KR20010060754A - Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface - Google Patents

Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface Download PDF

Info

Publication number
KR20010060754A
KR20010060754A KR1019990063181A KR19990063181A KR20010060754A KR 20010060754 A KR20010060754 A KR 20010060754A KR 1019990063181 A KR1019990063181 A KR 1019990063181A KR 19990063181 A KR19990063181 A KR 19990063181A KR 20010060754 A KR20010060754 A KR 20010060754A
Authority
KR
South Korea
Prior art keywords
billet
silicon
wire rod
decarburization
less
Prior art date
Application number
KR1019990063181A
Other languages
Korean (ko)
Other versions
KR100435481B1 (en
Inventor
최해창
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0063181A priority Critical patent/KR100435481B1/en
Publication of KR20010060754A publication Critical patent/KR20010060754A/en
Application granted granted Critical
Publication of KR100435481B1 publication Critical patent/KR100435481B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing a wire rod is provided which reduces the surface decarburization layer generated according to the increase of addition amount of silicon by forming a Ferritic layer having a low solid solution of carbon on the surface of billet. CONSTITUTION: The method for manufacturing a high silicon added high carbon steel wire rod having the small surface depth of decarburization comprises the processes of obtaining billet on the surface of which ferritic decarburization layer is formed by reheating and rolling a bloom containing 0.65 to 1.50 wt.% of carbon, 2.0 to 4.0 wt.% of silicon, 0.1 to 0.8 wt.% of manganese, 0.1 to 0.8 wt.% of chromium, 0.01 wt.% or less of phosphorus, 0.01 wt.% or less of sulphur, 0.005 to 0.01 wt.% of nitrogen, 0.005 wt.% or less of oxygen, one or more elements selected from the group consisting of 0.3 to 2.0 wt.% of nickel, 0.001 to 0.003 wt.% of boron, 0.01 to 0.5 wt.% of vanadium, 0.01 to 0.5 wt.% of niobium, 0.01 to 0.5 wt.% of molybdenum, 0.01 to 0.2 wt.% of titanium, 0.01 to 0.5 wt.% of tungsten and 0.01 to 0.2 wt.% of copper, and a balance of Fe and other impurities within the temperature range of 1260±30 deg.C for 100±20 minutes; and wire rod rolling the billet after heating the billet to a heating temperature of 1100±50 deg.C in an average heating speed of 10 deg.C/min or more and maintaining the billet for 45± 15 minutes.

Description

표면 탈탄깊이가 적은 고실리콘 첨가 고탄소강 선재의 제조방법{Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface}{Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface}

본 발명은 볼트 등으로 가공되어 사용되는 선재의 제조방법에 관한 것으로, 보다 상세하게는 빌레트의 표면에 탄소고용도가 낮은 페라이트층을 형성하여 실리콘 첨가량이 높음에 따라 발생하는 표면탈탄층을 저감할 수 있는 선재의 제조방법을 제공함에 있다.The present invention relates to a method for manufacturing wire rods processed by bolts and the like, and more particularly, to form a ferrite layer having a low carbon employment rate on the surface of a billet to reduce the surface decarburization layer generated as the amount of silicon added is high. The present invention provides a method for manufacturing a wire rod.

선재는 일정형상으로 가공되어 다양한 기계부품류에 이용되는데, 그 예로는 볼트, 너트, 스프링 등이 있다. 이러한 기계부품류의 경량화와 고성능화를 위해 선재의 고강도화에 대한 요구는 계속 높아지고 있다. 고강도 소재는 일정하중이 지속적으로 가해지면 수소에 의해 균열이 진전되는 '지연파괴'가 발생할 수 있다.Wire rod is processed to a certain shape and used for various mechanical parts, for example, bolts, nuts, springs and the like. In order to reduce the weight and performance of such mechanical parts, demand for increasing the strength of wire rods continues to increase. High-strength materials can cause 'delayed breakdown', in which cracks are advanced by hydrogen under constant load.

일례로, 볼트는 지연파괴저항성이 열화되는 문제점으로 현재, 인장강도130kg/mm2급이상 사용하는 것이 불가능하여 그 사용용도 및 범위가 제한되고 있는 실정이다. 지연파괴저항성이 우수하면서 고강도화가 가능한 볼트용 강을 개발할 경우 기대되는 잇점은 다음과 같다. 즉, 강구조물 측면에서 볼트체결은 용접 접합에 비해 숙련된 기술이 요구되지 않고 취약한 용접부를 대체하는 잇점 등을 고려할 때, 첫째, 볼트체결력 강화에 따른 강구조물의 안정성을 높일 수 있으며 둘째, 볼트체결 갯수의 감소에 의해 강재 사용량을 줄일 수 있다. 또한, 자동차 부품 측면에서는 셋째, 부품의 경량화에 기여하며 넷째, 부품 경량화에 따른 자동차 조립장치의 설계 다양화 및 컴팩트화(compact)가 가능한 잇점이 있다. 따라서, 소재의 지연파괴저항성의 저하없이 고강도화를 달성할 수 있다면, 사용상의 잇점과 산업계에 미치는 영향을 고려할 때 그 파급도는 상당히 클 것으로 예견되고 있다.For example, the bolt is a problem that the delayed fracture resistance is deteriorated, it is currently impossible to use more than 130kg / mm 2 grade tensile strength is the situation that its use and range is limited. The followings are the benefits of developing high strength steels with excellent delayed fracture resistance and high strength. That is, in terms of steel structure, bolt fastening does not require skilled skills compared to welding joint, and considering the advantages of replacing weak welds. By reducing the amount of steel used can be reduced. In addition, in terms of automobile parts, third, it contributes to the lightening of parts. Fourth, there is an advantage that the design diversification and compactness of the automobile assembly apparatus according to the lighter parts are possible. Therefore, if the high strength can be achieved without deteriorating the delayed fracture resistance of the material, the spreading degree is expected to be considerably large considering the advantages in use and the effect on the industry.

고강도 소재의 지연파괴저항성은 결정입계에 석출분포하고 있는 석출물이 수소의 트랩 사이트(trapped site)로 작용하여 입계의 강도를 열화시키기 때문에 저하되는 것으로 알려져 있으며, 고강도화를 달성하기 위해서는 열처리후 결정입계에 분포하게 되는 Fe계 석출물들의 분포를 최대한으로 억제시키는 것이 가장 중요하다. 이에 본 발명자는 결정입계에 Fe계 석출물의 석출 가능성이 전혀 없는 페라이트+잔류 오스테나이트의 미세조직을 갖는 고실리콘 첨가 고탄소로 조성되는 강을 개발하였다.The delayed fracture resistance of high-strength materials is known to be lowered because the precipitates distributed at the grain boundaries act as trapped sites of hydrogen and degrade the strength of the grain boundaries. It is most important to suppress the distribution of Fe-based precipitates to be distributed to the maximum. Accordingly, the present inventors have developed a steel made of high-silicon-added high carbon having a microstructure of ferrite + residual austenite, which has no possibility of precipitation of Fe-based precipitates at grain boundaries.

그러나, 고실리콘 첨가 고탄소강에서 실리콘강을 선재로 제조할때 선재압연공정에서 재가열시 실리콘이 소재내의 탄소의 활동도를 증가시키면서 탄소의 확산계수를 감소시키는데 영향을 크게 미친다. 이로 인해 선재압연공정에서 재가열시 탄소의 활동도 증가로 표면에서는 탈탄속도가 증가하고, 반대로 중심부에서는 확산계수의 감소로 표면으로 탄소공급이 원활치 않아 표면에서의 탄소농도 구배심화를 조장하게 된다. 표면에서 탈탄층의 깊이가 깊어질수록 볼트에서는 체결력은 떨어지고 스프링에서는 피로특성이 열악해진다. 이와 같이, 고실리콘 첨가강의 표면탈탄은 저실리콘 첨가강 대비 표면 탈탄속도가 매우 빠르기 때문인 것은 잘 알려진 사실이다. 그래서, 고실리콘 첨가강 선재를 제조할 경우, 소재의 탈탄제어가 적절하지 못할 경우 사용상의 많은 문제점이 발생할 수 있다.However, when silicon steel is manufactured from high-silicon-added high carbon steel as a wire, when reheating in the wire rolling process, silicon increases the activity of carbon in the material and greatly reduces the diffusion coefficient of carbon. As a result, the carbon deactivation rate increases at the surface due to the increase of carbon activity during reheating in the wire rod rolling process. On the contrary, the carbon supply is not smoothly supplied to the surface due to the reduction of the diffusion coefficient at the center, thereby promoting the concentration of carbon at the surface. As the depth of the decarburized layer deepens on the surface, the tightening force decreases in the bolt and the fatigue property in the spring becomes poor. As such, it is well known that the surface decarburization of the high silicon-added steel is because the surface decarburization rate is much faster than that of the low silicon-added steel. Thus, when manufacturing a high silicon-added steel wire, many problems in use may occur when the decarburization control of the material is not appropriate.

지금까지 알려진 탈탄제어방법의 대표적인 예로는 대한민국 특허공보 92-24974호, 92-24163호, 92-24161호, 일본 특허공보 (평)2-301514호, (평)1-31960, (소)63-216591호 등이 있다. 이들은 대부부은 실리콘의 함량을 낮추거나 납, 주석 등의 합금원소를 첨가하는 방법에 의해서 탈탄을 제어하는 방법이다. 그러나, 고강도화를 위해 고실리콘 첨가가 불가피한 강종에서 실리콘 함량을 낮출수는 없으며, 또한, 납, 주석 등의 합금원소를 첨가하게 되면 충격인성 등의 기계적성질이 열악해지는 문제가 있다.Representative examples of decarburization control methods known so far include Korean Patent Nos. 92-24974, 92-24163, 92-24161, Japanese Patent Publications (Pyeong) 2-301514, (Pyeong) 1-31960, (Small) 63 And -216591. These are methods of controlling decarburization by lowering the content of silicon, or adding alloying elements such as lead and tin. However, it is not possible to lower the silicon content in steel grades in which high silicon addition is inevitable for high strength, and when alloying elements such as lead and tin are added, mechanical properties such as impact toughness become poor.

본 발명은 고실리콘 첨가 고탄소강의 선재가열공정에서 표면에 탈탄층이 발생을 방지하기 위한 연구과정에서 안출된 것으로, 선재가열전의 빌레트의 표면에 탄소고용도가 낮은 페라이트 탈탄층을 형성하여 이 페라이트층을 산화시켜 빌레트 표면의 탈탄속도를 현저하게 줄임으로써 표면탈탄층의 두께를 저감할 수 있는 선재의 제조방법을 제공함에 있다.The present invention was devised in the course of research to prevent the decarburization layer on the surface of the high-silicon-added high carbon steel wire heating process, by forming a ferrite decarburization layer of low carbon utilization on the surface of the billet before heating the wire The present invention provides a method for producing a wire rod which can reduce the thickness of the surface decarburization layer by oxidizing the ferrite layer to significantly reduce the decarburization speed of the billet surface.

상기 목적을 달성하기 위한 본 발명의 선재제조방법은, 중량%로, 탄소:0.65-1.50%, 실리콘:2.0-4.0%, 망간:0.1-0.8%, 크롬:0.1∼0.8%, 인:0.01%이하, 황:0.01%이하, 질소:0.005∼0.01%, 산소:0.005% 이하, 여기에 니켈:0.3-2.0%, 보론:0.001∼0.003%, 바나듐:0.01∼0.5%, 니오븀:0.01∼0.5%, 몰리브덴:0.01∼0.5%, 티타늄:0.01∼0.2%, 텅스텐:0.01∼0.5%, 구리:0.01∼0.2%로 이루어진 그룹중 선택된 1종 또는 2종이상을 함유하고, 나머지 Fe 및 기타 불순물로 조성되는 블룸을 1260±30℃의 범위에서 100±20분의 범위내로 재가열하고 강편압연하여 표면에 페라이트층이 형성된 빌레트를 얻고, 이 빌레트를 평균 10℃/분 이상의 가열속도로 1100±50℃의 가열온도로 승온하여 45±15분간 유지하고 선재압연하는 것을 포함하여 구성된다.Wire rod manufacturing method of the present invention for achieving the above object, in weight%, carbon: 0.65-1.50%, silicon: 2.0-4.0%, manganese: 0.1-0.8%, chromium: 0.1-0.8%, phosphorus: 0.01% Sulfur: 0.01% or less, Nitrogen: 0.005 to 0.01%, Oxygen: 0.005% or less, Nickel: 0.3-2.0%, Boron: 0.001 to 0.003%, Vanadium: 0.01 to 0.5%, Niobium: 0.01 to 0.5% , Molybdenum: 0.01% to 0.5%, titanium: 0.01% to 0.2%, tungsten: 0.01% to 0.5%, copper: 0.01% to 0.2%, selected from the group consisting of remaining Fe and other impurities The heated bloom is reheated in the range of 1260 ± 30 ° C within the range of 100 ± 20 minutes and rolled to obtain a billet having a ferrite layer formed on the surface, and the billet is heated at an average heating rate of 10 ° C / min or more at 1100 ± 50 ° C. The temperature is increased to 45 ± 15 minutes, and the wire is rolled.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자는 고실리콘 첨가 고탄소 볼트용강 선재의 탈탄저감을 위해 다각도로 연구한 결과, 고실리콘 첨가 고탄소강의 선재가열공정전에 빌레트(billet)의 표면에 페라이트 층을 균일하게 분포시키면, 초기 빌레트 표면에 분포하는 표면 페라이트층이 매우 낮은 탄소 고용도를 갖는 이유로 페라이트층 내를 통과하는 탄소원자의 확산이 매우 늦어지기 때문에 선재가열로 가열중 빌레트 표면의 탈탄속도를 현저하게 감소시킬 수 있고, 이러한 페라이트 층은 빌레트 가열시 산화되어(scale out) 점점 감소됨으로서 선재가열로 추출시 빌레트 표면의 탈탄층을 현저하게 개선할 수 있다는 결과를 얻고 본 발명을 완성하게 된 것이다. 이러한 본 발명의 대상이 되는 고실리콘 첨가 고탄소강에 대해서 먼저 설명한 다음, 이 강의 탈탄을 제어하면서 선재로 제조하는 방법을 설명한다.The present inventors conducted a multi-angle study to reduce the decarburization of high-silicon-added high carbon bolted steel wire, and found that if the ferrite layer was uniformly distributed on the surface of the billet before the wire heating process of the high-silicon-added high carbon steel, the initial billet surface Due to the very low carbon solubility in the surface ferrite layer, the diffusion of carbon atoms through the ferrite layer is very slow, which can significantly reduce the decarburization rate of the billet surface during heating by wire rod heating. The oxidized (scale out) during the billet heating is gradually reduced to obtain a result that can significantly improve the decarburized layer of the billet surface when extracted by wire heating to complete the present invention. The high silicon-added high carbon steel which is the object of the present invention will be described first, and then a method of manufacturing the wire while controlling the decarburization of the steel will be described.

[고실리콘 첨가 고탄소강][High silicon-added high carbon steel]

본 발명의 강에서 탄소(C)의 함량은 0.65-1.5%으로 하는 것이 바람직하다. 탄소의 함량이 0.65%미만에서는 페라이트+잔류오스테나이트 복합조직강 제조를 위한 열처리후 페라이트+잔류오스테나이트내에 적정한 잔류 오스테나이트양, 형상 및 크기를 얻기가 곤란하고 또한, 기계적, 열적 안정성과 고강도 볼트용강으로서의 충분한 인장강도와 항복강도를 확보하기 어렵기 때문이다. 또한, 탄소의 함량이 1.50% 보다 많아지면 열처리후 단면감소율, 연신율과 충격인성 등의 특성이 저하되고, 선재제조시 편석 및 표면흠이 발생하며, 가열로 장입시 표면탈탄이 심화되고, 볼트 체결시 영구변형성 및 정적 피로특성이 열화하며, 미세복합 조직의 적절한 형상과 크기 그리고, 페라이트+잔류오스테나이트 복합조직을 확보하기 위한 변태 소요시간이 길어지며, 잔류 오스테나이트내의 탄소농도 및 계면농도구배 등에 좋지 않은 영향을 미치기 때문이다.In the steel of the present invention, the content of carbon (C) is preferably 0.65-1.5%. If the carbon content is less than 0.65%, it is difficult to obtain an adequate amount of retained austenite, shape and size in the ferritic + residual austenite after heat treatment for the production of ferritic + residual austenite composite steel. This is because it is difficult to secure sufficient tensile strength and yield strength as molten steel. In addition, when the carbon content is more than 1.50%, characteristics such as cross-sectional reduction rate, elongation rate and impact toughness decrease after heat treatment, segregation and surface flaws occur during wire rod manufacturing, and surface decarburization deepens when charging furnace, and bolts are fastened. Permanent deformation and static fatigue characteristics deteriorate, the appropriate shape and size of microcomposite tissues, the transformation time required to secure ferrite + residual austenite complex tissues, carbon concentration in residual austenite, and interfacial tool distribution Because it has a bad effect.

실리콘(Si)의 함량은 2.0-4.0%로 한정하는 것이 바람직하다. 실리콘이 2.0%미만에서는 페라이트 변태후 잔류 오스테나이트의 기계적, 열적 안정성이 저하되어 페라이트+잔류오스테나이트 복합조직과 적정 잔류 오스테나이트양을 확보하기 어렵고, 페라이트의 고용강화 효과가 미흡하여 강도확보에 어려움이 있으며, 또한 지연파괴저항성, 표면 부식특성, 충격인성, 볼트 체결시 영구변형성 등에 영향을 미치고, 선재 탈탄제어를 위한 선재가열로내에서의 표면 페라이트 탈탄층의 균일성 및 적정두께를 확보하기가 어려워 탈탄이 심화되고, 선재냉각시 소입성 증가로 표면 스케일 특성의 제어가 어려운 단점이 있다. 실리콘이 4.0%를 초과하는 경우에는 상기 언급한 효과가 포화되고 소입성, 복합조직강의 구성, 충격인성, 피로특성 등에 좋지 않은 영향을 미치며, 선재제조를 위한 부룸(bloom) 또는 빌레트(billet)제조시 실리콘 편석에 의한 미세조직의 불균질화를 초래하여 최종 제품에서의 품질특성이 저하되기 때문이며, 또한 열처리시 표면 페라이트층의 두께가 증가하여 균질 표면 탈탄제어가 어렵기 때문이다.The content of silicon (Si) is preferably limited to 2.0-4.0%. If the silicon is less than 2.0%, the mechanical and thermal stability of the retained austenite after ferrite transformation decreases, making it difficult to secure the ferrite + residual austenite composite structure and the appropriate amount of retained austenite. It also affects delayed fracture resistance, surface corrosion characteristics, impact toughness, permanent deformation during bolting, and ensures uniformity and proper thickness of the surface ferrite decarburized layer in the wire heating furnace for wire decarburization control. It is difficult to further decarburize, and it is difficult to control surface scale characteristics due to increased hardenability during wire cooling. If the silicon exceeds 4.0%, the above-mentioned effect is saturated and adversely affects the hardenability, the composition of the composite tissue steel, the impact toughness, the fatigue characteristics, and the production of bloom or billet for wire rod manufacturing. This is because the quality characteristics in the final product are deteriorated due to the inhomogeneity of the microstructure due to the segregation of silicon at the same time, and it is difficult to control the homogeneous surface decarburization because the thickness of the surface ferrite layer increases during the heat treatment.

망간(Mn)은 기지조직내에 치환형 고형체를 형성하여 고용강화하는 원소로 고장력볼트 특성에 매우 유용하므로 그 함량은 모재의 강도, 열처리시 소입성, 응력이완성, 편석대 생성에 따른 유해한 영향 등을 고려하여 0.1-0.8%로 하는 것이 바람직하다. 이는 망간의 함량이 0.1%미만의 경우 망간편석에 의한 편석대의 형성은 거의 없으나, 고용강화효과의 미흡으로 소입성, 영구변형저항성개선이 미흡하고, 0.8%를 초과할 경우에는 주조시 망간편석으로 인한 국부소입성이 증대하고 편석대의 형성으로 조직이방성이 심화되어 조직이 불균질하게 되어 볼트특성이 저하되기 때문이다.Manganese (Mn) is an element that forms solid solids in the matrix and strengthens solid solution, which is very useful for the characteristics of high-strength bolts. It is preferable to set it as 0.1-0.8% in consideration of these. In case of less than 0.1% manganese segregation, segregation zone due to manganese segregation is hardly formed. However, due to insufficient solidification effect, hardenability and improvement of permanent deformation resistance are insufficient. This is because the local quenchability due to the simple stone increases and the anisotropy of the tissue deepens due to the formation of the segregation zone, resulting in the inhomogeneity of the tissue and deteriorating the bolt characteristics.

크롬(Cr)의 함량은 0.1∼0.8%로 하는 것이 바람직하다. 크롬의 함량이 0.1%미만에서는 고실리콘 첨가강의 열처리시 표면탈탄제어를 위한 표면 페라이트층의 형성이 어려워 탈탄억제 효과가 거의 없고, 소입성 개선을 기대하기 어렵기 때문이다. 또한, 0.8%를 초과하면 등온열처리시 페라이트+잔류오스테나이트 복합조직의 변태 소요시간이 길어지기 때문에 바람직하지 않으며, 선재 탈탄층 제어를 위한 선재 가열로 장입시 표면 적정 페라이트층의 생성이 어려워 균질 탈탄제어에 영향을 미치기 때문이다.It is preferable to make content of chromium (Cr) into 0.1 to 0.8%. If the content of chromium is less than 0.1%, it is difficult to form a surface ferrite layer for surface decarburization control during heat treatment of high silicon-added steel, so that there is almost no decarburization inhibitory effect, and it is difficult to expect quenchability improvement. In addition, if it exceeds 0.8%, it is not preferable because the transformation time of the ferrite + residual austenite composite structure becomes longer during isothermal heat treatment, and it is difficult to generate a surface titration ferrite layer when charging the wire rod for controlling the wire decarburization layer. This affects control.

인(P) 및 황(S)의 함량은 0.01%이하로 하는 것이 바람직하다. 인은 결정입계에 편석되어 인성을 저하시키므로 그 상한을 0.01%로 제한하는 것이며, 황은 저융점 원소로 입계 편석되어 인성을 저하시키고 유화물을 형성시켜 지연파괴저항성 및 응력이완특성에 유해한 영향을 미치므로 그상한을 0.01%로 제한하는 것이다.The content of phosphorus (P) and sulfur (S) is preferably 0.01% or less. Phosphorus segregates at grain boundaries and lowers its toughness, limiting its upper limit to 0.01%. Sulfur is a low melting point element that segregates grains to reduce toughness and form an emulsion, which has a detrimental effect on delayed fracture resistance and stress relaxation characteristics. The upper limit is limited to 0.01%.

질소(N)의 함량은 0.005-0.01%로 하는 것이 바람직하다. 질소의 함량이0.005%미만에서는 비확산성 수소 트랩 사이트로 작용하는 바나듐 및 니요븀계 질화물의 형성이 어렵기 때문이며, 0.01%를 초과하는 경우에는 그 효과가 포화되기 때문이다.The content of nitrogen (N) is preferably made 0.005-0.01%. This is because when the nitrogen content is less than 0.005%, it is difficult to form vanadium and niobium-based nitrides that act as non-diffusion hydrogen trap sites, and when the content exceeds 0.01%, the effect is saturated.

산소(O)의 함량은 0.005%이하로 하는 것이 바람직하다. 산소의 함량이 0.005%를 초과하면 조대한 산화물계 비금속개재물이 용이하게 형성되어 피로수명이 저하되기 때문이다.The content of oxygen (O) is preferably made 0.005% or less. This is because when the content of oxygen exceeds 0.005%, coarse oxide-based nonmetallic inclusions are easily formed and fatigue life is reduced.

바나듐(V) 또는 니요븀(Nb)은 지연파괴저항성 및 응력이완성 개선원소로서, 각각 0.01-0.5%로 하는 것이 바람직하다. 이들의 함량이 0.01%미만에서는 모재내 바나듐 또는 니요븀계 석출물들의 분포가 적어짐에 따라 비확산성 수소 트랩사이트(trap site)로의 역할이 미흡하여 지연파괴저항성 개선효과를 기대하기 어려우며, 또한 석출강화를 기대하기 어려워 응력이완저항성에 대한 개선효과가 충분하지 못하며, 오스테나이트 결정립 미세화를 기대하기 어려워 페라이트+잔류 오스테나이트 복합조직의 구성시 조직 미세화에 영향을 미치기 때문이다. 또한, 0.5%를 초과하면 V 또는 Nb계 석출물들에 의한 지연파괴저항성 및 응력이완저항성에 대한 개선 효과가 포화하고 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금 탄화물양이 증가하여 비금속 개재물과 같은 작용을 하므로 피로특성의 저하를 초래하기 때문이다.Vanadium (V) or niobium (Nb) is an element that improves delayed fracture resistance and stress relaxation resistance, and is preferably 0.01-0.5%. If the content is less than 0.01%, the distribution of vanadium or niobium-based precipitates in the base material decreases, and thus the role of the non-diffusible hydrogen trap site is insufficient. Therefore, it is difficult to expect the effect of improving the delayed fracture resistance and the precipitation strengthening is expected. This is because it is difficult to improve the stress relaxation resistance is not sufficient, and it is difficult to expect attenuation of austenite grains, which affects the microstructure of the ferrite + residual austenite composite. In addition, when it exceeds 0.5%, the improvement effect on delayed fracture resistance and stress relaxation resistance by V or Nb-based precipitates is saturated, and the amount of coarse alloy carbides which are not dissolved in the base metal during austenite heat treatment increases, such as nonmetallic inclusions. This is because it causes a decrease in fatigue characteristics.

니켈(Ni)은 열처리시 표면에 니켈 농화층을 형성하여 외부수소의 투과(permeation)를 억제하여 지연파괴저항성을 개선하는 원소로, 그 함량은 0.3-2.0%로 하는 것이 바람직하다. 니켈의 함량이 0.3%미만에서는 표면농화층 형성이 불완전하여 지연파괴저항성의 개선효과를 기대하기 어려우며, 또한 탈탄제어, 인성 및 냉간성형성 향상을 위한 구상화 또는 흑연화처리시 열처리시간이 길어지며, 볼트성형시의 냉간성형성의 개선효과가 없기 때문이다. 2.0%를 초과하는 경우에는 그 효과가 포화되고 잔류 오스테나이트량의 적정한 양, 크기 및 형상 등에 부정적인 영향을 미치기 때문이다.Nickel (Ni) is an element that improves the delayed fracture resistance by forming a nickel thickened layer on the surface during heat treatment to suppress permeation of external hydrogen, and the content thereof is preferably 0.3-2.0%. If the nickel content is less than 0.3%, the formation of the surface thickening layer is incomplete, so it is difficult to expect the effect of improving the delayed fracture resistance, and the heat treatment time is increased during the spheroidization or graphitization treatment to improve the decarburization control, toughness and cold forming. This is because there is no improvement effect of cold forming during bolt forming. If it exceeds 2.0%, the effect is saturated and negatively affects the appropriate amount, size and shape of the amount of retained austenite.

붕소(보론,B)는 본 발명에서 소입성 및 지연파괴저항성 개선을 위한 입계강화원소로, 그 함량은 0.0010∼0.003%로 하는 것이 바람직하다. 붕소의 함량이 0.0010%미만에서는 열처리시 보론원자들의 입계편석에 따른 입계강화에 따른 입계강도 개선효과가 미흡하고, 또한 냉간성형성 개선을 위한 흑연화 처리시 흑연화 촉진 효과가 미흡하기 때문이다. 붕소의 함량이 0.003%를 초과할 경우에는 그 효과가 포화되고 오히려 입계에 보론계 질화물의 석출로 입계강도의 저하를 초래하기 때문이다.Boron (boron, B) is a grain boundary strengthening element for improving the hardenability and delayed fracture resistance in the present invention, the content is preferably 0.0010 to 0.003%. If the content of boron is less than 0.0010%, the effect of improving grain boundary strength due to grain boundary strengthening due to grain boundary segregation of boron atoms during heat treatment is insufficient, and the graphitization promoting effect is insufficient during graphitization treatment for improving cold forming. If the content of boron exceeds 0.003%, the effect is saturated, rather, the precipitation of boron nitride at the grain boundary leads to a decrease in grain boundary strength.

몰리브덴(Mo) 및 텅스텐(W)의 함량은 0.01-0.5%로 하는 것이 바람직하다. 이들의 함량이 0.01%미만에서는 페라이트와 잔류 오스테나이트의 입계강화 효과가 미흡하고 또한 열처리시 소입성, 페라이트의 고용강화, Mo 및 W계 석출강화 효과가미흡하기 때문이다. 0.5%를 초과할 경우에는 그 효과가 포화되고, 소입성의 증가로 선재제조시 저온조직(마르텐사이트+베이나이트)의 생성이 용이하고 냉간성형성 개선을 위한 구상화 또는 흑연화처리시 열처리 시간이 길어지는 단점이 있기 때문이다.The content of molybdenum (Mo) and tungsten (W) is preferably 0.01-0.5%. If the content is less than 0.01%, the grain boundary strengthening effect of the ferrite and the retained austenite is insufficient, and the hardenability during the heat treatment, the solid solution strengthening of the ferrite, and the Mo and W system precipitation strengthening effects are insufficient. If it exceeds 0.5%, the effect is saturated, and as the hardenability is increased, it is easy to form low-temperature structure (martensite + bainite) during wire rod manufacturing, and the heat treatment time during spheroidization or graphitization treatment to improve cold formability This is because there is a disadvantage.

구리(Cu)의 함량은 0.01-0.2%로 하는 것이 바람직하다. 구리의 함량이 0.01%미만에서는 부식저항에 대한 개선효과가 미흡하며, 0.2%초과할 경우에는 그 개선효과가 포화되고 입계 편석시 녹는점(melting point)이 낮아져 선재압연을 위한 가열로 장입시 결정입계 취화에 따른 표면흠 발생 가능성이 높고, 최종 제품에서의 충격인성이 저하되기 때문이다.The content of copper (Cu) is preferably made 0.01-0.2%. When the copper content is less than 0.01%, the improvement effect on the corrosion resistance is insufficient. When the copper content is over 0.2%, the improvement effect is saturated and the melting point is lowered at the grain boundary segregation. This is because surface flaws are more likely to occur due to grain boundary embrittlement and impact toughness in the final product is lowered.

티타늄(Ti)의 함량은 0.01-0.2%로 하는 것이 바람직하다. 티타늄의 함량이 0.01%미만에서는 오스테나이트 결정립 미세화 효과가 미흡하며, 지연파괴저항성에 유효한 결정입계내의 티타늄계 탄,질화물의 석출분포가 미흡하여 그 개선효과를 기대하기 어렵기 때문이며, 0.2%를 초과할 경우에는 그 첨가효과가 포화되고 조대한 티타늄계 탄, 질화물을 형성하여 기계적 성질에 영향을 미치기 때문이다.The content of titanium (Ti) is preferably made 0.01-0.2%. If the titanium content is less than 0.01%, the austenite grain refining effect is insufficient, and the precipitation distribution of titanium-based carbon and nitride in the grain boundary effective for delayed fracture resistance is insufficient, so that the improvement effect is difficult to be expected. If exceeded, the effect of saturation is saturated and coarse titanium-based carbon and nitride are formed to affect the mechanical properties.

[선재의 제조방법][Manufacturing method of wire rod]

상기와 같이 조성되는 강은 선재로 제조하기 위한 가열공정에서 표면에 탈탄층이 발생하는데, 이를 방지하기 위해서는 빌레트의 표면에 페라이트 탈탄층을 형성하고, 선재압연을 위한 가열조건을 조절하는 것이 중요하다.In the steel formed as described above, a decarburized layer is formed on the surface of the heating process for manufacturing the wire rod. In order to prevent this, it is important to form a ferrite decarburized layer on the surface of the billet and to control heating conditions for the wire rod rolling. .

먼저, 블룸을 1260±30℃의 범위에서 100±20분의 범위내로 재가열하여 강편압연하여 빌레트의 표면에 페라이트층을 형성하는데, 이때의 페라이트층의 두께는 0.05∼0.20mm로 형성하는 것이 바람직하다. 블룸의 가열온도가 1230℃미만에서는 강편가열로에서 페라이트층의 두께가 필요 이상으로 커지게 되며, 가열온도가 1290℃초과의 경우는 산화속도가 매우 증가하여 표면에 적정 페라이트층 두께를 확보하기 어렵고 산화량이 증가하여 강편압연시 표면흠이 발생할 가능성이 높기 때문이다. 가열유지시간이 80분미만에서는 시간부족으로 적정 페라이트층의 두께를 확보할 수 없고, 120분 초과의 경우는 그 효과가 포화되고 고도한 산화량으로 표면품질이 저하되기 때문이다.First, the bloom is reheated in the range of 1260 ± 30 ° C. within a range of 100 ± 20 minutes and rolled into steel to form a ferrite layer on the surface of the billet, wherein the thickness of the ferrite layer is preferably 0.05 to 0.20 mm. . If the heating temperature of BLUM is less than 1230 ℃, the thickness of ferrite layer becomes larger than necessary in the steel piece heating furnace. If the heating temperature is over 1290 ℃, the oxidation rate is increased so that it is difficult to secure the proper ferrite layer thickness on the surface. This is because the amount of oxidation is increased and the surface flaw is more likely to occur during rolling. If the heating holding time is less than 80 minutes, the thickness of the ferrite layer cannot be secured due to lack of time, and if the heating time is over 120 minutes, the effect is saturated and the surface quality is deteriorated due to the high oxidation amount.

본 발명에서는 상기한 바와 같이 페라이트 탈탄층은 빌레트의 표면에 0.05∼0.20mm로 형성하는 것이 바람직하다. 그 이유는 페라이트층이 0.05mm미만에서는 빌레트 가열중 대부분 페라이트층이 산화되어 페라이트층의 존재로 탈탄개선 효과를 도모하기가 어렵고, 페라이트 층의 두께가 0.20mm를 초과할 경우에는 가열시간이 너무 길어져서 비경제적이다.In the present invention, as described above, the ferrite decarburized layer is preferably formed at 0.05 to 0.20 mm on the surface of the billet. The reason is that when the ferrite layer is less than 0.05 mm, most of the ferrite layer is oxidized during heating of the billet, so that the decarburization improvement effect is difficult due to the presence of the ferrite layer, and when the thickness of the ferrite layer exceeds 0.20 mm, the heating time is too long. It is uneconomical to lose.

상기와 같이 표면에 페라이트층이 형성된 빌레트는 선재압연한다. 먼저, 빌레트를 15℃/분이상으로 승온한다. 이는 승온속도가 15℃/분미만의 경우 빌레트 표면의 산화층(scale층)이 두꺼워지고 이후 산화층이 성장하면서 산화층내에 다랑의공공(porosity)들이 생성되어 이후 산화 속도를 급격히 감소시키기 때문이다. 산화속도의 감소는 페라이트 탈탄층의 두께를 제어를 어렵게하기 때문에 바람직스럽지 않다.As described above, the billet having the ferrite layer formed on the surface is wire rolled. First, a billet is heated up at 15 degree-C / min or more. This is because when the temperature increase rate is less than 15 ° C./minute, the oxide layer (scale layer) on the surface of the billet becomes thicker, and as the oxide layer grows, pores of the pores are generated in the oxide layer, thereby rapidly decreasing the oxidation rate. Reduction of the oxidation rate is undesirable because it makes it difficult to control the thickness of the ferrite decarburized layer.

상기와 같은 승온속도로 1100±50℃의 범위까지 승온한 다음, 이 온도구간에서 45±15분간 유지한다. 이는 가열온도가 1050℃미만의 경우 탈탄제어를 위한 빌레트 표면 페라이트층의 두께제어가 어렵고, 빌레트 제조시 조대하게 석출된 바나듐계 또는 니요븀계 석출물들의 재고용이 용이하지 않다는 점 그리고, 열간변형저항성의 증가로 압연시 과부하로 인해 작업성이 열악해지기 때문이다. 또한, 가열온도가 1150℃를 초과하는 경우에는 탈탄제어를 위한 균일한 페라이트층을 유지할 수 없기 때문이다. 즉 탄소 고용도가 매우 낮은 표면 페라이트층을 석출시켜 탈탄반응을 급격히 감소시키기 위해서는 가열 유지온도에서 표면 페라이트층이 잔존하여야 가능하나 가열온도가 1150℃를 초과할 경우에는 표면의 페라이트층이 오스테나이트로 변태하기 때문에 탈탄속도가 급격히 증가하며 이로 인해 표면탈탄이 심화되기 때문이다.The temperature is raised to a range of 1100 ± 50 ° C. at the same rate of temperature increase, and then maintained at this temperature range for 45 ± 15 minutes. This is because it is difficult to control the thickness of the billet surface ferrite layer for the decarburization control when the heating temperature is less than 1050 ° C, and it is not easy to re-use the coarse precipitated vanadium- or niobium-based precipitates during the manufacture of the billet, and to increase the thermal strain resistance. This is because the workability becomes poor due to the overload during furnace rolling. When the heating temperature exceeds 1150 ° C., it is not possible to maintain a uniform ferrite layer for decarburization control. In other words, in order to precipitate the surface ferrite layer having a very low carbon solubility, the surface ferrite layer should remain at the heating and maintaining temperature, but if the heating temperature exceeds 1150 ℃, the ferrite layer on the surface will be austenite. Because of the metamorphosis, the decarburization rate increases rapidly, which intensifies the surface decarburization.

상기와 같이 빌레트를 가열하여 선재하는데, 이때 가열로에서 추출되는 빌레의 탈탄면적은 선재압연후에 선재의 탈탄면적과 동일하기 때문에 선경이 클 수록 탈탄층이 증가하게 된다. 따라서, 본 발명에서는 이러한 점을 고려하여 선재의 선경을 지름30mm까지로 하여 선재압연하는 것이 좋다.As described above, the billet is heated and wired, but the decarburized area of the billet extracted from the heating furnace is the same as the decarburized area of the wire after rolling. Accordingly, in the present invention, the wire rod of the wire rod is preferably rolled up to 30 mm in diameter in view of such a point.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

아래 표 1과 같은 성분계를 갖는 고실리콘 첨가 고탄소 브룸을 대상으로 본 발명에 따라 강편압연과 선재압연하여 발명예(1-14)로 하고, 본 발명을 벗어나는 조건으로 강편압연과 선재압연하여 비교예(1-5)로 하였다.In accordance with the present invention, a high-silicon-added high carbon broth having a component system as shown in Table 1 below was rolled and rolled in accordance with the present invention to the invention example (1-14). It was set as the example (1-5).

상기 발명예(1-14)는 1260±30℃범위에서 100 ± 20분 범위내로 재가열하고 강편압연한 다음, 평균 15℃/분의 가열속도로 1100±50℃ 범위까지 가열하고, 이 온도구간에 30-40분간 유지하고 선재압연하여 지름 12mm의 선재를 제조하였다. 상기 비교예(1-5)는 1230℃미만 또는 1290℃ 초과하는 온도에서 80분미만 또는 120분초과하는 시간동안 재가열하여 강편압연하고, 여기서 얻어진 빌레트를 8~15℃/분의 가열속도로 1050℃미만 또는 1150℃초과하는 온도로 승온하고, 이 온도구간에서 30분간 유지하여 선재압연하여 지름 12mm의 선재를 제조하였다.Inventive Example (1-14) is reheated and rolled into a range of 100 ± 20 minutes in the range of 1260 ± 30 ℃, and then heated to a range of 1100 ± 50 ℃ at a heating rate of 15 ℃ / min on average, After maintaining for 30-40 minutes, the wire rod was rolled to prepare a wire rod having a diameter of 12 mm. The comparative example (1-5) is reheated and rolled in a steel strip for a time of less than 80 minutes or more than 120 minutes at a temperature of less than 1230 ℃ or more than 1290 ℃, the billet obtained here 1050 at a heating rate of 8 ~ 15 ℃ / min The temperature was lowered to less than or equal to or higher than 1150 ° C, and the wire was rolled by maintaining the temperature for 30 minutes at this temperature section to prepare a wire having a diameter of 12 mm.

상기 발명재와 비교재 모두 고속선재압연한 다음에 950℃로 물분사에 의해 급속 냉각하여 권취하고 600℃까지 1.0C/sec로 서냉한 다음에 이후에는 공냉하였다. 상기와 같이 제조된 발명재와 비교재의 표면 탈탄층 깊이는 KS규격(KD D 0216)에 의하여 측정하였다. 이규격에 의하면 광학 현미경 관찰법과 미소경도 측정법등이 제안되고 있는데, 본 실시예에서는 미소경도 측정법을 이용하였다. 상기와 같이측정된 탈탄층 깊이는 표 2에 나타내었다. 측정위치는 선재단면을 8등분한 위치에서 측정하였으며 측정값은 평균값을 기준으로 하였다.Both the invention material and the comparative material were rolled by high speed wire, then rapidly cooled by water spraying at 950 ° C., wound up, and slowly cooled to 1.0 C / sec up to 600 ° C., followed by air cooling. The surface decarburized layer depth of the inventive material and the comparative material prepared as described above was measured by the KS standard (KD D 0216). According to this standard, an optical microscope observation method and a microhardness measuring method are proposed, but the microhardness measuring method was used in the present Example. The decarburized layer depth measured as described above is shown in Table 2. The measurement position was measured at 8 equal sections of wire rod section, and the measured value was based on the average value.

구분division CC SiSi MnMn CrCr NiNi BB VV MoMo TiTi WW PP SS NN 강종1Steel grade 1 0.810.81 2.932.93 0.330.33 0.490.49 -- -- 0.040.04 -- -- -- 0.0070.007 0.0090.009 0.0060.006 강종2Steel grade 2 0.680.68 3.543.54 0.350.35 0.740.74 -- 0.00100.0010 0.190.19 -- 0.010.01 -- 0.0090.009 0.0060.006 0.0120.012 강종3Steel grade 3 0.900.90 3.043.04 0.290.29 0.380.38 0.660.66 -- 0.060.06 -- -- 0.030.03 0.0040.004 0.0080.008 0.0080.008 강종4Steel grade 4 0.830.83 2.092.09 0.710.71 0.550.55 -- -- 0.120.12 0.250.25 0.030.03 -- 0.0050.005 0.0040.004 0.0110.011 강종5Steel grade 5 0.820.82 3.923.92 0.320.32 0.320.32 -- 0.00190.0019 0.050.05 -- -- 0.180.18 0.0060.006 0.0040.004 0.0080.008 강종6Steel grade 6 1.211.21 3.113.11 0.300.30 0.560.56 -- 0.00130.0013 -- 0.040.04 0.050.05 0.090.09 0.0070.007 0.0060.006 0.0050.005 강종7Steel grade 7 1.421.42 2.612.61 0.790.79 0.330.33 1.101.10 -- -- 0.100.10 0.100.10 -- 0.0090.009 0.0050.005 0.0050.005 강종1∼강종7에는 O의 함량이 0.005%이하 함유됨.강종 7에는 Nb:0.01%, Cu:0.01%가 첨가됨.Grades 1 to 7 contain less than 0.005% of O. Grade 7 contains Nb: 0.01% and Cu: 0.01%.

구분division 대상강종Target steel grade 강편가열로Gangbyeon Heating Furnace 빌레트 페라이트 탈탄깊이(mm)Billet Ferrite Decarburization Depth (mm) 선재가열로Wire Rod Furnace 지름 16mm 선재 전탈탄 깊이(mm)Wire rod total decarburization depth (mm) 가열온도(℃)Heating temperature (℃) 가열시간(min)Heating time (min) 승온속도(℃/min)Temperature increase rate (℃ / min) 가열유지온도(℃)Heating holding temperature (℃) 가열유지시간(min)Heating holding time (min) 발명예1Inventive Example 1 강종1Steel grade 1 12301230 100100 0.060.06 1515 10501050 4040 0.040.04 발명예2Inventive Example 2 12601260 100100 0.130.13 1515 11001100 3030 0.040.04 발명예3Inventive Example 3 12901290 100100 0.080.08 1515 11001100 3030 0.050.05 발명예4Inventive Example 4 12601260 8080 0.100.10 1515 11001100 3030 0.060.06 발명예5Inventive Example 5 12601260 120120 0.100.10 1515 11001100 3030 0.070.07 발명예6Inventive Example 6 12601260 100100 0.160.16 2020 11001100 3030 0.050.05 발명예7Inventive Example 7 12601260 100100 0.160.16 1515 10501050 4040 0.050.05 발명예8Inventive Example 8 12601260 100100 0.160.16 1515 11501150 3030 0.060.06 발명예9Inventive Example 9 강종2Steel grade 2 12601260 100100 0.140.14 1515 10501050 3030 0.070.07 발명예10Inventive Example 10 강종3Steel grade 3 12601260 100100 0.150.15 1515 10501050 3030 0.060.06 발명예11Inventive Example 11 강종4Steel grade 4 12601260 100100 0.120.12 1515 10501050 3030 0.060.06 발명예12Inventive Example 12 강종5Steel grade 5 12601260 100100 0.170.17 1515 10501050 3030 0.050.05 발명예13Inventive Example 13 강종6Steel grade 6 12601260 100100 0.130.13 1515 10501050 3030 0.040.04 발명예14Inventive Example 14 강종7Steel grade 7 12601260 100100 0.090.09 1515 10501050 3030 0.060.06 비교예1Comparative Example 1 강종1Steel grade 1 12001200 100100 0.350.35 1515 10501050 3030 0.120.12 비교예2Comparative Example 2 13201320 100100 0.010.01 1515 10501050 3030 0.140.14 비교예3Comparative Example 3 12601260 150150 0.030.03 1515 10001000 3030 0.190.19 비교예4Comparative Example 4 12601260 100100 0.160.16 1515 12001200 3030 0.200.20 비교예5Comparative Example 5 12601260 100100 0.160.16 88 950950 3030 0.250.25

표 2에 나타난 바와 같이, 본 발명에 따라 제조된 선재들의 표면탈탄 깊이는0.04-0.07mm범위를 보이는 반면, 비교예(1-5)의 경우에는 0.12-0.25mm범위로, 본 발명은 표면탈탄의 개선에 매우 효과적임을 알 수 있다.As shown in Table 2, the surface decarburization depth of the wire rods prepared according to the present invention showed a range of 0.04-0.07 mm, whereas in the case of Comparative Example (1-5), the surface decarburization depth was 0.12-0.25 mm. It can be seen that it is very effective for the improvement.

상술한 바와 같이, 본 발명은 빌레트에 적정 페라이트층을 분포시켜서 선재가열로에서 탈탄반응을 억제시킴으로서 볼트 등에 사용될 수 있는 고실리콘 첨가 고탄소강 선재를 제공하는 유용한 효과가 있는 것이다.As described above, the present invention has a useful effect of providing a high-silicon-added high carbon steel wire that can be used in bolts and the like by distributing an appropriate ferrite layer in the billet to suppress decarburization in the wire furnace.

Claims (2)

중량%로, 탄소:0.65-1.50%, 실리콘:2.0-4.0%, 망간:0.1-0.8%, 크롬:0.1∼0.8%, 인:0.01%이하, 황:0.01%이하, 질소:0.005∼0.01%, 산소:0.005% 이하, 여기에 니켈:0.3-2.0%, 보론:0.001∼0.003%, 바나듐:0.01∼0.5%, 니오븀:0.01∼0.5%, 몰리브덴:0.01∼0.5%, 티타늄:0.01∼0.2%, 텅스텐:0.01∼0.5%, 구리:0.01∼0.2%로 이루어진 그룹중 선택된 1종 또는 2종이상을 함유하고, 나머지 Fe 및 기타 불순물로 조성되는 블룸을 1260±30℃의 범위에서 100±20분의 범위내로 재가열하고 강편압연하여 표면에 페라이트 탈탄층이 형성된 빌레트를 얻고, 이 빌레트를 평균 10℃/분 이상의 가열속도로 1100±50℃의 가열온도로 승온하여 45±15분간 유지하고 선재압연하는 것을 특징으로 하는 표면 탈탄깊이가 적은 고실리콘 첨가 고탄소강 선재의 제조방법.By weight%, carbon: 0.65-1.50%, silicon: 2.0-4.0%, manganese: 0.1-0.8%, chromium: 0.1-0.8%, phosphorus: 0.01% or less, sulfur: 0.01% or less, nitrogen: 0.005-0.01% , Oxygen: 0.005% or less, nickel: 0.3-2.0%, boron: 0.001 to 0.003%, vanadium: 0.01 to 0.5%, niobium: 0.01 to 0.5%, molybdenum: 0.01 to 0.5%, titanium: 0.01 to 0.2% , Tungsten: 0.01% to 0.5%, copper: 0.01% to 0.2%, containing 1 or 2 or more selected from the group consisting of the remaining Fe and other impurities in the range of 1260 ± 30 ℃ 100 ± 20 minutes Reheated and rolled in a range of to obtain a billet with a ferrite decarburized layer formed on the surface.The billet was heated to a heating temperature of 1100 ± 50 ° C at a heating rate of 10 ° C / min or more and maintained for 45 ± 15 minutes. A method for producing a high silicon-added high carbon steel wire having a low surface decarburization depth. 제 1항에 있어서, 상기 빌레트의 페라이트층 탈탄층은 표면으로 부터 0.05-0.20mm의 두께로 형성됨을 특징으로 하는 표면 탈탄깊이가 적은 고실리콘첨가 고탄소강 선재의 제조방법.The method of manufacturing a high silicon-added high carbon steel wire having a low surface decarburization depth according to claim 1, wherein the ferrite layer decarburization layer of the billet has a thickness of 0.05-0.20 mm from the surface.
KR10-1999-0063181A 1999-12-28 1999-12-28 Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface KR100435481B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063181A KR100435481B1 (en) 1999-12-28 1999-12-28 Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063181A KR100435481B1 (en) 1999-12-28 1999-12-28 Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface

Publications (2)

Publication Number Publication Date
KR20010060754A true KR20010060754A (en) 2001-07-07
KR100435481B1 KR100435481B1 (en) 2004-06-10

Family

ID=19630554

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063181A KR100435481B1 (en) 1999-12-28 1999-12-28 Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface

Country Status (1)

Country Link
KR (1) KR100435481B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544744B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method for manufacturing high Si added high carbon wire rod by forming decarburinized ferritic layer
KR100544754B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface
KR100554751B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100920567B1 (en) * 2002-12-26 2009-10-08 주식회사 포스코 Method of manufacturing high Si added high carbon wire rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891867B1 (en) 2002-12-20 2009-04-08 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod free from low temperature annealing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814857B2 (en) * 1979-01-25 1983-03-22 新日本製鐵株式会社 Method for preventing decarburization of steel materials for high Si springs
JPS62267420A (en) * 1986-05-13 1987-11-20 Kobe Steel Ltd Manufacture of high tension and high toughness wire rod having superior delayed fracture resistance
KR950003549B1 (en) * 1992-12-14 1995-04-14 포항종합제철 주식회사 Low decarbonizing spring steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544744B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method for manufacturing high Si added high carbon wire rod by forming decarburinized ferritic layer
KR100544754B1 (en) * 2001-12-27 2006-01-24 주식회사 포스코 Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface
KR100554751B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100920567B1 (en) * 2002-12-26 2009-10-08 주식회사 포스코 Method of manufacturing high Si added high carbon wire rod

Also Published As

Publication number Publication date
KR100435481B1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
KR102276741B1 (en) High strength cold-rolled steel sheet and galvanized steel sheet having high hole expansion ratio and manufacturing method thereof
TWI412609B (en) High strength steel sheet and method for manufacturing the same
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
KR20080038202A (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
CN108342655B (en) Quenched and tempered acid-resistant pipeline steel and manufacturing method thereof
KR102493548B1 (en) Cold-rolled and heat-treated steel sheet and its manufacturing method
KR20200002957A (en) Steel parts and how to manufacture them
KR20240040120A (en) Hot rolled and steel sheet and a method of manufacturing thereof
KR100435481B1 (en) Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface
KR20220003081A (en) Cold rolled and coated steel sheet and method for manufacturing the same
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
KR100544752B1 (en) Method of manufacturing high carbon wire rod having superior cold formability for bolt
KR100431847B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
JPH0425343B2 (en)
JPH11131187A (en) Rapidly graphitizable steel and its production
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
KR20230016218A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
KR100544754B1 (en) Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface
KR100554751B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
KR100380739B1 (en) High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor
KR100544744B1 (en) Method for manufacturing high Si added high carbon wire rod by forming decarburinized ferritic layer
KR100352607B1 (en) Manufacturing method of high stress spring steel wire

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee