WO2022253912A1 - Pièce en acier mise en forme à chaud et procédé de fabrication - Google Patents

Pièce en acier mise en forme à chaud et procédé de fabrication Download PDF

Info

Publication number
WO2022253912A1
WO2022253912A1 PCT/EP2022/064945 EP2022064945W WO2022253912A1 WO 2022253912 A1 WO2022253912 A1 WO 2022253912A1 EP 2022064945 W EP2022064945 W EP 2022064945W WO 2022253912 A1 WO2022253912 A1 WO 2022253912A1
Authority
WO
WIPO (PCT)
Prior art keywords
traces
hot
steel
steel part
ferrite
Prior art date
Application number
PCT/EP2022/064945
Other languages
English (en)
Inventor
Thomas Sourmail
Amandine PHILIPPOT
Enrico Cesare D'ERAMO
Original Assignee
Ascometal France Holding Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascometal France Holding Sas filed Critical Ascometal France Holding Sas
Priority to BR112023025290A priority Critical patent/BR112023025290A2/pt
Priority to US18/565,931 priority patent/US20240254610A1/en
Priority to KR1020247000114A priority patent/KR20240018573A/ko
Priority to EP22731603.1A priority patent/EP4347903A1/fr
Publication of WO2022253912A1 publication Critical patent/WO2022253912A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/08Modifying the physical properties of iron or steel by deformation by cold working of the surface by burnishing or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • TITLE Hot formed steel part and manufacturing process
  • the present invention relates to the use of a steel of determined composition for the manufacture of a mechanical part whose mechanical characteristics are obtained by natural cooling after a hot forming step (rolling, forging, etc.)
  • Some mechanical parts such as the crankshaft, wishbones, etc. require mechanical strengths of the order of 850-1000 MPa. These requirements explain the use of micro-alloyed ferritic-pearlitic grades such as 38MnVS6. These grades, which are described by the DIN EN 10267 standard, use the phenomenon of interphase precipitation of vanadium to obtain mechanical characteristics superior to those of conventional ferrito-pearlitic steels. They make it possible to obtain, without heat treatment after hot forming, the mechanical resistances mentioned above. Being moreover relatively simple to implement (the mechanical properties are obtained without subsequent heat treatment), these grades have been widely imposed since the 1990s.
  • EP 1 780 293 A2 presents a bainito-martensitic steel shaped hot, and making it possible to obtain high mechanical characteristics without heat treatment (examples of mechanical resistance at 1180 MPa are given).
  • WO 2005/100618 presents a steel with an acicular ferrite structure (that is to say, in theory, bainite formed intragranularly) making it possible to obtain, without heat treatment, a mechanical strength of approximately 1150 MPa according to the examples.
  • WO 2009/138586 A2 relates to a steel with a bainitic structure making it possible to obtain a mechanical strength of at least 1100 MPa without heat treatment.
  • WO 2016/151345 A1 is similar to the previous example in that it describes a grade having a predominantly bainitic microstructure (70 to 100%) and having a mechanical strength greater than 1100 MPa in all the examples. The same is true for WO 2019/180563 A1.
  • Document EP 3061838A1 relates to a grade with a predominantly bainitic structure (minimum 60% bainite) having a mechanical strength greater than 1150 MPa.
  • SEW 605-Ed1 suggests that, from the point of view of mechanical characteristics, some of the proposed solutions could nevertheless be suitable. This is the case for grades called 27MnCr6-3, and to a lesser extent 37Mn7 and 37MnCr4-3. Indeed, all these grades are likely to present mechanical resistances of the level of that of 38MnVS6 (taken here because being the most used of the grades of NF EN 10267). However, the detail of the chemical compositions shows that for all of these shades, additions of V are necessary. These solutions are therefore also not likely to respond to the problem posed, of a grade having a mechanical resistance between 850 and 1000 MPa without heat treatment and without significant use of vanadium (or other critical ferro-alloys).
  • vanadium just like molybdenum (which has the same disadvantages in terms of cost) have the particularity of greatly slowing down the formation of ferrite-pearlite without however influencing the kinetics of the formation of bainite. It is therefore understood that they are used for bainitic grades, especially when it is desired to limit the additions of Mn and Cr as the present problem imposes.
  • bainite or bainitic ferrite sometimes called acicular ferrite or intragranular bainite are not considered to be distinct from the microstructure claimed for the steels of the invention, and that bainite should be understood in a general way, in the thus excluding ferrite-pearlite, Widmanstaetten ferrite, or martensite.
  • the subject of the invention is a hot-formed steel part, characterized in that the composition of the steel, in weight percentages, consists of:
  • C%, Mn%, Cr%, Mo%, Ni%, Ti% and N% designate the C, Mn, Cr, Mo, Ni, Ti and N contents of the steel, in percentages by weight, and in that its microstructure consists of, in surface fractions: at least 70% of a mixture of bainitic ferrite and carbides or residual austenite, the fraction of residual austenite being less than or equal to 10%, at most 30% martensite and/or pro-eutectoid ferrite and/or pearlite, the fraction of pro-eutectoid ferrite and/or pearlite being less than or equal to 10%.
  • the mixture of bainite ferrite and carbides or residual austenite constitutes bainite, bainite including the morphologies of bainite or bainite ferrite called acicular ferrite or intragranular bainite.
  • the residual austenite fraction is less than or equal to 5%.
  • the steel part according to the invention preferably has one or more of the following characteristics, taken individually or in combination:
  • composition is such that 0.25% ⁇ C ⁇ 0.35%, preferably 0.25% ⁇ C ⁇ 0.30%;
  • composition is such that 1.10% £ Mn £ 1.70%;
  • the composition is such that traces £ Mo £ 0.10%; the composition is such that traces £Si ⁇ 0.35%, preferably traces £Si ⁇ 0.25%, preferably traces £Si ⁇ 0.15%;
  • composition is such that traces £Ni£ 0.35%
  • composition is such that traces £ Cu £ 0.30%;
  • composition is such that traces £ V £ 0.05%
  • composition is such that traces £ Al £ 0.05%
  • composition is such that 0.001% £ B £ 0.006%;
  • composition is such that traces £ Nb £ 0.02%;
  • composition is such that traces £ N £ 0.010%
  • the invention also relates to a process for manufacturing a steel part, characterized in that:
  • the hot-shaped semi-finished product is cooled in calm air, forced air, under a hood or in a box.
  • the method according to the invention preferably has one or more of the following characteristics, taken individually or in combination:
  • the cooling rate between 750°C and 550°C is greater than or equal to 0.15°C/s
  • the cooling rate between 550°C and 250°C is between 0.1 and 0 .5°C/s
  • the cooling rate below 250°C is between 0.1 and 100°C/s
  • the semi-finished product is shaped by machining or cold deformation
  • the semi-finished product shaped hot is shaped by cold machining or cold deformation
  • the hot-shaped semi-finished product is subjected to tempering at a temperature of between 150° C. and 350° C.; the purpose of such tempering is to adjust the hardness of the part of the semi-finished product treated by surface treatment by high-frequency induction;
  • - mechanical reinforcement of the hot-shaped semi-finished product is carried out in order to obtain hardening of at least part of the hot-shaped semi-finished product, by processes such as burnishing or autofrettage.
  • a deposit is made, for example by electrogalvanizing, painting and any heat treatment of such a deposit would make it necessary (degassing, baking);
  • composition is such that 0.25% ⁇ C ⁇ 0.35%, preferably 0.25% ⁇ C ⁇ 0.30%;
  • composition is such that 1.10% £ Mn £ 1.70%;
  • composition is such that traces £ Mo £ 0.10%;
  • composition is such that traces £Si ⁇ 0.35%; preferably traces £Si ⁇ 0.25%, preferably traces £Si ⁇ 0.15%;
  • composition is such that traces £Ni£ 0.35%; - the composition is such that traces £ Cu £ 0.30%;
  • composition is such that traces £ V £ 0.05%
  • composition is such that traces £ Al £ 0.05%
  • composition is such that 0.001% £ B £ 0.006%;
  • composition is such that traces £ Nb £ 0.02%;
  • composition is such that traces £ N £ 0.010%
  • the part concerned may be, but is not limited to, a crankshaft or an injection rail.
  • the carbon content is between 0.22 and 0.35%.
  • Low carbon contents can be favorable to the rapid formation of bainite, and this point has moreover been the subject of a specific patent (WO2011124851 -A2); however, the low carbon contents also facilitate the formation of pro-eutectoid ferrite. In the absence of vanadium in particular, this ferrite has a particularly low hardness and can constitute a privileged initiation site for fatigue fractures.
  • the low carbon contents also lead to the need for ferroalloys in large quantities to maintain the mechanical properties.
  • a lower limit of 0.22% has therefore been adopted, which is significantly more than many so-called bainitic grades, which favor contents of the order of 0.16-0.20%.
  • the carbon content is strictly greater than 0.25%, or even greater than 0.26%.
  • too high carbon contents lead to a significant slowing down of the bainitic transformation while promoting the formation of pearlite (which is not desired).
  • the carbon content is less than or equal to 0.30%.
  • the Mn content is between 0.50 and 1.7%, preferably greater than or equal to 1.10% and/or less than or equal to 1.70%.
  • Mn is used, together with Cr, to control the Bs parameter, an indicator of the temperature at which bainite begins to form during continuous cooling. In particular, the addition of Mn lowers this Bs parameter. If the effect on the Bs can be obtained for relatively low contents (0.50%), it will also be preferable to avoid excessively high contents (>1.70% ) which lead to problems of excessive segregation and an excessive lowering of the parameter Bs.
  • the Cr content is between 0.50 and 1.70%.
  • Cr is used in the same way as Mn for the purpose of controlling the Bs parameter, it can be used as such to substitute a more or less significant part of the manganese.
  • a minimum content of 0.50% is required to guarantee obtaining the microstructure of the invention, and a maximum content of 1.70% is imposed to limit the phenomena of segregation and the cost of the grade.
  • the Mo content is between traces and 0.15% and preferably between traces and 0.10%.
  • Mo in slowing down the ferritic-pearlitic transformation, a particularly favorable role for obtaining a bainitic microstructure.
  • the additions of Mo are, in the present invention, limited to 0.15%, or even 0.10%. This latter content can be approximated by the mere presence of residuals in any scrap used, so that it does not necessarily constitute a deliberate addition.
  • the Mo content is strictly less than 0.10%.
  • the Si content is between traces and 0.40%, preferably between traces and 0.35%.
  • the Si content is less than or equal to 0.25%, preferably less than or equal to 0.15%.
  • TRIP' effect Transformation Induced Plasticity
  • This effect is generally observed for additions of the order of 1.2 to 1.5% for isothermal transformations.
  • document EP 0787 812 B1 specifically mentions that silicon has no stabilizing effect on the residual austenite below 0.8%.
  • the TRIP effect mentioned above is not desirable, because it involves an excess mechanical resistance of the lens (850-1000 MPa); it is therefore a matter of guaranteeing its absence or strongly limiting it.
  • the inventors were able to show that the views on the role of Si were erroneous, and that, in the range of claimed compositions and on components of dimensions typical of automotive parts, Si could contribute to the presence of residual austenite from 0.40% and even in some cases from 0.35%. We therefore voluntarily limited the Si content to these values, the preferred content guaranteeing the result with greater certainty.
  • Ni content is between traces and 0.50%, preferably between traces and 0.35%.
  • Nickel may only be present by its introduction into the raw materials as a residual element, in which case its content will naturally be limited to 0.35%.
  • the latter may be increased to 0.50% but additions in excess of this limit are prohibited for the same reasons as those of Mo and V (cost and fluctuation in the cost of ferro-alloys, environmental impact).
  • the Cu content is between traces and 0.50%, preferably between traces and 0.30%. Like Ni and a small amount of Mo, Cu can only be present by its introduction into the raw materials as a residual element. Additions are therefore not required, but its content is limited to 0.50%, better still to 0.30% to avoid possible hot forming difficulties.
  • the V content is between traces and 0.08%, preferably between traces and 0.05%.
  • vanadium can be oxidized during production from scrap, so that a content of less than 0.015% is always possible.
  • modest additions may be made to improve the hardenability and resistance to tempering, without however exceeding 0.08%, and preferably 0.05% to minimize the consequences on the cost and the variability of the cost of the grade.
  • the AI is between traces and 0.10% and preferably between traces and 0.05%.
  • Al is optionally added to ensure the deoxidation of the steel. Additions are capped at 0.10% to limit the risk of formation of re-oxidation inclusions by contact of the liquid metal with air. This limitation will be all the more effective if the preference interval is respected.
  • the B is between 0.001 and 0.010%, preferably between 0.001 and 0.006%.
  • Boron is a powerful retarder of the formation of pro-eutectoid ferrite which is essential to the invention. It is well known to those skilled in the art that its addition in very small quantities makes it possible to obtain a pronounced effect, but a reproducible effect requires a minimum content of 0.001% (10 ppm). Furthermore, to avoid the formation of boron precipitates and its harmful effects, the additions are limited to 0.010%. We will guarantee with greater certainty the absence of these precipitates by limiting our to additions of less than 0.006%.
  • the Ti is between 0.01 and 0.06%. Titanium is essential to fix the nitrogen inevitably present during production and thus allow the boron to remain in solid solution.
  • the inventors have established that, under the conditions of implementation of the invention, a content of the order of 0.01% could be sufficient. Conversely, a content greater than 0.06% is not necessary from the point of view of the desired effect, and can moreover lead to the formation of precipitates which are harmful for the fatigue life. Additions beyond this limit are also undesirable for cost reasons.
  • a minimum of Ti is imposed in relation to the N content (Ti% 3 2.5 N%), in order to guarantee the effectiveness of the protection of B.
  • the Nb is between traces and 0.05%.
  • additions of niobium may be made to improve the hardenability and/or to refine the austenitic grain at high temperature. These additions are however limited to 0.05% for reasons similar to those mentioned for Ti. Preferably, for cost reasons, the content will be limited to 0.02%.
  • the S is between traces and 0.15%.
  • sulfur can be added to improve the machinability of the grade, it is then given contents between 0.05 and 0.15%.
  • the composition may comprise additions of Ca up to 0.010%, and/or Te up to 0.030%, and/or Se up to 0.050% and/or Bi up to 0.050% and/or Pb up to 0.100%.
  • the P is between traces and 0.100%.
  • the presence of P will be limited to 0.030% if it is desired to limit the consequences of its embrittling effect.
  • contents greater than or equal to 0.030% either because ductility is not a desired property, or even because fragility is desired (case of breakable connecting rods).
  • the grade will nevertheless remain limited to 0.100%, a grade beyond which production and rolling difficulties are significant.
  • the N is between traces and 0.013%, preferably between traces and 0.010%. Although inevitably present, nitrogen must be limited to maintain the effectiveness of boron additions. To this end, a maximum content of 0.013% is imposed, noting that a limitation to 0.010% will improve the guarantee of obtaining the result.
  • the other elements present in the steel of the invention are iron, and impurities resulting from the production, present at usual levels taking into account the raw materials used and the method of production of the liquid steel (use of a converter or an electric arc furnace to obtain the liquid metal, treatment under vacuum or not of the liquid metal, etc.).
  • Bs 830 - 270 * C% - 90 * Mn% - 70 * Cr% - 83 * Mo% - 37 * Ni%, in which C%, Mn%, Cr%, Mo% and Ni% designate the C contents , Mn, Cr, Mo and Ni respectively in the composition of the steel, expressed in weight percentages.
  • the inventors place themselves against the current approach which requires this parameter to be mainly limited by the upper value, and the lowest possible.
  • the Bs parameter according to the invention makes it possible to form bainite at high temperature during cooling, such that a coarse bainitic structure is obtained.
  • bainite has a lower mechanical strength than in the steels according to the state of the art mentioned above.
  • the Bs parameter is greater than 560°C, better still greater than 570°C.
  • the microstructure of the steel consists of, in surface fractions: at least 70% of a mixture of bainitic ferrite and carbides or residual austenite, the fraction of residual austenite being less than or equal to 10%, at most 30 % martensite and/or pro-eutectoid ferrite and/or pearlite, the fraction of pro-eutectoid ferrite and/or pearlite being less than or equal to 10%.
  • bainite is in the form of a matrix of bainitic ferrite slats or plates, between which carbides and/or austenite are present.
  • the bainite in particular the bainitic ferrite, is formed during the cooling, as soon as the temperature becomes lower than the temperature at which the bainitic transformation begins Bs.
  • bainite is formed at relatively high temperature.
  • the residual austenite fraction must be less than or equal to 10%, preferably less than or equal to 5%.
  • a fraction of residual austenite greater than 10% would lead to an excess mechanical strength of the lens (850-1000 MPa).
  • a high residual austenite fraction is therefore detrimental to achieving the objective of the present invention.
  • a residual austenite fraction of less than or equal to 5% is therefore preferred.
  • the structure may comprise martensite, pro-eutectoid ferrite and/or pearlite, but the sum of the fractions of these constituents must remain no more than 30% and the sum of the fractions of pro-eutectoid ferrite and pearlite of at most 10% to achieve the desired mechanical characteristics.
  • the part is produced by hot forming, in the austenitic phase, of a steel semi-finished product with the composition described above.
  • the semi-finished product is for example a billet or a bar.
  • the semi-finished product before the hot shaping, is subjected to an initial shaping by machining or cold deformation.
  • Hot forming is, for example, hot forging or hot rolling.
  • Hot forming is carried out in the austenitic phase (typically between 1100 and 1250°C).
  • Cooling is, for example, carried out in still air, forced air, under a hood or in the box, depending on the desired cooling speed.
  • the desired mechanical characteristics are obtained without implementation of heat treatments after hot forming, nor very constraining particular control of the cooling rate which can be carried out naturally, in calm air.
  • the cooling rate between 750° C. and 550° C. is preferably greater than or equal to 0.15° C./s, in order to avoid or limit the formation of ferrite and pearlite, liable to form in this temperature range.
  • the cooling rate between 550°C and 250°C is between 0.1 and 0.5°C/s.
  • bainitic ferrite is formed in this temperature range.
  • the cooling rate should not be too high in order to maximize the formation of bainite in this temperature range.
  • Below 250°C the phase transformation is generally complete, so that the cooling rate is between 0.1°C/s and 100°C/s.
  • still air cooling may be sufficient to achieve the cooling rate ranges specified above.
  • an adaptation of the cooling can in certain cases be used, in particular because of the diameter of the parts.
  • cooling at calm air could lead to too slow cooling, especially in the heart of the parts, and lead to the appearance of ferrite and/or pearlite in excessive quantities.
  • forced air cooling can be implemented to obtain a sufficient cooling rate.
  • cooling can be implemented under a hood or in a crate to reduce the cooling rate.
  • shaping is carried out by cold machining or cold deformation, to obtain the part, in particular to obtain the precise dimensions and surface characteristics of the final part.
  • a surface treatment is carried out on the surface of the part by high-frequency induction to give it the benefits of this technique (increase in hardness, residual stresses compression, etc).
  • This surface treatment is generally carried out on a specific part of the part.
  • tempering can be performed to adjust the hardness of the treated areas of the part.
  • a part of the part is mechanically reinforced by a process such as burnishing, autofrettage, or other processes aimed at obtaining local work hardening as well as residual compressive stresses in the part. strengthen.
  • the part is subjected to a deposition of a coating, for example by electrogalvanizing or a deposition of paint, as well as to any heat treatments required by such a deposition.
  • compositions according to the invention Inv1 to Inv4
  • compositions close to but not in accordance with the invention Step to Steel7
  • 38MnVS6 All of the compositions selected are presented in [Table 1]. It should be understood that the complement to 100% of the cited compositions is Fe, the elements not mentioned in this table being present only in the form of traces including those which may only be optionally present in the invention, such as the machinability elements Ca, Te, Se, Bi, Pb which have not been added in the examples considered.
  • the underlined values are not in accordance with the invention.
  • the underlined values are the values not in accordance with the invention.
  • the reference grade 38MnVS6
  • this grade uses the interphase precipitation of vanadium to obtain its mechanical properties, an element whose addition we precisely want to avoid.
  • the Alt1 steel has a microstructure and a tensile strength in accordance with the expected, but with carbon and molybdenum contents not in accordance with the invention.
  • Alt2 illustrates well the reason for the limitations on the carbon content. Indeed, Alt2, for which the Mo content has been reduced compared to Alt1, has a microstructure that does not comply with the requirements of the invention, with in particular -25% pearlite. This result clearly illustrates the difficulty of avoiding the formation of this constituent without using molybdenum in excess of 0.2%.
  • Alt3 steel has a non-conforming Bs parameter with a compliant microstructure and Si content.
  • Bs lower than the minimum required, the mechanical strength is greater than the requirements of the invention, which may lead to machining difficulties in production.
  • the Alt4 and Alt5 steels have compositions very close to those of the invention, with the exception of the Si content which is in excess of the maximum imposed by the invention. This results in a mechanical strength significantly higher than that targeted (850-1000 MPa).
  • these steels exhibited residual austenite contents of 11 and 15% respectively as they are. It was also explained that this residual austenite was responsible for the high mechanical strengths through the TRI P effect. This result is central to the invention, because it is in opposition to the whole of the scientific corpus, generally estimating the limit for the stabilization of residual austenite at 0.6-1 Si%.
  • the Alt6 steel is compliant in many points with the exception of the addition of Ti and B. This results in a microstructure not in accordance with the invention (the experience of the inventors being that the mixed pearlite-bainite microstructures exhibit a very high sensitivity to cooling conditions and being undesirable for use in industrial conditions).
  • Alt7 steel is also close to those of the invention, but has a Bs parameter significantly lower than that required, resulting in a mechanical strength well above the target.
  • Steels Inv1 to Inv 4 all have a structure consisting of, in surface fractions, at least 70% of a mixture of bainitic ferrite and carbides or residual austenite, the fraction of residual austenite being less than or equal to 5% , and at most 30% martensite and/or pro-eutectoid ferrite and/or pearlite, the fraction of pro-eutectoid ferrite and/or pearlite being less than or equal to 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Pièce en acier mise en forme à chaud, de composition consistant en 0,22%≤C≤0,35%, 0,50%≤Mn≤1,70%; 0,50%≤Cr≤1,70%; traces≤Mo≤0,15%; traces≤Si≤0,40%; traces≤Ni≤0,50%; traces≤Cu≤0,50%; traces≤V≤0,08%; traces≤Al≤0,10%; 0,001%≤B≤0,010%; 0,01%≤Ti≤0,06%; traces≤Nb≤0,05%; traces≤S≤0,15%; trace ≤Ca≤0,010%; traces≤Te≤0,030%; traces≤Se≤0,050%; traces≤Bi≤0,050%; traces≤Pb≤0,100%; traces≤P≤0,100%; traces≤N≤0,013%; avec 540≤(830- 270*C%–90*Mn%–70*Cr%-83*Mo%-37*Ni%)≤600 et Ti%≥2,5N%. La microstructure consiste en au moins 70% de ferrite bainitique et de carbures ou d'austénite résiduelle, la fraction d'austénite résiduelle étant d'au plus à 10%, au plus 30% de martensite et/ou de ferrite pro-eutectoïde et/ou de perlite, la fraction de ferrite pro-eutectoïde et/ou de perlite étant d'au plus 10%.

Description

DESCRIPTION
TITRE : Pièce en acier mise en forme à chaud et procédé de fabrication
La présente invention concerne l’utilisation d’un acier de composition déterminée pour la fabrication d’une pièce mécanique dont les caractéristiques mécaniques sont obtenues par refroidissement naturel après une étape de mise en forme à chaud (laminage, forgeage, etc.)
Certains pièces mécaniques, telles que le vilebrequin, les triangles de suspension, etc. demandent des résistances mécaniques de l’ordre de 850-1000 MPa. Ces exigences expliquent l’utilisation de nuances ferrito-perlitiques micro-alliées telles que le 38MnVS6. Ces nuances, qui sont décrites par la norme DIN EN 10267, utilisent le phénomène de précipitation interphase du vanadium pour obtenir des caractéristiques mécaniques supérieures à celles des aciers ferrito-perlitiques conventionnels. Elles permettent d’obtenir, sans traitement thermique après mise en forme à chaud, les résistances mécaniques mentionnées précédemment. Etant de plus relativement simples de mise en œuvre (les propriétés mécaniques sont obtenues sans traitement thermique ultérieur), ces nuances se sont largement imposées à partir des années 1990.
Toutefois, ces nuances présentent deux inconvénients importants. D’une part, les caractéristiques mécaniques obtenues ont une sensibilité accrue à la vitesse de refroidissement, et donc, pour un refroidissement naturel, à la dimension des pièces. D’autre part, l’utilisation du ferro-vanadium n’est pas sans poser de questions environnementales et économiques. Ainsi, la volatilité des prix du ferro-vanadium a conduit à des pics tels que le coût du seul ajout de 0.2-0.3% de vanadium pouvait presque égaler le coût de base de l’acier.
Il y a donc un grand intérêt à développer des solutions alternatives aux aciers ferrito-perlitiques micro-alliés, sans toutefois perdre les avantages offerts par ces dernières. Ainsi, des nuances relativement peu alliées (37Cr4, 42CrMo4) pourraient facilement être utilisées pour obtenir le niveau de caractéristiques mécaniques demandé, mais nécessiteraient un traitement thermique dont les effets environnementaux et économiques annuleraient intégralement les bénéfices réalisés sur l’alliage.
De telles solutions doivent donc non seulement éviter l’utilisation de ferro-alliages à fort impact environnemental et économique (vanadium, molybdène), mais également ne pas nécessiter de traitement thermique. Les deux dernières décennies ont vu, par ailleurs, le développement de nuances à microstructure bainitique (encore parfois appelée ferrite aciculaire), ayant pour principal objectif d’obtenir des caractéristiques mécaniques supérieures à celles obtenues avec les nuances ferrito-perlitique micro-alliées, sans recourir au traitement thermique. Pour atteindre cet objectif, les compositions chimiques ont été adaptées de manière à obtenir une microstructure non plus ferrito-perlitique mais bainitique, ceci directement lors du refroidissement suivant le laminage ou la forge à chaud. On utilisera le terme de « nuance bainitique » par simplification pour faire référence à ces nuances.
Le document SEW 605-Ed1 présente un état des lieux représentatif du développement des nuances bainitiques dans le domaine des produits longs. Comme le montre la lecture de ce document, la majorité des nuances détaillées revendiquent des propriétés mécaniques significativement supérieures à 950 MPa voire 1050 MPa. Pour ceci, ces nuances utilisent non seulement des teneurs relativement élevées en Mn et Cr, mais également des additions significatives de Mo, Si et de V pour la totalité d’entre elles.
Il en est de même pour les différents brevets. Ainsi, EP 1 780 293 A2 présente un acier bainito-martensitique mis en forme à chaud, et permettant d’obtenir de hautes caractéristiques mécaniques sans traitement thermique (des exemples de résistance mécanique à 1180 MPa sont donnés). WO 2005/100618 présente un acier à structure de ferrite aciculaire (c’est-à-dire, en théorie, de la bainite formée intragranulairement) permettant d’obtenir sans traitement thermique une résistance mécanique d’environ 1150 MPa selon les exemples. WO 2009/138586 A2 concerne un acier de structure bainitique permettant d’obtenir une résistance mécanique de 1100 MPa au minimum sans traitement thermique. WO 2016/151345 A1 est semblable au précédent exemple en ce qu’il décrit une nuance présentant une microstructure majoritairement bainitique (70 à 100%) et présentant une résistance mécanique supérieure à 1100 MPa dans tous les exemples. Il en est de même pour WO 2019/180563 A1. Le document EP 3061838A1 concerne lui une nuance à structure majoritairement bainitique (minimum 60% de bainite) présentant une résistance mécanique supérieure à 1150 MPa.
On voit donc bien, à travers les différents documents mentionnés ci-dessus, que le développement de nuances dites ‘bainitiques’ a avant tout répondu à une problématique d’augmentation des caractéristiques mécaniques par rapport aux références largement répandues que sont les aciers à microstructure ferrito-perlitique micro-alliés au vanadium.
Dans le contexte de la production de grande série, une augmentation des propriétés mécaniques, si elle n’est pas imposée par la conception mécanique, se révèle souvent indésirable car elle peut entraîner un surcoût à l’usinage, qui peut lui-même annuler les bénéfices économiques et environnementaux recherchés. De ce seul point de vue, les solutions mentionnées précédemment ne sont donc pas envisageables pour la substitution d’une nuance telle que le 38MnVS6 ou autres nuances telles que décrite par la norme NF EN 10267.
Un examen détaillé du document SEW 605-Ed1 suggère que, du point de vue des caractéristiques mécaniques, certaines des solutions proposées pourraient néanmoins convenir. Il en est ainsi des nuances dénommées 27MnCr6-3, et dans une moindre mesure 37Mn7 et 37MnCr4-3. En effet, toutes ces nuances sont susceptibles de présenter des résistances mécaniques du niveau de celle du 38MnVS6 (pris ici car étant la plus utilisée des nuances de la NF EN 10267). Or, le détail des compositions chimiques montre que pour l’ensemble de ces nuances, les additions de V sont nécessaires. Ces solutions ne sont donc également pas susceptibles de répondre à la problématique posée, d’une nuance ayant une résistance mécanique entre 850 et 1000 MPa sans traitement thermique et sans utilisation significative de vanadium (ou autres ferro-alliages critiques).
Cette absence de solution n’est pas fortuite pour deux raisons. La première est qu’il est à contre-courant d’envisager une nuance à structure bainitique pour les objectifs énoncés. En effet, comme on l’a montré, les travaux portant sur ces nuances se sont focalisés sur l’obtention des caractéristiques mécaniques élevées. La seconde est d’ordre technique et va être détaillée par la suite.
Comme le dévoile, par exemple, la demande WO 2011/124851 , des caractéristiques mécaniques élevées sont obtenues par diminution de la température de début de transformation bainitique. Dans la référence citée, cette température est donnée, en degrés Celsius, par la formule 830-270*C%-90*Mn%-70*Cr% où C%, Mn% et Cr% sont les teneurs en C, Mn et Cr en pourcentages massiques. Comme on le constate, l’abaissement de cette température passe par des ajouts d’éléments d’alliage tels que Mn et Cr (le C restant limité car ralentissant fortement la transformation bainitique). Or, comme cela est bien connu de l’homme de métier, ces additions vont également ralentir la formation de ferrite et perlite au cours du refroidissement, et donc favoriser l’obtention de la microstructure recherchée. De la sorte, l’obtention des deux objectifs (formation d’une structure majoritairement bainitique et à haute performance) est favorisée par l’addition d’éléments d’alliage de type Mn, Cr, etc.
A l’inverse, pour obtenir une microstructure bainitique dont la résistance mécanique sera modérée, il faudra relever la température de transformation. On pourra pour cela diminuer les teneurs en éléments d’alliage. Toutefois ceci va désormais dans le sens contraire à celui souhaité pour l’obtention d’une microstructure bainitique (la formation de ferrite-perlite se trouvant favorisée par ces modifications). On a indiqué précédemment que les nuances du document SEW 605-Ed1 présentant des caractéristiques mécaniques modérées (850-1000 MPa), présentent toutes des additions de vanadium. Au regard des éléments exposés ci-dessus, il est désormais possible de montrer que ce choix n’est pas anodin. En effet, le vanadium, tout comme le molybdène (qui présente les mêmes inconvénients en termes de coût) ont la particularité de fortement ralentir la formation de ferrite-perlite sans toutefois influencer la cinétique de la formation de bainite. On comprend donc qu’ils soient utilisés pour des nuances bainitiques, tout particulièrement lorsqu’on souhaite limiter les additions de Mn et Cr comme la présente problématique l’impose.
En reprenant la problématique définie, à savoir le développement d’une nuance ayant une résistance mécanique entre 850 et 1000 MPa à l’état forgé ou laminé, sans traitement thermique, et sans utilisation significative de vanadium ou molybdène, et au vu des éléments exposés ci-dessus, on constate donc non seulement qu’il n’existe pas de solution, mais également que le développement d’une telle solution sur la base d’une microstructure bainitique va à l’encontre de la logique qui a sous-tendu le développement de nuances bainitiques à ce jour.
On peut à présent détailler l’invention dont on rappelle tout d’abord l’objectif, à savoir de proposer une nouvelle nuance d’acier ne faisant pas ou très peu appel à des ferro-alliages dont les coûts sont fluctuants (V, Mo, Nb, Ti), et de permettre l’obtention d’une microstructure majoritairement bainitique pour des pièces de dimensions (épaisseur ou diamètre) typiques 20-100 mm par refroidissement naturel après laminage ou forgeage à chaud, lesdites pièces devant présenter une résistance mécanique comprise entre 850 et 1000 MPa.
On précise de plus que les morphologies de bainite ou ferrite bainitique parfois appelées ferrite aciculaire ou bainite intragranulaire ne sont pas considérées distinctes de la microstructure revendiquée pour les aciers de l'invention, et qu'il faut entendre bainite de manière générale, à l'exclusion donc de la ferrite-perlite, ferrite de Widmanstaetten, ou martensite.
A cet effet, l’invention a pour objet une pièce en acier mise en forme à chaud, caractérisé en ce que la composition de l’acier, en pourcentages pondéraux, consiste en :
0,22% £ C £ 0,35% ;
0,50% £ Mn £ 1,70% ;
0,50% £ Cr £ 1,70% ; traces £ Mo £ 0, 15% ; traces £ Si < 0,40% ; traces £ Ni £ 0,50% ; traces £ Cu £ 0,50% ; traces £ V £ 0,08% ; traces £ Al £ 0, 10% ;
0,001% £ B £ 0,010% ;
0,01% £ Ti < 0,06% ; traces £ N b £ 0,05% ; traces £ S < 0, 15% ; traces £ Ca £ 0,010% ; traces £ Te £ 0,030% ; traces £ Se £ 0,050% ; traces £ Bi £ 0,050% ; traces £ Pb £ 0,100% ; traces £ P £ 0, 100% ; traces £ N £ 0,013% ; le reste étant du fer et des impuretés résultant de l’élaboration ; et pour laquelle les relations suivantes sont vérifiées :
540 £ (830 - 270*C% - 90*Mn% - 70*Cr% - 83*Mo% - 37*Ni%) £ 600 ;
Ti% ³ 2,5 N% où C%, Mn%, Cr%, Mo%, Ni%, Ti% et N% désignent les teneurs en C, Mn, Cr, Mo, Ni, Ti et N de Tacier, en pourcentages pondéraux, et en ce que sa microstructure consiste en, en fractions surfaciques : au moins 70% d’un mélange de ferrite bainitique et de carbures ou d’austénite résiduelle, la fraction d’austénite résiduelle étant inférieure ou égale à 10%, au plus 30% de martensite et/ou de ferrite pro-eutectoïde et/ou de perlite, la fraction de ferrite pro-eutectoïde et/ou de perlite étant inférieure ou égale à 10%.
Le mélange de ferrite bainitique et de carbures ou d’austénite résiduelle constitue de la bainite, la bainite incluant les morphologies de bainite ou ferrite bainitique appelées ferrite aciculaire ou bainite intragranulaire.
De préférence, la fraction d’austénite résiduelle est inférieure ou égale à 5%.
La pièce en acier selon l’invention présente de préférence une ou plusieurs des caractéristiques suivantes, prises isolément ou en combinaison :
- la composition est telle que 0,25% < C < 0,35%, de préférence 0,25% < C < 0,30% ;
- la composition est telle que 1,10% £ Mn £ 1,70% ;
- la composition est telle que traces £ Mo £ 0,10% ; - la composition est telle que traces £ Si < 0,35%, de préférence traces £ Si < 0,25%, de préférence traces £ Si < 0,15% ;
- la composition est telle que traces £ Ni £ 0,35% ;
- la composition est telle que traces £ Cu £ 0,30% ;
- la composition est telle que traces £ V £ 0,05% ;
- la composition est telle que traces £ Al £ 0,05% ;
- la composition est telle que 0,001% £ B £ 0,006% ;
- la composition est telle que traces £ Nb £ 0,02% ;
- la composition est telle que traces £ N £ 0,010% ;
- la relation suivante est vérifiée : 560 < (830 - 270*C% - 90*Mn% - 70*Cr% - 83*Mo% - 37*Ni%) £ 600 ;
- la pièce en acier a une résistance mécanique comprise entre 850 et 1000 MPa. L’invention a également pour objet un procédé de fabrication d’une pièce en acier, caractérisé en ce que :
- on met en forme à chaud en phase austénitique un demi-produit en acier dont la composition consiste en, exprimée en pourcentages pondéraux :
0,22% £ C £ 0,35% ;
0,50% £ Mn £ 1,70% ;
0,50% £ Cr £ 1,70% ; traces £ Mo £ 0, 15% ; traces £ Si < 0,40% ; traces £ Ni £ 0,50% ; traces £ Cu £ 0,50% ; traces £ V £ 0,08% ; traces £ Al £ 0, 10% ;
0,001% £ B £ 0,010% ;
0,01% £ Ti < 0,06% ; traces £ N b £ 0,05% ; traces £ S < 0, 15% ; traces £ Ca £ 0,010% ; traces £ Te £ 0,030% ; traces £ Se £ 0,050% ; traces £ Bi £ 0,050% ; traces £ Pb £ 0,100% ; traces £ P £ 0,100% ; traces £ N £ 0,013% ; le reste étant du fer et des impuretés résultant de l’élaboration ; et pour laquelle les relations suivantes sont vérifiées :
540 £ (830 - 270*C% - 90*Mn% - 70*Cr% - 83*Mo% - 37*Ni%) £ 600;
Ti% ³ 2,5 N% où C%, Mn%, Cr%, Mo%, Ni%, Ti% et N% désignent les teneurs en C, Mn, Cr, Mo, Ni, Ti et N de l'acier, en pourcentages pondéraux,
- on refroidit le demi-produit mis en forme à chaud à l’air calme, à l’air pulsé, sous un capot ou en caisse.
Le procédé selon l’invention présente de préférence une ou plusieurs des caractéristiques suivantes, prises isolément ou en combinaison :
- lors du refroidissement, la vitesse de refroidissement entre 750°C et 550°C est supérieure ou égale à 0,15 °C/s, la vitesse de refroidissement entre 550°C et 250°C est comprise entre 0,1 et 0,5 °C/s, et la vitesse de refroidissement en-dessous de 250°C est comprise entre 0,1 et 100 °C/s ;
- avant la mise en forme à chaud, on met en forme le demi-produit par usinage ou déformation à froid ;
- après le refroidissement, on met en forme le demi-produit mis en forme à chaud par usinage à froid ou déformation à froid ;
- on soumet au moins une partie du demi-produit mis en forme à chaud à un traitement superficiel par induction haute fréquence ;
- après la mise en œuvre du traitement superficiel par induction haute fréquence, on soumet le demi-produit mis en forme à chaud à un revenu à une température comprise entre 150°C et 350°C ; un tel revenu ayant pour but d’ajuster la dureté de la partie du demi-produit traitée par traitement superficiel par induction haute fréquence ;
- on réalise un renforcement mécanique du demi-produit mis en forme à chaud afin d’obtenir un écrouissage d’au moins une partie du demi-produit mis en forme à chaud, par des procédés tels que le galetage ou l’autofrettage.
- on réalise un dépôt, par exemple par électrozingage, peinture et un éventuel traitement thermique d’un tel dépôt rendrait nécessaire (dégazage, cuisson) ;
- la composition est telle que 0,25% < C < 0,35%, de préférence 0,25% < C < 0,30% ;
- la composition est telle que 1,10% £ Mn £ 1,70% ;
- la composition est telle que traces £ Mo £ 0,10% ;
- la composition est telle que traces £ Si < 0,35% ; de préférence traces £ Si < 0,25%, de préférence traces £ Si < 0,15% ;
- la composition est telle que traces £ Ni £ 0,35% ; - la composition est telle que traces £ Cu £ 0,30% ;
- la composition est telle que traces £ V £ 0,05% ;
- la composition est telle que traces £ Al £ 0,05% ;
- la composition est telle que 0,001% £ B £ 0,006% ;
- la composition est telle que traces £ Nb £ 0,02% ;
- la composition est telle que traces £ N £ 0,010% ;
- la relation suivante est vérifiée : 560 < (830 - 270*C% - 90*Mn% - 70*Cr% - 83*Mo% - 37*Ni%) £ 600.
La pièce concernée pourra être, mais sans limitation, un vilebrequin ou un rail d’injection.
On va à présent justifier le choix des gammes de composition pour les divers éléments de l’invention. Comme on l’a déjà dit, toutes les teneurs sont données en pourcentage pondéraux.
La teneur en carbone est comprise entre 0,22 et 0,35%. De faibles teneurs en carbone peuvent être favorables à la formation rapide de bainite, et ce point a d’ailleurs fait l’objet d’un brevet spécifique (WO2011124851 -A2) ; toutefois, les basses teneurs en carbone facilitent également la formation de ferrite pro-eutectoïde. En l’absence de vanadium notamment, cette ferrite présente une dureté particulièrement faible et peut constituer un site d’amorçage privilégié pour les ruptures en fatigue. Les basses teneurs en carbone amènent de plus le besoin de ferro-alliages en quantité importante pour maintenir les propriétés mécaniques. Une limite basse de 0,22% a donc été retenue, soit significativement plus que de nombreuses nuances dites bainitiques, qui privilégient des teneurs de l’ordre de 0,16-0,20%. De préférence, la teneur en carbone est strictement supérieure à 0,25%, voire supérieure à 0,26%. A l’opposé, les teneurs en carbone trop élevées conduisent à un ralentissement important de la transformation bainitique tout en favorisant la formation de perlite (qui n’est pas souhaitée). Ceci contraint, comme on l’a indiqué précédemment, à retenir des éléments d’alliage tels que molybdène ou vanadium, qui ralentissent fortement la transformation en ferrite-perlite sans affecter la cinétique de transformation bainitique. On a donc retenu une limite supérieure de 0,35%, afin de ne pas avoir à recourir à l’utilisation de ces éléments en contrepartie. Le choix de la gamme préférée permet d’éviter plus assurément l’absence de ferrite (pour la limite basse) et de martensite (pour la limite haute). De préférence, la teneur en carbone est inférieure ou égale à 0,30%.
La teneur en Mn est comprise 0,50 et 1 ,7%, de préférence supérieure ou égale à 1 ,10% et/ou inférieure ou égale à 1 ,70%. Mn est utilisé, conjointement avec Cr, pour contrôler le paramètre Bs, indicateur de la température de début de formation de la bainite lors du refroidissement continu. En particulier, l’ajout de Mn abaisse ce paramètre Bs. Si l’effet sur le Bs peut être obtenu pour des teneurs relativement faibles (0,50%), on préférera par ailleurs éviter les teneurs trop élevées (>1 ,70%) qui conduisent à des problèmes de ségrégation excessive et à un abaissement trop important du paramètre Bs.
La teneur en Cr est comprise 0,50 et 1 ,70%. Dans la présente invention, Cr est utilisé au même titre que Mn dans l’objectif de contrôle le paramètre Bs, il peut être utilisé à ce titre pour substituer une partie plus ou moins importante du manganèse. Toutefois, une teneur minimale de 0,50% est exigée pour garantir l’obtention de la microstructure de l’invention, et une teneur maximale de 1,70% est imposée pour limiter les phénomènes de ségrégation et le coût de la nuance.
La teneur en Mo est comprise entre traces et 0,15% et de préférence entre traces et 0,10%. On a déjà mentionné le rôle bien établi du Mo comme ralentissant la transformation ferrito-perlitique, rôle particulièrement favorable pour l’obtention d’une microstructure bainitique. Toutefois, pour des raisons de coût et d’exposition aux prix fluctuants du ferromolybdène, les additions de Mo sont, dans la présente invention, limitées à 0,15%, voire à 0,10%. Cette dernière teneur peut être approchée par la simple présence de résiduels dans les ferrailles éventuellement utilisées, de sorte qu’elle ne constitue pas nécessairement un ajout délibéré. De préférence, la teneur en Mo est strictement inférieure à 0,10%.
La teneur en Si est comprise entre traces et 0,40%, de préférence entre traces et 0,35%. Avantageusement, la teneur en Si est inférieure ou égale à 0,25%, de préférence inférieure ou égale à 0,15%. Ce point est central dans la présente invention. Le rôle du silicium est en effet bien connu pour favoriser la présence d’austénite résiduelle dans la microstructure et ainsi bénéficier d’un effet dit TRIP’ (Transformation Induced Plasticity), effet qui conduit simultanément à une résistance mécanique plus élevée et à un allongement plus important lors des essais de traction. Cet effet est en général constaté pour des ajouts de l’ordre de 1,2 à 1,5% pour des transformations isothermes. Dans le cas de refroidissement continu, le document EP 0787 812 B1 mentionne spécifiquement que le silicium n’a pas d’effet stabilisant sur l’austénite résiduelle en dessous de 0,8%. Or, dans le cas de la présente invention, l’effet TRIP cité ci-dessus n’est pas souhaitable, car il implique une résistance mécanique en excès de l’objectif (850-1000 MPa) ; il s’agit donc d’en garantir l’absence ou de le limiter fortement. De manière surprenante, les inventeurs ont pu montrer que les vues sur le rôle du Si étaient erronées, et que, dans l’intervalle de compositions revendiquées et sur des composants de dimensions typiques des pièces automobiles, le Si pouvait contribuer à la présence d’austénite résiduelle dès 0,40% et même dans certains cas, dès 0,35%. On a donc volontairement limité la teneur en Si à ces valeurs, la teneur préférentielle garantissant le résultat avec une plus grande certitude.
La teneur en Ni est comprise entre traces et 0,50%, de préférence entre traces et 0,35%. Le nickel peut-être présent uniquement par son introduction dans les matières premières en tant qu’élément résiduel, auquel cas sa teneur sera naturellement limitée à 0,35%. Cette dernière pourra être portée à 0,50% mais les additions en excès de cette limite sont proscrites pour les mêmes raisons que celles de Mo et V (coût et fluctuation des coûts des ferro-alliages, impact environnemental).
La teneur en Cu est comprise entre traces et 0,50%, de préférence entre traces et 0,30%. Tout comme le Ni et une faible quantité de Mo, le Cu peut être présent uniquement par son introduction dans les matières premières en tant qu’élément résiduel. Des additions ne sont donc pas requises, mais sa teneur est limitée à 0,50%, mieux à 0,30% pour éviter d’éventuelles difficultés de mise en forme à chaud.
La teneur en V est comprise entre traces et 0,08%, de préférence entre traces et 0,05%. Contrairement aux molybdène, cuivre et nickel, le vanadium peut être oxydé lors de l’élaboration à partir de ferrailles, de sorte qu’une teneur inférieure à 0,015% est toujours envisageable. On pourra toutefois procéder à des additions modestes pour améliorer la trempabilité et la résistance au revenu, sans toutefois excéder 0,08%, et de préférence 0,05% pour minimiser les conséquences sur le coût et la variabilité du coût de la nuance.
L’AI est compris entre traces et 0,10% et de préférence entre traces et 0,05%. Al est optionnellement ajouté pour assurer la désoxydation de l’acier. Les ajouts sont plafonnés à 0,10% pour limiter les risques de formation d’inclusions de ré-oxydation par contact du métal liquide avec l’air. Cette limitation sera d’autant plus efficace si l’intervalle de préférence est respecté.
Le B est compris entre 0,001 et 0,010%, de préférence entre 0,001 et 0,006%. Le bore est un puissant retardateur de la formation de ferrite pro-eutectoïde qui est indispensable à l’invention. Il est bien connu de l’homme de métier que son ajout en très faibles quantités permet d’obtenir un effet prononcé, mais un effet reproductible demande une teneur minimale de 0,001% (10 ppm). Par ailleurs, pour éviter la formation de précipités de bore et ses effets néfastes, les ajouts sont limités à 0,010%. On garantira avec une plus grande certitude l’absence de ces précipités en se limitant à des ajouts inférieurs à 0.006%.
Le Ti est compris entre 0,01 et 0,06%. Le titane est indispensable pour fixer l’azote inévitablement présent pendant l’élaboration et ainsi permettre au bore de demeurer en solution solide. Les inventeurs ont établi que, dans les conditions de mise en œuvre de l’invention, une teneur de l’ordre de 0,01% pouvait être suffisante. Inversement, une teneur supérieure à 0,06% n’est pas nécessaire du point de vue de l’effet recherché, et peut de plus conduire à la formation de précipités nocifs pour la durée de vie en fatigue. Les ajouts au-delà de cette limite ne sont également pas souhaitables pour des raisons de coût. Enfin, notons qu’on impose un minimum de Ti par rapport à la teneur en N (Ti% ³ 2,5 N%), ce afin de garantir l’efficacité de la protection du B.
Le Nb est compris entre traces et 0,05%. Bien que non indispensable à la présente invention, on pourra procéder à des additions de niobium pour améliorer la trempabilité et/ou affiner le grain austénitique à haute température. Ces additions sont toutefois limitées à 0,05% pour des raisons semblables à celles évoquées pour le Ti. De préférence, pour des raisons de coût, on limitera la teneur à 0,02%.
Le S est compris entre traces et 0,15%. Comme il est bien connu, le soufre peut être ajouté pour améliorer l’usinabilité de la nuance, on lui confère alors des teneurs entre 0,05 et 0,15%. Pour les mêmes raisons, la composition peut comprendre des ajouts de Ca jusqu’à 0,010%, et/ou de Te jusqu’à 0,030%, et/ou de Se jusqu’à 0,050% et/ou de Bi jusqu’à 0,050% et/ou de Pb jusqu’à 0,100%.
Le P est compris entre traces et 0,100%. En général, la présence de P sera limitée à 0,030% si on souhaite limiter les conséquences de son effet fragilisant. Pour certaines applications toutefois, il est possible d’envisager des teneurs supérieures ou égales à 0,030%, soit car la ductilité n’est pas une propriété recherchée, soit même car la fragilité est voulue (cas des bielles sécables). La teneur restera néanmoins limitée à 0,100%, teneur au-delà de laquelle les difficultés d’élaboration et de laminage sont importantes.
Le N est compris entre traces et 0,013%, de préférence entre traces et 0,010%. Bien qu’inévitablement présent, l’azote doit être limité pour conserver l’efficacité des additions de bore. A cette fin, une teneur maximale de 0,013% est imposée, en notant qu’une limitation à 0,010% améliorera la garantie d’obtention du résultat.
Les autres éléments présents dans l’acier de l’invention sont du fer, et des impuretés résultant de l’élaboration, présentes à des teneurs habituelles compte tenu des matières premières utilisées et du mode d’élaboration de l’acier liquide (utilisation d’un convertisseur ou d’un four électrique à arc pour obtenir le métal liquide, traitement sous vide ou non du métal liquide, etc.).
Il doit être entendu que les teneurs préférentielles éventuelles de chaque élément pris isolément sont indépendantes les unes des autres. Autrement dit, on pourra se situer dans une gamme préférentielle pour l’un ou plusieurs de ces éléments et hors des gammes préférentielles pour les autres éléments qui en comportent une. Le paramètre Bs, estimant la température de début de formation de la bainite au cours du refroidissement, doit de plus être compris 540 et 600 °C. Ce paramètre ou « température de début de transformation bainitique » Bs est défini par la formule suivante:
Bs= 830 - 270*C% - 90*Mn% - 70*Cr% - 83*Mo% - 37*Ni%, dans laquelle C%, Mn%, Cr%, Mo% et Ni% désignent les teneurs en C, Mn, Cr, Mo et Ni respectivement dans la composition de l’acier, exprimées en pourcentages pondéraux.
Ici également, les inventeurs se placent à contre-courant de l’approche qui veut que ce paramètre soit principalement borné par valeur supérieure, et le plus bas possible. Or, le paramètre Bs selon l’invention permet de former de la bainite à haute température lors du refroidissement, de telle sorte qu’une structure bainitique grossière est obtenue. Ainsi, la bainite présente une résistance mécanique moindre que dans les aciers selon l’état de la technique mentionnés plus haut.
En particulier, une valeur minimale de 540°C est nécessaire pour éviter une résistance mécanique trop importante. A l’opposé, les teneurs en C, Mn et Cr correspondant à des valeurs supérieures à 600°C ne sont pas compatibles avec l’obtention de la microstructure recherchée.
De préférence, le paramètre Bs est supérieur à 560°C, mieux supérieur à 570°C.
La microstructure de l’acier consiste en, en fractions surfaciques : au moins 70% d’un mélange de ferrite bainitique et de carbures ou d’austénite résiduelle, la fraction d’austénite résiduelle étant inférieure ou égale à 10%, au plus 30% de martensite et/ou de ferrite pro-eutectoïde et/ou de perlite, la fraction de ferrite pro-eutectoïde et/ou de perlite étant inférieure ou égale à 10%.
Le mélange de ferrite bainitique et de carbures ou d’austénite constitue de la bainite. En particulier, la bainite se présente sous forme d’une matrice de lattes ou plaquettes de ferrite bainitique, entre lesquelles sont présents des carbures et/ou de l’austénite.
Dans la microstructure de l’acier selon l’invention, la bainite, en particulier la ferrite bainitique, est formée lors du refroidissement, dès que la température devient inférieure à la température de début de transformation bainitique Bs. Comme décrit ci-dessus, en raison de la valeur élevée de Bs, la bainite est formée à relativement haute température. Ainsi, la bainite a une structure grossière, permettant de limiter la résistance mécanique à au plus 1000 MPa. La fraction d’austénite résiduelle doit être inférieure ou égale à 10%, de préférence inférieure ou égale à 5%. En effet, comme décrit ci-dessus, la présence d’austénite résiduelle dans la microstructure conduit notamment à une résistance mécanique plus élevée. Une fraction d’austénite résiduelle supérieure à 10% conduirait à une résistance mécanique en excès de l’objectif (850-1000 MPa). Une fraction d’austénite résiduelle élevée est donc néfaste à l’obtention de l’objectif de la présente invention. Une fraction d’austénite résiduelle inférieure ou égale à 5% est donc préférée.
La structure peut comprendre de la martensite, de la ferrite pro-eutectoïde et/ou de la perlite, mais la somme des fractions de ces constituants doit rester d’au plus 30% et la somme des fractions de ferrite pro-eutectoïde et de perlite d’au plus 10% pour atteindre les caractéristiques mécaniques souhaitées.
On va maintenant décrire un procédé de fabrication d’une pièce selon l’invention.
La pièce est produite par une mise en forme à chaud, en phase austénitique, d’un demi-produit en acier présentant la composition décrite précédemment.
Le demi-produit est par exemple un lopin ou une barre.
Selon un mode de réalisation, avant la mise en forme à chaud, le demi produit est soumis à une mise en forme initiale par usinage ou déformation à froid.
La mise en forme à chaud est par exemple un forgeage à chaud ou un laminage à chaud.
La mise en forme à chaud est effectuée en phase austénitique (typiquement entre 1100 et 1250°C).
Après mise en forme à chaud, on refroidit la pièce. Le refroidissement est par exemple réalisé à l’air calme, à l’air pulsé, sous un capot ou en caisse, en fonction de la vitesse de refroidissement souhaitée.
Selon l’invention, les caractéristiques mécaniques souhaitées sont obtenues sans mise en œuvre de traitements thermiques après la mise en forme à chaud, ni contrôle particulier très contraignant de la vitesse du refroidissement qui peut être effectué naturellement, à l’air calme.
Lors du refroidissement, la vitesse de refroidissement entre 750°C et 550°C est de préférence supérieure ou égale à 0,15°C/s, afin d’éviter ou de limiter la formation de ferrite et de perlite, susceptibles de se former dans cette gamme de température.
De préférence, la vitesse de refroidissement entre 550°C et 250°C est comprise entre 0,1 et 0,5°C/s. En effet, compte tenu du paramètre Bs selon l’invention, dans cette gamme de température, la ferrite bainitique se forme. La vitesse de refroidissement ne doit pas être trop élevée afin de maximiser la formation de bainite dans cette gamme de température. En-dessous de 250°C, la transformation de phase est généralement achevée, de telle sorte que la vitesse de refroidissement est comprise entre 0.1 °C/s et 100°C/s.
Comme indiqué ci-dessus, un refroidissement à l’air calme peut être suffisant pour obtenir les gammes de vitesses de refroidissement précisées ci-dessus.
Néanmoins, une adaptation du refroidissement pourra dans certains cas être utilisée, notamment du fait du diamètre des pièces. Par exemple, avec des pièces de grandes dimensions, notamment de diamètre équivalent supérieur ou égal à 120 mm (i.e. telles que la vitesse de refroidissement naturelle des pièces est inférieure ou égale à celle d’une barre de diamètre 120 mm), un refroidissement à l’air calme pourrait conduire à un refroidissement trop lent, notamment en cœur des pièces, et conduire à une apparition de ferrite et/ou de perlite en trop grande quantité. Dans ce cas, un refroidissement par air pulsé peut être mis en œuvre pour obtenir une vitesse de refroidissement suffisante.
A l’inverse, le refroidissement peut être mis en œuvre sous un capot ou dans une caisse afin de réduire la vitesse de refroidissement.
Selon un mode de réalisation, après le refroidissement, on effectue une mise en forme par usinage à froid ou déformation à froid, pour obtenir la pièce, notamment pour obtenir les dimensions et caractéristiques de surface précises de la pièce finale.
Selon un mode de réalisation, après le refroidissement ou après une éventuelle mise en forme à froid, on réalise un traitement superficiel de la surface de la pièce par induction haute fréquence pour lui conférer les bénéfices de cette technique (augmentation de la dureté, contraintes résiduelles de compression, etc.). Ce traitement superficiel est généralement réalisé sur une partie spécifique de la pièce.
Après un tel traitement superficiel, on peut réaliser un revenu pour ajuster la dureté des zones traitées de la pièce.
En complément, ou en alternative, on réalise un renforcement mécanique d’une partie de la pièce par un procédé tels que le galetage, l’autofrettage, ou autres procédés visant à obtenir un écrouissage local ainsi que des contraintes résiduelles de compression dans la partie à renforcer.
Après le refroidissement, selon un mode de réalisation, la pièce est soumise à un dépôt d’un revêtement, par exemple par électrozingage ou un dépôt de peinture, ainsi qu’aux éventuels traitements thermiques nécessités par un tel dépôt.
On va maintenant présenter les résultats obtenus en laboratoire sur des compositions selon l’invention (Inv1 à Inv4), des compositions proches mais non conforme à l’invention (Steell à Steel7) et la référence 38MnVS6. L’ensemble des compositions retenues est présenté dans le [Table 1]. Il doit être entendu que le complément à 100% des compositions citées est du Fe, les éléments non mentionnés dans ce tableau n’étant présents que sous forme de traces y compris ceux pouvant n’être qu’optionnellement présents dans l’invention, comme les éléments d’usinabilité Ca, Te, Se, Bi, Pb qui n’ont pas été ajoutés dans les exemples considérés. Les valeurs soulignées ne sont pas conformes à l’invention.
[Table 1]
Figure imgf000016_0001
Les résultats discutés par la suite ont été obtenus en utilisant des lopins de diamètre ~40 mm, auxquels on a appliqué un traitement thermique tel que leur état était similaire, voire identique, à celui attendu sur une pièce forgée du type vilebrequin automobile : austénitisation à 1050 °C suivie d’un refroidissement à l’air calme, conduisant à des vitesses de refroidissement de, typiquement, 0,45-0,50 °C/s entre 800 et 550°C, 0,25-0,30 °C/s entre 550°C et la température ambiante. On a ensuite procédé à des essais de traction pour déterminer la résistance mécanique de l’acier ainsi traité, et on a procédé à un examen métallographique afin d’en déterminer la microstructure.
[Table 2]
Figure imgf000016_0002
Figure imgf000017_0001
Les résultats sont résumés dans le [Table 2], dans lequel les valeurs soulignées sont les valeurs non conformes à l’invention. De manière attendue, la nuance de référence (38MnVS6) présente la résistance mécanique souhaitée, mais pas la microstructure cible ; ainsi qu’expliqué précédemment, cette nuance fait appel à la précipitation interphase du vanadium pour obtenir ses propriétés mécaniques, élément dont on veut justement éviter l’addition. Notons de plus l’absence d’addition de B et Ti ainsi qu’une teneur en Cr insuffisante pour l’invention, qui viendront en partie expliquer que la microstructure demeure entièrement ferrito-perlitique alors que l’on recherche une microstructure principalement bainitique. L’acier Alt1 présente une microstructure et une résistance à la traction conformes aux attendus, mais avec des teneurs en carbone et en molybdène non conformes à l’invention. Comme évoqué ci-dessus, l’utilisation du molybdène en quantité significative est proscrite pour limiter l’utilisation des ferro-alliages correspondants. La comparaison avec Alt2 illustre bien la raison des limitations sur la teneur en carbone. En effet, Alt2, pour lequel la teneur en Mo a été réduite par rapport à Alt1 , présente une microstructure non conforme aux exigences de l’invention, avec notamment -25% de perlite. Ce résultat illustre bien la difficulté à éviter la formation de ce constituant sans utilisation de molybdène en excès de 0,2%.
L’acier Alt3 présente un paramètre Bs non conforme avec une microstructure et une teneur en Si conformes. En conséquence d’une valeur de Bs inférieure au minimum requis, la résistance mécanique est supérieure aux exigences de l’invention, ce qui pourra entraîner des difficultés d’usinage en production.
Les aciers Alt4 et Alt5 ont des compositions très proches de celles de l’invention, à l’exception de la teneur en Si qui est en excès du maximum imposé par l’invention. Il en résulte une résistance mécanique significativement supérieure à celle visée (850-1000 MPa). De plus, comme on l’a souligné précédemment, il a été démontré en utilisant la diffraction des rayons-X, que ces aciers présentaient en l’état des teneurs en austénite résiduelle de 11 et 15% respectivement. On a également expliqué que cette austénite résiduelle était responsable des résistances mécaniques élevées par l’intermédiaire de l’effet TRI P. Ce résultat est central à l’invention, car il est en opposition avec l’ensemble du corpus scientifique, estimant généralement la limite pour la stabilisation de l’austénite résiduelle à 0,6-1 Si%.
L’acier Alt6 est conforme en de nombreux points à l’exception de l’addition de Ti et B. Il en résulte une microstructure non conforme à l’invention (l’expérience des inventeurs étant que les microstructures mixtes perlite-bainite présentent une très grande sensibilité aux conditions de refroidissement et étant peu désirables pour une utilisation en condition industrielle).
Enfin, l’acier Alt7 est également proche de ceux de l’invention, mais présente un paramètre Bs significativement inférieur à celui exigé, avec pour conséquence une résistance mécanique largement supérieure à l’objectif.
Les aciers Inv1 à Inv 4 présentent tous une structure consistant en, en fractions surfaciques, au moins 70% d’un mélange de ferrite bainitique et de carbures ou d’austénite résiduelle, la fraction d’austénite résiduelle étant inférieure ou égale à 5%, et au plus 30% de martensite et/ou de ferrite pro-eutectoïde et/ou de perlite, la fraction de ferrite pro-eutectoïde et/ou de perlite étant inférieure ou égale à 10%.
Comme le montrent les résultats obtenus sur les aciers Inv1 à Inv4, le respect de l’ensemble des critères définis par la présente invention permet d’obtenir la microstructure et la résistance mécanique souhaitées, tout en évitant l’utilisation de vanadium et molybdène en quantité significative. On notera en effet que les teneurs en molybdène correspondent à celles qui peuvent être obtenues de par la seule présence de cet élément comme résiduel dans les ferrailles utilisées pour l’élaboration.

Claims

REVENDICATIONS
1. Pièce en acier mise en forme à chaud, caractérisé en ce que la composition de l’acier, consiste en, exprimé en pourcentages pondéraux :
0,22% £ C £ 0,35% ;
0,50% £ Mn £ 1,70% ;
0,50% £ Cr £ 1,70% ; traces £ Mo £ 0, 15% ; traces £ Si < 0,40% ; traces £ Ni £ 0,50% ; traces £ Cu £ 0,50% ; traces £ V £ 0,08% ; traces £ Al £ 0, 10% ;
0,001% £ B £ 0,010% ;
0,01% £ Ti £ 0,06% ; traces £ N b £ 0,05% ; traces £ S £ 0, 15% ; traces £ Ca £ 0,010% ; traces £ Te £ 0,030% ; traces £ Se £ 0,050% ; traces £ Bi £ 0,050% ; traces £ Pb £ 0,100% ; traces £ P £ 0, 100% ; traces £ N £ 0,013% ; le reste étant du fer et des impuretés résultant de l’élaboration ; et pour laquelle les relations suivantes sont vérifiées :
540 £ (830 - 270*C% - 90*Mn% - 70*Cr% - 83*Mo% - 37*Ni%) £ 600;
Ti% ³ 2,5 N%, où C%, Mn%, Cr%, Mo%, Ni%, Ti% et N% désignent les teneurs en C, Mn, Cr, Mo, Ni, Ti et N de l'acier, en pourcentages pondéraux, et en ce que sa microstructure consiste en, en fractions surfaciques : au moins 70% d’un mélange de ferrite bainitique et de carbures ou d’austénite résiduelle, la fraction d’austénite résiduelle étant inférieure ou égale à 10%, le mélange de ferrite bainitique et de carbures ou d’austénite résiduelle constituant de la bainite, la bainite incluant les morphologies de bainite ou ferrite bainitique appelées ferrite aciculaire ou bainite intragranulaire, au plus 30% de martensite et/ou de ferrite pro-eutectoïde et/ou de perlite, la fraction de ferrite pro-eutectoïde et/ou de perlite étant inférieure ou égale à 10%.
2. Pièce en acier selon la revendication 1 , caractérisée en ce que la fraction d’austénite résiduelle est inférieure ou égale à 5%.
3. Pièce en acier selon l’une quelconque des revendications 1 ou 2, caractérisée en ce que 0,25% < C < 0,35%, de préférence 0,25% < C < 0,30%.
4. Pièce en acier selon l’une quelconque des revendications 1 à 3, caractérisée en ce que 1,10% £ Mn £ 1,70%.
5. Pièce en acier selon l’une quelconque des revendications 1 à 4, caractérisée en ce que traces £ Mo £ 0,10%.
6. Pièce en acier selon l’une quelconque des revendications 1 à 5, caractérisée en ce que traces £ Si < 0,35%, de préférence traces £ Si < 0,25%, de préférence traces £ Si < 0,15%.
7. Pièce en acier selon l’une quelconque des revendications 1 à 6, caractérisée en ce que traces £ Ni £ 0,35%.
8. Pièce en acier selon l’une quelconque des revendications 1 à 7, caractérisée en ce que traces £ Cu £ 0,30%.
9. Pièce en acier selon l’une quelconque des revendications 1 à 8, caractérisée en ce que traces £ V £ 0,05% ;
10. Pièce en acier selon l’une quelconque des revendications 1 à 9, caractérisée en ce que 560 < (830 - 270 C% - 90 Mn% - 70 Cr% - 83 Mo% - 37 Ni%) £ 600.
11. Procédé de fabrication d’une pièce en acier, caractérisé en ce que: on met en forme à chaud, en phase austénitique, un demi-produit en acier dont la composition consiste en, exprimé en pourcentages pondéraux :
0,22% £ C £ 0,35% ;
0,50% £ Mn £ 1,70% ;
0,50% £ Cr £ 1,70% ; traces £ Mo £ 0, 15% ; traces £ Si < 0,40% ; traces £ Ni £ 0,50% ; traces £ Cu £ 0,50% ; traces £ V £ 0,08% ; traces £ Al £ 0, 10% ;
0,001% £ B £ 0,010% ;
0,01% £ Ti < 0,06% ; traces £ N b £ 0,05% ; traces £ S < 0, 15% ; traces £ Ca £ 0,010% ; traces £ Te £ 0,030% ; traces £ Se £ 0,050% ; traces £ Bi £ 0,050% ; traces £ Pb £ 0,100% ; traces £ P £ 0, 100% ; traces £ N £ 0,013% ; le reste étant du fer et des impuretés résultant de l’élaboration ; et pour laquelle les relations suivantes sont vérifiées :
540 £ (830 - 270 C% - 90 Mn% - 70 Cr% - 83 Mo% - 37 Ni%) £ 600;
Ti% ³ 2,5 N% où C%, Mn%, Cr%, Mo%, Ni%, Ti% et N% désignent les teneurs en C, Mn, Cr, Mo, Ni, Ti et N de l'acier, en pourcentages pondéraux, on refroidit le demi-produit mis en forme à chaud à l’air calme, à l’air pulsé, sous un capot ou en caisse, la vitesse de refroidissement entre 750°C et 550°C étant supérieure ou égale à 0,15°C/s, la vitesse de refroidissement entre 550°C et 250°C étant comprise entre 0,1 et 0,5°C/s, et la vitesse de refroidissement en-dessous de 250°C étant comprise entre 0,1 et 100°C/s.
12. Procédé selon la revendication 11 , caractérisé en ce que, avant la mise en forme à chaud, on met en forme le demi-produit par usinage ou déformation à froid.
13. Procédé selon l’une quelconque des revendications 11 ou 12, caractérisé en ce que, après le refroidissement, on met en forme le demi-produit mis en forme à chaud par usinage à froid ou déformation à froid.
14. Procédé selon l’une quelconque des revendications 11 à 13, caractérisé en ce qu’on soumet au moins une partie du demi-produit mis en forme à chaud à un traitement superficiel par induction haute fréquence.
15. Procédé selon la revendication 14, caractérisé en ce que, après la mise en œuvre du traitement superficiel par induction haute fréquence, on soumet le demi-produit mis en forme à chaud à un revenu à une température comprise entre 150°C et 350°C.
16. Procédé selon l’une quelconque des revendications 11 à 15, caractérisé en ce qu’on réalise un renforcement mécanique du demi-produit mis en forme à chaud afin d’obtenir un écrouissage d’au moins une partie du demi-produit mis en forme à chaud, par des procédés tels que le galetage ou l’autofrettage.
PCT/EP2022/064945 2021-06-02 2022-06-01 Pièce en acier mise en forme à chaud et procédé de fabrication WO2022253912A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112023025290A BR112023025290A2 (pt) 2021-06-02 2022-06-01 Peça de aço conformada a quente e método de fabricação de uma peça de aço
US18/565,931 US20240254610A1 (en) 2021-06-02 2022-06-01 Hot-Formed Steel Part and Manufacturing Method
KR1020247000114A KR20240018573A (ko) 2021-06-02 2022-06-01 열간 성형 강철 부품 및 제조 방법
EP22731603.1A EP4347903A1 (fr) 2021-06-02 2022-06-01 Pièce en acier mise en forme à chaud et procédé de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105812A FR3123659A1 (fr) 2021-06-02 2021-06-02 Pièce en acier mise en forme à chaud et procédé de fabrication
FRFR2105812 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022253912A1 true WO2022253912A1 (fr) 2022-12-08

Family

ID=77710908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/064945 WO2022253912A1 (fr) 2021-06-02 2022-06-01 Pièce en acier mise en forme à chaud et procédé de fabrication

Country Status (6)

Country Link
US (1) US20240254610A1 (fr)
EP (1) EP4347903A1 (fr)
KR (1) KR20240018573A (fr)
BR (1) BR112023025290A2 (fr)
FR (1) FR3123659A1 (fr)
WO (1) WO2022253912A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820706A (en) * 1996-02-08 1998-10-13 Ascometal Process for manufacturing a forging
JPH11350074A (ja) * 1998-04-07 1999-12-21 Nippon Steel Corp ガス圧接性に優れたベイナイト系レール
WO2005100618A2 (fr) 2004-03-18 2005-10-27 Mittal Steel Gandrange Piece mecanique de taille moyenne ou petite issue de la forge ou de la frappe
EP1780293A2 (fr) 2005-10-28 2007-05-02 Saarstahl AG Procédure de fabrication de la matière brute de l'acier par déformer ä chaud
WO2009138586A2 (fr) 2008-05-15 2009-11-19 Arcelormittal Gandrange Acier micro-allié pour forge à chaud de pièces mécaniques à hautes caractéristiques
WO2011124851A2 (fr) 2010-04-07 2011-10-13 Ascometal Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication
EP3061838A1 (fr) 2015-02-27 2016-08-31 Swiss Steel AG Produit longitudinal bainitique nu et son procédé de fabrication
WO2016151345A1 (fr) 2015-03-23 2016-09-29 Arcelormittal Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
EP3378957A1 (fr) * 2017-03-23 2018-09-26 Ascometal France Holding SAS Acier, procédé pour la fabrication de pièces mécaniques en cet acier, et pièces ainsi fabriquées
WO2019180563A1 (fr) 2018-03-23 2019-09-26 Arcelormittal Pièce forgée en acier bainitique et son procédé de fabrication

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820706A (en) * 1996-02-08 1998-10-13 Ascometal Process for manufacturing a forging
EP0787812B1 (fr) 1996-02-08 2004-03-17 ASCOMETAL (Société anonyme) Procédé de fabrication d'une pièce forgée en acier
JPH11350074A (ja) * 1998-04-07 1999-12-21 Nippon Steel Corp ガス圧接性に優れたベイナイト系レール
WO2005100618A2 (fr) 2004-03-18 2005-10-27 Mittal Steel Gandrange Piece mecanique de taille moyenne ou petite issue de la forge ou de la frappe
EP1780293A2 (fr) 2005-10-28 2007-05-02 Saarstahl AG Procédure de fabrication de la matière brute de l'acier par déformer ä chaud
WO2009138586A2 (fr) 2008-05-15 2009-11-19 Arcelormittal Gandrange Acier micro-allié pour forge à chaud de pièces mécaniques à hautes caractéristiques
WO2011124851A2 (fr) 2010-04-07 2011-10-13 Ascometal Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication
EP3061838A1 (fr) 2015-02-27 2016-08-31 Swiss Steel AG Produit longitudinal bainitique nu et son procédé de fabrication
WO2016151345A1 (fr) 2015-03-23 2016-09-29 Arcelormittal Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
EP3378957A1 (fr) * 2017-03-23 2018-09-26 Ascometal France Holding SAS Acier, procédé pour la fabrication de pièces mécaniques en cet acier, et pièces ainsi fabriquées
WO2019180563A1 (fr) 2018-03-23 2019-09-26 Arcelormittal Pièce forgée en acier bainitique et son procédé de fabrication

Also Published As

Publication number Publication date
US20240254610A1 (en) 2024-08-01
KR20240018573A (ko) 2024-02-13
FR3123659A1 (fr) 2022-12-09
BR112023025290A2 (pt) 2024-02-27
EP4347903A1 (fr) 2024-04-10

Similar Documents

Publication Publication Date Title
EP2310546B1 (fr) Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
CA2607446C (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
EP1966407B1 (fr) Acier a ressorts, et procede de fabrication d&#39;un ressort utilisant cet acier, et ressort realise en un tel acier.
CA2847809C (fr) Acier lamine durcissant par precipitation apres formage a chaud et/ou trempe sous outil a tres haute resistance et ductilite et son procede de fabrication
EP2164998B1 (fr) Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
CA3001158C (fr) Acier, produit realise en cet acier, et son procede de fabrication
FR2847910A1 (fr) Procede de fabrication d&#39;une piece forgee en acier et piece ainsi obtenue.
FR2529231A1 (fr) Toles laminees a chaud en acier au titane a forte resistance a la traction et leur procede de fabrication
FR2757877A1 (fr) Acier et procede pour la fabrication d&#39;une piece en acier mise en forme par deformation plastique a froid
EP2556175A2 (fr) Pièce mécanique en acier à hautes caractéristiques et son procédé de fabrication
CA2984131A1 (fr) Acier, produit realise en cet acier, et son procede de fabrication
EP2957643A1 (fr) Acier pour pièces mécaniques à hautes caractéristiques traitées superficiellement, et pièces mécaniques en cet acier et leur procédé de fabrication
EP3274483B1 (fr) Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
EP2134882A2 (fr) Acier micro-allié à bonne tenue à l&#39;hydrogène pour le formage à froid de pièces mécaniques à hautes caractéristiques
EP3378957A1 (fr) Acier, procédé pour la fabrication de pièces mécaniques en cet acier, et pièces ainsi fabriquées
EP2257652B1 (fr) Procede de fabrication de tôles d&#39;acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues
WO2022253912A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
CA2843360C (fr) Acier pour la fabrication de pieces cementees, piece cementee realisee avec cet acier et son procede de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22731603

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 202317081528

Country of ref document: IN

Ref document number: 18565931

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025290

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247000114

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000114

Country of ref document: KR

Ref document number: 2022731603

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022731603

Country of ref document: EP

Effective date: 20240102

ENP Entry into the national phase

Ref document number: 112023025290

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231201