JP5207743B2 - Steel for blades with excellent wear resistance and toughness - Google Patents

Steel for blades with excellent wear resistance and toughness Download PDF

Info

Publication number
JP5207743B2
JP5207743B2 JP2008000251A JP2008000251A JP5207743B2 JP 5207743 B2 JP5207743 B2 JP 5207743B2 JP 2008000251 A JP2008000251 A JP 2008000251A JP 2008000251 A JP2008000251 A JP 2008000251A JP 5207743 B2 JP5207743 B2 JP 5207743B2
Authority
JP
Japan
Prior art keywords
less
toughness
wear resistance
steel material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008000251A
Other languages
Japanese (ja)
Other versions
JP2009161809A (en
Inventor
公良 武田
幸男 片桐
聡 田頭
恒年 洲▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008000251A priority Critical patent/JP5207743B2/en
Publication of JP2009161809A publication Critical patent/JP2009161809A/en
Application granted granted Critical
Publication of JP5207743B2 publication Critical patent/JP5207743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、草刈刃、丸鋸、芝刈機、ヘッジトリマー、バリカンなどの枝、葉、草を刈り取る園芸用刃物や、耕耘機の刈刃(爪)などに適した、靭性および耐摩耗性に優れた刃物用鋼材に関する。   The present invention provides toughness and wear resistance suitable for horticultural blades for cutting grass, blades, lawn mowers, hedge trimmers, clippers, etc., horticultural blades for cutting grass, and tillers (claws) for tillers. The present invention relates to excellent steel materials for blades.

従来、上記刃物にはJIS SK85、SK95等の炭素鋼やJIS SKS5、SKS51等の合金工具鋼が用いられている。これらの刃物は、高速回転中に砂利、石、幹などと接触する環境で使用されることから、切れ味に加えて優れた「耐摩耗性」が要求される。そこで、刃物に使用される鋼板は焼入れ・焼戻し処理を行うことにより50HRC程度の高い硬度水準に調質して、切れ味および耐摩耗性を確保している。   Conventionally, carbon steel such as JIS SK85 and SK95 and alloy tool steel such as JIS SKS5 and SKS51 are used for the above-mentioned blade. Since these blades are used in an environment where they come into contact with gravel, stones, trunks, etc. during high-speed rotation, excellent “wear resistance” is required in addition to sharpness. Therefore, the steel plate used for the blade is tempered to a high hardness level of about 50 HRC by performing quenching and tempering treatments to ensure sharpness and wear resistance.

一方、砂利、石、幹などに接触すると刃物が折損する恐れがある。折損で生じた破片の飛散は作業者や周囲にいる人にとって非常に危険である。破片の飛散による事故を防止し、安全性を確保するためには、刃物の「靭性」が重要となる。切れ味や耐摩耗性を向上させるには硬さが高い方が有利であるが、安全性を確保するためにはあまり硬質にすることができないというジレンマがある。   On the other hand, the blade may break when it comes into contact with gravel, stone, trunk, or the like. The scattering of debris caused by breakage is very dangerous for workers and those around them. In order to prevent accidents caused by scattering of fragments and to ensure safety, the “toughness” of the blade is important. Higher hardness is advantageous for improving sharpness and wear resistance, but there is a dilemma that cannot be made too hard to ensure safety.

これまでに耐摩耗性や靭性を改善した鋼材は種々開発されている。特許文献1にはMn含有量が高い高炭素鋼をベースにP含有量との関係において規制される量のMoを添加した鋼材に、所定の熱処理を施すことによって耐摩耗性を改善することが記載されている。特許文献2には特許文献1のMo添加鋼の靭性を改善するためにNiを添加してフェライト相の変形抵抗を低下させる技術が開示されている。特許文献3にはC量を低減し、Cr、Mo、V、Niを添加して焼戻し軟化抵抗および焼入れ性を改善した切れ味、耐久性に優れる園芸機械用刈刃が記載されている。特許文献5には未溶解炭化物の量および粒度分布を制御することにより高強度を維持しながら衝撃特性を向上させた高C含有鋼が記載されている。   Various steel materials with improved wear resistance and toughness have been developed so far. In Patent Document 1, wear resistance is improved by applying a predetermined heat treatment to a steel material to which Mo is added in an amount regulated in relation to the P content based on a high carbon steel having a high Mn content. Have been described. Patent Document 2 discloses a technique for reducing the deformation resistance of the ferrite phase by adding Ni in order to improve the toughness of the Mo-added steel of Patent Document 1. Patent Document 3 describes a cutting blade for a horticultural machine that is excellent in sharpness and durability in which the amount of C is reduced and Cr, Mo, V, and Ni are added to improve temper softening resistance and hardenability. Patent Document 5 describes a high C-containing steel that has improved impact characteristics while maintaining high strength by controlling the amount of undissolved carbide and the particle size distribution.

特開昭62−139811号公報JP-A-62-139811 特開平1−198447号公報Japanese Patent Laid-Open No. 1-198447 特開2005−171303号公報JP-A-2005-171303 特開平11−29839号公報JP-A-11-29839 特開2006−63384号公報JP 2006-63384 A

昨今では従来にも増して、上記用途の刃物に要求される特性は一層厳しいものとなりつつある。すなわち、本来トレードオフの関係にある「耐摩耗性」と「靭性」を、高いレベルで両立させた耐久性・安全性に優れた刃物が望まれるようになり、それに伴って材料に対する要求も一段と厳しさを増している。しかし、そのような要求に十分応えられる特性を具備する鋼材は未だ出現していない。   Nowadays, more than ever before, the characteristics required for a blade for the above-mentioned use are becoming more severe. In other words, a tool with excellent durability and safety that is compatible with high levels of wear resistance and toughness, which are inherently in a trade-off relationship, has been desired. The severity is increasing. However, a steel material having characteristics that can sufficiently meet such requirements has not yet appeared.

例えば特許文献3の鋼材は耐摩耗性と靭性が共に良好であるとされるが、昨今の厳しい要求に即した耐摩耗性の評価によれば、必ずしも満足できる耐摩耗性は得られない。また本発明者らのその後の調査によれば、特許文献3の技術において耐摩耗性を特に高めた場合には優れた靭性(衝撃値)を安定して実現できるとは限らないことがわかった。すなわち、特許文献3には、優れた耐摩耗性と靭性とを高レベルで安定して両立させた鋼材を作り分ける手法は開示されていない。また、特許文献5の鋼材も強度と靭性のバランスが比較的良好であるが、未溶解炭化物の量をこの文献のように規定した場合には刃物用途での昨今の厳しい要求を満足しうる靭性を実現することは難しいことがわかってきた。事実、特許文献5ではUノッチ衝撃試験で靭性を評価しており、より厳しいVノッチ衝撃試験では必ずしも良好な靭性評価は得られないと考えられる。また特許文献5には耐摩耗性についての記載もない。   For example, although the steel material of Patent Document 3 is said to have both good wear resistance and toughness, satisfactory wear resistance cannot always be obtained according to the evaluation of wear resistance in accordance with recent severe requirements. Further, according to the subsequent investigations by the present inventors, it has been found that excellent toughness (impact value) cannot always be stably realized when the wear resistance is particularly enhanced in the technique of Patent Document 3. . In other words, Patent Document 3 does not disclose a method for making a steel material that has both excellent wear resistance and toughness stably at a high level. Also, the steel material of Patent Document 5 has a relatively good balance between strength and toughness. However, when the amount of undissolved carbide is specified as in this document, the toughness that can satisfy the recent severe demands for blade applications. It has proved difficult to realize. In fact, Patent Document 5 evaluates toughness by the U-notch impact test, and it is considered that a tougher V-notch impact test cannot always obtain a good toughness evaluation. Further, Patent Document 5 does not describe the wear resistance.

本発明は、耐摩耗性と靭性を高いレベルで両立させた刃物用鋼材を安定的に実現する手法を開示するものである。   The present invention discloses a technique for stably realizing a steel material for blades that achieves both wear resistance and toughness at a high level.

上記目的は、質量%で、C:0.4〜0.75%、Si:0.5%以下、Mn:0.5〜2%、P:0.02%以下、S:0.02%以下、Ti:0〜0.2%、V:0〜0.5%、Nb:0〜0.5%であり、かつV、Ti、NbについてはV:0.02〜0.5%、Ti:0.02〜0.2%、Nb:0.01〜0.5%の1種以上を含有し、さらに必要に応じてCr:0.5%以下、Mo:1%以下、B:0.01%以下の1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有し、下記(1)式で定義されるX値が10以下、旧オーステナイト粒径が15μm以下、かつ円相当径1.5μm以上の未溶解炭化物(セメンタイト)が0.1mm2あたり40個以下であるマルテンサイト組織を有する耐摩耗性および靭性に優れた刃物用鋼材によって達成される。
X=15.3×{C−0.25(V+Ti)−0.13Nb}−[未溶解炭化物の面積率(%)] ……(1)
The above-mentioned purpose is mass%, C: 0.4-0.75%, Si: 0.5% or less, Mn: 0.5-2%, P: 0.02% or less, S: 0.02% Hereinafter, Ti is 0 to 0.2%, V is 0 to 0.5%, Nb is 0 to 0.5%, and V, Ti, and Nb are V: 0.02 to 0.5%, It contains at least one of Ti: 0.02 to 0.2%, Nb: 0.01 to 0.5%, further Cr: 0.5% or less, Mo: 1% or less, and B: Containing one or more of 0.01% or less, having a chemical composition comprising the balance Fe and inevitable impurities, the X value defined by the following formula (1) is 10 or less, the prior austenite grain size is 15 μm or less, In addition, a steel material for blades having a martensite structure in which an undissolved carbide (cementite) having an equivalent circle diameter of 1.5 μm or more is 40 or less per 0.1 mm 2 is excellent in wear resistance and toughness. Achieved.
X = 15.3 × {C−0.25 (V + Ti) −0.13Nb} − [area ratio of undissolved carbide (%)] (1)

ここで、元素含有量の下限0%は、製鋼における通常の分析手法で検出限界以下となる場合(成分表におけるtr;トレースと同じ)を意味する。(1)式の元素記号の箇所には当該元素の質量%で表された含有量の値が代入される。含有量が検出限界以下(tr)の元素は0(ゼロ)が代入される。円相当径とは、鋼材断面の顕微鏡観察によって測定される個々の未溶解炭化物の径を、その未溶解炭化物と同じ面積の円の直径に換算した値である。未溶解炭化物の面積率(%)は、鋼材断面の顕微鏡観察像において、一定視野面積に占める未溶解炭化物の面積の割合である。   Here, the lower limit of 0% of the element content means a case where it is below the detection limit by a normal analysis method in steelmaking (tr in the composition table; the same as the trace). The value of the content expressed in mass% of the element is substituted for the element symbol in the formula (1). For elements whose content is below the detection limit (tr), 0 (zero) is substituted. The equivalent circle diameter is a value obtained by converting the diameter of an individual undissolved carbide measured by microscopic observation of a cross section of a steel material into a diameter of a circle having the same area as the undissolved carbide. The area ratio (%) of the undissolved carbide is the ratio of the area of the undissolved carbide in the fixed visual field area in the microscope observation image of the steel material cross section.

また本発明では、上記化学組成を有する焼鈍し鋼材に対して、下記(a)に示す焼入れ処理を施し、その後、保持温度150〜500℃、保持時間20〜240分の焼戻し処理を施す、耐摩耗性および靭性に優れた刃物用鋼材の製造方法が提供される。
(a)焼入れ処理; 保持温度790〜900℃、保持時間10〜60分の範囲内において、上記(1)式で定義されるX値が10以下、旧オーステナイト粒径が15μm以下、かつ円相当径1.5μm以上の未溶解炭化物が0.1mm2あたり40個以下となる条件で加熱保持を行った後、Mf点(マルテンサイト変態終了温度)以下の温度まで急冷する。
In the present invention, the annealed steel material having the above chemical composition is subjected to the quenching treatment shown in the following (a), and then subjected to a tempering treatment with a holding temperature of 150 to 500 ° C. and a holding time of 20 to 240 minutes. Provided is a method for manufacturing a steel material for blades having excellent wear and toughness.
(A) Quenching treatment; within a range of holding temperature of 790 to 900 ° C. and holding time of 10 to 60 minutes, the X value defined by the above formula (1) is 10 or less, the prior austenite grain size is 15 μm or less, and is equivalent to a circle After heating and holding under the condition that 40 or less undissolved carbides having a diameter of 1.5 μm or more per 0.1 mm 2, quenching is performed to a temperature below the Mf point (martensite transformation end temperature).

ここで保持時間は、材料温度が上記保持温度の範囲内にある時間を意味する。   Here, the holding time means a time during which the material temperature is within the above holding temperature range.

本発明によれば、耐摩耗性と靭性を高いレベルで両立させた刃物用鋼材が実現できた。この鋼材を使用すると園芸用刃物や耕耘機の用途において刃の摩耗および折損が顕著に抑制されるので、非常に耐久性が高く、かつ折損事故に対する安全性の高いものが提供可能になる。   According to the present invention, it is possible to realize a steel material for blades that achieves both wear resistance and toughness at a high level. When this steel material is used, the wear and breakage of the blade are remarkably suppressed in the use of gardening knives and tillers, so that it is possible to provide a very high durability and high safety against breakage accidents.

発明者らは詳細な検討の結果、以下のような知見を得た。
[1]固溶C量について
焼入れ処理の加熱時におけるオーステナイト相中の固溶C量が0.65質量%を超えると靭性の低いレンズ状マルテンサイトが形成されやすいことが知られている。しかし、厳密にはその固溶C量は、焼入れ処理の急冷直前の高温組織中に存在する未溶解炭化物の量およびCと結合しやすいV、Ti、Nbの炭化物の量によって左右される。種々検討の結果、焼入れ処理の急冷直前におけるオーステナイト相中の固溶C量(すなわち焼入れ後の組織におけるマルテンサイト中に固溶しているC量に相当する)は、C含有量(Cのいわゆる分析値)、V、Ti、Nbの含有量、および未溶解炭化物の面積率(%)の関数として精度良く推定することができることがわかった。それが下記(1)式である。
X=15.3×{C−0.25(V+Ti)−0.13Nb}−[未溶解炭化物の面積率(%)] ……(1)
The inventors have obtained the following findings as a result of detailed studies.
[1] Regarding the amount of solid solution C It is known that when the amount of solid solution C in the austenite phase at the time of heating in the quenching process exceeds 0.65% by mass, lenticular martensite with low toughness is easily formed. However, strictly speaking, the amount of dissolved C depends on the amount of undissolved carbides present in the high-temperature structure immediately before quenching and the amount of carbides of V, Ti, and Nb that are easily combined with C. As a result of various studies, the amount of C dissolved in the austenite phase immediately before quenching quenching (that is, equivalent to the amount of C dissolved in martensite in the structure after quenching) is the C content (so-called C content). Analytical value), V, Ti, Nb content, and the area ratio (%) of undissolved carbides were found to be accurately estimated. That is the following equation (1).
X = 15.3 × {C−0.25 (V + Ti) −0.13Nb} − [area ratio of undissolved carbide (%)] (1)

ここで、(1)式の両辺を係数15.3で割ると、下記(1)’式となる。
X/15.3=C−0.25(V+Ti)−0.13Nb−[未溶解炭化物の面積率(%)]/15.3 ……(1)’
Here, when both sides of the equation (1) are divided by the coefficient 15.3, the following equation (1) ′ is obtained.
X / 15.3 = C−0.25 (V + Ti) −0.13Nb− [area ratio of undissolved carbide (%)] / 15.3 (1) ′

(1)’式中、「0.25(V+Ti)」と「0.13Nb」はV、TiおよびNbに固定されることによって消費されるC量に相当する部分、「[未溶解炭化物の面積率(%)]/15.3」は未溶解炭化物として消費されるC量に相当する部分である。これらによって消費されるC量を、C含有量(トータルC量)から差し引いたものが、左辺の「X/15.3」であり、これは焼入れ処理の急冷直前におけるオーステナイト相中の固溶C量(すなわち焼入れ後の組織におけるマルテンサイト中に固溶しているC量)に相当するものである。左辺の「X/15.3」値は、Xが10のとき10/15.3=0.65となり、このときが靭性の低いレンズ状マルテンサイトが形成されやすくなる限界の状態である。   In the formula (1) ′, “0.25 (V + Ti)” and “0.13 Nb” are portions corresponding to the amount of C consumed by being fixed to V, Ti, and Nb, “[area of undissolved carbide] "Rate (%)] / 15.3" corresponds to the amount of C consumed as undissolved carbide. Subtracting the amount of C consumed by these from the C content (total C amount) is “X / 15.3” on the left side, which is the solid solution C in the austenite phase immediately before quenching quenching. This corresponds to the amount (that is, the amount of C dissolved in martensite in the structure after quenching). The “X / 15.3” value on the left side is 10 / 15.3 = 0.65 when X is 10, and this is a limit state where lenticular martensite with low toughness is easily formed.

後述の実施例で実証されるように、常温でのVノッチ衝撃値が20J/cm2であるような優れた靭性を安定的に実現するためには、(1)式のX値が10以下であることが肝要であり、9以下であることがより好ましい。 As demonstrated in the examples described later, in order to stably realize excellent toughness such that the V-notch impact value at room temperature is 20 J / cm 2 , the X value of the formula (1) is 10 or less. It is essential that the value is 9 or less.

[2]未溶解炭化物の形態について
靭性に及ぼす未溶解炭化物の影響を詳細に調査した結果、未溶解炭化物は靭性を低下させることがわかった。特に、粒径の大きい未溶解炭化物は刃物が折損するときの亀裂の起点および伝播経路となりやすいものと考えられ、できるだけ排除することが有効である。具体的には、円相当径が1.5μm以上の未溶解炭化物の量を0.1mm2あたり40個以下にコントロールすることが、前記(1)式のX値とともに、靭性確保のために重要であることが明らかになった。上述のように、靭性の低いレンズ状マルテンサイトの生成を抑制するためには未溶解炭化物によって固溶C量を減らすことが必要であるが、できるだけ微細な未溶解炭化物をC消費に活用することが肝要である。
[2] Form of Undissolved Carbide As a result of detailed investigation of the effect of undissolved carbide on toughness, it was found that undissolved carbide reduces toughness. In particular, it is considered that undissolved carbide having a large particle size is likely to become a starting point and a propagation path of a crack when the blade breaks, and it is effective to eliminate it as much as possible. Specifically, controlling the amount of undissolved carbide having an equivalent circle diameter of 1.5 μm or more to 40 or less per 0.1 mm 2 is important for securing toughness together with the X value of the above formula (1). It became clear that. As described above, in order to suppress the formation of lenticular martensite with low toughness, it is necessary to reduce the amount of dissolved C by undissolved carbide, but use as fine undissolved carbide as possible for C consumption. Is essential.

[3]旧オーステナイト粒径について
靭性に及ぼす旧オーステナイト粒径の影響を調べたところ、旧オーステナイト粒径が微細であるほど靭性は向上し、特に旧オーステナイト粒径を15μm以下とすることが極めて有効であることがわかった。なお、未溶解炭化物は旧オーステナイト粒径を微細化する作用を有するが、反面、靭性を低下させるので、未溶解炭化物のみに旧オーステナイト粒径の微細化を委ねるわけにはいかない。そこで本発明では旧オーステナイト粒径の微細化に有効な他の種類の炭化物として、V、Ti、Nbの炭化物を利用する。
[3] Prior austenite grain size When the influence of the prior austenite grain size on the toughness was examined, the finer the previous austenite grain size, the better the toughness. I found out that Although undissolved carbides have the effect of refining the prior austenite grain size, on the other hand, since the toughness is reduced, it is not possible to entrust the refinement of the prior austenite grain size only to the undissolved carbide. Therefore, in the present invention, carbides of V, Ti, and Nb are used as other types of carbides effective for refining the prior austenite grain size.

[4]硬質な第二相について
耐摩耗性に及ぼす金属組織の影響を詳細に検討した結果、硬質な第二相を均一分散させることが極めて有効であることがわかった。そして、そのような第二相としてV、Ti、Nbの炭化物を活用できることが明らかになった。すなわち本発明では、V、Ti、Nbの1種以上を添加することによって得られる硬質で微細な炭化物を利用して耐摩耗性を向上させている。
[4] Hard Second Phase As a result of detailed examination of the influence of the metal structure on the wear resistance, it was found that it is extremely effective to uniformly disperse the hard second phase. And it became clear that the carbide | carbonized_material of V, Ti, and Nb can be utilized as such a 2nd phase. That is, in the present invention, wear resistance is improved by utilizing hard and fine carbides obtained by adding one or more of V, Ti, and Nb.

〔合金成分〕
次に、合金成分について説明する。合金元素の含有量は特に断らない限り質量%を意味する。
C:0.4〜0.75%
刃物に必要な硬さを得るためには0.4%以上のC含有量が必要である。しかし、C含有量が0.75%を超えると、(1)式のX値を10以下にコントロールした場合であっても、レンズ状マルテンサイトの形成を安定して抑止することや、円相当径1.5μm以上の未溶解炭化物の存在量を規定以下に安定して抑えることが難しくなり、靭性が低下しやすくなる。したがってC含有量は0.75%以下に制限される。
[Alloy components]
Next, alloy components will be described. Unless otherwise specified, the alloy element content means mass%.
C: 0.4 to 0.75%
In order to obtain the necessary hardness for the blade, a C content of 0.4% or more is required. However, if the C content exceeds 0.75%, the formation of lenticular martensite can be stably suppressed, even if the X value of the formula (1) is controlled to 10 or less, or equivalent to a circle. It becomes difficult to stably suppress the abundance of undissolved carbide having a diameter of 1.5 μm or more to a specified value or less, and toughness tends to be lowered. Accordingly, the C content is limited to 0.75% or less.

Si:0.5以下
Siは製鋼段階で脱酸剤として添加されることがあるが、本成分系ではSi無添加でも脱酸不良の弊害は生じない。むしろ、Si含有量が多くなると靭性や加工性が劣化するようになり、好ましくない。種々検討の結果、Si含有量は0.5%まで許容され、0.35%以下とすることがより好ましい。
Si: 0.5 or less Si may be added as a deoxidizing agent in the steelmaking stage, but in this component system, even if Si is not added, there is no adverse effect of deoxidation failure. Rather, if the Si content increases, the toughness and workability deteriorate, which is not preferable. As a result of various studies, the Si content is allowed to 0.5%, more preferably 0.35% or less.

Mn:0.5〜2%
Mnは焼入れ性向上に有効な元素であり、0.5%未満ではその作用が不十分となりやすい。しかし、Mnは固溶強化型の合金成分であるため、多量のMn含有は鋼を硬質化させ、製造性や靭性を損なう要因となる。種々検討の結果、Mn含有量は2%以下に制限される。
Mn: 0.5 to 2%
Mn is an element effective for improving hardenability, and if it is less than 0.5%, its action tends to be insufficient. However, since Mn is a solid solution strengthened alloy component, a large amount of Mn hardens the steel and becomes a factor that impairs manufacturability and toughness. As a result of various studies, the Mn content is limited to 2% or less.

P:0.02%以下、S:0.02%以下
これらはどちらも靭性に悪影響を及ぼすので、できるだけ含有量を下げることが望ましいが、本成分系ではいずれも0.02%まで許容される。
P: 0.02% or less, S: 0.02% or less Since both of these adversely affect toughness, it is desirable to reduce the content as much as possible, but in this component system both are allowed to 0.02% .

V:0.02〜0.5%、Ti:0.02〜0.2%、Nb:0.01〜0.5%
これらは硬質な微細炭化物を形成する元素である。その炭化物はマトリクス中に均一に分散することにより、焼入れ処理の加熱保持においてオーステナイト相を微細化させる作用を呈する。これにより旧オーステナイト粒径が微細である金属組織が得られ、靱性向上に有効となる。また、その硬質な微細炭化物は耐摩耗性を向上させる作用を呈する。これらの作用を顕著に発揮させるには、V、Tiの場合0.02%以上、Nbの場合0.01%以上の含有量を確保する必要がある。ただし、これらの元素の含有量が過剰になると炭化物が粗大化しやすく、疲労限および靭性を低下させる要因となることがある。また、過剰添加は経済的にも好ましくない。種々検討の結果、Vは0.5%以下、Tiは0.2%以下、Nbは0.5%以下の含有量に制限される。したがって、これらの元素は、V:0〜0.5%、Ti:0〜0.2%、Nb:0〜0.5%の含有量範囲で含有させることができるが、少なくともV:0.02〜0.5%、Ti:0.02〜0.2%、Nb:0.01〜0.5%の1種を含有させる必要がある。
V: 0.02 to 0.5%, Ti: 0.02 to 0.2%, Nb: 0.01 to 0.5%
These are elements that form hard fine carbides. The carbide is uniformly dispersed in the matrix, thereby exhibiting an effect of refining the austenite phase in the heating and holding of the quenching process. As a result, a metal structure having a fine prior austenite grain size is obtained, which is effective in improving toughness. Further, the hard fine carbide exhibits an effect of improving wear resistance. In order to exert these effects remarkably, it is necessary to secure a content of 0.02% or more in the case of V and Ti and 0.01% or more in the case of Nb. However, if the content of these elements is excessive, the carbide is likely to be coarsened, which may be a factor for reducing the fatigue limit and toughness. Moreover, excessive addition is not preferable economically. As a result of various studies, V is limited to 0.5% or less, Ti is limited to 0.2% or less, and Nb is limited to 0.5% or less. Therefore, these elements can be contained in a content range of V: 0 to 0.5%, Ti: 0 to 0.2%, Nb: 0 to 0.5%, but at least V: 0.5%. It is necessary to contain one of 02 to 0.5%, Ti: 0.02 to 0.2%, and Nb: 0.01 to 0.5%.

Cr:0〜0.5%
Crは鋼の焼入れ性を向上させる作用、鋼板の強度を向上させる作用、耐摩耗性を向上させる作用を併せ持つ元素である。しかし、Crは焼入れ処理の加熱保持においてセメンタイトの溶体化を妨げるというマイナスの作用を呈する場合があり、焼入れ処理後の未溶解炭化物の量あるいはサイズを増大させる要因となりうる。Crは必要に応じて添加される任意成分であり、その含有量は0.5%以下の範囲に制限され、0.3%以下とすることがより好ましい。
Cr: 0 to 0.5%
Cr is an element having both the effect of improving the hardenability of steel, the effect of improving the strength of the steel plate, and the effect of improving the wear resistance. However, Cr may have a negative effect of preventing solution of cementite in the heating and holding of the quenching process, and may increase the amount or size of undissolved carbide after the quenching process. Cr is an optional component added as necessary, and its content is limited to a range of 0.5% or less, and more preferably 0.3% or less.

Mo:0〜1%
Moは鋼の焼入れ性の向上に有効な元素であり、必要に応じて添加することができる。しかし、高価な元素であり多量添加は経済性を損なうので、Moを添加する場合は1%以下の範囲で行う。
Mo: 0 to 1%
Mo is an element effective for improving the hardenability of steel, and can be added as necessary. However, since it is an expensive element and the addition of a large amount impairs the economy, when adding Mo, it is performed within a range of 1% or less.

B:0〜0.01%
Bは鋼の焼入れ性を高めるとともに、粒界破壊を抑制する作用を呈するので、必要に応じて添加することができる。Bの添加効果は0.0003%以上のB含有量で顕著になるので、Bを添加する場合は0.0003%以上の含有量とすることが特に効果的である。ただしB含有量が増大すると逆に靭性が低下するようになる。種々検討の結果、B含有量は0.01%以下に制限される。
B: 0 to 0.01%
B enhances the hardenability of the steel and exhibits the effect of suppressing grain boundary fracture, so it can be added as necessary. The effect of addition of B becomes significant when the B content is 0.0003% or more. Therefore, when B is added, it is particularly effective to set the content to 0.0003% or more. However, as the B content increases, the toughness decreases. As a result of various studies, the B content is limited to 0.01% or less.

〔製造方法〕
本発明の刃物用鋼材は、上記の組成を持つ鋼を溶製し、一般的な焼入れ焼戻し鋼材(例えば鋼板)を製造するプロセスによって得ることができる。
〔Production method〕
The steel material for blades of the present invention can be obtained by a process of melting a steel having the above composition and manufacturing a general quenched and tempered steel material (for example, a steel plate).

焼入れ処理は、前記(1)式で定義されるX値が10以下、旧オーステナイト粒径が15μm以下、かつ円相当径1.5μm以上の未溶解炭化物が0.1mm2あたり40個以下となる条件で行う。化学組成によってこれらを満たす焼入れ条件は若干変動するが、種々検討の結果、溶体化加熱の保持温度790〜900℃、保持時間10〜60分の範囲内において適正な焼入れ処理条件を見出すことができる。加熱保持温度が790℃を下回る場合や加熱保持時間が10分未満の場合は、セメンタイトの溶体化が不十分となって粗大な未溶解炭化物が増大しやすく、高い靱性を安定して得ることが難しくなる。逆に加熱保持温度が900℃を超える場合や加熱保持時間が60分を超える場合は、旧オーステナイト粒径が粗大となりやすく、この場合も高い靱性を安定して得ることが難しくなる。具体的な化学組成の仕様が決まれば、予備実験によって上記範囲内で適正な条件範囲を予め求めておけばよい。通常、保持温度800〜860℃、保持時間15〜40分の条件を採用することが好ましい。冷却はMf点以下の温度まで一気に急冷する必要があるが、冷媒(水あるいは油)の浴中に浸漬して急冷する方法を採用することが望ましい。 In the quenching treatment, the undissolved carbide having an X value defined by the formula (1) of 10 or less, a prior austenite particle size of 15 μm or less, and an equivalent circle diameter of 1.5 μm or more is 40 or less per 0.1 mm 2. Perform under conditions. Although quenching conditions satisfying these slightly vary depending on the chemical composition, as a result of various studies, appropriate quenching conditions can be found within the range of a holding temperature of solution heat of 790 to 900 ° C. and a holding time of 10 to 60 minutes. . When the heating and holding temperature is lower than 790 ° C. or when the heating and holding time is less than 10 minutes, cementite is insufficiently solutioned, and coarse undissolved carbide tends to increase, and high toughness can be stably obtained. It becomes difficult. Conversely, when the heating and holding temperature exceeds 900 ° C. or when the heating and holding time exceeds 60 minutes, the prior austenite grain size tends to be coarse, and in this case as well, it is difficult to stably obtain high toughness. If a specific chemical composition specification is determined, an appropriate condition range within the above range may be obtained in advance by preliminary experiments. Usually, it is preferable to employ the conditions of a holding temperature of 800 to 860 ° C. and a holding time of 15 to 40 minutes. Although it is necessary to rapidly cool to a temperature below the Mf point, it is desirable to employ a method of quenching by immersing in a bath of refrigerant (water or oil).

次いで焼戻し処理に供する。焼戻しは保持温度150〜500℃、保持時間20〜240分の範囲で設定できるが、あまり低温、短時間では靭性の更なる改善の余地を残したまま焼戻しを終了してしまう場合も生じうる。要求特性と製造コストのバランスにより焼戻し条件を設定すればよいが、できるだけ高い靱性を確保したい場合は250〜500℃の保持温度とすることがより好ましく、280〜500℃とすることが一層好ましい。冷却は空冷で十分である。   Next, it is subjected to a tempering treatment. Tempering can be set in the range of holding temperature of 150 to 500 ° C. and holding time of 20 to 240 minutes, but the tempering may be terminated at a very low temperature and in a short time while leaving room for further improvement of toughness. The tempering conditions may be set depending on the balance between the required characteristics and the manufacturing cost. However, when it is desired to secure as high a toughness as possible, the holding temperature is preferably 250 to 500 ° C, and more preferably 280 to 500 ° C. Air cooling is sufficient for cooling.

本発明で規定する化学組成を有する鋼を用いて、種々の条件で焼入れ処理および焼戻し処理を行い、組織状態および特性を調べた。
表1に示す化学組成の鋼を溶製し、鋼スラブを製造した。各鋼スラブを常法にしたがって熱間圧延し板厚3.0mmの熱延鋼板とした後、冷間圧延、焼鈍を経て板厚2.5mmの焼鈍し鋼材とした。この焼鈍し鋼材を表1中に示す条件で焼入れ処理および焼戻し処理に供し、硬さが48〜55HRCに調質された供試材を得た。焼入れ処理では加熱保持温度から60℃の油浴中に材料を浸漬する方法で急冷した。焼戻し処理では加熱保持温度から材料を空冷した。各供試材について以下の項目を調べた。
The steel having the chemical composition defined in the present invention was subjected to quenching treatment and tempering treatment under various conditions, and the structural state and characteristics were examined.
Steels having chemical compositions shown in Table 1 were melted to produce steel slabs. Each steel slab was hot-rolled according to a conventional method to obtain a hot-rolled steel sheet having a thickness of 3.0 mm, and then subjected to cold rolling and annealing to obtain an annealed steel material having a thickness of 2.5 mm. This annealed steel was subjected to quenching and tempering under the conditions shown in Table 1 to obtain a test material having a hardness of 48 to 55 HRC. In the quenching treatment, the material was rapidly cooled by dipping the material in an oil bath at 60 ° C. from the heating and holding temperature. In the tempering process, the material was air-cooled from the heated holding temperature. The following items were examined for each specimen.

〔旧オーステナイト粒径〕
供試材の圧延方向および板厚方向に平行な断面(L断面)について組織観察を行い、JIS G0551の切断法に従って旧オーステナイト粒径を求めた。
[Old austenite grain size]
The structure was observed for the cross section (L cross section) parallel to the rolling direction and the plate thickness direction of the test material, and the prior austenite grain size was determined according to the cutting method of JIS G0551.

〔未溶解炭化物の面積率〕
供試材のL断面について、鏡面研磨したのちピクラール溶液(メチルアルコール+ピクリン酸)でエッチングした表面をレーザー顕微鏡で観察し、その画像を処理して一定の視野面積中に未溶解炭化物が占める面積率を測定することによって未溶解炭化物の面積率を求めた。未溶解炭化物は鋼材中にほぼ均一に分散していると考えられるので、この面積率は鋼材中に占める未溶解炭化物の体積率と見ることができる。
[Area ratio of undissolved carbide]
The L-section of the specimen was mirror-polished and then etched with a picral solution (methyl alcohol + picric acid). The surface was observed with a laser microscope, and the image was processed to account for the area occupied by undissolved carbide in a certain visual field area. The area ratio of undissolved carbide was determined by measuring the ratio. Since it is considered that the undissolved carbide is dispersed almost uniformly in the steel material, this area ratio can be regarded as the volume ratio of the undissolved carbide in the steel material.

〔X値〕
C、V、Ti、Nbの含有量(分析値)および上記の未溶解炭化物の面積率(%)を前記(1)式に代入することによりX値を求めた。
[X value]
The X value was determined by substituting the content (analytical value) of C, V, Ti, and Nb and the area ratio (%) of the undissolved carbide into the equation (1).

〔円相当径1.5μm以上の未溶解炭化物の存在密度〕
前記の未溶解炭化物の面積率を求めるレーザー顕微鏡観察において、画像処理を利用して円相当径が1.5μm以上の未溶解炭化物を特定し、一定の観察面積(ただし0.1mm2以上とする)に存在する円相当径1.5μm以上の未溶解炭化物の数をカウントし、これを基に0.1mm2あたりに存在する円相当径1.5μm以上の未溶解炭化物の数を算出した。
[Abundance of undissolved carbides with equivalent circle diameter of 1.5 μm or more]
In the laser microscope observation for determining the area ratio of the undissolved carbide, undissolved carbide having an equivalent circle diameter of 1.5 μm or more is specified by using image processing, and a certain observation area (however, 0.1 mm 2 or more is set). The number of undissolved carbides having an equivalent circle diameter of 1.5 μm or more existing in 1) was counted, and the number of undissolved carbides having an equivalent circle diameter of 1.5 μm or more present per 0.1 mm 2 was calculated based on this.

〔硬さ〕
供試材のL断面についてロックウェルCスケールでの硬さを求めた。園芸用刃物等の用途では48HRC以上の硬度レベルとすることが望まれる。
〔Hardness〕
The hardness in Rockwell C scale was calculated | required about the L cross section of the test material. For applications such as horticultural cutting tools, a hardness level of 48 HRC or higher is desired.

〔2mmVノッチ衝撃値(靭性)〕
供試材(板厚2.5mm)の圧延方向および板厚方向に対して垂直な方向(T方向)が長手方向となるように長さ55mm×幅10mmの試験片を切り出し、その中央部に2mmVノッチを形成することにより、JIS Z2202に準拠したノッチ付き衝撃試験片を作製した。この試験片を用いてJIS Z2242に準拠したシャルピー衝撃試験を常温で実施し、衝撃値を求めた。園芸用刃物等に対して望まれる昨今の厳しい要求特性を考慮して、この2mmVノッチ衝撃値が20J/cm2以上のものを合格と判定した。
[2mmV notch impact value (toughness)]
A test piece having a length of 55 mm and a width of 10 mm was cut out so that the rolling direction of the test material (thickness of 2.5 mm) and the direction perpendicular to the thickness direction (T direction) were the longitudinal direction, and at the center thereof By forming a 2 mmV notch, a notched impact test piece according to JIS Z2202 was produced. Using this test piece, a Charpy impact test in accordance with JIS Z2242 was performed at room temperature to determine the impact value. In consideration of recent severe demand characteristics desired for gardening tools, etc., those having a 2 mmV notch impact value of 20 J / cm 2 or more were determined to be acceptable.

〔摩耗量〕
供試材(板厚2.5mm)のT方向が長手方向となるように長さ50mm×幅25mmの試験片を切り出し、大越式迅速摩耗試験機を用いて耐摩耗試験を行った。乾式環境下で速度0.61mm/sec、最終荷重60Nの条件で、相手材には粒度番号400番の立方晶系窒化ケイ素からなる砥石を用い、比摩耗量により耐摩耗性を評価した。この場合も園芸用刃物等に対して望まれる昨今の厳しい要求特性を考慮して、摩耗量が300×10-4mm3/(m・kg)以下のものを合格と判定した。
これらの結果を表1および表2に示す。
[Abrasion amount]
A specimen having a length of 50 mm and a width of 25 mm was cut out so that the T direction of the test material (thickness of 2.5 mm) was the longitudinal direction, and an abrasion resistance test was performed using an Ogoshi type rapid wear tester. Abrasive stone made of cubic silicon nitride having a particle size number of 400 was used as the mating material under conditions of a speed of 0.61 mm / sec and a final load of 60 N in a dry environment, and the wear resistance was evaluated based on the specific wear amount. Also in this case, in consideration of recent strict required characteristics desired for horticultural knives and the like, a wear amount of 300 × 10 −4 mm 3 / (m · kg) or less was determined to be acceptable.
These results are shown in Tables 1 and 2.

Figure 0005207743
Figure 0005207743

Figure 0005207743
Figure 0005207743

表1、表2からわかるように、本発明例のものは化学組成および焼入れ・焼戻し条件を適正範囲として製造したことにより、旧オーステナイト粒径、X値、および円相当径1.5μm以上の未溶解炭化物の存在密度を本発明に規定される範囲にコントロールすることができた。その結果、耐摩耗性と靭性を高レベルで兼ね備えた材料が実現された。   As can be seen from Tables 1 and 2, the examples of the present invention were manufactured with the chemical composition and quenching / tempering conditions within the proper ranges, so that the prior austenite grain size, the X value, and the equivalent circle diameter of 1.5 μm or more were not obtained. The density of dissolved carbides could be controlled within the range specified in the present invention. As a result, a material having a high level of wear resistance and toughness was realized.

これに対し、比較例No.1、4、6、9、10は焼入れ処理の保持温度がそれぞれの化学組成において高すぎたことにより旧オーステナイト粒径が粗大となるか、あるいはX値が大きくなり、いずれも靭性に劣った。No.2、7、11は焼入れ処理の時間がそれぞれの化学組成において短すぎたことにより円相当径1.5μm以上の未溶解炭化物の存在密度が高くなり、靭性に劣った。   On the other hand, in Comparative Examples No. 1, 4, 6, 9, and 10, the holding temperature of the quenching treatment is too high in each chemical composition, so that the prior austenite grain size becomes coarse or the X value becomes large. Both were inferior in toughness. Nos. 2, 7, and 11 were inferior in toughness due to an increase in the density of undissolved carbides having an equivalent circle diameter of 1.5 μm or more because the quenching time was too short in each chemical composition.

表3、表5に示す組成の鋼を溶製し、実施例1と同様のプロセスで板厚2.5mmの焼鈍し鋼材(鋼板)を製造し、これを供試材とした。各供試材について実施例1と同様の項目を調査した。結果を表4、表6に示す。   Steels having the compositions shown in Tables 3 and 5 were melted, and an annealed steel material (steel plate) having a thickness of 2.5 mm was produced by the same process as in Example 1. This was used as a test material. The same items as Example 1 were investigated about each test material. The results are shown in Tables 4 and 6.

Figure 0005207743
Figure 0005207743

Figure 0005207743
Figure 0005207743

Figure 0005207743
Figure 0005207743

Figure 0005207743
Figure 0005207743

表3、表4からわかるように、本発明で規定する化学組成の鋼に適切な条件で焼入れ処理および焼戻し処理を施すことにより、旧オーステナイト粒径、X値、および円相当径1.5μm以上の未溶解炭化物の存在密度を本発明に規定される範囲にコントロールすることができた。その結果、耐摩耗性と靭性を高レベルで兼ね備えた材料が実現された。   As can be seen from Tables 3 and 4, the steel having the chemical composition defined in the present invention is subjected to quenching treatment and tempering treatment under appropriate conditions, whereby the prior austenite grain size, X value, and equivalent circle diameter of 1.5 μm or more. It was possible to control the density of the undissolved carbide in the range specified in the present invention. As a result, a material having a high level of wear resistance and toughness was realized.

これに対し、表5、表6からわかるように、比較例No.51、52はC含有量が不足しているので刃物に必要な硬さが得られなかった。No.53はCr含有量が高すぎたことによりセメンタイトの溶体化が阻害され、粗大な未溶解炭化物が多数存在したので靭性に劣った。No.54、59、64、65、67はV、Ti、Nbを添加していないので旧オーステナイト粒径が粗大になり、靭性に劣った。また硬質な析出物による耐摩耗性向上効果が得られなかった。中でもNo.65、67はC含有量が高いのでX値が高くなり(すなわち固溶C量が増大し)、脆いレンズ状マルテンサイトが生成したので、Vノッチ衝撃値が特に低かった。No.55、63はTi添加量が過剰であるため粗大なTi炭化物が生成し、靭性が損なわれた。No.56、60はPまたはSの含有量が高すぎるので靭性に劣った。No.57はMn含有量が少ないので必要な硬さが得られず、耐摩耗性に劣った。No.58、62はSiおよびCrの含有量が過剰であるため粗大な未溶解炭化物の存在量が多くなり、靭性に劣った。No.61はMn含有量が過剰であるため靭性に劣った。No.68はC含有量を0.95%と高くしたものであり、V添加にもかかわらずX値がかなり高くなり(すなわち固溶C量がかなり増大し)、Vノッチ衝撃値が非常に低い値となった。   On the other hand, as can be seen from Tables 5 and 6, Comparative Examples Nos. 51 and 52 did not have the necessary hardness for the blade because the C content was insufficient. No. 53 was inferior in toughness due to the fact that the content of Cr was too high to inhibit the solution of cementite, and there were many coarse undissolved carbides. Nos. 54, 59, 64, 65, and 67 were not added with V, Ti, and Nb, so the prior austenite grain size became coarse and inferior in toughness. Further, the effect of improving the wear resistance by the hard precipitate was not obtained. Among them, Nos. 65 and 67 had a high C content, so the X value was high (that is, the amount of dissolved C was increased), and brittle lens-like martensite was generated, so the V notch impact value was particularly low. In Nos. 55 and 63, since the Ti addition amount was excessive, coarse Ti carbide was generated, and the toughness was impaired. Nos. 56 and 60 were inferior in toughness because the P or S content was too high. No. 57 had a low Mn content, so the required hardness was not obtained and the wear resistance was poor. In Nos. 58 and 62, since the contents of Si and Cr were excessive, the amount of coarse undissolved carbides increased and the toughness was inferior. No. 61 was inferior in toughness because the Mn content was excessive. No. 68 has a C content as high as 0.95%, and the X value becomes considerably high (that is, the amount of solid solution C increases considerably) despite the addition of V, and the V notch impact value is very high. The value was low.

図1には、実施例1、2に示した鋼材について摩耗量と2mmVノッチ衝撃値の関係をプロットした。本発明例のものはいずれも、本発明で規定する要件を外れている比較例のものと比べ、図1中で左上に位置し、耐摩耗性と靭性を高レベルで両立できていることが判る。   In FIG. 1, the relationship between the amount of wear and the 2 mmV notch impact value is plotted for the steel materials shown in Examples 1 and 2. Each of the examples of the present invention is located at the upper left in FIG. 1 compared with the comparative example that does not meet the requirements defined in the present invention, and is able to achieve both wear resistance and toughness at a high level. I understand.

実施例1、2に示した鋼材について摩耗量と2mmVノッチ衝撃値の関係をプロットしたグラフ。The graph which plotted the relationship between wear amount and a 2 mmV notch impact value about the steel materials shown in Examples 1 and 2.

Claims (4)

質量%で、C:0.4〜0.75%、Si:0.5以下、Mn:0.5〜2%、P:0.02%以下、S:0.02%以下、Ti:0〜0.2%、V:0〜0.5%、Nb:0〜0.5%であり、かつV、Ti、NbについてはV:0.02〜0.5%、Ti:0.02〜0.2%、Nb:0.01〜0.5%の1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有し、下記(1)式で定義されるX値が10以下、旧オーステナイト粒径が15μm以下、かつ円相当径1.5μm以上の未溶解炭化物が0.1mm2あたり40個以下である焼戻しマルテンサイト組織を有する耐摩耗性および靭性に優れた刃物用鋼材。
X=15.3×{C−0.25(V+Ti)−0.13Nb}−[未溶解炭化物の面積率(%)] ……(1)
ここで、(1)式の元素記号の箇所には当該元素の質量%で表された含有量の値が代入される。
In mass%, C: 0.4 to 0.75%, Si: 0.5 or less, Mn: 0.5 to 2%, P: 0.02% or less, S: 0.02% or less, Ti: 0 -0.2%, V: 0-0.5%, Nb: 0-0.5%, and for V, Ti, Nb, V: 0.02-0.5%, Ti: 0.02 It has a chemical composition comprising at least 0.2%, Nb: 0.01-0.5%, the balance Fe and unavoidable impurities, and the X value defined by the following formula (1) is For blades with excellent wear resistance and toughness having a tempered martensite structure with 10 or less, old austenite particle size of 15 μm or less, and 40 or less undissolved carbide with an equivalent circle diameter of 1.5 μm or more per 0.1 mm 2 Steel material.
X = 15.3 × {C−0.25 (V + Ti) −0.13Nb} − [area ratio of undissolved carbide (%)] (1)
Here, the value of the content expressed by mass% of the element is substituted for the element symbol in the formula (1).
さらにCr:0.5%以下、Mo:1%以下、B:0.01%以下の1種以上を含有する化学組成を有する請求項1に記載の刃物用鋼材。   Furthermore, the steel material for blades of Claim 1 which has a chemical composition containing 1 or more types of Cr: 0.5% or less, Mo: 1% or less, and B: 0.01% or less. 質量%で、C:0.4〜0.75%、Si:0.5%以下、Mn:0.5〜2%、P:0.02%以下、S:0.02%以下、Ti:0〜0.2%、V:0〜0.5%、Nb:0〜0.5%であり、かつV、Ti、NbについてはV:0.02〜0.5%、Ti:0.02〜0.2%、Nb:0.01〜0.5%の1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有する焼鈍し鋼材に対して、下記(a)に示す焼入れ処理を施し、その後、保持温度150〜500℃、保持時間20〜240分の焼戻し処理を施す、耐摩耗性および靭性に優れた刃物用鋼材の製造方法。
(a)焼入れ処理; 保持温度790〜900℃、保持時間10〜60分の範囲内において、下記(1)式で定義されるX値が10以下、旧オーステナイト粒径が15μm以下、かつ円相当径1.5μm以上の未溶解炭化物が0.1mm2あたり40個以下となる条件で加熱保持を行った後、Mf点以下の温度まで急冷する。
X=15.3×{C−0.25(V+Ti)−0.13Nb}−[未溶解炭化物の面積率(%)] ……(1)
ここで、(1)式の元素記号の箇所には当該元素の質量%で表された含有量の値が代入される。
By mass%, C: 0.4 to 0.75%, Si: 0.5% or less, Mn: 0.5 to 2%, P: 0.02% or less, S: 0.02% or less, Ti: 0 to 0.2%, V: 0 to 0.5%, Nb: 0 to 0.5%, and V, Ti, and Nb are V: 0.02 to 0.5%, Ti: 0.5. An annealed steel material containing one or more of 02 to 0.2% and Nb: 0.01 to 0.5% and having a chemical composition comprising the balance Fe and unavoidable impurities is shown in (a) below. A method for manufacturing a steel material for blades excellent in wear resistance and toughness, which is subjected to a quenching treatment and then a tempering treatment at a holding temperature of 150 to 500 ° C. and a holding time of 20 to 240 minutes.
(A) Quenching treatment: Within the range of holding temperature of 790 to 900 ° C. and holding time of 10 to 60 minutes, the X value defined by the following formula (1) is 10 or less, the prior austenite particle size is 15 μm or less, and the equivalent to a circle After heating and holding under the condition that 40 or less undissolved carbides having a diameter of 1.5 μm or more per 0.1 mm 2 , quenching is performed to a temperature below the Mf point.
X = 15.3 × {C−0.25 (V + Ti) −0.13Nb} − [area ratio of undissolved carbide (%)] (1)
Here, the value of the content expressed by mass% of the element is substituted for the element symbol in the formula (1).
前記焼鈍し鋼材が、さらにCr:0.5%以下、Mo:1%以下、B:0.01%以下の1種以上を含有する化学組成を有するものである請求項3に記載の刃物用鋼材の製造方法。   The said annealed steel material further has a chemical composition containing one or more of Cr: 0.5% or less, Mo: 1% or less, and B: 0.01% or less. Steel manufacturing method.
JP2008000251A 2008-01-07 2008-01-07 Steel for blades with excellent wear resistance and toughness Expired - Fee Related JP5207743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000251A JP5207743B2 (en) 2008-01-07 2008-01-07 Steel for blades with excellent wear resistance and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000251A JP5207743B2 (en) 2008-01-07 2008-01-07 Steel for blades with excellent wear resistance and toughness

Publications (2)

Publication Number Publication Date
JP2009161809A JP2009161809A (en) 2009-07-23
JP5207743B2 true JP5207743B2 (en) 2013-06-12

Family

ID=40964747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000251A Expired - Fee Related JP5207743B2 (en) 2008-01-07 2008-01-07 Steel for blades with excellent wear resistance and toughness

Country Status (1)

Country Link
JP (1) JP5207743B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328331B2 (en) * 2008-12-11 2013-10-30 日新製鋼株式会社 Steel materials for wear-resistant quenched and tempered parts and manufacturing method
CN103459643B (en) * 2011-03-25 2015-12-23 日新制钢株式会社 The banded punching tool steel plate of excellent in te pins of durability and banded punching tool
US10662492B2 (en) * 2013-06-27 2020-05-26 Nippon Steel Nisshin Co., Ltd. Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
JP2017155262A (en) * 2016-02-29 2017-09-07 日新製鋼株式会社 Cutter for horticultural machine
CN114058951B (en) * 2021-10-19 2023-04-07 首钢集团有限公司 65Mn saw blade steel and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120444A (en) * 2003-10-17 2005-05-12 Daido Steel Co Ltd Steel to be cold-stamped, and member using it
JP4530268B2 (en) * 2004-08-26 2010-08-25 日新製鋼株式会社 High carbon steel member with excellent impact characteristics and method for producing the same

Also Published As

Publication number Publication date
JP2009161809A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
EP3112487B1 (en) Steel for induction hardening
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
JP5328331B2 (en) Steel materials for wear-resistant quenched and tempered parts and manufacturing method
JP6880245B1 (en) High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts
JP6180984B2 (en) Steel plates for chainsaw parts and chainsaw parts
WO2017029922A1 (en) High-carbon cold-rolled steel sheet and method for manufacturing same
US10597765B2 (en) Steel, carburized steel component, and method for manufacturing carburized steel component
JP6615039B2 (en) Wear-resistant steel plate with excellent toughness
JP5207743B2 (en) Steel for blades with excellent wear resistance and toughness
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP6620490B2 (en) Age-hardening steel
JP3541844B1 (en) Hot-forged non-tempered steel bars
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP7110983B2 (en) Cutlery material
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JPH09165643A (en) Bearing steel excellent in rolling fatigue characteristic
JP4448525B2 (en) Mowing blade substrate
JP4159010B2 (en) Mowing blade substrate
JP3962143B2 (en) Mowing blade substrate
WO2019038923A1 (en) Wear-resistant steel sheet having excellent toughness
JP2000265238A (en) Reclining seat gear made of steel
JP5794077B2 (en) Steel for machine structure excellent in strength and toughness and method for producing the same
JP3941806B2 (en) Induction hardening steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees