique renfermant au plus 20% au total de martensite et/ou de perlite et/ou de ferrite pro-eutectoïde ;
- et on procède éventuellement à un ou plusieurs usinages pour conférer à la pièce ses dimensions et son état de surface définitifs.
12. Procédé selon la revendication 1 1 , caractérisé en ce que, avant ou après le ou les usinages, on procède à un revenu effectué dans une gamme de température de 200 à 350 ^ pendant 30 minutes à 4 heures.
13. Procédé selon la revendication 1 1 ou 12, caractérisé en ce que le lopin ou la barre formé à chaud est refroidi naturellement à l'air calme.
14. Procédé selon la revendication 1 1 ou 12, caractérisé en ce que le lopin ou la barre formé à chaud est refroidi à l'air soufflé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1001433A FR2958660B1 (fr) | 2010-04-07 | 2010-04-07 | Acier pour pieces mecaniques a hautes caracteristiques et son procede de fabrication. |
PCT/FR2011/050781 WO2011124851A2 (fr) | 2010-04-07 | 2011-04-07 | Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2556175A2 true EP2556175A2 (fr) | 2013-02-13 |
Family
ID=42942210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11720141A Withdrawn EP2556175A2 (fr) | 2010-04-07 | 2011-04-07 | Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130037182A1 (fr) |
EP (1) | EP2556175A2 (fr) |
JP (1) | JP2013533919A (fr) |
CN (1) | CN102985569B (fr) |
FR (1) | FR2958660B1 (fr) |
WO (1) | WO2011124851A2 (fr) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2812455A1 (fr) * | 2012-02-10 | 2014-12-17 | Ascometal | Procédé de fabrication d'une pièce d'acier et pièce d'acier ainsi obtenue |
US20140283960A1 (en) * | 2013-03-22 | 2014-09-25 | Caterpillar Inc. | Air-hardenable bainitic steel with enhanced material characteristics |
CN103725980A (zh) * | 2013-10-26 | 2014-04-16 | 溧阳市浙大产学研服务中心有限公司 | 一种高性能磁控连接件 |
JP5876864B2 (ja) * | 2013-12-16 | 2016-03-02 | 株式会社神戸製鋼所 | 舶用鍛鋼品 |
FR3022259A1 (fr) * | 2014-06-16 | 2015-12-18 | Asco Ind | Acier pour pieces mecaniques a hautes caracteristiques traitees superficiellement, et pieces mecaniques en cet acier et leur procede de fabrication |
RU2555319C1 (ru) * | 2014-09-15 | 2015-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) | Легкообрабатываемая конструкционная хромомарганцевоникельмолибденовая сталь |
EP3061837A1 (fr) * | 2015-02-27 | 2016-08-31 | Swiss Steel AG | Produit longitudinal bainitique nu et son procédé de fabrication |
DE102016108633A1 (de) * | 2016-05-10 | 2017-11-30 | Benteler Steel/Tube Gmbh | Kraftstoffeinspritzleitung und rohrförmiger Leitungskanal |
TWI756226B (zh) * | 2016-06-30 | 2022-03-01 | 瑞典商伍德赫爾恩股份有限公司 | 用於工具架之鋼 |
RU2622187C1 (ru) * | 2016-10-31 | 2017-06-13 | Юлия Алексеевна Щепочкина | Конструкционная сталь |
FR3064282B1 (fr) * | 2017-03-23 | 2021-12-31 | Asco Ind | Acier, procede pour la fabrication de pieces mecaniques en cet acier, et pieces ainsi fabriquees |
WO2019180492A1 (fr) * | 2018-03-23 | 2019-09-26 | Arcelormittal | Pièce forgée en acier bainitique et son procédé de fabrication |
FR3123659A1 (fr) | 2021-06-02 | 2022-12-09 | Ascometal France Holding Sas | Pièce en acier mise en forme à chaud et procédé de fabrication |
MX2023014918A (es) | 2021-06-16 | 2024-02-14 | Arcelormittal | Metodo para producir una pieza de acero y la pieza de acero. |
WO2024121606A1 (fr) * | 2022-12-08 | 2024-06-13 | Arcelormittal | Acier forgé et laminé à chaud et son procédé de fabrication |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2768062B2 (ja) * | 1991-06-17 | 1998-06-25 | 株式会社神戸製鋼所 | 高強度強靭鋼の製造方法 |
JPH06212349A (ja) * | 1993-01-14 | 1994-08-02 | Sumitomo Metal Ind Ltd | 高切削性の高靱性非調質高強度鋼とその製造方法 |
JPH06248341A (ja) * | 1993-02-23 | 1994-09-06 | Sumitomo Metal Ind Ltd | 非調質鋼からの高強度高靱性鋼の製造方法 |
JP3524229B2 (ja) * | 1995-08-11 | 2004-05-10 | 株式会社神戸製鋼所 | 高靭性肌焼き鋼製機械部品およびその製法 |
FR2741632B1 (fr) * | 1995-11-27 | 1997-12-26 | Ascometal Sa | Acier pour la fabrication d'une piece forgee ayant une structure bainitique et procede de fabrication d'une piece |
FR2744733B1 (fr) | 1996-02-08 | 1998-04-24 | Ascometal Sa | Acier pour la fabrication de piece forgee et procede de fabrication d'une piece forgee |
FR2756298B1 (fr) * | 1996-11-26 | 1998-12-24 | Ascometal Sa | Acier et procede pour la fabrication d'une piece de mecanique ayant une structure bainitique |
JP3716073B2 (ja) * | 1997-05-30 | 2005-11-16 | Jfe条鋼株式会社 | 被削性及び疲労特性に優れた熱間鍛造部品の製造方法 |
FR2802607B1 (fr) * | 1999-12-15 | 2002-02-01 | Inst Francais Du Petrole | Conduite flexible comportant des armures en acier bas carbone |
FR2847271B1 (fr) * | 2002-11-19 | 2004-12-24 | Usinor | Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue |
FR2847910B1 (fr) | 2002-12-03 | 2006-06-02 | Ascometal Sa | Procede de fabrication d'une piece forgee en acier et piece ainsi obtenue. |
JP3969328B2 (ja) * | 2003-03-26 | 2007-09-05 | 住友金属工業株式会社 | 非調質継目無鋼管 |
JP4269293B2 (ja) * | 2005-10-27 | 2009-05-27 | 日立金属株式会社 | 金型用鋼 |
JP4768447B2 (ja) * | 2006-01-11 | 2011-09-07 | 株式会社神戸製鋼所 | 溶接熱影響部の靭性に優れた耐候性鋼板 |
EP1832667A1 (fr) * | 2006-03-07 | 2007-09-12 | ARCELOR France | Procédé de fabrication de tôles d'acier à très hautes caractéristiques de résistance, de ductilité et de tenacité, et tôles ainsi produites |
-
2010
- 2010-04-07 FR FR1001433A patent/FR2958660B1/fr not_active Expired - Fee Related
-
2011
- 2011-04-07 US US13/639,805 patent/US20130037182A1/en not_active Abandoned
- 2011-04-07 EP EP11720141A patent/EP2556175A2/fr not_active Withdrawn
- 2011-04-07 JP JP2013503161A patent/JP2013533919A/ja active Pending
- 2011-04-07 WO PCT/FR2011/050781 patent/WO2011124851A2/fr active Application Filing
- 2011-04-07 CN CN201180025478.4A patent/CN102985569B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2011124851A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011124851A2 (fr) | 2011-10-13 |
US20130037182A1 (en) | 2013-02-14 |
JP2013533919A (ja) | 2013-08-29 |
FR2958660A1 (fr) | 2011-10-14 |
CN102985569B (zh) | 2015-08-05 |
CN102985569A (zh) | 2013-03-20 |
FR2958660B1 (fr) | 2013-07-19 |
WO2011124851A3 (fr) | 2015-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011124851A2 (fr) | Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication | |
CA2612718C (fr) | Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue | |
CA2730520C (fr) | Acier martensitique durci a teneur faible en cobalt, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue | |
EP2164998B1 (fr) | Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue | |
CA2930140C (fr) | Acier inoxydable martensitique, piece realisee en cet acier et son procede de fabrication | |
CA2335911C (fr) | Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier | |
WO2007080256A1 (fr) | Acier a ressorts, et procede de fabrication d'un ressort utilisant cet acier, et ressort realise en un tel acier. | |
FR2792002A1 (fr) | Fil d'acier a forte teneur en carbone ayant une resistance superieure vis-a-vis des craquelures longitudinales, acier pour celui-ci, et procede de production de celui-ci | |
EP2957643A1 (fr) | Acier pour pièces mécaniques à hautes caractéristiques traitées superficiellement, et pièces mécaniques en cet acier et leur procédé de fabrication | |
CA2980878C (fr) | Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication | |
EP3378957B1 (fr) | Acier, procédé pour la fabrication de pièces mécaniques en cet acier, et pièces ainsi fabriquées | |
CA2843360C (fr) | Acier pour la fabrication de pieces cementees, piece cementee realisee avec cet acier et son procede de fabrication | |
WO2020115531A1 (fr) | Acier inoxydable, produits réalisés en cet acier et leurs procédés de fabrication | |
EP4347903A1 (fr) | Pièce en acier mise en forme à chaud et procédé de fabrication | |
WO1985004906A1 (fr) | Procede de fabrication de barres ou de fil machine en acier et produits correspondants | |
BE468057A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121005 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
R17D | Deferred search report published (corrected) |
Effective date: 20150625 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASCO INDUSTRIES |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160114 |