EP3274483B1 - Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication - Google Patents
Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication Download PDFInfo
- Publication number
- EP3274483B1 EP3274483B1 EP16718723.6A EP16718723A EP3274483B1 EP 3274483 B1 EP3274483 B1 EP 3274483B1 EP 16718723 A EP16718723 A EP 16718723A EP 3274483 B1 EP3274483 B1 EP 3274483B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- content
- composition
- expressed
- weight percent
- part according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 30
- 239000010959 steel Substances 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 23
- 229910001563 bainite Inorganic materials 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims description 14
- 239000010955 niobium Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 229910001566 austenite Inorganic materials 0.000 claims description 10
- 238000005496 tempering Methods 0.000 claims description 10
- 239000011651 chromium Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 239000011265 semifinished product Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 230000000694 effects Effects 0.000 description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000019589 hardness Nutrition 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention covers the manufacture of parts with high strength properties while being machinable, obtained from steels simultaneously having a good hot ductility for carrying out hot forming operations and hardenability such that it is not possible. no need to perform tempering and tempering operations to get the advertised properties.
- the invention relates more precisely to parts having, whatever the shape and complexity of the part, a mechanical strength greater than or equal to 1100 MPa, having a yield strength greater than or equal to 700 MPa, an elongation at break A greater than or equal to 12 and a necking with Z-breaking greater than 30%,
- each part, bar, any form, wire or complex piece obtained by hot forming process is defined as, for example, rolling, or forging with or without subsequent partial or total reheating operations. , thermal or thermochemical treatment and / or shaping with or without removal of material, or even with addition of material as for welding.
- hot forming of a steel is meant any process that modifies the primary form of a product by an operation which is carried out at a temperature of the material such that the crystalline structure of the steel is predominantly austenitic.
- micro-alloyed steels ferritic pearlitic structure with different levels of carbon have become widespread in recent decades and are very often used for all kinds of mechanical parts to obtain complex parts without heat treatment directly after hot forming.
- these steels now have their limits when designers claim mechanical properties exceeding 700 MPa yield strength and 1100 MPa mechanical strength, which often requires them to return to traditional solutions mentioned above.
- This method involves subjecting the workpiece to a heat treatment having a cooling from a temperature at which the steel is fully austenitic to a temperature Tm of between Ms + 100 D ° C and Ms-20 ° C at a temperature of cooling rate Vr greater than 0.5 ° C / s, followed by holding the workpiece between Tm and Tf, with Tf ⁇ Tm-100 ° C, and preferably Tf ⁇ Tm-60 ° C, for at least 2 minutes to obtain a structure comprising at least 15%, and preferably at least 30% of bainite formed between Tm and Tf.
- This technique requires many process steps that are detrimental to productivity. We also got to know the patent WO 2009/138586 .
- the object of the invention is to provide a forging process carried out so as to improve the machinability, by modifying the metallographic structure of the products subjected to the impact load in a fine ferrito-pearlitic structure without adopting the method of tempering and tempering, in order to obtain a limit of elasticity exceeding that obtained by the quenching and tempering process.
- the tensile strength (Rm) obtained is lower than that obtained by the tempering and tempering process.
- This method also has the disadvantage of requiring many process steps that complicate the manufacturing process.
- the absence of precise elements of chemical composition can lead to the use of a chemical composition that is unsuitable for applications of forgings that are detrimental to weldability, machinability or even toughness.
- the object of the present invention is to solve the problems mentioned above. It aims to provide a steel for hot formed parts with high strength properties, simultaneously having a mechanical strength and a deformation capacity for carrying out hot forming operations.
- the invention more specifically relates to steels having a mechanical strength greater than or equal to 1100 MPa (ie a hardness greater than or equal to 300 Hv), having a yield strength greater than or equal to 700 MPa, and a higher breaking elongation or equal to 12%, with a failure greater than 30%.
- the invention also aims to provide a steel with an ability to be produced in a robust manner that is to say without large variations in properties depending on the manufacturing parameters and machinable with commercially available tools without loss of strength. productivity during implementation.
- the subject of the invention is a part according to claims 1 to 12 and a part manufacturing method according to claim 13.
- the chemical composition in percentage by weight, must be the following:
- the carbon content is between 0.10 and 0.30%. If the carbon content is below 0.10% by weight, there is a risk of forming pro-eutectoid ferrite and insufficient mechanical strength. Beyond 0.30%, the weldability becomes more and more reduced because it is possible to form low-tenacity microstructures in the heat-affected zone (ZAT) or in the melted zone. Within this range, the weldability is satisfactory, and the mechanical properties are stable and consistent with the targets of the invention. According to a preferred embodiment, the carbon content is between 0.15 and 0.27% and preferably between 0.17 and 0.25%.
- the manganese is between 1.6 and 2.1% and preferably between 1.7% and 2.0%. It is a hardening element with solid solution of substitution, it stabilizes the austenite and lowers the transformation temperature Ac3. Manganese therefore contributes to an increase in mechanical strength. A minimum content of 1.6% by weight is necessary to obtain the desired mechanical properties. However, beyond 2.1%, its gammagenic character leads to a significant slowing down of the bainitic transformation kinetics occurring during final cooling and the bainite fraction would be insufficient to achieve a yield strength greater than or equal to 700 MPa. . This combines a satisfactory mechanical strength without increasing the risk of decreasing the bainite fraction and thus reducing the yield strength, nor increasing the quenchability in welded alloys, which would adversely affect the weldability of steel according to the invention.
- the chromium content should be between 0.5% and 1.7% and preferably between 1.0 and 1.5%.
- This element makes it possible to control the formation of ferrite on cooling from a completely austenitic structure, because this ferrite, in a large quantity, reduces the mechanical strength required for the steel according to the invention.
- This element also makes it possible to harden and refine the bainitic microstructure, which is why a minimum content of 0.5% is necessary.
- this element considerably slows down the kinetics of the bainitic transformation, so, for contents above 1.7%, the bainite fraction may be insufficient to reach a yield strength greater than or equal to 700 MPa.
- a range of chromium content of between 1.0% and 1.5% is chosen to refine the bainitic microstructure.
- the silicon must be between 0.5 and 1.0%. In this range, the residual austenite stabilization is made possible by the addition of silicon which considerably slows the precipitation of carbides during bainitic transformation. This has been corroborated by the inventors who have noted that the bainite of the invention is virtually free of carbides. This is because the solubility of silicon in cementite is very low and this element increases carbon activity in austenite. Any formation of cementite will therefore be preceded by a step of rejection of Si at the interface. The enrichment of the austenite carbon, therefore leads to its stabilization at room temperature on the steel according to this first embodiment.
- the application of an external stress at a temperature below 200 ° C may lead to the transformation of part of this austenite in martensite. This transformation will result in increasing the yield point.
- the minimum silicon content should be set at 0.5% by weight to achieve the stabilizing effect on the austenite and retard carbide formation.
- the silicon is less than 0.5%, the elastic limit does not reach the required minimum of 700 MPa.
- an addition of silicon in an amount greater than 1.0% will induce an excess of residual austenite which will reduce the yield strength.
- the silicon content will be between 0.75 and 0.9% in order to optimize the aforementioned effects.
- the niobium should be between 0.065% and 0.15%. It is a micro-alloy element which has the particularity of forming hardening precipitates with carbon and / or nitrogen. It also makes it possible to delay the bainitic transformation, in synergy with the micro-alloy elements such as boron and molybdenum present in the invention.
- the niobium content must nevertheless be limited to 0.15% to avoid the formation of large precipitates which may be crack initiation sites and to avoid the problems of loss of hot ductility associated with a possible intergranular precipitation of nitrides.
- the niobium content must be greater than or equal to 0.065% which, combined with titanium, makes it possible to have a stabilizing effect on the final mechanical properties, ie a lower sensitivity to the speed of cooling. Indeed, it can form mixed carbonitrides with titanium and remain stable at relatively high temperatures, which makes it possible to avoid the abnormal magnification of the grains at high temperature, or even allowing sufficiently high refinement of the austenitic grain.
- the maximum content of Nb is in the range 0.065% and 0.110% to optimize the aforementioned effects.
- the titanium content should be such that 0.010 ⁇ Ti ⁇ 0.1%.
- a content maximum of 0.1% is tolerated, above titanium will have the effect of increasing the price and generate harmful precipitates for fatigue resistance and machinability.
- a minimum of 0.010% is required to control the austenitic grain size and to protect the boron from nitrogen.
- a range of titanium content of between 0.020% and 0.03% is chosen.
- the boron content should be between 10 ppm (0.0010%) and 50 ppm (0.0050%).
- This element makes it possible to control the formation of ferrite on cooling from a completely austenitic structure, because this ferrite, in a large quantity, would reduce the mechanical strength and the elastic limit targeted by the invention. This is a soaking element.
- a minimum content of 10 ppm is necessary to avoid the formation of ferrite during natural cooling, so generally below 2 ° C / s for the types of parts covered by the invention.
- above 50 ppm boron will have the effect of forming iron borides that may be harmful to ductility.
- a range of boron content of between 20 ppm and 30 ppm is chosen to optimize the above-mentioned effects.
- the nitrogen content should be between 10 ppm (0.0010%) and 130 ppm (0.0130%).
- a minimum content of 10 ppm is required to form the abovementioned carbonitrides.
- the nitrogen may cause the bainitic ferrite to become too hard to harden, with possible reduction in the resilience of the finished part.
- a range of nitrogen content between 50 ppm and 120 ppm is chosen to optimize the aforementioned effects.
- the aluminum content must be less than or equal to 0.050% and preferably less than or equal to 0.040%, or even less than or equal to 0.020%.
- the Al content is such that 0.003% ⁇ Al ⁇ 0.015%. This is a residual element whose content we wish to limit.
- High levels of aluminum are considered to increase erosion of refractories and the risk of clogging of the nozzles during steel casting.
- aluminum segregates negatively and, it can lead to macro-segregations.
- aluminum can reduce hot ductility and increase the risk of defects in continuous casting. Without a strong control of the casting conditions, the defects of the micro and macro segregation type ultimately give rise to segregation on the forged part.
- This band structure consists of alternating bainitic strips with different hardnesses which can adversely affect the formability of the material.
- the molybdenum content must be less than or equal to 1.0%, preferably less than or equal to 0.5%. Preferably, a molybdenum content range of between 0.03 and 0.15% is chosen. Its presence is favorable for the formation of bainite by synergistic effect with boron and niobium. It thus makes it possible to guarantee the absence of pro-eutectoid ferrite at the grain boundaries. Beyond a content of 1.0%, it promotes the appearance of martensite is not sought.
- the nickel content must be less than or equal to 1.0%. A maximum level of 1.0% is tolerated, above the nickel will have the effect of increasing the price of the proposed solution, which may reduce its viability from an economic point of view.
- a range of nickel content between 0 and 0.55% is chosen.
- the vanadium content must be less than or equal to 0.3%. A maximum content of 0.3% is tolerated, above vanadium will have the effect of increasing the price of the solution and affect the resilience.
- a vanadium content range of between 0 and 0.2% is selected.
- Sulfur can be at different levels depending on the desired machinability. There will always be a small quantity because it is a residual element whose value can not be reduced to an absolute zero, but it can also be added voluntarily. A lower S content will be aimed if the desired fatigue properties are very high. In general, we will target between 0.015 and 0.04%, knowing that it is possible to add up to 0.1% to improve machinability. Alternatively, it is also possible to add in combination with sulfur one or more elements selected from tellurium, selenium, lead and bismuth in amounts of less than or equal to 0.1% for each element.
- the phosphorus must be less than or equal to 0.050% and preferably less than or equal to 0.025%. It is an element that hardens in solid solution but significantly reduces weldability and hot ductility, especially due to its ability to segregate at grain boundaries or its tendency to co-segregate with manganese. For these reasons, its content should be limited to 0.025% in order to obtain good weldability.
- the copper content must be less than or equal to 0.5%. A maximum content of 0.5% is tolerated because above the copper will have the effect of reducing the fitness of the product.
- the rest of the composition consists of iron and unavoidable impurities resulting from the elaboration, such as for example arsenic or tin.
- the criterion S1 is correlated with the robustness of the mechanical properties compared to the variations of cooling conditions in general and in the face of Vr600 variations in particular.
- the respect of the value ranges of this criterion thus makes it possible to guarantee a very low sensitivity of the grade to the manufacturing conditions.
- 0.200 ⁇ S1 ⁇ 0.4 0.200 ⁇ S1 ⁇ 0.4, which further improves the robustness.
- the criteria S2 to S4 are correlated with obtaining a predominantly bainitic structure with more than 70% for the grades according to the invention, thus making it possible to guarantee the attainment of the intended mechanical properties.
- the heat treatment of income is carried out to ensure the obtaining of very good properties of the parts after cooling.
- the chemical compositions of the steels used in the tests were collated in Table 1.
- the reheating temperature of these grades was 1250 ° C.
- the end temperature of hot shaping was 1220 ° C.
- the cooling rates Vr600 and Vr400 are shown in Table 2.
- the parts were cooled between 380 and ambient temperature to 0.15 ° C / s and then machined.
- the conditions for carrying out the tests and the results of the characterization measurements have been compiled in Table 2.
- FIG 1 shows the variation of the mechanical strength at break Rm as a function of cooling speed Vr600 for grades A and B.
- figure 2 shows the variation of the elastic limit Re as a function of the cooling rate Vr600 for the grades A and B.
- the grade according to the invention has a high stability of its mechanical properties when the cooling conditions vary.
- the grade is therefore much more robust to variations in process conditions than grades according to the prior art.
- figure 3 shows the delta of the mechanical strength at break Rm according to criterion S1 for grades A, B and C.
- figure 4 shows the delta of the elastic limit Re according to criterion S1 for grades A, B and C.
- the invention will notably be used with advantage for the manufacture of hot formed parts and in particular, hot forged, for applications in land motor vehicles. It also finds applications in the manufacture of parts for boats or in the field of construction, in particular for the manufacture of screw bars for formwork.
- the invention can be implemented for the manufacture of all types of parts requiring to achieve the properties referred to
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
- La présente invention couvre la fabrication de pièces à hautes propriétés de résistance tout en étant usinables, obtenues à partir d'aciers présentant simultanément une bonne ductilité à chaud permettant de réaliser des opérations de formage à chaud et une trempabilité telle qu'il n'est pas utile de réaliser des opérations de trempe et revenu pour obtenir les propriétés annoncées.
- L'invention concerne plus précisément des pièces présentant, quelle que soit la forme et la complexité de la pièce, une résistance mécanique supérieure ou égale à 1100 MPa, présentant une limite d'élasticité supérieure ou égale à 700 MPa, un allongement à rupture A supérieur ou égal à 12 et une striction à rupture Z supérieure à 30%,
- Dans le cadre de la présente invention, on définit par pièce, barres toutes formes, fils ou pièces complexes obtenues par procédé de mise en forme à chaud comme, par exemple, le laminage, ou forgeage avec ou sans opérations ultérieures de réchauffage partiel ou total, de traitement thermique ou thermochimique et/ou de mise en forme avec ou sans enlèvement de matière, voire avec ajout de matière comme pour le soudage.
- On entend par mise en forme à chaud d'un acier tout procédé qui modifie la forme première d'un produit par une opération qui se réalise à une température de la matière telle que la structure cristalline de l'acier est majoritairement austénitique.
- La forte demande de réduction d'émissions de gaz à effet de serre, associée à la croissance des exigences de sécurité automobile et les prix du carburant ont poussé les constructeurs de véhicules terrestres à moteur à rechercher des matériaux présentant une résistance mécanique élevée. Cela permet de réduire le poids de ces pièces tout en maintenant ou en augmentant les performances de résistance mécanique.
- Pour obtenir de très hautes caractéristiques mécaniques, les solutions traditionnelles en acier existent depuis très longtemps. Elles contiennent des éléments d'alliage en plus ou moins grande quantité associés à des traitements thermiques de type austénitisation à une température supérieure à AC1, suivie d'une trempe dans un fluide de type huile, polymère voire de l'eau et en général d'un revenu à une température inférieure à Ar3. Certains inconvénients associés à ces aciers et aux traitements nécessaires pour obtenir les propriétés demandées peuvent être d'ordre économique (coût des alliages, coût des traitements thermiques), environnemental (énergie dépensée pour la ré-austénitisation, dispersée par la trempe, traitement des bains de trempe), ou géométrique (déformation des pièces complexes). Dans cette perspective, les aciers permettant d'obtenir une résistance relativement élevée, juste après la mise en forme à chaud, prennent une importance grandissante. Il a ainsi été proposé, dans le temps, plusieurs familles d'aciers offrant divers niveaux de résistance mécanique, comme par exemple les aciers micro-alliés à structure ferrito perlitique à différentes teneurs en Carbone pour obtenir plusieurs niveaux de résistance. Ces aciers micro-alliés ferrito perlitiques se sont largement répandus dans les dernières décennies et sont très souvent utilisés pour toutes sortes de pièces mécaniques pour obtenir des pièces complexes sans traitement thermique directement après mise en forme à chaud. Bien que très performants, ces aciers voient maintenant leurs limites lorsque les concepteurs réclament des propriétés mécaniques dépassant les 700 MPa de limite élastique et les 1100 MPa de résistance mécanique, ce qui les oblige souvent à revenir à des solutions traditionnelles évoquées plus haut.
- En outre, en fonction de l'épaisseur et de la forme des pièces, il peut être difficile de garantir une homogénéité satisfaisante des propriétés, en raison notamment de l'hétérogénéité des vitesses de refroidissement qui impacte la microstructure.
- Afin de répondre à cette demande de véhicules de plus en plus légers, tout en conservant les avantages économiques et environnementaux des aciers micro-alliés à matrice ferrito perlitique, il est donc nécessaire d'avoir des aciers de plus en plus résistants, obtenus directement après les opérations de mise en forme à chaud. Cependant, il est connu que dans le domaine des aciers au carbone, une augmentation de la résistance mécanique s'accompagne généralement d'une perte de ductilité et d'une perte d'usinabilité. En outre, les constructeurs de véhicules terrestres à moteur définissent des pièces de plus en plus complexes qui nécessitent des aciers présentant des niveaux élevés de résistance mécanique , de résistance à la fatigue, de ténacité, de formabilité, et d'usinabilité.
- On a pu prendre connaissance du brevet
EP0787812 décrivant un procédé pour la fabrication de pièces forgées dont la composition chimique comprend, en poids:0,1%≤C≤0,4% ;1%≤Mn≤1,8% ; 1,2%≤Si≤1,7% ; 0%≤Ni≤1% ; 0%≤Cr≤1,2% ;0 %≤Mo≤0,3% ; 0%≤V≤0,3% ;Cu ≤ 0,35% éventuellement de 0,005% à 0,06% d'aluminium, éventuellement du bore en des teneurs comprises entre 0,0005% et 0,01%, éventuellement entre 0,005% et 0,03% de titane, éventuellement entre 0,005% et 0,06% de niobium, éventuellement de 0,005% à 0,1% de soufre, éventuellement jusqu'à 0,006% de calcium, éventuellement jusqu'à 0,03% de tellure, éventuellement jusqu'à 0,05% de sélénium, éventuellement jusqu'à 0,05% de bismuth, éventuellement jusqu'à 0,1% de plomb, le reste étant du fer et des impuretés résultant de l'élaboration. Ce procédé impliquant que l'on soumette la pièce à un traitement thermique comportant un refroidissement depuis une température à laquelle l'acier est entièrement austénitique jusqu'à une température Tm comprise entre Ms+100 D°C et Ms-20 °C à une vitesse de refroidissement Vr supérieure à 0,5 °C/s, suivi d'un maintien de la pièce entre Tm et Tf, avec Tf ≥ Tm-100 °C, et de préférence Tf ≥ Tm-60 °C, pendant au moins 2 minutes de façon à obtenir une structure comportant au moins 15%, et de préférence, au moins 30% de bainite formée entre Tm et Tf. Cette technique nécessite de nombreuses étapes de procédé nuisibles à la productivité. On a aussi pu prendre connaissance du brevetWO 2009/138586 . - D'autre part, on a connaissance de la demande
EP1201774 dont l'objectif de l'invention est de fournir un procédé de forgeage réalisé de manière à améliorer l'usinabilité, en modifiant la structure métallographique des produits soumis à la charge d'impact en une structure ferrito-perlitique fine sans adopter la méthode de trempe et revenu, et ce afin d'obtenir une limite d'élasticité excédant celle obtenue par le procédé de trempe et revenu. La résistance à la traction (Rm) obtenue est inférieure à celle obtenu par le procédé de trempe et revenu. Cette méthode présente elle aussi l'inconvénient de nécessiter de nombreuses étapes de procédé complexifiant le procédé de fabrication. En outre l'absence d'éléments précis de composition chimique peut mener à l'utilisation d'une composition chimique inadaptée pour des applications de pièces forgées car nuisibles à la soudabilité, l'usinabilité voire la ténacité. - Le but de la présente invention est de résoudre les problèmes évoqués ci-dessus. Elle vise à mettre à disposition un acier pour pièces mises en forme à chaud à hautes propriétés de résistance, présentant simultanément une résistance mécanique et une capacité de déformation permettant de réaliser des opérations de mise en forme à chaud. L'invention concerne plus précisément des aciers présentant une résistance mécanique supérieure ou égale à 1100 MPa (soit une dureté supérieure ou égale à 300 Hv), présentant une limite d'élasticité supérieure ou égale à 700 MPa, et un allongement à rupture supérieur ou égal à 12%, avec une striction à rupture supérieure à 30%. L'invention vise également à mettre à disposition un acier avec une aptitude à être produit de manière robuste c'est-à-dire sans grandes variations de propriétés en fonction des paramètres de fabrication et usinable avec des outils disponibles dans le commerce sans perte de productivité pendant la mise en oeuvre.
- A cet effet, l'invention a pour objet une pièce selon les revendications 1 à 12 et un procédé de fabrication de pièce selon la revendication 13.
- D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donné à titre d'exemple non limitatif.
- Dans le cadre de l'invention, la composition chimique, en pourcentage en poids, doit être la suivante :
La teneur en carbone est comprise entre 0,10 et 0,30%. Si la teneur en carbone est en-dessous de 0,10 % en poids, il y a un risque de former de la ferrite pro-eutectoide et d'obtenir une résistance mécanique insuffisante. Au-delà de 0,30%, la soudabilité devient de plus en plus réduite car on peut former des microstructures de faible ténacité dans la Zone Affectée Thermiquement (ZAT) ou dans la zone fondue Au sein de cette plage, la soudabilité est satisfaisante, et les propriétés mécaniques sont stables et conformes aux cibles visées par l'invention. Selon un mode de réalisation préféré, la teneur en carbone est comprise entre 0,15 et 0,27% et de préférence entre 0,17 et 0,25%. - Le manganèse est compris entre 1,6 et 2,1% et de préférence compris entre 1,7% et 2,0%. C'est un élément durcissant par solution solide de substitution, il stabilise l'austénite et abaisse la température de transformation Ac3. Le manganèse contribue donc à une augmentation de la résistance mécanique. Une teneur minimale de 1,6% en poids est nécessaire pour obtenir les propriétés mécaniques désirées. Cependant, au-delà de 2,1%, son caractère gammagène conduit à un ralentissement significatif de la cinétique de transformation bainitique ayant lieu lors refroidissement final et la fraction de bainite serait insuffisante pour atteindre une résistance d'élasticité supérieure ou égale à 700 MPa. On combine ainsi une résistance mécanique satisfaisante sans accroître le risque de diminuer la fraction de bainite et donc de diminuer la limite d'élasticité, ni d'augmenter la trempabilité dans les alliages soudés, ce qui nuirait à la capacité au soudage de l'acier selon l'invention.
- La teneur en chrome doit être comprise entre 0,5% et 1,7% et de préférence entre 1,0 et 1,5%. Cet élément permet de contrôler la formation de ferrite au refroidissement à partir d'une structure entièrement austénitique, car cette ferrite, en quantité élevée diminue la résistance mécanique nécessaire à l'acier selon l'invention. Cet élément permet en outre de durcir et d'affiner la microstructure bainitique, c'est pourquoi une teneur minimale de 0,5% est nécessaire. Cependant, cet élément ralentit considérablement la cinétique de la transformation bainitique, ainsi, pour des teneurs supérieures à 1,7 %, la fraction de bainite risque d'être insuffisante pour atteindre une limite d'élasticité supérieure ou égale à 700 MPa. A titre préférentiel on choisit un intervalle de teneur en chrome compris entre 1,0% et 1,5% pour affiner la microstructure bainitique.
- Le silicium doit être compris entre 0,5 et 1,0%. Dans cette fourchette, la stabilisation d'austénite résiduelle est rendue possible par l'addition de silicium qui ralentit considérablement la précipitation des carbures lors de la transformation bainitique. Ceci a été corroboré par les inventeurs qui ont noté que la bainite de l'invention est quasiment exempte de carbures. Ceci provient du fait que la solubilité du silicium dans la cémentite est très faible et que cet élément augmente l'activité du carbone dans l'austénite. Toute formation de cémentite sera donc précédée d'une étape de rejet de Si à l'interface. L'enrichissement de l'austénite en carbone, mène donc à sa stabilisation à la température ambiante sur l'acier selon ce premier mode de réalisation. Par la suite, l'application d'une contrainte extérieure à une température inférieure à 200°C par exemple, de mise en forme ou de sollicitation mécanique de type écrouissage ou de type fatigue, peut conduire à la transformation d'une partie de cette austénite en martensite. Cette transformation aura pour résultat d'augmenter la limite élastique. La teneur minimale en silicium doit être fixée à 0,5% en poids pour obtenir l'effet stabilisant sur l'austénite et retarder la formation des carbures. En outre, on observe que, si le silicium est inférieur à 0,5%, la limite d'élasticité n'atteint pas le minimum requis de 700 MPa. Par ailleurs, une addition de silicium en quantité supérieure à 1,0% va induire un excès d'austénite résiduelle ce qui va diminuer la limite d'élasticité. De manière préférentielle, la teneur en silicium sera comprise entre 0,75 et 0,9% afin d'optimiser les effets susmentionnés.
- Le niobium doit être compris entre 0,065% et 0,15%. C'est un élément de micro-alliage qui a la particularité de former des précipités durcissants avec le carbone et/ou l'azote. Il permet en outre de retarder la transformation bainitique, en synergie avec les éléments de micro-alliage comme le bore et le molybdène présents dans l'invention. La teneur en niobium doit néanmoins être limitée à 0,15% pour éviter la formation de précipités de grande taille qui peuvent être des sites d'amorçage de fissures et pour éviter les problèmes de perte de ductilité à chaud associés à une précipitation intergranulaire éventuelle de nitrures. En outre, la teneur en niobium doit être supérieure ou égale à 0,065% ce qui, combiné avec le Titane, permet d'avoir un effet stabilisant sur les propriétés mécaniques finales, c'est-à-dire une moindre sensibilité à la vitesse de refroidissement. En effet, il peut former des carbonitrures mixtes avec le Titane et rester stable à des températures relativement élevées, ce qui permet d'éviter le grossissement anormal des grains à haute température, voire ce qui permet un affinement suffisamment important du grain austénitique. Préférentiellement la teneur maximale en Nb est comprise dans la gamme 0,065 % et 0,110% pour optimiser les effets susmentionnés.
- La teneur en titane doit être telle que 0,010 < Ti < 0,1 %. Une teneur maximale de 0,1 % est tolérée, au dessus le titane aura pour effet d'augmenter le prix et de générer des précipités nocifs pour la tenue en fatigue et l'usinabilité. Une teneur minimale de 0,010% est nécessaire pour contrôler la taille de grain austénitique et pour protéger le bore de l'azote. A titre préférentiel, on choisit un intervalle de teneur en titane compris entre 0,020% et 0,03%.
- La teneur en bore doit être comprise entre 10 ppm (0,0010%) et 50 ppm (0,0050%). Cet élément permet de contrôler la formation de ferrite au refroidissement à partir d'une structure entièrement austénitique, car cette ferrite, en quantité élevée diminuerait la résistance mécanique et la limite élastique visées par l'invention. Il s'agit d'un élément trempant. Une teneur minimale de 10 ppm est nécessaire pour éviter la formation de ferrite lors du refroidissement naturel donc en général inférieur à 2°C/s pour les types de pièces visées par l'invention. Cependant, au dessus de 50 ppm le bore aura pour effet de former des Borures de fer qui peuvent être néfastes pour la ductilité. A titre préférentiel on choisit un intervalle de teneur en bore compris entre 20 ppm et 30 ppm pour optimiser les effets susmentionnés.
- La teneur en azote doit être comprise entre 10 ppm (0,0010%) et 130 ppm (0,0130%). Une teneur minimale de 10 ppm est nécessaire pour former les carbonitrures sus mentionnés. Cependant, au dessus de 130 ppm l'azote pourra avoir pour effet un durcissement trop élevé de la ferrite bainitique, avec diminution possible de la résilience de la pièce finie. A titre préférentiel, on choisit un intervalle de teneur en azote compris entre 50 ppm et 120 ppm pour optimiser les effets susmentionnés.
- La teneur en aluminium doit être inférieure ou égale à 0,050% et de préférence inférieure ou égale à 0,040%, voire inférieure ou égale à 0,020%. A titre préférentiel, la teneur en Al est telle que 0,003 % ≤ Al ≤ 0,015%. Il s'agit d'un élément résiduel dont on souhaite limiter la teneur. On considère que des teneurs élevées en aluminium accroissent l'érosion des réfractaires et le risque de bouchage des busettes lors de la coulée de l'acier. De plus l'aluminium ségrége négativement et, il peut mener à des macro-ségrégations. En quantité excessive, l'aluminium peut diminuer la ductilité à chaud et augmenter le risque d'apparition de défauts en coulée continue. Sans un contrôle poussé des conditions de coulée, les défauts de type micro et macro ségrégation donnent, in fine, une ségrégation sur la pièce forgée. Cette structure en bandes est constituée d'alternance de bandes bainitiques avec des duretés différentes ce qui peut nuire à la formabilité du matériau.
- La teneur en molybdène doit être inférieure ou égale à 1,0 %, de préférence inférieure ou égale à 0,5%. A titre préférentiel on choisit un intervalle de teneur en molybdène compris entre 0,03 et 0,15%. Sa présence est favorable à la formation de la bainite par effet de synergie avec le bore et le niobium. Il permet ainsi de garantir l'absence de ferrite pro-eutectoide aux joints de grains. Au-delà d'une teneur de 1,0%, il favorise l'apparition de martensite qui n'est pas recherchée.
- La teneur en nickel doit être inférieure ou égale à 1,0%. Une teneur maximale de 1,0% est tolérée, au dessus le nickel aura pour effet d'augmenter le prix de la solution proposée, ce qui risque de diminuer sa viabilité d'un point de vue économique. A titre préférentiel on choisit un intervalle de teneur en nickel compris entre 0 et 0,55%.
- La teneur en vanadium doit être inférieure ou égale à 0,3%. Une teneur maximale de 0,3% est tolérée, au dessus le vanadium aura pour effet d'augmenter le prix de la solution et d'affecter la résilience. A titre préférentiel, dans cette invention, on choisit un intervalle de teneur en vanadium compris entre 0 et 0,2%.
- Le soufre peut être à différents niveaux selon l'usinabilité recherchée. Il y en aura toujours en faible quantité car c'est un élément résiduel dont on ne peut réduire la valeur à un zéro absolu, mais il peut aussi être ajouté volontairement. On visera une teneur en S moindre si les propriétés de fatigue recherchées sont très élevées. D'une façon générale, on visera entre 0,015 et 0,04%, sachant qu'il est possible d'en ajouter jusqu'à 0,1% pour améliorer l'usinabilité. En variante, il est également possible d'ajouter en combinaison avec le soufre un ou plusieurs éléments choisis parmi le tellure, le sélénium, le plomb et le bismuth dans des quantités inférieures ou égales à 0,1% pour chaque élément.
- Le phosphore doit être inférieur ou égale à 0,050% et de préférence inférieur ou égal à 0,025%. C'est un élément qui durcit en solution solide mais qui diminue considérablement la soudabilité et la ductilité à chaud, particulièrement en raison de son aptitude à la ségrégation aux joints de grains ou à sa tendance à la co-ségrégation avec le manganèse. Pour ces raisons, sa teneur doit être limitée à 0,025% afin d'obtenir une-bonne aptitude au soudage.
- La teneur en cuivre doit être inférieure ou égale à 0,5%. Une teneur maximale de 0,5% est tolérée, car au dessus le cuivre aura pour effet de diminuer l'aptitude à la mise en forme du produit.
- Le reste de la composition est constitué de fer et d'impuretés inévitables résultant de l'élaboration, telles que par exemple l'arsenic ou l'étain.
-
- S1= Nb + V + Mo + Ti + Al
- S2= C + N +Cr/2+(S1)/6 + (Si + Mn - 4 * S) /10 + Ni/20
- S3= S2 + 1/3 x Vr600
- S4 = S3 - Vr400
- Comme on le verra dans les essais décrits ci-dessous, le critère S1 est corrélé avec la robustesse des propriétés mécaniques face aux variations de conditions de refroidissement en général et face aux variations de Vr600 en particulier. Le respect des fourchettes de valeur de ce critère permet donc de garantir une très faible sensibilité de la nuance aux conditions de fabrication. Dans un mode de réalisation préféré, 0,200 ≤ S1 ≤ 0,4, ce qui permet d'améliorer encore la robustesse.
- D'autre part, les critères S2 à S4 sont corrélés avec l'obtention d'une structure majoritairement bainitique à plus de 70% pour les nuances selon l'invention, permettant ainsi de garantir l'atteinte des propriétés mécaniques visées.
- Selon l'invention, la microstructure de l'acier peut contenir, en proportion surfaciques après le refroidissement final :
- de la bainite en une teneur comprise entre 70 et 100%. Dans le cadre de la présente invention, on entend par bainite, une bainite comprenant moins de 5% en surface de carbures et dont la phase inter-lattes est de l'austénite.
- de l'austénite résiduelle en une teneur inférieure ou égale à 30%
- de la ferrite en une teneur inférieure à 5%. En particulier, si la teneur en ferrite est supérieure à 5%, l'acier selon l'invention présentera une résistance mécanique inférieure aux 1100 MPa visés.
- L'acier selon l'invention pourra être fabriqué par le procédé décrit ci-dessous :
- on approvisionne un acier de composition selon l'invention sous forme de bloom, de billette de section carrée rectangle ou ronde, ou sous forme de lingot, puis
- on lamine cet acier sous forme de demi-produit, sous forme de barre ou de fil puis
- on porte le demi-produit à une température de réchauffage (Trech) comprise entre 1100°C et 1300°C pour obtenir un demi-produit réchauffé, puis
- on met en forme à chaud le demi-produit réchauffé, la température de fin de mise en forme à chaud étant supérieure ou égale à 850°C pour obtenir une pièce formée à chaud, puis,
- on refroidit ladite pièce formée à chaud jusqu'à atteindre une température comprise entre 620 et 580°C à une vitesse de refroidissement Vr600 comprise entre 0,10 °C/s et 10 °C/s puis
- on refroidit ladite pièce jusqu'à atteindre une température comprise entre 420 et 380°C à une vitesse de refroidissement Vr400 inférieure à 4°C/s, puis
- on refroidit la pièce entre 380 °C et 300°C à une vitesse inférieure ou égale à 0,3 °C/s, puis
- on refroidit la pièce jusqu'à la température ambiante à une vitesse inférieure ou égale à 4°C/s, puis,
- on fait éventuellement subir un traitement thermique de revenu à ladite pièce formée à chaud et refroidie jusqu'à l'ambiante, à une température de revenu comprise entre 300 °C et 450°C pendant une durée comprise entre 30 minutes et 120 minutes, puis
- on réalise l'usinage des pièces.
- Dans un mode de réalisation préféré, on réalise le traitement thermique de revenu afin de garantir l'obtention de très bonnes propriétés des pièces après refroidissement.
- Pour mieux illustrer l'invention, des essais ont été réalisés sur trois nuances.
- Les compositions chimiques des aciers utilisés lors des tests ont été rassemblées dans le tableau 1. La température de réchauffage de ces nuances a été de 1250°C. La température de fin de mise en forme à chaud a été de 1220°C. Les vitesses de refroidissement Vr600 et Vr400 sont indiquées dans le tableau 2. Les pièces ont été refroidies entre 380 et la température ambiante à 0,15°C/s puis usinées. Les conditions de réalisation des essais et les résultats des mesures de caractérisation ont été rassemblés dans le tableau 2.
Tableau 1 Nuance C Si Mn P S Al B Cr Cu Mo N Ni Sn Ti V Nb S1 A 0,183 0,758 1,756 0,002 0,031 0,032 0,0027 1,437 0,001 0,072 0,0090 0,027 0,003 0,030 0,001 0,110 0,245 B 0,183 0,796 1,699 0,013 0,029 0,019 0,0028 1,644 0,001 0,070 0,0089 0,026 0,003 0,027 0,001 0,060 0,177 C 0,178 0,764 1,769 0,005 0,021 0,007 0,0024 1,165 0,006 0,056 0,0059 0,006 0,003 0,023 0,001 0,050 0,137 Tableau 2 Essai Nuance Vr600 (°C/s) Vr400 (°C/s) S2 S3 S4 Microstructure Rm (MPa) Re (MPa) A% Z% Re/Rm ΔRm ΔRe 1 A 0,80 0,18 1,192 1,458 1,278 100% bainite 1215 916 15,2 51,1 0,75 2 A 0,22 0,10 1,192 1,265 1,165 100% bainite 1172 906 14,9 46,3 0,77 43 10 3 B 0,80 0,18 1,283 1,549 1,369 bainite + < 5% de martensite 1319 1036 14,9 52,2 0,79 4 B 0,22 0,10 1,283 1,356 1,256 bainite + < 5% de martensite 1220 932 13,4 42,9 0,76 99 104 5 C 0,80 0,18 1,034 1,301 1,121 100% bainite 1165 883 14,8 48,1 0,76 6 C 0,22 0,10 1,034 1,108 1,008 100% bainite 1042 749 16,7 42,7 0,72 123 134 - Les résultats de ces essais ont été représentés graphiquement sous forme de 4 figures. La
figure 1 montre la variation de la résistance mécanique à la rupture Rm en fonction de la vitesse de refroidissement Vr600 pour les nuances A et B. Lafigure 2 montre la variation de la limite élastique Re en fonction de la vitesse de refroidissement Vr600 pour les nuances A et B. - On constate que la nuance selon l'invention présente une grande stabilité de ses propriétés mécaniques lorsque les conditions de refroidissement varient. La nuance est donc beaucoup plus robuste face aux variations de conditions de procédé que les nuances selon l'art antérieur.
- Par ailleurs, la
figure 3 montre le delta de la résistance mécanique à la rupture Rm en fonction du critère S1 pour les nuances A, B et C. De même, lafigure 4 montre le delta de la limite élastique Re en fonction du critère S1 pour les nuances A, B et C. - On constate que la sensibilité aux conditions de refroidissement est d'autant plus faible que la valeur de S1 est élevée.
- L'invention sera notamment utilisée avec profit pour la fabrication de pièces formées à chaud et en particulier, forgées à chaud, pour applications dans les véhicules terrestres à moteur. Elle trouve également des applications dans la fabrication de pièces pour bateaux ou dans le domaine de la construction, notamment pour la fabrication de barres vissables pour coffrages.
- D'une façon générale, l'invention pourra être mise en oeuvre pour la fabrication de tous types de pièces nécessitant d'atteindre les propriétés visées
Claims (16)
- Pièce dont la composition comprend, les teneurs étant exprimées en pourcentage en poids,
- Pièce selon la revendication 2, dont les teneurs en carbone, azote, chrome, silicium, manganèse, soufre et nickel sont telles que :avec S2= C + N +Cr/2+(S1)/6+(Si + Mn - 4 * S) /10 + Ni/20S3= S2 + 1/3 x Vr600S4 = S3 - Vr400Vr400 et Vr600 étant exprimées en °C/s, Vr400 représentant la vitesse de refroidissement de la pièce dans l'intervalle de température entre 420 et 380°C et Vr600 représentant la vitesse de refroidissement de la pièce dans l'intervalle de température entre 620 et 580°C.
- Pièce selon l'une quelconque des revendications précédentes dont la structure comporte 0% de ferrite.
- Procédé de fabrication d'une pièce en acier comprenant les étapes successives suivantes :- on approvisionne un acier de composition selon l'une quelconque des revendications 1 à 14 sous forme de bloom, de billette de section carrée rectangle ou ronde , ou sous forme de lingot, puis- on lamine cet acier sous forme de demi-produit, sous forme de barre ou de fil puis- on porte ledit demi-produit à une température de réchauffage (Trech) comprise entre 1100°C et 1300°C pour obtenir un demi-produit réchauffé, puis- on met en forme à chaud ledit demi-produit réchauffé, la température de fin de mise en forme à chaud étant supérieure ou égale à 850°C pour obtenir une pièce formée à chaud, puis,- on refroidit ladite pièce formée à chaud jusqu'à atteindre une température comprise entre 620 et 580°C à une vitesse de refroidissement Vr600 comprise entre 0,10 °C/s et 10 °C/s puis- on refroidit ladite pièce jusqu'à atteindre une température comprise entre 420 et 380°C à une vitesse de refroidissement Vr400 inférieure à 4°C/s, puis- on refroidit la pièce entre 380 °C et 300°C à une vitesse inférieure ou égale à 0,3 °C/s, puis- on refroidit la pièce jusqu'à la température ambiante à une vitesse inférieure ou égale à 4°C/s, puis,- on fait éventuellement subir un traitement thermique de revenu à ladite pièce formée à chaud et refroidie jusqu'à l'ambiante, à une température de revenu comprise entre 300 °C et 450°C pendant une durée comprise entre 30 minutes et 120 minutes, puis- on réalise l'usinage des pièces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16718723T PL3274483T3 (pl) | 2015-03-23 | 2016-03-23 | Elementy o strukturze bainitycznej mające właściwości wysokiej wytrzymałości oraz sposób wytwarzania |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2015/000384 WO2016151345A1 (fr) | 2015-03-23 | 2015-03-23 | Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication |
PCT/IB2016/000343 WO2016151390A1 (fr) | 2015-03-23 | 2016-03-23 | Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3274483A1 EP3274483A1 (fr) | 2018-01-31 |
EP3274483B1 true EP3274483B1 (fr) | 2019-07-24 |
Family
ID=52829241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16718723.6A Active EP3274483B1 (fr) | 2015-03-23 | 2016-03-23 | Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication |
Country Status (15)
Country | Link |
---|---|
US (1) | US20180057909A1 (fr) |
EP (1) | EP3274483B1 (fr) |
JP (1) | JP6625657B2 (fr) |
KR (1) | KR101887844B1 (fr) |
CN (1) | CN107371369B (fr) |
AU (1) | AU2016238510B2 (fr) |
BR (1) | BR112017020282B1 (fr) |
CA (1) | CA2980878C (fr) |
EA (1) | EA201792077A1 (fr) |
ES (1) | ES2748436T3 (fr) |
HU (1) | HUE045789T2 (fr) |
MX (1) | MX2017012242A (fr) |
PL (1) | PL3274483T3 (fr) |
UA (1) | UA118920C2 (fr) |
WO (2) | WO2016151345A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018215813A1 (fr) * | 2017-05-22 | 2018-11-29 | Arcelormittal | Procédé de fabrication d'une pièce en acier et pièce en acier correspondante |
WO2019180492A1 (fr) * | 2018-03-23 | 2019-09-26 | Arcelormittal | Pièce forgée en acier bainitique et son procédé de fabrication |
FR3123659A1 (fr) | 2021-06-02 | 2022-12-09 | Ascometal France Holding Sas | Pièce en acier mise en forme à chaud et procédé de fabrication |
CN115679089B (zh) * | 2022-10-27 | 2024-09-06 | 北京科技大学 | 调控前轴用低碳贝氏体非调质钢显微组织的控锻控冷工艺 |
CN117925963A (zh) * | 2023-12-14 | 2024-04-26 | 华北理工大学 | 一种超高强塑性超细贝氏体精轧螺纹钢及其制备方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2888135B2 (ja) * | 1994-05-26 | 1999-05-10 | 住友金属工業株式会社 | 高耐久比高強度非調質鋼とその製造方法 |
FR2744733B1 (fr) | 1996-02-08 | 1998-04-24 | Ascometal Sa | Acier pour la fabrication de piece forgee et procede de fabrication d'une piece forgee |
US6558484B1 (en) * | 2001-04-23 | 2003-05-06 | Hiroshi Onoe | High strength screw |
JP2002115024A (ja) * | 2000-10-06 | 2002-04-19 | Nkk Corp | 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法 |
JP3888865B2 (ja) | 2000-10-25 | 2007-03-07 | 株式会社ゴーシュー | 鍛造方法 |
KR100723186B1 (ko) * | 2005-12-26 | 2007-05-29 | 주식회사 포스코 | 지연파괴저항성이 우수한 고강도 볼트 및 그 제조기술 |
FR2931166B1 (fr) * | 2008-05-15 | 2010-12-31 | Arcelormittal Gandrange | Acier pour forge a chaud a hautes caracteristiques mecaniques des pieces produites |
JP5245997B2 (ja) * | 2009-04-06 | 2013-07-24 | 新日鐵住金株式会社 | 靭性に優れた高強度熱間鍛造非調質鋼及びその製造方法 |
JP2011006781A (ja) * | 2009-05-25 | 2011-01-13 | Nippon Steel Corp | 低サイクル疲労特性に優れた自動車足回り部品とその製造方法 |
JP5327106B2 (ja) * | 2010-03-09 | 2013-10-30 | Jfeスチール株式会社 | プレス部材およびその製造方法 |
ES2684342T3 (es) * | 2012-04-10 | 2018-10-02 | Nippon Steel & Sumitomo Metal Corporation | Elemento de absorción de impactos y método para su fabricación |
KR20140121229A (ko) * | 2013-04-05 | 2014-10-15 | 태양금속공업주식회사 | 인장강도가 우수한 고강도 볼트의 제조방법 |
DE102013009232A1 (de) * | 2013-05-28 | 2014-12-04 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl |
-
2015
- 2015-03-23 WO PCT/IB2015/000384 patent/WO2016151345A1/fr active Application Filing
-
2016
- 2016-03-23 ES ES16718723T patent/ES2748436T3/es active Active
- 2016-03-23 UA UAA201710001A patent/UA118920C2/uk unknown
- 2016-03-23 EA EA201792077A patent/EA201792077A1/ru unknown
- 2016-03-23 KR KR1020177026897A patent/KR101887844B1/ko active IP Right Grant
- 2016-03-23 CA CA2980878A patent/CA2980878C/fr active Active
- 2016-03-23 BR BR112017020282-4A patent/BR112017020282B1/pt active IP Right Grant
- 2016-03-23 WO PCT/IB2016/000343 patent/WO2016151390A1/fr active Application Filing
- 2016-03-23 MX MX2017012242A patent/MX2017012242A/es active IP Right Grant
- 2016-03-23 AU AU2016238510A patent/AU2016238510B2/en active Active
- 2016-03-23 US US15/560,468 patent/US20180057909A1/en active Pending
- 2016-03-23 PL PL16718723T patent/PL3274483T3/pl unknown
- 2016-03-23 CN CN201680017905.7A patent/CN107371369B/zh active Active
- 2016-03-23 JP JP2017549687A patent/JP6625657B2/ja active Active
- 2016-03-23 HU HUE16718723A patent/HUE045789T2/hu unknown
- 2016-03-23 EP EP16718723.6A patent/EP3274483B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
AU2016238510A1 (en) | 2017-10-12 |
EA201792077A1 (ru) | 2018-01-31 |
WO2016151345A1 (fr) | 2016-09-29 |
PL3274483T3 (pl) | 2020-01-31 |
AU2016238510B2 (en) | 2019-09-19 |
JP2018512509A (ja) | 2018-05-17 |
WO2016151390A1 (fr) | 2016-09-29 |
BR112017020282B1 (pt) | 2021-08-17 |
BR112017020282A2 (pt) | 2018-06-05 |
KR20170118916A (ko) | 2017-10-25 |
UA118920C2 (uk) | 2019-03-25 |
CA2980878A1 (fr) | 2016-09-29 |
CA2980878C (fr) | 2020-01-14 |
JP6625657B2 (ja) | 2019-12-25 |
MX2017012242A (es) | 2017-12-15 |
HUE045789T2 (hu) | 2020-01-28 |
US20180057909A1 (en) | 2018-03-01 |
CN107371369B (zh) | 2019-06-21 |
EP3274483A1 (fr) | 2018-01-31 |
KR101887844B1 (ko) | 2018-08-10 |
CN107371369A (zh) | 2017-11-21 |
ES2748436T3 (es) | 2020-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3274483B1 (fr) | Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication | |
EP1649069B1 (fr) | Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites | |
CA2847809C (fr) | Acier lamine durcissant par precipitation apres formage a chaud et/ou trempe sous outil a tres haute resistance et ductilite et son procede de fabrication | |
EP1913169B1 (fr) | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites | |
EP2707513B1 (fr) | Procede de fabrication d'acier martensitique a tres haute resistance et tôle ou piece ainsi obtenue | |
EP1979583B1 (fr) | Procédé de fabrication d'une soupape de moteur à explosion, et soupape ainsi obtenue | |
EP2707515B1 (fr) | Procede de fabrication d'acier martensitique a tres haute limite élastique et tole ou piece ainsi obtenue. | |
JP5607956B2 (ja) | 摩擦圧接に適した機械構造用鋼材および摩擦圧接部品 | |
WO2007101921A1 (fr) | Procede de fabrication de tôles d1acier a tres hautes caracteristiques de resistance, de ductilite et de tenacite, et tôles ainsi produites | |
FR2881144A1 (fr) | Procede de fabrication de toles d'acier austenitique fer-carbone-manganese a haute resistance a la fissuration differee, et toles ainsi produites | |
FR2757877A1 (fr) | Acier et procede pour la fabrication d'une piece en acier mise en forme par deformation plastique a froid | |
EP3269837A1 (fr) | Micro acier allié et procédé de production dudit acier | |
CA2714218C (fr) | Procede de fabrication de toles d'acier inoxydable austenitique a hautes caracteristiques mecaniques, et toles ainsi obtenues | |
FR2886314A1 (fr) | Acier pour coques de sous-marins a soudabilite renforcee | |
JP2018165403A (ja) | 低サイクル疲労強度および被削性に優れた浸炭用鋼材および浸炭部品 | |
EP4347903A1 (fr) | Pièce en acier mise en forme à chaud et procédé de fabrication | |
KR101685824B1 (ko) | 냉간단조용 선재 및 이의 제조 방법 | |
EA040769B1 (ru) | Заготовки с бейнитной структурой, имеющие высокую прочность, и способ изготовления | |
WO2014155906A1 (fr) | Acier de cémentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171023 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190213 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016017309 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1158284 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 32388 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E045789 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191024 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191024 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191025 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191124 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2748436 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016017309 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200323 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1158284 Country of ref document: AT Kind code of ref document: T Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200323 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240222 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240304 Year of fee payment: 9 Ref country code: HU Payment date: 20240311 Year of fee payment: 9 Ref country code: FI Payment date: 20240223 Year of fee payment: 9 Ref country code: DE Payment date: 20240220 Year of fee payment: 9 Ref country code: CZ Payment date: 20240226 Year of fee payment: 9 Ref country code: GB Payment date: 20240220 Year of fee payment: 9 Ref country code: SK Payment date: 20240228 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240226 Year of fee payment: 9 Ref country code: SE Payment date: 20240220 Year of fee payment: 9 Ref country code: PL Payment date: 20240223 Year of fee payment: 9 Ref country code: IT Payment date: 20240220 Year of fee payment: 9 Ref country code: FR Payment date: 20240220 Year of fee payment: 9 Ref country code: BE Payment date: 20240220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240402 Year of fee payment: 9 |