JP3941806B2 - Induction hardening steel - Google Patents

Induction hardening steel Download PDF

Info

Publication number
JP3941806B2
JP3941806B2 JP2004272797A JP2004272797A JP3941806B2 JP 3941806 B2 JP3941806 B2 JP 3941806B2 JP 2004272797 A JP2004272797 A JP 2004272797A JP 2004272797 A JP2004272797 A JP 2004272797A JP 3941806 B2 JP3941806 B2 JP 3941806B2
Authority
JP
Japan
Prior art keywords
steel
bending fatigue
content
fatigue strength
rotational bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004272797A
Other languages
Japanese (ja)
Other versions
JP2006089764A (en
Inventor
善弘 大藤
大輔 鈴木
泰三 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004272797A priority Critical patent/JP3941806B2/en
Publication of JP2006089764A publication Critical patent/JP2006089764A/en
Application granted granted Critical
Publication of JP3941806B2 publication Critical patent/JP3941806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、高周波焼入れ用鋼に関し、より詳しくは、自動車や各種産業機械のハブユニットや等速ジョイントなど、所定の形状に成形した後でその一部に高周波焼入れを施して高周波焼入れままの状態で用いられる部品の素材、或いは上記高周波焼入れ後に必要に応じて更に焼戻しを施した状態で用いられる部品の素材として好適な高周波焼入れ用鋼に関する。   The present invention relates to steel for induction hardening, and more specifically, after being formed into a predetermined shape such as a hub unit or a constant velocity joint for automobiles and various industrial machines, a part thereof is subjected to induction hardening to be kept in induction hardening. The present invention relates to a steel for induction hardening suitable as a material for parts used in the above, or as a material for parts used in the state of further tempering if necessary after induction hardening.

従来、自動車や各種産業機械のハブユニットや等速ジョイントなどの部品は、転動疲労特性に優れた鋼材と回転曲げ疲労強度及び靱性に優れた鋼材とを組み合わせて製造されており、転動部分にはJIS規格のSUJ2鋼などの軸受鋼、それ以外の部分には非調質鋼又は調質鋼が使用されてきた。   Conventionally, parts such as hub units and constant velocity joints of automobiles and various industrial machines have been manufactured by combining steel materials with excellent rolling fatigue characteristics and steel materials with excellent rotational bending fatigue strength and toughness. Has been used bearing steel such as SUJ2 steel of JIS standard, and non-tempered steel or tempered steel for other parts.

しかし近年、部品の軽量化及びコストダウンの観点から特定の鋼材に多くの機能を受け持たせ、その鋼材だけで部品を作り上げたいとの産業界からの要望が極めて大きくなり、例えば、ハブユニットや等速ジョイントにおいても、軸受鋼に要求されていた転動疲労特性と非調質鋼又は調質鋼に要求されていた引張強さ、回転曲げ疲労強度及び靱性などの特性とを兼ね備えた鋼材が求められるようになってきた。   However, in recent years, there has been a great demand from the industry to give a specific steel material a lot of functions from the viewpoint of weight reduction and cost reduction, and to make a component with only that steel material. Even in constant velocity joints, there are steel materials that have both rolling fatigue characteristics required for bearing steel and properties such as tensile strength, rotational bending fatigue strength and toughness required for non-heat treated steel or tempered steel. It has come to be required.

このため、一部では、JIS G 4051のS55CやSAE J 403の1065等のC含有量の高い鋼材を素材とし、高周波焼入れを施したり、必要に応じて更に焼戻しを施すことによって、上記産業界からの要望に応えることが行われている。   For this reason, in some cases, a steel material having a high C content such as S55C of JIS G 4051 or 1065 of SAE J 403 is used as a raw material, and induction hardening or further tempering is performed as necessary. In response to requests from

しかしながら、部品の小型化の進展に伴い、なお一層高い回転曲げ疲労強度が求められるようになり、上記JIS G 4051のS55CやSAE J 403の1065等を素材としたものでは、所望の回転曲げ疲労寿命を確保できなくなっている。   However, with the progress of miniaturization of parts, even higher rotational bending fatigue strength has been demanded. In the case of using JIS G 4051 S55C or SAE J 403 1065 as a material, the desired rotational bending fatigue strength is required. The service life cannot be secured.

そこで、特許文献1には、Siの含有量を0.5〜1.0質量%にすることによって、非硬化部の硬さの上昇を最小限に抑えながら、疲労強度、被削性などを向上させ、更に、Vの含有量を0.01〜0.15質量%にすることによって、非硬化部の疲労強度と被削性を向上させるなどして、鍛造上がりの硬さ上昇を最小限に抑え、被削性、冷間加工性を確保しながら、非硬化部の疲労強度、硬化部の耐転がり強度、耐ピッチング強度、耐摩耗性、疲労強度等を向上させた「被削性に優れた高強度高周波焼入用鋼」が提案されている。   Therefore, in Patent Document 1, by setting the Si content to 0.5 to 1.0 mass%, the fatigue strength, machinability, and the like are reduced while minimizing the increase in the hardness of the non-hardened portion. In addition, by increasing the content of V to 0.01 to 0.15 mass%, the fatigue strength and machinability of the non-hardened part is improved, and the increase in hardness after forging is minimized. While improving the machinability and cold workability, the fatigue strength of the non-hardened part, the rolling strength of the hardened part, the pitting resistance, the wear resistance, the fatigue strength, etc. have been improved. An excellent high strength induction hardening steel has been proposed.

また、特許文献2には、Vを含有する鋼について、C、Mn及びCrの含有量と初析フェライト面積率の関係を調査し、超短時間でも均質な硬化層が得られる式を見出し、熱間鍛造後に目的とする部品形状に加工し、調質処理を行うことなく、超短時間加熱の高周波輪郭焼入れで均質な硬化層組織が得られ、高い曲げ又はねじり疲労強度及び転がり接触疲労強度を有する「高周波輪郭焼入用非調質鋼」が提案されている。   Patent Document 2 investigates the relationship between the content of C, Mn, and Cr and the pro-eutectoid ferrite area ratio for steel containing V, and finds a formula that can obtain a uniform hardened layer even in an extremely short time. After hot forging, it is processed into the desired part shape, and a uniform hardened layer structure is obtained by high-frequency contour quenching with ultra-short heating without performing tempering treatment, and high bending or torsional fatigue strength and rolling contact fatigue strength "Non-tempered steel for induction hardening" has been proposed.

特開2002−332535号公報JP 2002-332535 A 特開平10−317095号公報Japanese Patent Laid-Open No. 10-317095

本発明の目的は、所定の形状に成形した後でその一部に高周波焼入れを施して高周波焼入れままの状態で用いるか、或いは、上記高周波焼入れ後に必要に応じて更に焼戻しを施した状態で用いるハブユニット、等速ジョイントなどの部品において、高周波焼入れを施さない部分については引張強さ及び回転曲げ疲労強度を向上させても優れた靱性を確保することができ、また、高周波焼入れしたままの状態の部分や高周波焼入れ後に焼戻しを施した部分については工業的な規模の量産において良好な転動疲労寿命だけではなく安定して優れた回転曲げ疲労強度を確保することができる、上記部品の素材として好適な高周波焼入れ用鋼を提供することである。   An object of the present invention is to use a state in which induction hardening is performed on a part of the product after it has been molded into a predetermined shape and used in the state of induction hardening, or after further tempering as necessary after the induction hardening. In parts such as hub units and constant velocity joints, excellent toughness can be secured even if the tensile strength and rotational bending fatigue strength of the parts that are not subjected to induction hardening are improved, and the parts are kept induction-hardened. As a material for the above parts, it is possible to secure not only good rolling fatigue life but also stable rotational bending fatigue strength in mass production on an industrial scale for the parts of this part and parts tempered after induction hardening. It is to provide a suitable induction hardening steel.

前述の特許文献1及び2で開示された技術は、必ずしも靱性が十分ではなく、また、高周波焼入れした硬化部で、必ずしも安定して優れた特性を得ることができるものではない。   The techniques disclosed in Patent Documents 1 and 2 described above do not necessarily have sufficient toughness, and cannot always stably obtain excellent characteristics in a hardened portion that has been induction-hardened.

すなわち、特許文献1で開示された技術の場合、高強度化に伴う靱性低下に対する配慮が十分ではないし、また、Alを含有していないため、結晶粒の成長を抑制する微細な粒子の量及び数が不十分で、高周波加熱した際のオーステナイト粒径が大きくなりやすいので、硬化部の特性が不安定である。   That is, in the case of the technique disclosed in Patent Document 1, consideration is not sufficiently given to toughness reduction accompanying an increase in strength, and since it does not contain Al, the amount of fine particles that suppress the growth of crystal grains and Since the number is insufficient and the austenite grain size tends to be large when subjected to high-frequency heating, the characteristics of the cured portion are unstable.

特許文献2で開示された技術の場合も、高強度化に伴う靱性低下に対する配慮が十分ではなく、また、Nの含有量に対する配慮がなされていないため、結晶粒の成長を抑制する微細な粒子の量及び数を安定して確保することが難しく、高周波加熱した際のオーステナイト粒径がばらつきやすいので、硬化部の特性が不安定である。   In the case of the technique disclosed in Patent Document 2, consideration is not sufficiently given to toughness reduction due to the increase in strength, and since no consideration is given to the N content, fine particles that suppress the growth of crystal grains. It is difficult to ensure the amount and number of particles stably, and since the austenite particle size is likely to vary when heated at high frequency, the characteristics of the cured portion are unstable.

本発明者らは、上述のような問題点を解決するために、一般的な熱間鍛造条件、すなわち、1200〜1250℃に加熱し、熱間鍛造を行って1050℃以上で仕上げ、仕上げ後は大気中放冷する条件で処理された鋼材の靱性及び疲労強度特性を向上させる方法について、種々調査・研究を重ねた。その結果、先ず、下記(a)〜(e)の知見を得た。   In order to solve the above-mentioned problems, the present inventors heated to general hot forging conditions, that is, 1200 to 1250 ° C., performed hot forging, finished at 1050 ° C. or higher, and after finishing Conducted various investigations and research on methods to improve the toughness and fatigue strength characteristics of steels treated under conditions of cooling in the air. As a result, first, the following findings (a) to (e) were obtained.

(a)靱性を向上させる最も有効な手段の1つは、高周波加熱して焼入れ処理する際のオーステナイト粒径(以下、「旧オーステナイト粒径」という)を微細化することであり、そのためには、熱間鍛造における1200〜1250℃への加熱時のオーステナイト粒径を小さくする必要がある。   (A) One of the most effective means for improving toughness is to refine the austenite grain size (hereinafter referred to as “old austenite grain size”) during high-frequency heating and quenching treatment. It is necessary to reduce the austenite grain size during heating to 1200 to 1250 ° C. in hot forging.

(b)1200〜1250℃への加熱時のオーステナイト粒径を小さくするためには、この温度域でも溶解しないTiN、MnSなどの粒子を分散させればよいが、これらの粒子は高周波焼入れ部の回転曲げ疲労強度や転動疲労寿命などの特性を大きく低下させるため、積極的には利用できない。   (B) In order to reduce the austenite particle size at the time of heating to 1200 to 1250 ° C., particles such as TiN and MnS that do not dissolve even in this temperature range may be dispersed. Since properties such as rotational bending fatigue strength and rolling fatigue life are greatly reduced, it cannot be actively used.

(c)オーステナイト中に固溶するが粒界偏析する傾向が強く、かつ拡散係数があまり大きくない元素を含有していれば、高温におけるオーステナイト粒の成長速度を抑制できる。   (C) The growth rate of austenite grains at high temperatures can be suppressed if it contains an element that dissolves in austenite but has a strong tendency to segregate at grain boundaries and does not have a very large diffusion coefficient.

(d)上記(c)の要件を満たす元素のうち、比較的添加が容易なCu、Snに組み合わせて、周期律表で5B族の元素を微量に含有すると、高温でのオーステナイト粒の成長速度を大幅に抑制できる。   (D) Among elements satisfying the above-mentioned requirement (c), a combination of Cu and Sn, which are relatively easy to add, contains a trace amount of Group 5B elements in the periodic table, so that the growth rate of austenite grains at high temperatures Can be greatly suppressed.

(e)回転曲げ疲労強度向上のためにはSi及びVを含有することが有効であることが知られている。しかし、VはCよりNと結合しやすい。回転曲げ疲労強度向上の目的でVを有効活用するためには、炭化物として析出させておく必要があり、そのためにはNの含有量及びVよりNと結合しやすいTi及びAlの含有量を制御する必要がある。   (E) It is known that it is effective to contain Si and V in order to improve rotational bending fatigue strength. However, V is easier to bond with N than C. In order to effectively utilize V for the purpose of improving the rotational bending fatigue strength, it is necessary to precipitate it as a carbide. For that purpose, the content of N and the contents of Ti and Al that are more easily bonded to N than V are controlled. There is a need to.

次に、本発明者らは、高周波焼入れままの部分、或いは上記高周波焼入れ後に必要に応じて焼戻しを施した部分の特性に影響する因子について調査・研究を重ね、その結果、下記(f)及び(g)の知見を得た。   Next, the present inventors have repeatedly investigated and studied the factors affecting the characteristics of the as-quenched portion or the portion tempered as necessary after the induction hardening. As a result, the following (f) and The knowledge of (g) was obtained.

(f)高周波焼入れままの部分、或いは高周波焼入れ後に必要に応じて焼戻しを施した部分の特性に最も大きな影響を与えるのは硬度であるが、硬度に加えて旧オーステナイト粒径も大きな影響を及ぼす。そして、旧オーステナイト粒径の微細化のためには、高周波加熱の際に、微細な粒子が多く残存している必要がある。   (F) Hardness has the greatest influence on the properties of the part that has been induction-hardened or the part that has been tempered as required after induction hardening, but in addition to the hardness, the prior austenite grain size also has a great influence. . In order to refine the prior austenite grain size, it is necessary that many fine particles remain during high-frequency heating.

(g)高周波加熱の際に残存する微細な粒子としては、AlNを用いるのが最も効果的である。そして、高周波加熱する前にAlNを確実に十分析出させておくためには、AlとNの含有量を管理しておく必要がある。   (G) As the fine particles remaining during high-frequency heating, it is most effective to use AlN. And in order to deposit AlN reliably enough before high frequency heating, it is necessary to manage the content of Al and N.

本発明は、上記の知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

本発明の要旨は、下記(1)〜(3)に示す高周波焼入れ用鋼にある。   The gist of the present invention resides in the steel for induction hardening shown in the following (1) to (3).

(1)質量%で、C:0.45〜0.60%、Si:0.4〜0.9%、Mn:0.2〜1.0%、Cr:0.03〜0.6%、V:0.02〜0.15%、S:0.003〜0.05%、Al:0.012〜0.05%、N:0.007〜0.025%及びSn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含むとともに、Ni:0〜0.2%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、Pは0.03%以下及びO(酸素)は0.0015%以下であり、かつ下記(1)式で表されるfn1の値が1.5×10-4以上、下記(2)式で表されるfn2の値が−0.005以下を満たすことを特徴とする高周波焼入れ用鋼。
fn1=Al×{N−(14/48)×Ti}・・・(1)、
fn2=N−(14/27)×Al−(14/48)×Ti−(14/51)×V・・・(2)。
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(1) By mass%, C: 0.45-0.60%, Si: 0.4-0.9%, Mn: 0.2-1.0%, Cr: 0.03-0.6% , V: 0.02-0.15%, S: 0.003-0.05%, Al: 0.012-0.05%, N: 0.007-0.025% and Sn: 0.003 -0.05%, and Sb: 0.001-0.01% and As: One or two of 0.001-0.01%, and Ni: 0-0.2% And the balance is Fe and impurities, Ti in the impurities is 0.005% or less, P is 0.03% or less, O (oxygen) is 0.0015% or less, and the following formula (1) A steel for induction hardening, wherein the value of fn1 represented is 1.5 × 10 −4 or more and the value of fn2 represented by the following formula (2) is −0.005 or less.
fn1 = Al × {N− (14/48) × Ti} (1),
fn2 = N− (14/27) × Al− (14/48) × Ti− (14/51) × V (2).
In addition, the element symbol in (1) Formula and (2) Formula represents content in steel in the mass% of the element.

(2)質量%で、C:0.45〜0.60%、Si:0.4〜0.9%、Mn:0.2〜1.0%、Cr:0.03〜0.6%、V:0.02〜0.15%、S:0.003〜0.05%、Al:0.012〜0.05%、N:0.007〜0.025%及びCu:0.04〜0.2%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含むとともに、Ni:(1/2)×[Cuの含有量(%)]〜0.2%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、Pは0.03%以下及びO(酸素)は0.0015%以下であり、かつ下記(1)式で表されるfn1の値が1.5×10-4以上、下記(2)式で表されるfn2の値が−0.005以下を満たすことを特徴とする高周波焼入れ用鋼。
fn1=Al×{N−(14/48)×Ti}・・・(1)、
fn2=N−(14/27)×Al−(14/48)×Ti−(14/51)×V・・・(2)。
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(2) By mass%, C: 0.45-0.60%, Si: 0.4-0.9%, Mn: 0.2-1.0%, Cr: 0.03-0.6% V: 0.02-0.15%, S: 0.003-0.05%, Al: 0.012-0.05%, N: 0.007-0.025% and Cu: 0.04 And 0.2%, and Sb: 0.001 to 0.01% and As: one or two of 0.001 to 0.01%, and Ni: (1/2) × [ Cu content (%)] to 0.2%, with the balance being Fe and impurities, Ti in the impurities is 0.005% or less, P is 0.03% or less, and O (oxygen) is 0 The value of fn1 represented by the following formula (1) is 1.5 × 10 −4 or more and the value of fn2 represented by the following formula (2) is −0.005 or less. It is characterized by Induction hardening steel.
fn1 = Al × {N− (14/48) × Ti} (1),
fn2 = N− (14/27) × Al− (14/48) × Ti− (14/51) × V (2).
In addition, the element symbol in (1) Formula and (2) Formula represents content in steel in the mass% of the element.

(3)質量%で、C:0.45〜0.60%、Si:0.4〜0.9%、Mn:0.2〜1.0%、Cr:0.03〜0.6%、V:0.02〜0.15%、S:0.003〜0.05%、Al:0.012〜0.05%、N:0.007〜0.025%、Cu:0.04〜0.2%及びSn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含むとともに、Ni:(1/2)×[Cuの含有量(%)]〜0.2%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、Pは0.03%以下及びO(酸素)は0.0015%以下であり、かつ下記(1)式で表されるfn1の値が1.5×10-4以上、下記(2)式で表されるfn2の値が−0.005以下を満たすことを特徴とする高周波焼入れ用鋼。
fn1=Al×{N−(14/48)×Ti}・・・(1)、
fn2=N−(14/27)×Al−(14/48)×Ti−(14/51)×V・・・(2)。
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(3) By mass%, C: 0.45-0.60%, Si: 0.4-0.9%, Mn: 0.2-1.0%, Cr: 0.03-0.6% , V: 0.02-0.15%, S: 0.003-0.05%, Al: 0.012-0.05%, N: 0.007-0.025%, Cu: 0.04 -0.2% and Sn: 0.003-0.05%, and Sb: 0.001-0.01% and As: 1 type or 2 types of 0.001-0.01% are included. In addition, Ni: (1/2) × [Cu content (%)] to 0.2% is contained, the balance is made of Fe and impurities, Ti in the impurities is 0.005% or less, and P is 0 0.03% or less and O (oxygen) is 0.0015% or less, and the value of fn1 represented by the following formula (1) is 1.5 × 10 −4 or more, and is represented by the following formula (2). The value of fn2 is -0.0 Induction hardening steel characterized by satisfying 05 or less.
fn1 = Al × {N− (14/48) × Ti} (1),
fn2 = N− (14/27) × Al− (14/48) × Ti− (14/51) × V (2).
In addition, the element symbol in (1) Formula and (2) Formula represents content in steel in the mass% of the element.

なお、本発明における上記のAlは、酸可溶Al(いわゆる「sol.Al」)のことをいう。   In the present invention, the above-mentioned Al refers to acid-soluble Al (so-called “sol. Al”).

以下、上記 (1)〜(3)の高周波焼入れ用鋼に係る発明を、それぞれ、「本発明(1)」〜「本発明(3)」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions related to induction hardening steels (1) to (3) above are referred to as “present invention (1)” to “present invention (3)”, respectively. Also, it may be collectively referred to as “the present invention”.

本発明の鋼材を用いて、所定の形状に成形した後でその一部に高周波焼入れを施して高周波焼入れままの状態で用いる部品、或いは、上記高周波焼入れ後に必要に応じて更に焼戻しを施した状態で用いる部品は、高周波焼入れしない部分の引張強さ、回転曲げ疲労強度及び靱性が優れ、また、高周波焼入れしたままの部分や高周波焼入れ後に焼戻しを施した部分の転動疲労寿命及び回転曲げ疲労強度が優れるので、自動車や産業機械の部品であるハブユニット、等速ジョイントなどに用いることができる。   Using the steel material of the present invention, after being formed into a predetermined shape, a part thereof is subjected to induction hardening and used in a state of induction hardening, or a state of further tempering if necessary after induction hardening The parts used in are excellent in tensile strength, rotational bending fatigue strength, and toughness of parts that are not induction-hardened. Also, rolling fatigue life and rotational bending fatigue strength of parts that have been subjected to induction hardening and parts that have been tempered after induction hardening. Therefore, it can be used for hub units, constant velocity joints, etc., which are parts of automobiles and industrial machines.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。また、以下の説明では、「高周波焼入れしない部分」を「母材」といい、「高周波焼入れしたままの部分」及び「高周波焼入れ後に焼戻しを施した部分」を「焼入れ部」という。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”. Further, in the following description, “a portion that is not induction-hardened” is referred to as “base material”, and “a portion that has been subjected to induction hardening” and “a portion that has been tempered after induction hardening” are referred to as “quenched portion”.

(A)化学組成
C:0.45〜0.60%
本発明は、熱間圧延された棒鋼を一例とするような素材を、例えば、熱間又は温間で鍛造して所定の形状に成形した後冷却することによって、「母材」に、所望の機械的性質を付与し、一方、前記成形後に冷却したものに高周波焼入れ、或いは、その後必要に応じて更に焼戻しを施すことによって、「焼入れ部」に、所望の機械的性質を付与させるものである。しかし、Cの含有量が0.45%未満では「焼入れ部」の硬度が不十分となって、転動疲労寿命、耐摩耗性が大きく低下するだけでなく、他の要件を満たしていても「焼入れ部」において所望の回転曲げ疲労強度(後述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)が得られなくなる。一方、Cの含有量が0.60%を超えると、「母材」の引張強さが高くなり過ぎて、冷間加工性及び切削性が大きく低下する。したがって、Cの含有量を0.45〜0.60%とした。なお、「母材」に一層良好な靱性が要求される場合には、C含有量の上限は0.52%とすることが好ましい。
(A) Chemical composition C: 0.45 to 0.60%
In the present invention, a material such as a hot-rolled steel bar is formed by, for example, hot forging or warm forging into a predetermined shape and then cooling to obtain a desired “base material”. The mechanical properties are imparted. On the other hand, the material that has been cooled after the molding is induction-quenched, or further tempered as necessary, thereby imparting desired mechanical properties to the “quenched portion”. . However, if the C content is less than 0.45%, the hardness of the “quenched part” becomes insufficient, and not only the rolling fatigue life and wear resistance are greatly reduced, but also other requirements are satisfied. In the “quenched portion”, a desired rotational bending fatigue strength (rotational bending fatigue strength of 710 MPa or more in an Ono type rotational bending fatigue test in a normal temperature atmosphere using a test piece with an annular semicircular groove described later) cannot be obtained. On the other hand, if the C content exceeds 0.60%, the tensile strength of the “base material” becomes too high, and the cold workability and the machinability are greatly reduced. Therefore, the content of C is set to 0.45 to 0.60%. In addition, when better toughness is required for the “base material”, the upper limit of the C content is preferably 0.52%.

Si:0.4〜0.9%
Siは、「母材」の引張強さ及び回転曲げ疲労強度、並びに「焼入れ部」の転動疲労寿命を高めるのに有効な元素である。Siには、脱酸剤としての作用や切削性を高める作用もある。しかし、その含有量が0.4%未満の場合には、他の要件を満たしていても、「母材」において所望の回転曲げ疲労強度(後述の平滑試験片を用いた常温大気中での小野式回転曲げ疲労試験における390MPa以上の回転曲げ疲労強度)が得られなくなる。一方、Siの含有量が0.9%を超えると、「母材」の引張強さが高くなり過ぎて、冷間加工性及び切削性が大きく低下する。したがって、Siの含有量を0.4〜0.9%とした。なお、「焼入れ部」に一層良好な転動疲労寿命が要求される場合には、Si含有量の下限は0.6%とすることが好ましい。
Si: 0.4-0.9%
Si is an element effective for increasing the tensile strength and rotational bending fatigue strength of the “base material” and the rolling fatigue life of the “quenched portion”. Si also has an effect as a deoxidizer and an effect of improving machinability. However, if the content is less than 0.4%, even if other requirements are met, the “base metal” has a desired rotational bending fatigue strength (in a normal temperature atmosphere using a smooth specimen described later). Rotational bending fatigue strength of 390 MPa or more in the Ono type rotating bending fatigue test) cannot be obtained. On the other hand, if the Si content exceeds 0.9%, the tensile strength of the “base material” becomes too high, and cold workability and machinability are greatly reduced. Therefore, the Si content is set to 0.4 to 0.9%. In addition, when a better rolling fatigue life is required for the “quenched part”, the lower limit of the Si content is preferably 0.6%.

Mn:0.2〜1.0%
Mnは、「母材」の引張強さ、回転曲げ疲労強度及び焼入れ性を向上させる作用を有する。Mnには、Sによる熱間脆性を防止する作用もある。これらの効果を発揮させるためには、Mnを0.2%以上含有させる必要がある。一方、Mn含有量が1.0%を超えると「母材」の引張強さが高くなり過ぎて、冷間加工性及び切削性が大きく低下する。したがって、Mnの含有量を0.2〜1.0%とした。なお、前記したMnの効果をより積極的に利用するためには、Mn含有量の下限は0.6%とすることが好ましい。
Mn: 0.2 to 1.0%
Mn has the effect of improving the tensile strength, rotational bending fatigue strength, and hardenability of the “base material”. Mn also has the effect of preventing hot brittleness due to S. In order to exert these effects, it is necessary to contain 0.2% or more of Mn. On the other hand, if the Mn content exceeds 1.0%, the tensile strength of the “base material” becomes too high, and cold workability and machinability are greatly reduced. Therefore, the Mn content is set to 0.2 to 1.0%. In order to more effectively use the effect of Mn described above, the lower limit of the Mn content is preferably 0.6%.

Cr:0.03〜0.6%
Crは、パーライトのラメラ間隔を微細化し、「母材」の靱性を高める作用を有する。この効果を発揮させるためには、Crの含有量は0.03%以上とする必要がある。一方、Crの含有量が0.6%を超えると、「母材」の引張強さが高くなり過ぎて、冷間加工性及び切削性が大きく低下する。したがって、Crの含有量を0.03〜0.6%とした。なお、前記したCrの効果をより積極的に利用するためには、Cr含有量の下限は0.1%とすることが好ましく、また、冷間加工性及び切削性が重視される場合には、Cr含有量の上限は0.3%とすることが好ましい。
Cr: 0.03-0.6%
Cr has the effect of reducing the lamella spacing of pearlite and increasing the toughness of the “base material”. In order to exhibit this effect, the Cr content needs to be 0.03% or more. On the other hand, if the Cr content exceeds 0.6%, the tensile strength of the “base metal” becomes too high, and the cold workability and the machinability are greatly reduced. Therefore, the Cr content is set to 0.03 to 0.6%. In order to make more effective use of the effect of Cr described above, the lower limit of the Cr content is preferably 0.1%, and when cold workability and machinability are important. The upper limit of the Cr content is preferably 0.3%.

V:0.02〜0.15%
Vは、「母材」中に微細な窒化物又は炭化物として析出する。これらの析出物のうちで特に炭化物は、「母材」の引張強さ及び回転曲げ疲労強度を向上させるのに有効である。これらの効果、なかでも、所望の回転曲げ疲労強度(後述の平滑試験片を用いた常温大気中での小野式回転曲げ疲労試験における390MPa以上の回転曲げ疲労強度)を確保するための「母材」の回転曲げ疲労強度を高める効果を得るためには、Vの含有量は0.02%以上で、しかも前記(2)式で表されるfn2の値が−0.005以下を満たすことが必要である。一方、Vの含有量が0.15%を超えると、「母材」の靱性が大きく低下し、他の要件を満たしていても、所望の衝撃値(後述のノッチ下高さ8mmのUノッチ試験片を用いた室温でのシャルピー衝撃試験で、41J/cm2以上の衝撃値)が得られなくなる。したがって、Vの含有量を0.02〜0.15%とした。なお、「母材」に一層良好な靱性が要求される場合には、V含有量の上限は0.07%とすることが好ましい。
V: 0.02-0.15%
V precipitates as fine nitrides or carbides in the “base material”. Of these precipitates, carbides are particularly effective in improving the tensile strength and rotational bending fatigue strength of the “base material”. In order to ensure these effects, in particular, the desired rotational bending fatigue strength (rotary bending fatigue strength of 390 MPa or more in an Ono-type rotational bending fatigue test in a normal temperature atmosphere using a smooth specimen described later) In order to obtain the effect of increasing the rotational bending fatigue strength of “2”, the V content should be 0.02% or more, and the value of fn2 represented by the formula (2) should satisfy −0.005 or less. is necessary. On the other hand, if the V content exceeds 0.15%, the toughness of the “base metal” is greatly reduced, and even if other requirements are satisfied, a desired impact value (a U-notch with a notch height of 8 mm described below) is obtained. In a Charpy impact test at room temperature using a test piece, an impact value of 41 J / cm 2 or more cannot be obtained. Therefore, the content of V is set to 0.02 to 0.15%. In addition, when better toughness is required for the “base material”, the upper limit of the V content is preferably 0.07%.

S:0.003〜0.05%
Sは、Mnと結合してMnSを形成し、切削性を向上させる作用を有する。しかし、その含有量が0.003%未満では、前記の効果が得難い。一方、粗大なMnSは転動疲労寿命を低下させる傾向があり、特に、Sの含有量が0.05%を超えると、転動疲労寿命の低下が大きくなる。したがって、Sの含有量を0.003〜0.05%とした。なお、良好な切削性が要求される場合には、Sの含有量は0.01〜0.05%とその下限を0.01%とすることが好ましい。また、良好な転動疲労寿命が要求される場合には、S含有量は0.003〜0.02%とその上限を0.02%とすることが好ましい。更に、良好な切削性と良好な転動疲労寿命がともに要求される場合には、S含有量は0.01〜0.02%とするのがよい。
S: 0.003-0.05%
S combines with Mn to form MnS and has an effect of improving machinability. However, if the content is less than 0.003%, it is difficult to obtain the above effect. On the other hand, coarse MnS tends to reduce the rolling fatigue life. In particular, when the S content exceeds 0.05%, the rolling fatigue life is greatly reduced. Therefore, the content of S is set to 0.003 to 0.05%. In addition, when favorable machinability is requested | required, it is preferable that content of S is 0.01 to 0.05% and the minimum is 0.01%. When a good rolling fatigue life is required, the S content is preferably 0.003 to 0.02% and the upper limit is preferably 0.02%. Furthermore, when both good machinability and good rolling fatigue life are required, the S content is preferably 0.01 to 0.02%.

Al:0.012〜0.05%
Alは、Nと結合してAlNを形成しやすい元素である。そして、AlNは「焼入れ部」の旧オーステナイト粒径の微細化に有効であり、旧オーステナイト粒径が微細化すると「焼入れ部」の回転曲げ疲労強度が向上する。この効果を確実に得るためには、Alの含有量は0.012%以上で、しかも前記(1)式で表されるfn1の値が1.5×10-4以上を満たすことが必要である。更に、前記したVの炭化物の「母材」の引張強さ及び回転曲げ疲労強度を向上させる効果、なかでも、所望の回転曲げ疲労強度(後述の平滑試験片を用いた常温大気中での小野式回転曲げ疲労試験における390MPa以上の回転曲げ疲労強度)を確保するための「母材」の回転曲げ疲労強度を高める効果を得るために、Alの含有量は前記(2)式で表されるfn2の値が−0.005以下を満たすことも必要である。一方、Alは酸化物系介在物を形成しやすく、Al含有量が0.05%を超えると、粗大な酸化物系介在物を形成しやすくなるので「焼入れ部」の転動疲労寿命が低下するだけでなく、他の要件を満たしていても、「焼入れ部」において所望の回転曲げ疲労強度(後述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)が得られなくなる。したがって、Alの含有量を0.012〜0.05%とした。AlN形成による「焼入れ部」の回転曲げ疲労強度の向上効果をより積極的に活用するためには、Alの含有量は0.025〜0.05%とすることが好ましい。なお、既に述べたように、本発明におけるAlは、酸可溶Al(いわゆる「sol.Al」)のことを指し、酸化物以外の介在物に含まれるAl及びマトリックス中に固溶しているAlのことである。
Al: 0.012-0.05%
Al is an element that is easily bonded to N to form AlN. AlN is effective for refining the prior austenite grain size of the “quenched part”, and the rotational bending fatigue strength of the “quenched part” is improved when the prior austenite grain size is refined. In order to reliably obtain this effect, the Al content must be 0.012% or more, and the value of fn1 represented by the above formula (1) must satisfy 1.5 × 10 −4 or more. is there. Further, the effect of improving the tensile strength and rotational bending fatigue strength of the above-mentioned “carbide” of the carbide of V, in particular, the desired rotational bending fatigue strength (ono in a normal temperature atmosphere using a smooth test piece described later). In order to obtain the effect of increasing the rotational bending fatigue strength of the “base material” for ensuring the rotational bending fatigue strength of 390 MPa or more in the rotational bending fatigue test, the Al content is expressed by the above formula (2). It is also necessary that the value of fn2 satisfies −0.005 or less. On the other hand, Al tends to form oxide inclusions, and if the Al content exceeds 0.05%, it becomes easy to form coarse oxide inclusions, so the rolling fatigue life of the “quenched part” decreases. In addition to satisfying other requirements, the "quenched part" has the desired rotational bending fatigue strength (in the Ono type rotational bending fatigue test in the ambient temperature atmosphere using a test piece with an annular semicircular groove described later) Rotational bending fatigue strength of 710 MPa or higher) cannot be obtained. Therefore, the Al content is set to 0.012 to 0.05%. In order to more actively utilize the effect of improving the rotational bending fatigue strength of the “quenched part” by the formation of AlN, the Al content is preferably 0.025 to 0.05%. As already described, Al in the present invention refers to acid-soluble Al (so-called “sol.Al”), and is solid-solved in Al contained in inclusions other than oxides and in the matrix. It is Al.

N:0.007〜0.025%
Nは、Ti、Al及びVと結合して、TiN、AlN及びVNを形成しやすい元素である。本発明では、上記の窒化物のうちのAlNが有する「焼入れ部」の旧オーステナイト粒径を微細化して「焼入れ部」の回転曲げ疲労強度を高める作用を利用する。この効果を確実に得るためには、Nの含有量は0.007%以上でしかも前記(1)式で表されるfn1の値が1.5×10-4以上を満たすことが必要である。更に、前記したVの炭化物の「母材」の引張強さ及び回転曲げ疲労強度を向上させる効果、なかでも、所望の回転曲げ疲労強度(後述の平滑試験片を用いた常温大気中での小野式回転曲げ疲労試験における390MPa以上の回転曲げ疲労強度)を確保するための「母材」の回転曲げ疲労強度を高める効果を得るために、Nの含有量は前記(2)式で表されるfn2の値が−0.005以下を満たすことも必要である。一方、N含有量が多くなると粗大なTiNが形成され、「焼入れ部」において回転曲げ疲労の破壊起点になりやすく、特にNの含有量が0.025%を超えると、他の要件を満たしていても、「焼入れ部」において所望の回転曲げ疲労強度(後述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)を確保することができなくなる。したがって、Nの含有量を0.007〜0.025%とした。なお、AlN形成による「焼入れ部」の回転曲げ疲労強度の向上効果をより積極的に活用するためには、Nの含有量は0.012〜0.025%とすることが好ましい。
N: 0.007 to 0.025%
N is an element that easily forms TiN, AlN, and VN by combining with Ti, Al, and V. In the present invention, the effect of increasing the rotational bending fatigue strength of the “quenched portion” by refining the prior austenite grain size of the “quenched portion” of AlN of the above nitrides is utilized. In order to obtain this effect with certainty, it is necessary that the N content is 0.007% or more and that the value of fn1 represented by the above formula (1) satisfies 1.5 × 10 −4 or more. . Further, the effect of improving the tensile strength and rotational bending fatigue strength of the above-mentioned “carbide” of the carbide of V, in particular, the desired rotational bending fatigue strength (ono in a normal temperature atmosphere using a smooth test piece described later). In order to obtain the effect of increasing the rotational bending fatigue strength of the “base material” for ensuring the rotational bending fatigue strength of 390 MPa or more in the rotational bending fatigue test, the N content is expressed by the above formula (2). It is also necessary that the value of fn2 satisfies −0.005 or less. On the other hand, when the N content increases, coarse TiN is formed, which tends to be a fracture starting point of rotational bending fatigue in the “quenched part”, and in particular, when the N content exceeds 0.025%, other requirements are satisfied. However, in the “quenched part”, a desired rotational bending fatigue strength (rotational bending fatigue strength of 710 MPa or more in an Ono type rotational bending fatigue test in a normal temperature atmosphere using a test piece with an annular semicircular groove described later) is secured. I can't do that. Therefore, the N content is set to 0.007 to 0.025%. In order to more actively utilize the effect of improving the rotational bending fatigue strength of the “quenched portion” by the formation of AlN, the N content is preferably 0.012 to 0.025%.

Sn:0.003〜0.05%、Cu:0.04〜0.2%、Sb:0.001〜0.01%及びAs:0.001〜0.01%
本発明に係る高周波焼入れ用鋼においては、「母材」における所望の衝撃値(後述のノッチ下高さが8mmのUノッチ試験片を用いた室温でのシャルピー衝撃試験で、41J/cm2以上の衝撃値)の確保及び「焼入れ部」における所望の回転曲げ疲労強度(後述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)の確保のために、次に述べる元素を必須の構成元素として含む必要がある。
Sn: 0.003-0.05%, Cu: 0.04-0.2%, Sb: 0.001-0.01% and As: 0.001-0.01%
In the steel for induction hardening according to the present invention, a desired impact value in the “base metal” (41 J / cm 2 or more in a Charpy impact test at room temperature using a U-notch test piece having a notch height of 8 mm described later) ) And the desired rotational bending fatigue strength in the “quenched part” (Rotational bending fatigue strength of 710 MPa or more in an Ono-type rotational bending fatigue test in a normal temperature atmosphere using a test piece with an annular semicircular groove described later) ), It is necessary to include the following elements as essential constituent elements.

すなわち、本発明(1)は、前記CからNまでの元素に加えて、Sn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含有する必要がある。   That is, the present invention (1) includes Sn: 0.003 to 0.05%, Sb: 0.001 to 0.01%, and As: 0.001 in addition to the elements from C to N. It is necessary to contain one or two of 0.01%.

また、本発明(2)は、前記CからNまでの元素に加えて、Cu:0.04〜0.2%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含有する必要がある。   In addition to the elements from C to N, the present invention (2) includes Cu: 0.04 to 0.2%, Sb: 0.001 to 0.01%, and As: 0.001 to It is necessary to contain one or two of 0.01%.

更に、本発明(3)は、前記CからNまでの元素に加えて、Cu:0.04〜0.2%及びSn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含有する必要がある。   Furthermore, the present invention (3) includes Cu: 0.04 to 0.2%, Sn: 0.003 to 0.05%, and Sb: 0.001 to 0.001 in addition to the elements from C to N. It is necessary to contain one or two of 0.01% and As: 0.001 to 0.01%.

これは、「母材」が前記所望の衝撃値を有するためには、前記CからNまでの元素に加えて、0.04%以上のCu及び0.003%以上のSnのうちの1種又は2種、並びに、0.001%以上のSb及び0.001%以上のAsのうちの1種又は2種を含む必要があり、一方、Cu、Sn、Sb及びAsの含有量が、それぞれ、0.2%、0.05%、0.01%及び0.01%を超えると、「焼入れ部」の回転曲げ疲労強度が低下して、前記所望の回転曲げ疲労強度が得られないためである。   In order for the “base material” to have the desired impact value, in addition to the elements from C to N, one of 0.04% or more of Cu and 0.003% or more of Sn is used. Or two and one or two of 0.001% or more of Sb and 0.001% or more of As, while the contents of Cu, Sn, Sb and As are respectively If it exceeds 0.2%, 0.05%, 0.01%, and 0.01%, the rotational bending fatigue strength of the “quenched portion” is lowered, and the desired rotational bending fatigue strength cannot be obtained. It is.

以下、上記のことについて、本発明者らが旧オーステナイト粒径を微細にして靱性を高める元素のうちで、高温加熱した際にオーステナイト中に固溶するが粒界偏析する傾向が大きいものに着目して行った検討内容を基にして、詳しく説明する。   Hereinafter, among the elements that the present inventors refine the prior austenite grain size and increase the toughness with regard to the above, pay attention to those that have a high tendency to segregate at the grain boundaries although they are dissolved in austenite when heated at high temperatures. This will be explained in detail based on the contents of the study conducted.

鋼中で粒界偏析しやすい元素として、周期律表1B族のCu、3B族のB、4B族のCとSn、5B族のN、P、AsとSb、6B族のO、SとSeが知られている。しかし、これらの元素のうちでB、C及びNは高温での拡散係数が大きいため、また、Oはオーステナイト中への固溶量が小さいため、更に、S及びSeはMnと結合しやすくオーステナイト中への固溶量が小さいため、いずれも、粒成長抑制の効果をほとんど期待できない。そこで、Cu、Sn、P、As及びSbについて検討を行った。   Periodic table 1B group Cu, 3B group B, 4B group C and Sn, 5B group N, P, As and Sb, 6B group O, S and Se It has been known. However, among these elements, B, C, and N have a large diffusion coefficient at high temperature, and O has a small amount of solid solution in austenite. Further, S and Se are easily bonded to Mn, and thus austenite. Since the amount of the solid solution in the inside is small, almost none of them can be expected to suppress grain growth. Then, Cu, Sn, P, As, and Sb were examined.

すなわち、表1に示すとおりの、0.54%C−0.7%Si−0.9%Mn−0.014%S−0.16%Cr−0.02%Al−0.001%Ti−0.05%V−0.0140%N−0.0008%Oの化学組成をベースとして、Cu、Sn、P、As及びSbの含有量を変化させた鋼a〜xを50kg真空溶解炉を用いて溶製し、インゴットに鋳造した。なお、上記においては、鋼のCu含有量によってNiの含有量も変化させた。   That is, as shown in Table 1, 0.54% C-0.7% Si-0.9% Mn-0.014% S-0.16% Cr-0.02% Al-0.001% Ti -50% vacuum melting furnace for steel ax with varying contents of Cu, Sn, P, As and Sb based on chemical composition of -0.05% V-0.0140% N-0.0008% O Was melted and cast into an ingot. In the above, the Ni content was also changed depending on the Cu content of the steel.

Figure 0003941806
Figure 0003941806

これらの鋼のインゴットを1250℃に加熱して10時間均質化熱処理した後、熱間鍛造を行って、直径40mmの丸棒を作製した。次いで、上記の各丸棒を1250℃に加熱し、熱間鍛造を行って1050℃以上で仕上げ、厚さ20mmの鋼板を作製した。   These steel ingots were heated to 1250 ° C. and subjected to homogenization heat treatment for 10 hours, and then hot forging was performed to produce a round bar having a diameter of 40 mm. Next, each of the round bars was heated to 1250 ° C., hot forged, and finished at 1050 ° C. or higher to produce a steel plate having a thickness of 20 mm.

このようにして得た厚さ20mmの各鋼板から、試験片の長さ方向が鍛錬軸に平行になるように、JIS Z 2202で規定される長さが55mm、高さと幅がいずれも10mmでノッチ下高さが8mmのUノッチ試験片を採取し、通常の方法によって室温でシャルピー衝撃試験を行い、各3回の試験における衝撃値の平均値を求めた。   From each steel plate having a thickness of 20 mm obtained in this way, the length specified in JIS Z 2202 is 55 mm, and the height and width are both 10 mm so that the length direction of the test piece is parallel to the forging axis. A U-notch test piece having a height under the notch of 8 mm was collected, and a Charpy impact test was performed at room temperature by an ordinary method, and an average value of impact values in three tests was obtained.

更に、前記の厚さ20mmの各鋼板から、試験片の長さ方向が鍛錬軸に平行になるように、平行部の直径と長さがそれぞれ、10mmと21mmで、半径が1mmの環状半円溝付きの小野式回転曲げ疲労試験片を採取した。上述の小野式回転曲げ疲労試験片に環状半円溝底での有効硬化層深さが1.3±0.2mmになるように高周波焼入れを施した後、160℃で1時間の焼戻しを行い、更に、800番のエメリー紙を用いて、スケールを除去する程度の研削を行った。なお、上記の高周波焼入れにおける「有効硬化層深さ」は、硬化層の表面からビッカース硬さ(以下、「Hv硬さ」という。)で500の位置までの距離をいう。   Further, from each of the steel plates having a thickness of 20 mm, the diameter and length of the parallel portions are 10 mm and 21 mm and the radius is 1 mm so that the length direction of the test piece is parallel to the forging axis. Ono-type rotating bending fatigue test pieces with grooves were collected. The above Ono-type rotating bending fatigue test piece was induction-quenched so that the effective hardened layer depth at the bottom of the annular semicircular groove was 1.3 ± 0.2 mm, and then tempered at 160 ° C. for 1 hour. Furthermore, grinding was performed to remove the scale using No. 800 emery paper. The “effective hardened layer depth” in the induction hardening mentioned above refers to a distance from the surface of the hardened layer to a position of 500 in terms of Vickers hardness (hereinafter referred to as “Hv hardness”).

ここで、小野式回転曲げ疲労試験における試験本数は各7本とし、通常の方法によって常温大気中で試験を行い、繰り返し数1.0×107回まで破断しなかったうちで最も高い応力を「回転曲げ疲労強度」とした。 Here, the number of tests in the Ono-type rotating bending fatigue test was 7 each, and the test was performed in a normal temperature atmosphere by a normal method, and the highest stress among those that did not break until the number of repetitions was 1.0 × 10 7 times. “Rotating bending fatigue strength”.

表2に、上記の各試験結果をまとめて示す。なお、前記の衝撃試験片は、鍛造した鋼板から採取したままのもので、これには高周波焼入れを施していない。このため、表2において衝撃値を、「母材衝撃値」と表記した。一方、小野式回転曲げ疲労試験片は、上述の高周波焼入れを施したものであるため、表2において「回転曲げ疲労強度」を、「焼入れ部回転曲げ疲労強度」と表記した。   Table 2 summarizes the above test results. In addition, the said impact test piece is what was extract | collected from the forged steel plate, and this has not been induction-hardened. For this reason, in Table 2, the impact value is expressed as “base material impact value”. On the other hand, since the Ono type rotating bending fatigue test piece was subjected to the above-mentioned induction hardening, “Rotating bending fatigue strength” in Table 2 was expressed as “Quenched portion rotating bending fatigue strength”.

Figure 0003941806
Figure 0003941806

表2に示した「母材」の衝撃値及び「焼入れ部」の回転曲げ疲労強度の結果から以下の(h)〜(m)が判明した。   The following (h) to (m) were found from the results of the impact value of the “base metal” and the rotational bending fatigue strength of the “quenched part” shown in Table 2.

(h)Pの含有量を増加させると、「母材」の衝撃値及び「焼入れ部」の回転曲げ疲労強度が低下する(鋼a〜cの比較)。   (H) When the P content is increased, the impact value of the “base metal” and the rotational bending fatigue strength of the “quenched portion” are reduced (comparison of steels a to c).

(i)NiとともにCuの含有量を増加させると、「母材」の衝撃値がわずかに向上するが、前記した所望の衝撃値、すなわち、ノッチ下高さが8mmのUノッチ試験片を用いた室温でのシャルピー衝撃試験における41J/cm2以上という衝撃値が得られない。一方、NiとともにCuを添加した場合に、Cuの含有量が0.2%を超えると、「焼入れ部」の回転曲げ疲労強度が低下する(鋼a、鋼d及び鋼eの比較)。 (I) Increasing the content of Cu together with Ni slightly improves the impact value of the “base material”, but uses the above-mentioned desired impact value, that is, the U-notch test piece having a notch height of 8 mm. The impact value of 41 J / cm 2 or more in the Charpy impact test at room temperature was not obtained. On the other hand, when Cu is added together with Ni, if the Cu content exceeds 0.2%, the rotational bending fatigue strength of the “quenched portion” decreases (comparison of steel a, steel d, and steel e).

(j)Snの含有量を増加させると、「母材」の衝撃値がわずかに向上するが、前記した所望の衝撃値が得られない。一方、Snの含有量が0.05%を超えると、「焼入れ部」の回転曲げ疲労強度が低下する(鋼a、鋼f及び鋼gの比較)。   (J) When the Sn content is increased, the impact value of the “base material” is slightly improved, but the desired impact value described above cannot be obtained. On the other hand, if the Sn content exceeds 0.05%, the rotational bending fatigue strength of the “quenched portion” decreases (comparison of steel a, steel f, and steel g).

(k)Asの含有量を増加させると、「母材」の衝撃値がわずかに向上するが、前記した所望の衝撃値が得られない。一方、Asの含有量が0.01%を超えると、「焼入れ部」の回転曲げ疲労強度が低下する(鋼a、鋼h及び鋼iの比較)。   (K) When the As content is increased, the impact value of the “base material” is slightly improved, but the desired impact value described above cannot be obtained. On the other hand, when the content of As exceeds 0.01%, the rotational bending fatigue strength of the “quenched portion” decreases (comparison of steel a, steel h, and steel i).

(l)Sbの含有量を増加させると、「母材」の衝撃値がわずかに向上するが、前記した所望の衝撃値が得られない。一方、Sbの含有量が0.01%を超えると、「焼入れ部」の回転曲げ疲労強度が低下する(鋼a、鋼j及び鋼kの比較)。   (L) When the Sb content is increased, the impact value of the “base material” is slightly improved, but the desired impact value described above cannot be obtained. On the other hand, when the Sb content exceeds 0.01%, the rotational bending fatigue strength of the “quenched portion” decreases (comparison of steel a, steel j, and steel k).

(m)「焼入れ部」において前記した所望の回転曲げ疲労強度(前述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)を確保し、しかも、「母材」の靱性を高めて前記した所望の衝撃値(前述のノッチ下高さが8mmのUノッチ試験片を用いた室温でのシャルピー衝撃試験における41J/cm2以上の衝撃値)を得るためには、Cu、Sn、As及びSbの含有量の上限を、それぞれ、0.2%、0.05%、0.01%及び0.01%としたうえで、Cu及びSnのうちの1種又は2種の含有量を増加させることに加えて、Sb及びAsのうちの1種又は2種の含有量を増加させればよい(鋼a及び鋼m〜wの比較)。 (M) The above-mentioned desired rotational bending fatigue strength (rotational bending fatigue strength of 710 MPa or more in the Ono type rotational bending fatigue test in the normal temperature atmosphere using the above-mentioned annular semicircular grooved test piece) in the “quenched part” And the desired impact value (41 J / cm 2 or more in the Charpy impact test at room temperature using the above-notched U-notch specimen having an under-notch height of 8 mm) is improved by increasing the toughness of the “base material”. In order to obtain an impact value), the upper limit of the content of Cu, Sn, As and Sb is 0.2%, 0.05%, 0.01% and 0.01%, respectively. In addition to increasing the content of one or two of Sn and Sn, the content of one or two of Sb and As may be increased (of steel a and steel mw) Comparison).

したがって、本発明(1)は、Sn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含有するものとした。また、本発明(2)は、Cu:0.04〜0.2%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含有するものとした。更に、本発明(3)は、Cu:0.04〜0.2%及びSn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種以上を含有するものとした。   Therefore, the present invention (1) includes Sn: 0.003-0.05%, and Sb: 0.001-0.01% and As: 0.001-0.01% or 2 It shall contain seeds. Moreover, this invention (2) is Cu: 0.04-0.2%, and Sb: 0.001-0.01% and 1 type or 2 of As: 0.001-0.01% It shall contain seeds. Furthermore, the present invention (3) includes Cu: 0.04-0.2% and Sn: 0.003-0.05%, and Sb: 0.001-0.01% and As: 0.001- One or more of 0.01% were contained.

Ni:0〜0.2%(本発明(1))、(1/2)×[Cuの含有量(%)]〜0.2%(本発明(2)、本発明(3))
Cuを含まない鋼の場合には、Niの添加は任意である。添加すれば、靱性を高める作用を有する。この効果を確実に得るには、Niは0.02%以上の含有量とすることが好ましい。しかし、Niは高価な元素であるので、合金コストを考慮するとその含有量は0.2%以下にする必要がある。したがって、本発明(1)においては、Niの含有量を0〜0.2%とした。
Ni: 0 to 0.2% (present invention (1)), (1/2) × [Cu content (%)] to 0.2% (present invention (2), present invention (3))
In the case of steel not containing Cu, addition of Ni is optional. If added, it has the effect of increasing toughness. In order to reliably obtain this effect, the Ni content is preferably 0.02% or more. However, since Ni is an expensive element, its content needs to be 0.2% or less in consideration of alloy costs. Therefore, in the present invention (1), the Ni content is set to 0 to 0.2%.

一方、Niには上記の靱性を高める作用に加えて、Cuに起因する熱間加工性の低下を抑制する作用がある。この効果を得るには、Niの含有量を(1/2)×[Cuの含有量(%)]以上とする必要がある。しかし、上述のとおり、Niは高価な元素であるので、合金コストを考慮するとその含有量は0.2%以下にする必要がある。したがって、本発明(2)及び本発明(3)においては、Niの含有量を(1/2)×[Cuの含有量(%)]〜0.2%とした。   On the other hand, in addition to the above-described effect of increasing toughness, Ni has an effect of suppressing a decrease in hot workability caused by Cu. In order to obtain this effect, the Ni content needs to be (1/2) × [Cu content (%)] or more. However, as described above, since Ni is an expensive element, its content needs to be 0.2% or less in consideration of alloy costs. Therefore, in the present invention (2) and the present invention (3), the Ni content is set to (1/2) × [Cu content (%)] to 0.2%.

本発明においては、不純物元素としてのP、Ti及びO(酸素)の各含有量を下記のとおりに制限する。   In the present invention, the contents of P, Ti and O (oxygen) as impurity elements are limited as follows.

P:0.03%以下
Pは、粒界に偏析して粒界を脆化させやすい元素であり、先に(h)の項で述べたように、「母材」の衝撃値及び「焼入れ部」の回転曲げ疲労強度を低下させてしまう。特に、Pの含有量が0.03%を超えると、「母材」の衝撃値及び「焼入れ部」の回転曲げ疲労強度の低下が著しくなり、他の要件を満たしていても、「母材」における所望の衝撃値(前述のノッチ下高さが8mmのUノッチ試験片を用いた室温でのシャルピー衝撃試験で、41J/cm2以上の衝撃値)と「焼入れ部」における所望の回転曲げ疲労強度(前述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)の双方ともが得られない。したがって、Pの含有量を0.03%以下とした。
P: 0.03% or less P is an element that segregates at the grain boundary and easily embrittles the grain boundary. As described in the section (h) above, the impact value of the “base material” and “quenching” The rotational bending fatigue strength of the “part” is reduced. In particular, when the P content exceeds 0.03%, the impact value of the “base metal” and the rotational bending fatigue strength of the “quenched part” are significantly reduced. The desired impact value (in the above-mentioned Charpy impact test at room temperature using a U-notch test piece having an under-notch height of 8 mm, an impact value of 41 J / cm 2 or more) and the desired rotational bending in the “quenched part” Neither fatigue strength (rotational bending fatigue strength of 710 MPa or more in the Ono-type rotational bending fatigue test in the normal temperature atmosphere using the above-mentioned test piece with an annular semicircular groove) cannot be obtained. Therefore, the content of P is set to 0.03% or less.

Ti:0.005%以下
Tiは、Nと結合してTiNを形成し、粗大なTiNは「焼入れ部」において回転曲げ疲労の破壊起点になりやすく、特に、Tiの含有量が0.005%を超えると、他の要件を満たしていても、「焼入れ部」において所望の回転曲げ疲労強度(前述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)が得られなくなる。したがって、Tiの含有量を0.005%以下とした。なお、不純物元素としてのTiの含有量はできるだけ少なくすることが望ましく、原料及び製鋼でのコストを考慮すると0.002%以下にすることが好ましい。
Ti: 0.005% or less Ti combines with N to form TiN, and coarse TiN tends to be a fracture starting point of rotational bending fatigue in the “quenched part”, and in particular, the Ti content is 0.005%. Exceeding the above, even if the other requirements are satisfied, the desired rotational bending fatigue strength in the “quenched part” (710 MPa in the Ono type rotational bending fatigue test in the normal temperature atmosphere using the above-mentioned test piece with the annular semicircular groove) The above rotating bending fatigue strength) cannot be obtained. Therefore, the Ti content is set to 0.005% or less. Note that the content of Ti as an impurity element is desirably as small as possible, and is preferably 0.002% or less in consideration of costs for raw materials and steelmaking.

O(酸素):0.0015%以下
Oは、酸化物系介在物を形成し、粗大な酸化物系介在物は「焼入れ部」において回転曲げ疲労及び転動疲労の破壊起点になりやすく、特に、Oの含有量が0.0015%を超えると、他の要件を満たしていても、「焼入れ部」において所望の回転曲げ疲労強度(前述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)が得られなくなる。したがって、Oの含有量を0.0015%以下とした。なお、不純物元素としてのOの含有量はできる限り少なくすることが望ましく、原料及び製鋼でのコストを考慮すると0.0009%以下にすることが好ましい。
O (oxygen): 0.0015% or less O forms oxide inclusions, and coarse oxide inclusions tend to be the starting point of fracture of rotational bending fatigue and rolling fatigue in the “quenched part”. When the content of O exceeds 0.0015%, even if other requirements are satisfied, the desired rotational bending fatigue strength in the “quenched part” (in the normal temperature atmosphere using the above-mentioned test piece with an annular semicircular groove) Rotational bending fatigue strength of 710 MPa or more in the Ono-type rotational bending fatigue test at 1) cannot be obtained. Therefore, the content of O is set to 0.0015% or less. In addition, it is desirable to reduce the content of O as an impurity element as much as possible, and considering the cost of raw materials and steelmaking, it is preferable to make it 0.0009% or less.

本発明に係る高周波焼入れ用鋼においては、「焼入れ部」における旧オーステナイト粒径を微細にして、所望の回転曲げ疲労強度(前述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)の確保のために、前記(1)式で表されるfn1の値を1.5×10-4以上とする必要がある。 In the steel for induction hardening according to the present invention, the old austenite grain size in the “quenched part” is made fine, and the desired rotational bending fatigue strength (Ono in the normal temperature atmosphere using the above-mentioned test piece with the annular semicircular groove is used. In order to ensure (rotating bending fatigue strength of 710 MPa or more in the type rotating bending fatigue test), the value of fn1 represented by the above formula (1) needs to be 1.5 × 10 −4 or more.

以下、上記の規定について詳しく説明する。   Hereinafter, the above rules will be described in detail.

一般に、高周波焼入れする際の加熱温度は900〜1050℃で、熱間鍛造の際の加熱温度に比べて低く、また、加熱時間も短時間である。したがって、コスト低減を目的に鋼に特殊な元素を添加することなく旧オーステナイト粒径を微細化するためには、高周波での加熱処理の前に鋼中にAlN粒子を分散・析出させておくことが有効である。   Generally, the heating temperature at the time of induction hardening is 900 to 1050 ° C., which is lower than the heating temperature at the time of hot forging, and the heating time is also short. Therefore, in order to reduce the prior austenite grain size without adding special elements to the steel for the purpose of cost reduction, AlN particles should be dispersed and precipitated in the steel before heat treatment at high frequency. Is effective.

なお、AlNの析出は、鋼中のAl量とN量の積、すなわち溶解度積が大きい方が生じやすいことが知られている。しかし、鋼中のAlは、NよりもまずO(酸素)と結びつきやすい。このため、Alについては、酸化物以外のAl量としてのいわゆる「sol.Al」の量、つまり、本発明でいうAl量で考える必要がある。一方、鋼中のNはAlよりもTiとの親和力が大きいので、Nについては、Tiと結合するN以外のN量で考える必要がある。   In addition, it is known that precipitation of AlN is more likely to occur when the product of the amount of Al and the amount of N in steel, that is, the solubility product is larger. However, Al in steel is more likely to be associated with O (oxygen) than N. For this reason, about Al, it is necessary to consider the amount of so-called “sol.Al” as the amount of Al other than oxide, that is, the amount of Al referred to in the present invention. On the other hand, since N in steel has a greater affinity for Ti than Al, it is necessary to consider N with an amount of N other than N that binds to Ti.

上述のことから、AlNの析出状況は、原子量を考慮すると、前記(1)式で表される次のfn1によって評価できると考えられる。   From the above, it is considered that the precipitation state of AlN can be evaluated by the following fn1 expressed by the above equation (1) in consideration of the atomic weight.

fn1=Al×{N−(14/48)×Ti}。   fn1 = Al × {N− (14/48) × Ti}.

そこで、本発明者らは、表3に示すとおりの、0.54%C−0.7%Si−0.9%Mn−0.011%P−0.013%S−0.15%Cr−0.07%Ni−0.001%Ti−0.06%V−0.0008%O−0.10%Cu−0.008%Sn−0.003%Asの化学組成をベースとし、Al及びNの含有量を変化させることによって前記(1)式で表されるfn1の値を変えた鋼α〜δを50kg真空溶解炉を用いて溶製し、インゴットに鋳造した。   Therefore, the present inventors, as shown in Table 3, 0.54% C-0.7% Si-0.9% Mn-0.011% P-0.013% S-0.15% Cr -0.07% Ni-0.001% Ti-0.06% V-0.0008% O-0.10% Cu-0.008% Sn-0.003% As based on the chemical composition, Al Further, steels α to δ in which the value of fn1 represented by the above formula (1) was changed by changing the content of N and N were melted using a 50 kg vacuum melting furnace and cast into an ingot.

Figure 0003941806
Figure 0003941806

これらの鋼のインゴットを1250℃に加熱して10時間均質化熱処理した後、熱間鍛造を行って、直径40mmの丸棒を作製した。次いで、上記の各丸棒を1250℃に加熱し、熱間鍛造を行って1050℃以上で仕上げ、厚さ20mmの鋼板を作製した。   These steel ingots were heated to 1250 ° C. and subjected to homogenization heat treatment for 10 hours, and then hot forging was performed to produce a round bar having a diameter of 40 mm. Next, each of the round bars was heated to 1250 ° C., hot forged, and finished at 1050 ° C. or higher to produce a steel plate having a thickness of 20 mm.

このようにして得た厚さ20mmの各鋼板から、試験片の長さ方向が鍛錬軸に平行になるように、平行部の直径と長さがそれぞれ、10mmと21mmで、半径が1mmの環状半円溝付きの小野式回転曲げ疲労試験片を各8本ずつ採取した。上述の小野式回転曲げ疲労試験片に環状半円溝底での有効硬化層深さ、つまり、硬化層の表面からHv硬さで500の位置までの距離が1.3±0.2mmになるように高周波焼入れを施した後、160℃で1時間の焼戻しを行い、更に、800番のエメリー紙を用いて、スケールを除去する程度の研削を行った。   From each of the 20 mm thick steel plates obtained in this way, the diameter and length of the parallel part are 10 mm and 21 mm, respectively, and the radius is 1 mm so that the length direction of the specimen is parallel to the forging axis. Eight Ono rotary bending fatigue test pieces with semicircular grooves were collected. The effective hardening layer depth at the bottom of the annular semicircular groove in the Ono type rotating bending fatigue test piece described above, that is, the distance from the surface of the hardening layer to the position of 500 in Hv hardness is 1.3 ± 0.2 mm. After induction hardening as described above, tempering was performed at 160 ° C. for 1 hour, and further, grinding was performed to remove the scale using No. 800 emery paper.

次いで、試験本数を各7本として、通常の方法によって常温大気中で小野式回転曲げ疲労試験を行い、繰り返し数1.0×107回まで破断しなかったうちで最も高い応力を「回転曲げ疲労強度」とした。また、残りの各1本ずつの試験片について、その環状半円溝底部の横断面(つまり、試験片の長さ方向に直角な切断面)を鏡面研磨した後、界面活性剤を添加したピクリン酸飽和水溶液で腐食して旧オーステナイト粒界を現出させ、表層から1mmまでの範囲を光学顕微鏡で観察し、JIS G 0551における付図1のオーステナイト結晶粒度標準図を用いた比較法によって、オーステナイト粒度番号を求めた。 Then, as the seven test number, performs Ono-type rotating bending fatigue test in a normal temperature atmosphere by conventional methods, "rotating bending the highest stress among that did not break up repetitive number 1.0 × 10 7 times Fatigue strength ". In addition, for each of the remaining test pieces, the cross section of the bottom of the annular semicircular groove (that is, a cut surface perpendicular to the length direction of the test piece) is mirror-polished and then added with a surfactant. Corrosion with acid-saturated aqueous solution reveals prior austenite grain boundaries, and the range from the surface layer to 1 mm is observed with an optical microscope. I asked for a number.

表4に、上記の各試験結果をまとめて示す。なお、表4に記載のオーステナイト粒度番号は「旧オーステナイト粒径」に対応するものである。   Table 4 summarizes the above test results. The austenite grain size numbers listed in Table 4 correspond to “old austenite grain size”.

Figure 0003941806
Figure 0003941806

表4に示した「焼入れ部」の回転曲げ疲労強度とオーステナイト粒度番号の結果から以下の(n)が判明した。   The following (n) was found from the results of the rotational bending fatigue strength and the austenite grain number of the “quenched part” shown in Table 4.

(n)「焼入れ部」において前記した所望の回転曲げ疲労強度(前述の環状半円溝付き試験片を用いた常温大気中での小野式回転曲げ疲労試験における710MPa以上の回転曲げ疲労強度)を確保するためには、前記(1)式で表されるfn1の値を1.5×10-4以上とすればよい(鋼α〜δの比較)。 (N) In the “quenched part”, the above-mentioned desired rotational bending fatigue strength (rotational bending fatigue strength of 710 MPa or more in the Ono-type rotational bending fatigue test in the normal temperature atmosphere using the above-mentioned annular semicircular grooved test piece) In order to ensure, the value of fn1 represented by the above formula (1) may be 1.5 × 10 −4 or more (comparison of steels α to δ).

したがって、本発明に係る高周波焼入れ用鋼は、前記(1)式で表されるfn1の値が1.5×10-4以上を満たすものとした。 Therefore, the induction hardening steel according to the present invention is such that the value of fn1 represented by the above formula (1) satisfies 1.5 × 10 −4 or more.

本発明に係る高周波焼入れ用鋼においては、上述した各規定に加えて、特に、「母材」における所望の回転曲げ疲労強度(後述の平滑試験片を用いた常温大気中での小野式回転曲げ疲労試験における390MPa以上の回転曲げ疲労強度)の確保のために、前記(2)式で表されるfn2の値を−0.005以下とする必要がある。   In the steel for induction hardening according to the present invention, in addition to the above-mentioned rules, in particular, the desired rotational bending fatigue strength in the “base metal” (Ono-type rotational bending in a normal temperature atmosphere using a smooth specimen described later) In order to ensure (rotating bending fatigue strength of 390 MPa or more in a fatigue test), the value of fn2 expressed by the above equation (2) needs to be −0.005 or less.

以下、上記の規定について詳しく説明する。   Hereinafter, the above rules will be described in detail.

Vは、「母材」中にVC(炭化物)として析出して、「母材」の引張強さ及び回転曲げ疲労強度を高める作用を有している。しかし、VのCとの親和力はNとの親和力よりも小さい。このため、前記のVの効果、なかでも、所望の回転曲げ疲労強度(後述の平滑試験片を用いた常温大気中での小野式回転曲げ疲労試験における390MPa以上の回転曲げ疲労強度)を確保するための「母材」の回転曲げ疲労強度を高める効果を得るためには、Vの量を化学量論的にNと結合する量よりも多くしておく必要がある。一方、NはVよりもTi及びAlと結合しやすい。   V precipitates as “VC” (carbide) in the “base material” and has an action of increasing the tensile strength and the rotational bending fatigue strength of the “base material”. However, the affinity of V for C is smaller than the affinity for N. For this reason, the effect of the above-mentioned V, in particular, the desired rotational bending fatigue strength (rotary bending fatigue strength of 390 MPa or more in the Ono type rotational bending fatigue test in a normal temperature atmosphere using a smooth specimen described later) is ensured. In order to obtain the effect of increasing the rotational bending fatigue strength of the “base metal” for this purpose, it is necessary to make the amount of V larger than the amount stoichiometrically combined with N. On the other hand, N is easier to bond with Ti and Al than V.

上述のことから、VCとして析出するVの効果を確保するためには、前記(2)式で表される次のfn2の値を少なくとも0以下にする必要があるとの結論に至った。   From the above, it was concluded that the value of the next fn2 expressed by the above equation (2) needs to be at least 0 or less in order to ensure the effect of V precipitated as VC.

fn2=N−(14/27)×Al−(14/48)×Ti−(14/51)×V。   fn2 = N− (14/27) × Al− (14/48) × Ti− (14/51) × V.

そこで、本発明者らは、表5に示すとおりの、0.54%C−0.7%Si−0.9%Mn−0.013%P−0.014%S−0.15%Cr−0.07%Ni−0.02%Al−0.001%Ti−0.0008%O−0.09%Cu−0.008%Sn−0.004%Asの化学組成をベースとし、V及びNの含有量を変化させることによって前記(2)式で表されるfn2の値を変えた)鋼ε〜θを50kg真空溶解炉によって溶製し、インゴットに鋳造した。   Therefore, the present inventors, as shown in Table 5, 0.54% C-0.7% Si-0.9% Mn-0.013% P-0.014% S-0.15% Cr -0.07% Ni-0.02% Al-0.001% Ti-0.0008% O-0.09% Cu-0.008% Sn-0.004% As based on the chemical composition V The steels ε to θ, in which the value of fn2 represented by the formula (2) was changed by changing the N content, were melted in a 50 kg vacuum melting furnace and cast into an ingot.

Figure 0003941806
Figure 0003941806

これらの鋼のインゴットを1250℃に加熱して10時間均質化熱処理した後、熱間鍛造を行って、直径40mmの丸棒を作製した。次いで、上記の各丸棒を1250℃に加熱し、熱間鍛造を行って1050℃以上で仕上げ、厚さ20mmの鋼板を作製した。   These steel ingots were heated to 1250 ° C. and subjected to homogenization heat treatment for 10 hours, and then hot forging was performed to produce a round bar having a diameter of 40 mm. Next, each of the round bars was heated to 1250 ° C., hot forged, and finished at 1050 ° C. or higher to produce a steel plate having a thickness of 20 mm.

このようにして得た厚さ20mmの各鋼板から、試験片の長さ方向が鍛錬軸に平行になるように、平行部の直径と長さがそれぞれ、10mmと21mmの平滑小野式回転曲げ疲労試験片を採取した。   From each of the 20 mm thick steel plates obtained in this way, the diameter and length of the parallel part are 10 mm and 21 mm, respectively, so that the length direction of the test piece is parallel to the forging axis. Test specimens were collected.

次いで、試験本数を各7本として、通常の方法によって常温大気中で小野式回転曲げ疲労試験を行い、繰り返し数1.0×107回まで破断しなかったうちで最も高い応力を「回転曲げ疲労強度」とした。 Then, as the seven test number, performs Ono-type rotating bending fatigue test in a normal temperature atmosphere by conventional methods, "rotating bending the highest stress among that did not break up repetitive number 1.0 × 10 7 times Fatigue strength ".

表6に、上記の試験結果を示す。なお、前記の小野式回転曲げ疲労試験片は、鍛造した鋼板から採取したままのもので、これには高周波焼入れを施していない。このため、表6において回転曲げ疲労強度を、「母材回転曲げ疲労強度」と表記した。   Table 6 shows the test results. In addition, the said Ono type | formula rotation bending fatigue test piece is what was extract | collected from the forged steel plate, and this has not been induction-hardened. For this reason, in Table 6, the rotational bending fatigue strength is expressed as “base metal rotational bending fatigue strength”.

Figure 0003941806
Figure 0003941806

表6に示した「母材」の回転曲げ疲労強度の結果から以下の(o)が判明した。   The following (o) was found from the results of the rotational bending fatigue strength of the “base metal” shown in Table 6.

(o)「母材」において前記した所望の回転曲げ疲労強度(前述の平滑試験片を用いた常温大気中での小野式回転曲げ疲労試験における390MPa以上の回転曲げ疲労強度)を確保するためには、前記(2)式で表されるfn2の値を−0.005以下とすればよい(鋼ε〜θの比較)。   (O) To ensure the above-mentioned desired rotational bending fatigue strength (rotational bending fatigue strength of 390 MPa or more in the Ono type rotational bending fatigue test in the normal temperature atmosphere using the aforementioned smooth test piece) in the “base material”. The value of fn2 represented by the formula (2) may be set to −0.005 or less (comparison of steels ε to θ).

したがって、本発明に係る高周波焼入れ用鋼は、前記(2)式で表されるfn2の値が−0.005以下を満たすものとした。   Therefore, the induction hardening steel according to the present invention is such that the value of fn2 represented by the formula (2) satisfies −0.005 or less.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表7及び表8に示す化学組成を有する鋼A〜Z、鋼AA及び鋼ABを50kg真空溶解炉によって溶製し、インゴットに鋳造した。表7における鋼C、鋼E、鋼F、鋼H、鋼I、鋼K及び鋼Nは、化学組成が本発明で規定する範囲内にある本発明例の鋼である。一方、表7及び表8における鋼A、鋼B、鋼D、鋼G、鋼J、鋼L、鋼M、鋼O〜Z、鋼AA及び鋼ABは本発明で規定する条件から外れた比較例の鋼である。なお、比較例の鋼のうち鋼AはJIS G 4051のS55Cに相当する鋼である。   Steels A to Z, steel AA, and steel AB having chemical compositions shown in Tables 7 and 8 were melted in a 50 kg vacuum melting furnace and cast into ingots. Steel C, steel E, steel F, steel H, steel I, steel K, and steel N in Table 7 are steels of the present invention examples whose chemical compositions are within the range defined by the present invention. On the other hand, Steel A, Steel B, Steel D, Steel G, Steel J, Steel L, Steel M, Steels O to Z, Steel AA and Steel AB in Tables 7 and 8 were compared out of the conditions defined in the present invention. Example steel. Of the steels of the comparative examples, steel A is steel corresponding to S55C of JIS G 4051.

Figure 0003941806
Figure 0003941806

Figure 0003941806
Figure 0003941806

これらの鋼のインゴットを1250℃に加熱して10時間均質化熱処理した後、熱間鍛造を行って、直径40mmの丸棒を作製した。次いで、上記の各丸棒を1250℃に加熱し、熱間鍛造を行って1050℃以上で仕上げ、厚さ20mmの鋼板を作製した。   These steel ingots were heated to 1250 ° C. and subjected to homogenization heat treatment for 10 hours, and then hot forging was performed to produce a round bar having a diameter of 40 mm. Next, each of the round bars was heated to 1250 ° C., hot forged, and finished at 1050 ° C. or higher to produce a steel plate having a thickness of 20 mm.

このようにして得た厚さ20mmの各鋼板から、試験片の長さ方向が鍛錬軸に平行になるように、JIS Z 2202で規定される長さが55mm、高さと幅がいずれも10mmでノッチ下高さが8mmのUノッチ試験片を採取し、通常の方法によって室温でシャルピー衝撃試験を行い、各3回の試験における衝撃値の平均値を求めた。   From each steel plate having a thickness of 20 mm obtained in this way, the length specified in JIS Z 2202 is 55 mm, and the height and width are both 10 mm so that the length direction of the test piece is parallel to the forging axis. A U-notch test piece having a height under the notch of 8 mm was collected, and a Charpy impact test was performed at room temperature by an ordinary method, and an average value of impact values in three tests was obtained.

更に、前記の厚さ20mmの各鋼板から、試験片の長さ方向が鍛錬軸に平行になるように、平行部の直径と長さがそれぞれ、10mmと21mmで、半径が1mmの環状半円溝付きの小野式回転曲げ疲労試験片及び平行部の直径と長さがそれぞれ、10mmと21mmの平滑小野式回転曲げ疲労試験片を採取した。   Further, from each of the steel plates having a thickness of 20 mm, the diameter and length of the parallel portions are 10 mm and 21 mm and the radius is 1 mm so that the length direction of the test piece is parallel to the forging axis. A grooved Ono-type rotating bending fatigue test piece and a smooth Ono-type rotating bending fatigue test piece having a parallel part diameter and length of 10 mm and 21 mm, respectively, were collected.

環状半円溝付きの小野式回転曲げ疲労試験片は、環状半円溝底での有効硬化層深さ、つまり、硬化層の表面からHv硬さで500の位置までの距離が1.3±0.2mmになるように高周波焼入れを施し、その後160℃で1時間の焼戻しを行い、更に、800番のエメリー紙を用いて、スケールを除去する程度の研削を行った。   The Ono rotary bending fatigue test piece with an annular semicircular groove has an effective hardened layer depth at the bottom of the annular semicircular groove, that is, a distance from the surface of the hardened layer to a position of 500 in Hv hardness is 1.3 ±. Induction hardening was performed so that the thickness became 0.2 mm, and then tempering was performed at 160 ° C. for 1 hour, and further, grinding was performed to remove scale using No. 800 emery paper.

また、転動疲労試験片は、試験片の長さ方向が鍛錬軸に平行になるように、直径12mm、長さ22mmの試験片を作製した。この試験片に有効硬化層深さ、つまり、硬化層の表面からHv硬さで500の位置までの距離が2.0±0.2mmになるように高周波焼入れを施し、更に、通常の熱処理炉を用いて160℃で1時間の焼戻しを施した後、表面を鏡面研磨して試験片を作製した。   Moreover, the rolling fatigue test piece produced the test piece of diameter 12mm and length 22mm so that the length direction of a test piece might become parallel to a training axis. This test piece was subjected to induction hardening so that the effective hardened layer depth, that is, the distance from the surface of the hardened layer to the position of 500 in Hv hardness was 2.0 ± 0.2 mm, and a normal heat treatment furnace After tempering at 160 ° C. for 1 hour, the surface was mirror-polished to prepare a test piece.

次いで、上記のようにして得た環状半円溝付きの小野式回転曲げ疲労試験片及び平滑小野式回転曲げ疲労試験片のいずれの場合も、試験本数を各7本として、通常の方法によって常温大気中で小野式回転曲げ疲労試験を行い、繰り返し数1.0×107回まで破断しなかったうちで最も高い応力を「回転曲げ疲労強度」とした。 Next, in each case of the Ono rotary bending fatigue test piece and the smooth Ono rotary bending fatigue test piece with the annular semicircular groove obtained as described above, the number of test pieces was set to 7 each, and the room temperature was measured by an ordinary method. The Ono-type rotating bending fatigue test was performed in the atmosphere, and the highest stress among the fractures up to the number of repetitions of 1.0 × 10 7 times was defined as “rotating bending fatigue strength”.

また、転動疲労試験における転動疲労寿命は次の方法で測定した。   The rolling fatigue life in the rolling fatigue test was measured by the following method.

・試験機:円筒式ラジアル型転動疲労試験機、
・最大面圧:6000MPa、
・試験片回転数:46000回/分
・試験片数:各12個。
・ Testing machine: Cylindrical radial type rolling fatigue testing machine,
・ Maximum surface pressure: 6000 MPa,
-Test piece rotation speed: 46000 times / min-Number of test pieces: 12 pieces each.

転動疲労寿命は、各条件に付き12個の直径が12mmの試験片の各転動疲労寿命を、縦軸に累積破損確率、横軸に転動疲労寿命をとったワイブル確率紙にプロットして、それに対する線形近似直線を引き、累積頻度破損確率が10%になる転動疲労寿命(以下、「L10寿命」という。)を求めた。   The rolling fatigue life is plotted on Weibull probability paper with the rolling fatigue life of 12 test pieces with a diameter of 12 mm for each condition, the cumulative failure probability on the vertical axis and the rolling fatigue life on the horizontal axis. Then, a linear approximation straight line was drawn to obtain a rolling fatigue life (hereinafter referred to as “L10 life”) at which the cumulative frequency failure probability was 10%.

なお、JIS G 4051のS55Cに相当する鋼Aを用いた試験番号1の各試験結果を基準として、各特性の目標値を設定した。すなわち、「母材」の靱性は、試験番号1の「母材」の衝撃値である27J/cm2の150%を超える41J/cm2以上を目標とした。また、「母材」の回転曲げ疲労特性については、試験番号1の「母材」の回転曲げ疲労強度である300MPaを30%以上上回る390MPa以上に目標を設定した。「焼入れ部」の回転曲げ疲労特性は、試験番号1の「焼入れ部」の回転曲げ疲労強度である610MPaの115%を超える710MPa以上を目標とした。更に、転動疲労寿命はL10寿命が2.0×107以上を目標とした。 In addition, the target value of each characteristic was set on the basis of each test result of test number 1 using steel A corresponding to S55C of JIS G 4051. That is, the toughness of the “base material” was set to 41 J / cm 2 or more, which exceeds 150% of 27 J / cm 2 , which is the impact value of the “base material” of Test No. 1. In addition, for the rotational bending fatigue characteristics of the “base metal”, a target was set to 390 MPa or more, which is 30% or more higher than the 300 MPa that is the rotational bending fatigue strength of the “base metal” of Test No. 1. The rotational bending fatigue characteristics of the “quenched part” were set to 710 MPa or more, which exceeds 115% of 610 MPa, which is the rotational bending fatigue strength of the “quenched part” of test number 1. Furthermore, the rolling fatigue life was targeted to be 2.0 × 10 7 or more for the L10 life.

表9に、上記の各試験結果をまとめて示す。なお、前記の衝撃試験片及び平滑小野式回転曲げ疲労試験片は、鍛造した鋼板から採取したままのもので、これには高周波焼入れを施していない。したがって、これらを用いた試験結果は、表9において「母材」の特性として示した。一方、環状半円溝付きの小野式回転曲げ疲労試験片は、上述の高周波焼入れを施したものであるため、表9において「焼入れ部」の特性として示した。   Table 9 summarizes the above test results. Note that the impact test piece and the smooth Ono type rotating bending fatigue test piece are taken from a forged steel plate and are not induction-hardened. Therefore, the test results using these are shown in Table 9 as the characteristics of the “base material”. On the other hand, the Ono-type rotating bending fatigue test piece with an annular semicircular groove was subjected to the induction hardening described above, and is shown in Table 9 as the characteristics of the “quenched portion”.

Figure 0003941806
Figure 0003941806

表9から、本発明で規定する条件から外れた試験番号の場合には、「母材」の衝撃値、「母材」の回転曲げ疲労強度、「焼入れ部」の回転曲げ疲労強度及び転動疲労寿命の少なくとも1つの特性が目標とする値に達していないことが明らかである。   From Table 9, in the case of a test number that deviates from the conditions specified in the present invention, the impact value of the “base material”, the rotational bending fatigue strength of the “base material”, the rotational bending fatigue strength and the rolling of the “quenched part” It is clear that at least one characteristic of fatigue life has not reached the target value.

これに対して、本発明で規定する条件を満たす試験番号の場合には、「母材」の衝撃値、「母材」の回転曲げ疲労強度、「焼入れ部」の回転曲げ疲労強度及び転動疲労寿命の全てにおいて目標値に達していることが明らかである。   On the other hand, in the case of a test number that satisfies the conditions specified in the present invention, the impact value of the “base material”, the rotational bending fatigue strength of the “base material”, the rotational bending fatigue strength and the rolling of the “quenched part” It is clear that the target value has been reached in all fatigue lives.

本発明の鋼材を用いて、所定の形状に成形した後でその一部に高周波焼入れを施して高周波焼入れままの状態で用いる部品、或いは、上記高周波焼入れ後に必要に応じて更に焼戻しを施した状態で用いる部品は、高周波焼入れしない部分の引張強さ、回転曲げ疲労強度及び靱性が優れ、また、高周波焼入れしたままの部分や高周波焼入れ後に焼戻しを施した部分の転動疲労寿命及び回転曲げ疲労強度が優れるので、自動車や産業機械の部品であるハブユニット、等速ジョイントなどに用いることができる。
Using the steel material of the present invention, after being formed into a predetermined shape, a part thereof is subjected to induction hardening and used in a state of induction hardening, or a state of further tempering if necessary after induction hardening The parts used in are excellent in tensile strength, rotational bending fatigue strength and toughness of parts that are not induction-hardened, and also have rolling fatigue life and rotational bending fatigue strength of parts that have been subjected to induction hardening and parts that have been tempered after induction hardening. Therefore, it can be used for hub units, constant velocity joints, etc., which are parts of automobiles and industrial machines.

Claims (3)

質量%で、C:0.45〜0.60%、Si:0.4〜0.9%、Mn:0.2〜1.0%、Cr:0.03〜0.6%、V:0.02〜0.15%、S:0.003〜0.05%、Al:0.012〜0.05%、N:0.007〜0.025%及びSn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含むとともに、Ni:0〜0.2%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、Pは0.03%以下及びO(酸素)は0.0015%以下であり、かつ下記(1)式で表されるfn1の値が1.5×10-4以上、下記(2)式で表されるfn2の値が−0.005以下を満たすことを特徴とする高周波焼入れ用鋼。
fn1=Al×{N−(14/48)×Ti}・・・(1)
fn2=N−(14/27)×Al−(14/48)×Ti−(14/51)×V・・・(2)
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.45 to 0.60%, Si: 0.4 to 0.9%, Mn: 0.2 to 1.0%, Cr: 0.03 to 0.6%, V: 0.02-0.15%, S: 0.003-0.05%, Al: 0.012-0.05%, N: 0.007-0.025%, and Sn: 0.003-0. 05%, and Sb: 0.001 to 0.01% and As: one or two of 0.001 to 0.01%, and Ni: 0 to 0.2%, The balance consists of Fe and impurities, Ti in the impurities is 0.005% or less, P is 0.03% or less, O (oxygen) is 0.0015% or less, and is expressed by the following formula (1). A steel for induction hardening, wherein the value of fn1 satisfies 1.5 × 10 −4 or more and the value of fn2 represented by the following formula (2) satisfies −0.005 or less.
fn1 = Al × {N− (14/48) × Ti} (1)
fn2 = N− (14/27) × Al− (14/48) × Ti− (14/51) × V (2)
In addition, the element symbol in (1) Formula and (2) Formula represents content in steel in the mass% of the element.
質量%で、C:0.45〜0.60%、Si:0.4〜0.9%、Mn:0.2〜1.0%、Cr:0.03〜0.6%、V:0.02〜0.15%、S:0.003〜0.05%、Al:0.012〜0.05%、N:0.007〜0.025%及びCu:0.04〜0.2%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含むとともに、Ni:(1/2)×[Cuの含有量(%)]〜0.2%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、Pは0.03%以下及びO(酸素)は0.0015%以下であり、かつ下記(1)式で表されるfn1の値が1.5×10-4以上、下記(2)式で表されるfn2の値が−0.005以下を満たすことを特徴とする高周波焼入れ用鋼。
fn1=Al×{N−(14/48)×Ti}・・・(1)
fn2=N−(14/27)×Al−(14/48)×Ti−(14/51)×V・・・(2)
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.45 to 0.60%, Si: 0.4 to 0.9%, Mn: 0.2 to 1.0%, Cr: 0.03 to 0.6%, V: 0.02-0.15%, S: 0.003-0.05%, Al: 0.012-0.05%, N: 0.007-0.025% and Cu: 0.04-0. 2% and one or two of Sb: 0.001 to 0.01% and As: 0.001 to 0.01%, and Ni: (1/2) × [Cu content Amount (%)] to 0.2%, the balance being Fe and impurities, Ti in the impurities is 0.005% or less, P is 0.03% or less, and O (oxygen) is 0.0015% The fn1 value represented by the following formula (1) is 1.5 × 10 −4 or more and the fn2 value represented by the following formula (2) is −0.005 or less. High lap Steel for wave hardening.
fn1 = Al × {N− (14/48) × Ti} (1)
fn2 = N− (14/27) × Al− (14/48) × Ti− (14/51) × V (2)
In addition, the element symbol in (1) Formula and (2) Formula represents content in steel in the mass% of the element.
質量%で、C:0.45〜0.60%、Si:0.4〜0.9%、Mn:0.2〜1.0%、Cr:0.03〜0.6%、V:0.02〜0.15%、S:0.003〜0.05%、Al:0.012〜0.05%、N:0.007〜0.025%、Cu:0.04〜0.2%及びSn:0.003〜0.05%、並びに、Sb:0.001〜0.01%及びAs:0.001〜0.01%のうちの1種又は2種を含むとともに、Ni:(1/2)×[Cuの含有量(%)]〜0.2%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、Pは0.03%以下及びO(酸素)は0.0015%以下であり、かつ下記(1)式で表されるfn1の値が1.5×10-4以上、下記(2)式で表されるfn2の値が−0.005以下を満たすことを特徴とする高周波焼入れ用鋼。
fn1=Al×{N−(14/48)×Ti}・・・(1)
fn2=N−(14/27)×Al−(14/48)×Ti−(14/51)×V・・・(2)
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.45-0.60%, Si: 0.4-0.9%, Mn: 0.2-1.0%, Cr: 0.03-0.6%, V: 0.02-0.15%, S: 0.003-0.05%, Al: 0.012-0.05%, N: 0.007-0.025%, Cu: 0.04-0. 2% and Sn: 0.003-0.05%, and Sb: 0.001-0.01% and As: one or two of 0.001-0.01%, : (1/2) × [Cu content (%)] to 0.2%, the balance is made of Fe and impurities, Ti in the impurities is 0.005% or less, and P is 0.03%. And O (oxygen) is 0.0015% or less, and the value of fn1 represented by the following formula (1) is 1.5 × 10 −4 or more, and the value of fn2 represented by the following formula (2) Is -0.005 or more Induction hardening steel characterized by satisfying the following.
fn1 = Al × {N− (14/48) × Ti} (1)
fn2 = N− (14/27) × Al− (14/48) × Ti− (14/51) × V (2)
In addition, the element symbol in (1) Formula and (2) Formula represents content in the steel in the mass% of the element.
JP2004272797A 2004-09-21 2004-09-21 Induction hardening steel Active JP3941806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004272797A JP3941806B2 (en) 2004-09-21 2004-09-21 Induction hardening steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004272797A JP3941806B2 (en) 2004-09-21 2004-09-21 Induction hardening steel

Publications (2)

Publication Number Publication Date
JP2006089764A JP2006089764A (en) 2006-04-06
JP3941806B2 true JP3941806B2 (en) 2007-07-04

Family

ID=36231021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004272797A Active JP3941806B2 (en) 2004-09-21 2004-09-21 Induction hardening steel

Country Status (1)

Country Link
JP (1) JP3941806B2 (en)

Also Published As

Publication number Publication date
JP2006089764A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP5123335B2 (en) Crankshaft and manufacturing method thereof
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
JP4581966B2 (en) Induction hardening steel
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP4609585B2 (en) Soft nitriding steel, soft nitriding steel and crankshaft
WO2007123164A1 (en) Piston ring material for internal combustion engine
JP5206271B2 (en) Carbonitriding parts made of steel
JP6620490B2 (en) Age-hardening steel
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2005023375A (en) High hardness steel having excellent cold workability, heat resistance and wear resistance
JP3541844B1 (en) Hot-forged non-tempered steel bars
JP4752800B2 (en) Non-tempered steel
JP4488228B2 (en) Induction hardening steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP4640101B2 (en) Hot forged parts
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP3941806B2 (en) Induction hardening steel
JP5131770B2 (en) Non-tempered steel for soft nitriding
JPH07233442A (en) Wear resistant and corrosion resistant bearing steel excellent in rolling fatigue property
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JP4411096B2 (en) Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization
JP2018028149A (en) Case hardened steel
JP3852415B2 (en) Non-tempered steel for induction hardening

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3941806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350