JP2007063627A - Steel component for bearing having excellent fatigue property, and method for producing the same - Google Patents

Steel component for bearing having excellent fatigue property, and method for producing the same Download PDF

Info

Publication number
JP2007063627A
JP2007063627A JP2005251875A JP2005251875A JP2007063627A JP 2007063627 A JP2007063627 A JP 2007063627A JP 2005251875 A JP2005251875 A JP 2005251875A JP 2005251875 A JP2005251875 A JP 2005251875A JP 2007063627 A JP2007063627 A JP 2007063627A
Authority
JP
Japan
Prior art keywords
less
mass
point
steel
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005251875A
Other languages
Japanese (ja)
Other versions
JP4631618B2 (en
Inventor
Yasumasa Hirai
康正 平井
Keiichi Maruta
慶一 丸田
Kunikazu Tomita
邦和 冨田
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005251875A priority Critical patent/JP4631618B2/en
Publication of JP2007063627A publication Critical patent/JP2007063627A/en
Application granted granted Critical
Publication of JP4631618B2 publication Critical patent/JP4631618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component for a bearing having improved fatigue properties by fining the old austenite grain size in the surface layer part, and subjected to quenching treatment suitable for a bearing, inner and outer races of the bearing, a bearing ball or the like, and to provide a method for producing the same. <P>SOLUTION: Regarding the steel component for a bearing, in the surface layer, the number of spheroidized carbides in the former structure before quenching is controlled to ≥1.15 pieces/μm<SP>2</SP>, the average grain size of old austenite grains after quenching is controlled to ≤3.5 μm, and, the steel component preferably has a componential composition comprising, by mass, 0.6 to 1.5% C, 0.1 to 1.0% Si, 0.1 to 1.5% Mn, ≤0.1% Al and 0.05 to 2.0% Cr, and, when needed, one or more selected from Cu, Ni, Mo, W, Ti, Nb, B, Sb and N are added thereto. A steel in which the number of spheroidized carbides per unit area is ≥1.15 pieces/μm<SP>2</SP>is heated at an Ac<SB>3</SB>point or above to an Ac<SB>3</SB>point+≤130°C or below in such a manner that the average heating rate in the temperature range from an Ac<SB>3</SB>point-10°C to an Ac<SB>3</SB>point is controlled to ≥0.5°C/s, and holding time at an Ac<SB>3</SB>point or above is controlled to ≤500 s so as to be subjected to quenching treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,ベアリング内外輪,ベアリングボールなど焼入れ処理が施されている軸受用部品およびその製造方法に関し、特に、表層部の旧オーステナイト粒径を微細化して疲労特性を向上させたものに関する。   The present invention relates to a bearing component such as a bearing inner and outer ring, a bearing ball, and the like, and a method for manufacturing the same, and particularly relates to an improved austenite grain size in a surface layer portion and improved fatigue characteristics.

自動車、機械などに利用されているベアリングなどの軸受用鋼部品は、優れた転動疲労特性が要求される。軸受用鋼部品は、疲労特性が要求される部位に,通常焼入れ・焼戻しが施されて使用される。   Steel components for bearings such as bearings used in automobiles and machines are required to have excellent rolling fatigue characteristics. Steel parts for bearings are usually used after being quenched and tempered at sites where fatigue characteristics are required.

転動疲労寿命を向上させる方法としては、例えば、特許文献1には、S53Cレベルの亜共析鋼(フェライト、パーライト組織)に2回以上のオーステナイト単相域への高周波熱処理を行い、旧オーステナイト粒径を微細化し、疲労寿命を向上させる方法が記載されており、その到達旧オーステナイト粒径は最小粒径のものでも6.2μmで、転動疲労寿命は従来材に比較して1.2〜1.5倍程度である。   As a method for improving the rolling fatigue life, for example, in Patent Document 1, the S53C level hypoeutectoid steel (ferrite, pearlite structure) is subjected to high-frequency heat treatment to the austenite single phase region at least twice, and the old austenite A method to refine the grain size and improve the fatigue life is described. The previous austenite grain size is 6.2 μm even with the smallest grain size, and the rolling fatigue life is 1.2 to 1.5 times that of conventional materials. Degree.

一方、過共析鋼については本文献には記載がないが、一般的に、過共析鋼の場合は通常焼入れ材でも旧オーステナイト粒は6〜10μmを呈しているが、更なる最適熱処理化による旧オーステナイト粒の微細化処理を行わなければ転動疲労寿命の向上は期待できないとされる。
特開2002-256336号公報
On the other hand, although hypereutectoid steel is not described in this document, generally, in the case of hypereutectoid steel, the conventional austenite grains are usually 6 to 10 μm even in the case of quenching, but further optimized heat treatment If the prior austenite grains are not refined, the rolling fatigue life cannot be expected to improve.
JP 2002-256336 A

本発明は、上述した現状に鑑み開発されたもので、焼入れ前の前組織における残留炭化物密度を最適化することによる疲労寿命向上効果と、残留炭化物のヒ゜ンニンク゛効果を利用したγ粒径微細化による疲労寿命向上効果とを利用し、従来よりも転動疲労寿命を向上させた軸受用部品およびその製造方法を提供することを目的とする。   The present invention has been developed in view of the above-described situation, and is based on the fatigue life improvement effect by optimizing the residual carbide density in the pre-quenching structure and the refinement of the γ grain size utilizing the hydrating effect of the residual carbide. It is an object of the present invention to provide a bearing component and a method for manufacturing the same that have improved rolling fatigue life by utilizing the fatigue life improvement effect.

本発明者らは,上記問題を解決するために鋭意検討を行なった結果、前組織中の炭化物が球状化され、その炭化物密度が単位面積あたりの個数で1.15μm2以上である鋼を、球状化炭化物が消滅しないAc3以上〜Acm温度以下の温度に、Ac3点以上の滞留時間が500秒以下となる条件で加熱後、焼入れる場合、通常の球状化炭化物密度の鋼より炭化物のピンニングによる粒成長抑制効果が有利に働き、焼入れ前のオーステナイト粒径が平均粒径3.5μm以下に微細化し、転動疲労寿命が上昇するとともに、炭化物密度が最適化されて疲労寿命が向上するという知見を得た。 As a result of diligent studies to solve the above problems, the inventors have spheroidized steel in which the carbides in the previous structure are spheroidized, and the carbide density is 1.15 μm 2 or more per unit area. the reduction carbide non-vanishing Ac 3 or more ~Acm temperature below the temperature, after heating at the conditions Ac 3 point or more residence time is less than 500 seconds and the quenching Ru, than steel conventional spheroidized carbides density of carbides pinning The knowledge that the grain growth suppression effect due to the steel works favorably, the austenite grain size before quenching is refined to an average grain size of 3.5 μm or less, the rolling fatigue life is increased, and the carbide density is optimized to improve the fatigue life Got.

本発明は、得られた知見に、更に検討を加えて完成されたものであり、その要旨構成は以下のとおりである。   The present invention has been completed by further studying the obtained knowledge, and the gist of the present invention is as follows.

1 表層において、前組織における球状化炭化物が1.15個/μm2以上、焼入れ後の旧オーステナイト粒の平均粒径が3.5μm以下であることを特徴とする疲労特性に優れた軸受用鋼部品。 1 Steel component for bearings with excellent fatigue characteristics, characterized in that in the surface layer, the spheroidized carbide in the previous structure is 1.15 particles / μm 2 or more and the average grain size of the prior austenite grains after quenching is 3.5 μm or less.

2 前記鋼部品の成分組成が、
C:0.6〜1.5mass%、
Si:0.1〜1.0mass%、
Mn:0.1〜1.5mass%、
Al:0.1mass%以下、
Cr:0.05〜2.0mass%
を含有し、残部Feおよび不可避的不純物からなることを特徴とする1記載の疲労特性に優れた軸受用鋼部品。
2 The composition of the steel parts is
C: 0.6-1.5mass%,
Si: 0.1 ~ 1.0mass%,
Mn: 0.1 ~ 1.5mass%,
Al: 0.1 mass% or less,
Cr: 0.05 ~ 2.0mass%
2. A steel part for bearings having excellent fatigue properties according to 1, characterized by comprising a balance Fe and inevitable impurities.

3 更に、
S:0.03mass%以下、
Cu:1.0mass%以下、
Ni:1.0mass%以下、
Mo:1.0mass%以下、
W:1.0mass%以下、
Ti:0.01mass%以下、
Nb:0.5mass%以下、
B:0.01mass%以下、
Sb:0.0050mass%以下
N:0.01mass%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする2記載の疲労特性に優れた軸受用鋼部品。
3 In addition,
S: 0.03 mass% or less,
Cu: 1.0 mass% or less,
Ni: 1.0 mass% or less,
Mo: 1.0 mass% or less,
W: 1.0 mass% or less,
Ti: 0.01 mass% or less,
Nb: 0.5 mass% or less,
B: 0.01 mass% or less,
Sb: 0.0050 mass% or less
N: A steel component for bearings having excellent fatigue properties according to 2, characterized by containing one or more selected from 0.01 mass% or less.

4 前記表層部の型さがHv700以上であることを特徴とする1乃至3の何れか一つに記載の疲労特性に優れた軸受用鋼部品。   4. The steel part for bearings with excellent fatigue characteristics according to any one of 1 to 3, wherein the surface layer part has a mold of Hv700 or more.

5 球状化炭化物の単位面積あたり個数が1.15個/μm2以上の鋼に、Ac3点-10℃〜Ac3点の温度間での平均加熱速度を0.5℃/s以上とし、Ac3点以上、Ac3点+130℃以下の温度で、Ac3点以上の保持時間が500秒以下である加熱を施して焼入れ処理を行うことを特徴とする疲労特性に優れた軸受用鋼部品の製造方法。 5 the number of units per area of spheroidized carbides 1.15 pieces / [mu] m to 2 or more steel, Ac average heating rate of between three points -10 ° C. to Ac 3 point temperature of 0.5 ° C. / s or higher, Ac 3 point or more A method of manufacturing a steel part for bearings with excellent fatigue characteristics, characterized by performing a quenching treatment by heating at a temperature of Ac 3 point + 130 ° C or lower and a holding time of Ac 3 point or higher being 500 seconds or less .

6 2または3記載の成分組成を有し、球状化炭化物の単位面積あたり個数が1.15個/μm2以上の鋼に、Ac3点-10℃〜Ac3点の温度間での平均加熱速度を0.5℃/s以上とし、Ac3点以上Ac3点+130℃以下の温度で、Ac3点以上の保持時間が500秒以下である加熱を施して焼入れ処理を行うことを特徴とする疲労特性に優れた軸受用鋼部品の製造方法。 6 has a component composition of 2 or 3, wherein the number of units per area of spheroidized carbides 1.15 pieces / [mu] m to 2 or more steel, an average heating rate between temperatures of Ac 3 point -10 ° C. to Ac 3 point and 0.5 ° C. / s or higher, at Ac 3 point or more Ac 3 point + 130 ° C. below the temperature, Ac 3 point or more holding time and performing a quenching treatment is subjected to heating is less than 500 seconds fatigue The manufacturing method of the steel parts for bearings excellent in.

本発明によれば、表層部が、旧オーステナイト粒の平均粒径が3.5μm以下の微細な組織となり、転動疲労寿命特性に優れた軸受用鋼部品が容易に得られ、工業的に非常に有用である。    According to the present invention, the surface layer portion has a fine structure with an average grain size of prior austenite grains of 3.5 μm or less, and a steel component for bearings having excellent rolling fatigue life characteristics can be easily obtained, which is very industrially Useful.

以下、本発明を具体的に説明する。    The present invention will be specifically described below.

[微視組織]
本発明に係る軸受用鋼部品では、焼入れ前の前組織における球状化炭化物の単位面積あたり個数を1.15個/μm2以上、表層の焼入れ組織における旧オーステナイト粒の平均粒径を3.5μm以下に規定する。
[Microscopic organization]
The bearing steel component according to the present invention, defines the number per unit area of the spheroidized carbides in the structure before before quenching 1.15 pieces / [mu] m 2 or more, an average grain size of prior austenite grains in the surface layer of the hardened structure to 3.5μm or less To do.

図1に、1.0mass%C鋼の旧オーステナイト粒径に及ぼす球状炭化物密度の影響を示す。球状炭化物密度が高くなると急激に焼入れ後の旧オーステナイト粒径が微細化し、球状炭化物密度1.15μm2以上で、平均粒径が3.5μm以下となり略一定となる。 FIG. 1 shows the effect of spherical carbide density on the prior austenite grain size of 1.0 mass% C steel. When the spherical carbide density increases, the prior austenite grain size after quenching rapidly becomes finer, the spherical carbide density is 1.15 μm 2 or more, and the average grain size is 3.5 μm or less, which is substantially constant.

図2に、旧γ粒径とB10疲労寿命の関係に及ぼす球状炭化物密度の影響を示す。球状炭化物密度1.20μm2の素材は、旧オーステナイト粒の平均粒径が3.5μm以下となると、寿命比は2以上となり、B10疲労寿命が向上する。 Figure 2 shows the effect of globular carbides density on the relationship of the old γ grain size and B 10 fatigue life. Globular carbides density 1.20μm two materials, the average particle size of prior austenite grains is 3.5μm or less, the life ratio becomes 2 or more, thereby improving the B 10 fatigue life.

一方、球状炭化物密度1.01μm2の素材は、旧オーステナイト粒が変化しても寿命比1.5以下でB10疲労寿命は殆ど変化せず、球状炭化物密度1.20μm2の素材と比較すると疲労寿命に劣る。なお、本発明において球状化炭化物とは、アスペクト比が3.0以下の炭化物を指す。 On the other hand, the material with a spherical carbide density of 1.01 μm 2 has a life ratio of 1.5 or less even when the prior austenite grains change, the B 10 fatigue life hardly changes, and the fatigue life is inferior to that of the material with a spherical carbide density of 1.20 μm 2. . In the present invention, the spheroidized carbide refers to a carbide having an aspect ratio of 3.0 or less.

このように、焼入れ前の前組織において炭化物密度を1.15μm2以上とすると、炭化物密度1.15μm2未満の鋼に比べて、旧γ粒が微細化し、また、旧オーステナイト粒の平均粒径が3.5μm以下において、炭化物密度1.15μm2未満の鋼に比べ疲労寿命が大幅に向上する。 In this way, the carbide density before tissue before quenching and 1.15 .mu.m 2 or more, compared to a carbide density 1.15 .mu.m 2 less than steel, old γ grains finer, The average particle size of prior austenite grains is 3.5 At μm or less, the fatigue life is significantly improved compared to steels with a carbide density of less than 1.15 μm 2 .

また、球状化炭化物の炭化物表面積の増加により、焼入れ時の母相への炭化物溶け込みが推進され、軸受用鋼部品の転動疲労寿命が大幅に向上する。
球状化炭化物密度の調整は、球状化焼鈍、低温圧延+球状化焼鈍、低温加工のいずれかの方法が好ましいが、本発明では特に規定しない。
Further, the increase in the carbide surface area of the spheroidized carbide promotes the penetration of the carbide into the matrix during quenching, and the rolling fatigue life of the steel component for bearing is greatly improved.
Adjustment of the spheroidizing carbide density is preferably any of spheroidizing annealing, low temperature rolling + sphering annealing, and low temperature processing, but is not particularly defined in the present invention.

1 球状化焼鈍
球状化焼鈍はAe3点直上への加熱によるパーライト中の層状炭化物を溶け込ませ、球状化炭化物の種を作り、その後、徐冷却により球状化炭化物としている。Ae3点直上への加熱条件を低温、短時間均熱とすることで球状化炭化物密度を1.15個/μm2以上とする。具体的には、720℃±10℃で1〜4時間の均熱とする。
1 Spheroidizing annealing Spheroidizing annealing involves melting layered carbides in pearlite by heating directly above the Ae 3 point to form seeds of spheroidizing carbides, and then gradually cooling to form spheroidizing carbides. Ae Spherical carbide density is set to 1.15 / μm 2 or more by setting the heating conditions just above 3 points to low temperature and soaking for a short time. Specifically, the soaking is performed at 720 ° C. ± 10 ° C. for 1 to 4 hours.

2 低温圧延+球状化焼鈍
素材圧延過程において、少なくとも仕上げ加工においてパーライト変態終了温度以下で減面率10%以上の圧延を行ない、パーライト組織中の炭化物を分断させる。その後、球状化焼鈍を行ない、球状化炭化物密度を1.15個/μm2以上とする。
2 Low temperature rolling + spheroidizing annealing In the material rolling process, at least in the finishing process, rolling is performed at a temperature below the pearlite transformation finish temperature and the area reduction rate is 10% or more, and carbides in the pearlite structure are divided. Thereafter, spheroidizing annealing is performed, and the spheroidizing carbide density is set to 1.15 / μm 2 or more.

3 低温加工
素材圧延過程において、パーライト変態終了温度以下の温間域で減面率30%以上の圧延を行ない、パーライト組織中の炭化物を分断させ、炭化物密度を1.15個/μm2以上とする。尚、圧延を,製品の鍛造などに変えても問題はない。
3 Low-temperature processing In the material rolling process, rolling with a reduction in area of 30% or more is performed in a warm region below the pearlite transformation finish temperature to break up carbides in the pearlite structure to a carbide density of 1.15 pieces / μm 2 or more. There is no problem even if the rolling is changed to forging of the product.

球状化炭化物密度が1.15個/μm2以上の素材から製品を製造する場合,焼入れを行なう前であれば,鍛造工程の間に軟化焼鈍を実施したり、温間鍛造のための加熱を行なっても、焼入れ前の炭化物形態が球状化炭化物で、その密度が1.15個/μm2以上であれば、焼入れ処理時のピンニング゛効果が消滅しないため問題ない。 When manufacturing a product from a material with a spheroidized carbide density of 1.15 pieces / μm 2 or more, softening annealing is performed during the forging process or heating for warm forging is performed before quenching. However, if the carbide form before quenching is spheroidized carbide and the density is 1.15 / μm 2 or more, there is no problem because the pinning effect during quenching does not disappear.

尚、炭化物が析出する基地組織は、フェライト、ベイナイト、マルテンサイトのいずれであってもよい。
本発明に係る軸受用鋼部品は、焼入れ後において、表層以外の組織は特に規定しない。表層に限らず全厚方向において旧オーステナイト粒の平均粒径が3.5μm以下となっていてもその効果が損なわれることはない。
The matrix structure on which the carbide precipitates may be any of ferrite, bainite, and martensite.
In the steel part for bearing according to the present invention, the structure other than the surface layer is not particularly specified after quenching. Even if the average grain size of the prior austenite grains is 3.5 μm or less in the whole thickness direction, not limited to the surface layer, the effect is not impaired.

疲労寿命を向上させるためには、焼入れ後において、表層部の硬さが硬いほど有利で、表層部の硬さはHv700以上であることが好ましい。   In order to improve the fatigue life, it is advantageous that the hardness of the surface layer portion is harder after quenching, and the hardness of the surface layer portion is preferably Hv 700 or more.

本発明に係る軸受用鋼部品に好適な成分組成について説明する。
[成分組成]
C:0.6%〜1.5mass%
Cは,焼入れ部において部品の疲労寿命を得るために必要となる硬度確保のために必要な元素であり、0.6mass%未満では焼入れ部で十分な硬度および疲労強度が得られない。
The component composition suitable for the steel component for bearing according to the present invention will be described.
[Ingredient composition]
C: 0.6% ~ 1.5mass%
C is an element necessary for securing the hardness necessary for obtaining the fatigue life of the part in the quenched portion. If it is less than 0.6 mass%, sufficient hardness and fatigue strength cannot be obtained in the quenched portion.

一方、1.5mass%を超えて添加すると、焼入れ前の加工性(剪断性,鍛造性)を劣化させる。よって、好適なC含有量範囲は0.65%〜1.5mass%とすることが好ましい。   On the other hand, when it exceeds 1.5 mass%, the workability (shearability and forgeability) before quenching is deteriorated. Therefore, the preferred C content range is preferably 0.65% to 1.5 mass%.

Si:0.1〜1.0mass%
Siは,転動疲労寿命を向上するため0.1mass%以上含有されていることが好ましい。しかし,1.0mass%を越えて添加すると,Cと同様,焼入れ前の加工性(剪断性,鍛造性)を劣化させる。よって、Siの好適含有量範囲は0.1〜1.0mass%以下とすることが好ましい。
Si: 0.1 ~ 1.0mass%
Si is preferably contained in an amount of 0.1 mass% or more in order to improve the rolling fatigue life. However, if added over 1.0 mass%, the processability before quenching (shearability, forgeability) is deteriorated as well as C. Therefore, the preferable content range of Si is preferably 0.1 to 1.0 mass% or less.

Mn:0.1〜1.5mass%
Mnは,焼入性を向上するため,0.1mass%以上含有する。しかし,過剰に添加すると焼入れ前の加工性(剪断性,鍛造性)を劣化させる。このため,その含有量の上限は1.5mass%以下とすることが好ましい。
Mn: 0.1 ~ 1.5mass%
In order to improve hardenability, Mn is contained more than 0.1 mass%. However, adding excessively degrades the workability (shearability and forgeability) before quenching. For this reason, the upper limit of the content is preferably 1.5 mass% or less.

Cr:0.05〜2.0mass%
Crは焼入性向上および炭化物球状化を促進による焼入れ前の硬度低下・加工性向上の効果があるため0.05以上含有されていることが好ましい。しかし、2.0mass%を超えて添加しても効果が飽和してしまうため0.05〜2.0mass%の範囲で含有されていることが好ましい。
Cr: 0.05 ~ 2.0mass%
Cr is preferably contained in an amount of 0.05 or more because it has the effect of improving the hardenability and reducing the hardness and improving the workability before quenching by accelerating carbide spheroidization. However, even if added in excess of 2.0 mass%, the effect is saturated, so that it is preferably contained in the range of 0.05 to 2.0 mass%.

Al:0.1mass%以下
Alは、強力な脱酸作用を持ち,鋼の清浄化を向上させる効果を有する成分であるため含有されていることが好ましい。0.10mass%を超えて添加した場合には,鋼の清浄化がむしろ劣化し,疲労寿命が低下することから,その含有量を0.1mass%以下とすることが好ましい。更に好ましくは、0.005〜0.1mass%である。
Al: 0.1 mass% or less
Al is preferably contained because it is a component having a strong deoxidizing action and an effect of improving the cleaning of steel. If added in excess of 0.10 mass%, the steel cleaning is rather deteriorated and the fatigue life is reduced, so the content is preferably 0.1 mass% or less. More preferably, it is 0.005-0.1 mass%.

以上が本発明の好適な基本成分組成で、残部はFeおよび不可避的不純物である。不可避的不純物としては、P、S、N、Oが挙げられ、Pは0.05mass%まで、Oは0.0150mass%までを許容する。   The above is the preferred basic component composition of the present invention, with the balance being Fe and inevitable impurities. Inevitable impurities include P, S, N, and O. P allows 0.05 mass% and O allows 0.0150 mass%.

S、Nは不可避的不純物としても混入する場合、Sは0.01%まで、Nは0.0080%まで許容するが、積極的に添加してもよい。所望する特性を向上させる場合、S、Cu、Ni、Mo、W、Ti、Nb、B、Sb、Nの一種または二種以上を添加する。   When S and N are also mixed as unavoidable impurities, S is allowed up to 0.01% and N is allowed up to 0.0080%, but may be positively added. In order to improve desired characteristics, one or more of S, Cu, Ni, Mo, W, Ti, Nb, B, Sb, and N are added.

S:0.03mass%以下
SはMnと結合して,MnSを形成して被削性を向上するため添加してもよい。0.03mass%を越えて添加するとMnSが割れの起点となり疲労寿命を著しく低下するため、添加する場合は、その含有量の上限は0.03mass%とすることが好ましい。
S: 0.03 mass% or less
S may be added to combine with Mn to form MnS and improve machinability. If added over 0.03 mass%, MnS becomes the starting point of cracking and the fatigue life is remarkably reduced. Therefore, when added, the upper limit of the content is preferably 0.03 mass%.

Cu:1.0mass%以下
Cuは焼入れ性向上により焼入れ部の硬度向上効果があるため添加してもよい。この効果を得るため、添加する場合には1.0mass%以下とする。
Cu: 1.0 mass% or less
Cu may be added because it has the effect of improving the hardness of the hardened part by improving the hardenability. In order to acquire this effect, when adding, it is 1.0 mass% or less.

Ni:1.0mass%以下
Niは焼入性増大や焼入れ部の靭性を向上させるため、添加する場合は1.0mass%を上限に添加する。また,Cu添加時には熱間脆性抑制のためにNiをCu添加量の1/2添加することが好ましい。
Ni: 1.0 mass% or less
Ni is added to the upper limit of 1.0 mass% in order to increase hardenability and improve the toughness of the hardened portion. In addition, when Cu is added, it is preferable to add Ni to the amount of Cu added to prevent hot brittleness.

Mo:1.0mass%以下
Moは焼入性向上効果や焼戻し軟化抵抗の効果があるため添加してもよいが,加工性が悪くなるため、添加する場合は1.0mass%以下とすることが好ましい。
Mo: 1.0 mass% or less
Mo may be added because it has an effect of improving hardenability and resistance to temper softening. However, since workability deteriorates, it is preferable to add 1.0 mass% or less.

W:1.0mass%以下
Wは焼入性向上効果があるため添加してもよいが,加工性が悪くなるため、添加する場合は、1.0mass%以下とすることが好ましい。
W: 1.0 mass% or less
W may be added because it has an effect of improving hardenability. However, since workability is deteriorated, W is preferably set to 1.0 mass% or less.

Ti:0.01mass%以下
Tiは窒化物形成によるオーステナイト粒成長抑制効果があるため添加してもよいが、0.01mass%を超えると,疲労特性が劣化するため、添加する場合は0.01mass%以下とすることが好ましい。
Ti: 0.01 mass% or less
Ti may be added because it has the effect of suppressing the growth of austenite grains due to nitride formation. However, if it exceeds 0.01 mass%, the fatigue characteristics deteriorate, so when added, it is preferably 0.01 mass% or less.

Nb:0.5mass%以下
Nbは窒化物(もしくは炭窒化物)形成によるオーステナイト粒成長抑制効果があるため添加してもよいが、その含有量が0.5mass%を超えるとその効果は飽和するので、添加する場合は、0.5mass%以下とすることが好ましい。
Nb: 0.5 mass% or less
Nb may be added because it has an austenite grain growth suppressing effect due to the formation of nitride (or carbonitride), but if its content exceeds 0.5 mass%, the effect is saturated, so when adding, 0.5% It is preferable to make it mass% or less.

B:0.01mass%以下
Bは焼入性向上効果があるため0.01mass%を上限に添加してもよいが、その含有量が0.01mass%を超えるとその効果は飽和するため、添加する場合は、0.01mass%以下とすることが好ましい。
B: 0.01 mass% or less
Since B has an effect of improving hardenability, it may be added to the upper limit of 0.01 mass%, but if its content exceeds 0.01 mass%, the effect is saturated, so if added, 0.01 mass% or less It is preferable to do.

Sb:0.0050mass%以下
Sbは、ミクロ組織変化の遅延に対して効果があり、転動疲労特性の劣化を防止する作用を有するので、添加してもよい。しかし、その含有量が0.0050mass%を超えると、靭性が劣化するので、添加する場合は、0.0050mass%以下とすることが好ましい。
Sb: 0.0050 mass% or less
Sb is effective for delaying the microstructure change, and has an effect of preventing deterioration of rolling fatigue characteristics, so may be added. However, if the content exceeds 0.0050 mass%, the toughness deteriorates. Therefore, when added, the content is preferably 0.0050 mass% or less.

N:0.01mass%以下
Nは、不可避的不純物として存在するが、窒化物(もしくは炭窒化物)を形成し,γ粒微細化に効果がある。過剰添加は鋼の加工性を劣化させるため、添加する場合は0.01mass%以下であることが好ましい。
N: 0.01 mass% or less
N exists as an unavoidable impurity, but forms a nitride (or carbonitride) and is effective in refining γ grains. Since excessive addition deteriorates the workability of steel, when adding, it is preferable that it is 0.01 mass% or less.

[焼入れ処理条件]
本発明に係る軸受用鋼部品は、炭化物形態を球状化炭化物とし、その単位面積あたり個数が1.15個/μm2以上の焼入れ前の前組織を備えた鋼素材、好ましくは棒鋼あるいは線材を、鍛造工程を経てベアリング゛内外輪、ベアリングボール等の軸受用鋼部品の形状に加工した後、表層部焼入れを施す。旧オーステナイト粒の平均粒径が3.5μm以下となる表層部を得るための条件について説明する。
[Quenching condition]
The steel part for bearings according to the present invention is a steel material having a pre-quenching structure, preferably a bar steel or a wire rod, for which the carbide form is spheroidized carbide and the number per unit area is 1.15 / μm 2 or more. After processing into the shape of bearing steel parts such as bearing inner and outer rings and bearing balls, surface layer quenching is performed. The conditions for obtaining the surface layer part in which the average grain size of the prior austenite grains is 3.5 μm or less will be described.

焼入れ処理は、Ac3点-10℃〜Ac3点間を0.5℃/s以上で加熱し、加熱温度:Ac3点以上、Ac3+130℃以下、保持時間500秒以下として行う。
加熱温度は、焼入れ後、均一な焼入れ組織とするため、Ac3点以上とする。一方、Ac3点+130℃超では、球状化炭化物が存在していても、ピンニング゛効果が低減して、オーステナイトの粒成長が生じ、焼入れ後の組織の旧オーステナイト粒の平均粒径が3.5μm超となるため、Ac3点以上、Ac3点+130℃以下とする。
Hardening treatment between Ac 3 point -10 ° C. to Ac 3 point and heated at 0.5 ° C. / s or higher, the heating temperature: Ac 3 point or more, Ac 3 + 130 ° C. or less, performed as follows retention time 500 seconds.
The heating temperature is set to Ac 3 points or more in order to obtain a uniform quenched structure after quenching. On the other hand, when the Ac 3 point exceeds 130 ° C, the pinning effect is reduced even when spheroidized carbide is present, austenite grain growth occurs, and the average grain size of the prior austenite grains in the structure after quenching is 3.5. Since it exceeds μm, set Ac 3 point or higher and Ac 3 point + 130 ° C or lower.

Ac3点以上で、500秒を超えて保持すると、球状化炭化物によるピンニング効果によっても、粒成長に十分な時間となり、焼入れ後の組織の旧オーステナイト粒径が3.5μm超となってしまうため、Ac3点以上の保持時間は500秒以下とする。 When holding for more than 500 seconds at Ac 3 points or more, due to the pinning effect by the spheroidized carbide, it becomes a sufficient time for grain growth, and the prior austenite grain size of the structure after quenching is over 3.5 μm, Ac 3 points or more holding time is 500 seconds or less.

加熱速度は、Ac3点-10℃〜Ac3点間で0.5℃/s以上とする。該温度域での加熱速度が、0.5℃/s未満の場合、オーステナイトへの核生成駆動力の減少などの影響で、オーステナイト粒径が粗大化し、焼入れ後の組織の旧オーステナイト粒径が3.5μm超となるため、0.5℃/s以上とする。加熱速度はAc3点-10℃〜Ac3点間での平均値とする。 Heating rate, and 0.5 ° C. / s or greater between Ac 3 point -10 ° C. to Ac 3 point. When the heating rate in the temperature range is less than 0.5 ° C./s, the austenite grain size becomes coarse due to the effect of reduction of nucleation driving force to austenite, and the prior austenite grain size of the structure after quenching is 3.5 μm. Since it becomes super, it shall be 0.5 ℃ / s or more. Heating rate is an average value of between Ac 3 point -10 ° C. to Ac 3 point.

尚、焼入れ処理は、複数回行うと、より微細な表層部が得られ好ましい。複数回の焼入れ処理を行う場合、少なくとも、最終の焼入れ処理時にのみ(N回焼入れ処理を施す場合には、N回目のみ)、上述した条件を適用する。  In addition, it is preferable that the quenching process is performed a plurality of times because a finer surface layer portion is obtained. In the case of performing the quenching process a plurality of times, the above-described conditions are applied only at least during the final quenching process (only when the N quenching process is performed).

最終の焼入れ処理に先立って行う焼入れ処理(N回焼入れ処理を施す場合には、1〜N-1回目までの焼入れ処理)は、焼入れ後において、球状炭化物が残存する組織が得られるように、加熱温度をAcm点(球状化炭化物がオーステナイトに溶け込みオーステナイト単相となる温度)以下とすれば、その他の条件は適宜選定すればよく,最終焼入れ工程の条件に限定されない。   The quenching process performed prior to the final quenching process (in the case of performing the N-time quenching process, the quenching process from 1 to N-1 times) is performed so that a structure in which spherical carbides remain after quenching is obtained. If the heating temperature is set to the Acm point (the temperature at which the spheroidized carbide dissolves in austenite and becomes an austenite single phase) or less, other conditions may be appropriately selected and are not limited to the conditions of the final quenching process.

但し、焼入れ処理の回数は、生産性・コストを考慮すると2回行なうのが好適である。焼入れ装置は、高周波加熱装置を利用すると表層部が最も加熱されて好ましいが部品の形状に適したものを選定すればよく、特に規定しない。   However, it is preferable to perform the quenching process twice in consideration of productivity and cost. As the quenching apparatus, it is preferable to use a high-frequency heating apparatus because the surface layer portion is most heated, but it is only necessary to select an apparatus suitable for the shape of the part, and it is not particularly defined.

本発明においては、焼入れ処理の後に焼戻し処理を行ってもよい。但し、焼戻し処理を行う場合、焼戻し温度が高温となると、表層部が軟化して、疲労強度が低下し、焼入れ表層部の旧オーステナイト粒径を微細化した効果が損なわれるため、焼戻しを行う場合は、200℃以下とし、Hv700以上の表層を得ることができる。   In the present invention, a tempering process may be performed after the quenching process. However, when tempering is performed, if the tempering temperature becomes high, the surface layer portion softens, the fatigue strength decreases, and the effect of refining the prior austenite grain size of the quenched surface layer portion is impaired. Is 200 ° C. or lower, and a surface layer of Hv 700 or higher can be obtained.

上記の条件で、焼入れ処理、焼戻し処理が施された後は、必要に応じて仕上げの研磨処理を施し、軸受用鋼部品とする。   After the quenching and tempering treatments are performed under the above-described conditions, a finishing polishing treatment is performed as necessary to obtain a bearing steel part.

表1に示す各種組成の実験用100kg鋼塊を、1250℃で15hソーキングを行なった後、850℃以上で熱間鍛造し、φ20mm棒鋼とした。得られた棒鋼を1000℃に30分間再加熱後、800℃〜600℃の種々の温度でφ13mmに温間圧延し、その後、770℃×1時間の球状化焼鈍(SA)により、フェライトと平均アスペクト比1.3〜1.5、球状化炭化物密度を種々に変化させた。    100 kg steel ingots with various compositions shown in Table 1 were soaked at 1250 ° C. for 15 hours, and then hot forged at 850 ° C. or higher to obtain a φ20 mm bar steel. After reheating the obtained steel bar to 1000 ° C for 30 minutes, it was hot-rolled to φ13mm at various temperatures from 800 ° C to 600 ° C, and then averaged with ferrite by spheroidizing annealing (SA) at 770 ° C x 1 hour. The aspect ratio was 1.3 to 1.5, and the spheroidized carbide density was varied.

これらの棒鋼の直径の中心部分よりφ12mm×22mm長さのラジアル型転動疲労試験片を粗加工し、種々の熱処理条件で焼入れ処理を行なった。焼戻しは170℃で行ない、仕上げ加工を行なった後、組織観察、硬さ試験および疲労試験に供した。表2に熱処理条件を示す。高周波焼入れ装置を用いた場合、加熱速度が700℃/s以上と早くなっている。   A radial type rolling fatigue test piece having a diameter of φ12 mm × 22 mm was roughly machined from the central part of the diameter of these steel bars and subjected to quenching treatment under various heat treatment conditions. Tempering was performed at 170 ° C., and after finishing, the samples were subjected to a structure observation, a hardness test, and a fatigue test. Table 2 shows the heat treatment conditions. When an induction hardening apparatus is used, the heating rate is as fast as 700 ° C / s or more.

評価は、表層部ビッカース硬度、表層部旧オーステナイト粒径を調査するとともに,ラジアル疲労試験によるB10寿命で転動疲労特性を評価した。尚、表層部のビッカース硬度はラジアル試験片の長手方向断面(以下L断面)で表層から0.1mm内部のビッカース硬度を荷重2.94N(300gf)で5点測定し平均した。 In the evaluation, the surface Vickers hardness and the former austenite grain size of the surface layer were investigated, and the rolling fatigue characteristics were evaluated by the B 10 life by the radial fatigue test. The Vickers hardness of the surface layer portion was measured by averaging the Vickers hardness within 0.1 mm from the surface layer in a longitudinal section (hereinafter referred to as L section) of the radial test piece at a load of 2.94 N (300 gf).

表層部の旧オーステナイト粒径は、旧オーステナイト粒腐食を行ない、L断面表層直下においてSEMを用いて5000倍で4視野写真撮影し、切断法を行なった。切断法では、各視野において縦および横方向に4分割する線分3本を引き、この線分(1視野当たり108μm)が旧オーステナイト粒界と交差した数(X)を測定し、「ある視野での平均旧オーステナイト粒径 (μm) = 108/(0.89×X)」として算出した後、4視野の平均を出した。   For the prior austenite grain size of the surface layer part, prior austenite grain corrosion was performed, and a four-view photograph was taken at a magnification of 5000 using an SEM immediately below the L cross-sectional surface layer, and a cutting method was performed. In the cutting method, in each visual field, three line segments that are divided into four in the vertical and horizontal directions are drawn, and the number (X) at which these line segments (108 μm per visual field) intersect with the prior austenite grain boundaries is measured. Average old austenite grain size (μm) = 108 / (0.89 × X) ”, and then averaged over 4 fields of view.

ラジアル疲労試験は、ヘルツ応力5884MPa(600kgf/mm2)、回転数約46400cpmで20本試験を行ない、B10寿命を求めた。 In the radial fatigue test, 20 tests were performed at a Hertzian stress of 5884 MPa (600 kgf / mm 2 ) and a rotational speed of about 46400 cpm, and the B 10 life was determined.

表2(その1〜3)に熱処理条件に併せて、得られた試験結果を示す。表2において、焼入れ前の前組織における球状炭化物密度が1.15個/μm2未満で、焼入れ条件が本発明範囲外となるものを従来例とし、焼入れ前の前組織における球状炭化物密度が本発明範囲内であるが焼入れ条件が本発明範囲外のものを比較例とした。 Table 2 (Nos. 1 to 3) shows the test results obtained together with the heat treatment conditions. In Table 2, the spherical carbide density in the previous structure before quenching is less than 1.15 / μm 2 and the quenching condition is outside the scope of the present invention, and the conventional example is the spherical carbide density in the previous structure before quenching. A comparative example having a quenching condition outside the range of the present invention was used.

焼入れ前の前組織における球状炭化物密度と焼入れ条件が本発明範囲内の場合(発明例)、平均旧オーステナイト粒径が微細で、従来例と比較して疲労寿命に優れている。焼入れ条件が本発明範囲内であっても、焼入れ前の前組織における球状炭化物密度が本発明範囲外の場合、疲労特性は本発明例より劣っていた。尚、同一粒径で比較した場合、球状炭化物密度が高いほどB10寿命に優れていた。 When the spherical carbide density and the quenching condition in the pre-structure before quenching are within the range of the present invention (invention example), the average prior austenite grain size is fine, and the fatigue life is excellent as compared with the conventional example. Even when the quenching conditions are within the range of the present invention, the fatigue characteristics were inferior to those of the examples of the present invention when the spherical carbide density in the previous structure before quenching was outside the range of the present invention. Incidentally, when compared with the same particle size, globular carbides density was superior to higher B 10 life.

Figure 2007063627
Figure 2007063627

Figure 2007063627
Figure 2007063627

Figure 2007063627
Figure 2007063627

Figure 2007063627
Figure 2007063627

旧オーステナイト粒径に及ぼす球状炭化物密度の影響を示す図。The figure which shows the influence of the spherical carbide density which acts on a prior austenite particle size. 旧オーステナイト粒径とB10疲労寿命の関係に及ぼす球状炭化物密度の影響を示す図。It shows the effect of globular carbides density on the relationship of the former austenite grain size and the B 10 fatigue life.

Claims (6)

表層において、前組織における球状化炭化物が1.15個/μm2以上、焼入れ後の旧オーステナイト粒の平均粒径が3.5μm以下であることを特徴とする疲労特性に優れた軸受用鋼部品。 In the surface layer, before spheroidized carbides in the organization 1.15 pieces / [mu] m 2 or more, excellent steel part bearing fatigue properties, wherein the average grain size of prior austenite grains is 3.5μm or less after quenching. 前記鋼部品の成分組成が、
C:0.6〜1.5mass%、
Si:0.1〜1.0mass%、
Mn:0.1〜1.5mass%、
Al:0.1mass%以下、
Cr:0.05〜2.0mass%
を含有し、残部Feおよび不可避的不純物からなることを特徴とする請求項1記載の疲労特性に優れた軸受用鋼部品。
The component composition of the steel part is
C: 0.6-1.5mass%,
Si: 0.1 ~ 1.0mass%,
Mn: 0.1 ~ 1.5mass%,
Al: 0.1 mass% or less,
Cr: 0.05 ~ 2.0mass%
2. The steel part for bearings having excellent fatigue characteristics according to claim 1, comprising a balance Fe and unavoidable impurities.
更に、
S:0.03mass%以下、
Cu:1.0mass%以下、
Ni:1.0mass%以下、
Mo:1.0mass%以下、
W:1.0mass%以下、
Ti:0.01mass%以下、
Nb:0.5mass%以下、
B:0.01mass%以下、
Sb:0.0050mass%以下
N:0.01mass%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする請求項2記載の疲労特性に優れた軸受用鋼部品。
Furthermore,
S: 0.03 mass% or less,
Cu: 1.0 mass% or less,
Ni: 1.0 mass% or less,
Mo: 1.0 mass% or less,
W: 1.0 mass% or less,
Ti: 0.01 mass% or less,
Nb: 0.5 mass% or less,
B: 0.01 mass% or less,
Sb: 0.0050 mass% or less
3. The steel part for bearings having excellent fatigue characteristics according to claim 2, comprising one or more selected from N: 0.01 mass% or less.
前記表層部の型さがHv700以上であることを特徴とする請求項1乃至3の何れか一つに記載の疲労特性に優れた軸受用鋼部品。   4. The steel component for a bearing having excellent fatigue characteristics according to claim 1, wherein the surface layer portion has a mold of Hv700 or more. 球状化炭化物の単位面積あたり個数が1.15個/μm2以上の鋼に、Ac3点-10℃〜Ac3点の温度間での平均加熱速度を0.5℃/s以上とし、Ac3点以上Ac3点+130℃以下の温度で、Ac3点以上の保持時間が500秒以下である加熱を施して焼入れ処理を行うことを特徴とする疲労特性に優れた軸受用鋼部品の製造方法。 Unit number per area of spheroidized carbides 1.15 pieces / [mu] m to 2 or more steel, the average heating rate between temperatures of Ac 3 point -10 ° C. to Ac 3 point and 0.5 ° C. / s or higher, Ac Ac 3 point or more A method for producing a steel component for a bearing having excellent fatigue characteristics, characterized by performing a quenching treatment by heating at a temperature of 3 points + 130 ° C or less and a heating time of 500 seconds or less for an Ac 3 point or more. 請求項2または3記載の成分組成を有し、球状化炭化物の単位面積あたり個数が1.15個/μm2以上の鋼に、Ac3点-10℃〜Ac3点の温度間での平均加熱速度を0.5℃/s以上とし、Ac3点以上Ac3点+130℃以下の温度で、Ac3点以上の保持時間が500秒以下である加熱を施して焼入れ処理を行うことを特徴とする疲労特性に優れた軸受用鋼部品の製造方法。 Has a component composition according to claim 2 or 3, wherein the average heating rate of the number of units per area of spheroidized carbides 1.15 pieces / [mu] m to 2 or more steel, between the temperature of the Ac 3 point -10 ° C. to Ac 3 point was a 0.5 ° C. / s or higher, at Ac 3 point or more Ac 3 point + 130 ° C. below the temperature, Ac 3 point or more holding time and performing a quenching treatment is subjected to heating is less than 500 seconds fatigue A method of manufacturing steel parts for bearings with excellent characteristics.
JP2005251875A 2005-08-31 2005-08-31 Manufacturing method of steel parts for bearings with excellent fatigue characteristics Active JP4631618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251875A JP4631618B2 (en) 2005-08-31 2005-08-31 Manufacturing method of steel parts for bearings with excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251875A JP4631618B2 (en) 2005-08-31 2005-08-31 Manufacturing method of steel parts for bearings with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2007063627A true JP2007063627A (en) 2007-03-15
JP4631618B2 JP4631618B2 (en) 2011-02-16

Family

ID=37926156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251875A Active JP4631618B2 (en) 2005-08-31 2005-08-31 Manufacturing method of steel parts for bearings with excellent fatigue characteristics

Country Status (1)

Country Link
JP (1) JP4631618B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113477A1 (en) * 2008-03-10 2009-09-17 株式会社ジェイテクト Rolling component and manufacturing method thereof
JP2009242920A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Bearing component having excellent fatigue property in foreign matter environment, and method for producing the same
CN103168112A (en) * 2010-08-31 2013-06-19 杰富意钢铁株式会社 Bearing steel and ingot material for bearing having excellent rolling contact fatigue life characteristics and method for manufacturing the same
US20150041026A1 (en) * 2011-09-30 2015-02-12 Jfe Steel Corporation Ingot for bearing and production process
CN105671442A (en) * 2016-01-26 2016-06-15 安徽同盛环件股份有限公司 Bearing collar alloy steel and heat treatment process thereof
JP2016199786A (en) * 2015-04-09 2016-12-01 株式会社神戸製鋼所 High strength steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263200A (en) * 2003-01-17 2004-09-24 Jfe Steel Kk High strength steel having excellent fatigue strength, and production method therefor
JP2004315890A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Steel having excellent rolling fatigue life, and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263200A (en) * 2003-01-17 2004-09-24 Jfe Steel Kk High strength steel having excellent fatigue strength, and production method therefor
JP2004315890A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Steel having excellent rolling fatigue life, and its production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113477A1 (en) * 2008-03-10 2009-09-17 株式会社ジェイテクト Rolling component and manufacturing method thereof
JP2009215597A (en) * 2008-03-10 2009-09-24 Aichi Steel Works Ltd Rolling-motion part and manufacturing method therefor
JP2009242920A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Bearing component having excellent fatigue property in foreign matter environment, and method for producing the same
CN103168112A (en) * 2010-08-31 2013-06-19 杰富意钢铁株式会社 Bearing steel and ingot material for bearing having excellent rolling contact fatigue life characteristics and method for manufacturing the same
US20130174945A1 (en) * 2010-08-31 2013-07-11 Ntn Corporation Bearing steel and ingot material for bearing having excellent rolling contact fatigue life characteristics and method for manufacturing the same
US9139887B2 (en) * 2010-08-31 2015-09-22 Jfe Steel Corporation Bearing steel and ingot material for bearing having excellent rolling contact fatigue life characteristics and method for manufacturing the same
CN103168112B (en) * 2010-08-31 2016-03-23 杰富意钢铁株式会社 The bearing steel of rolling contact fatigue life excellent, bearing ingot casting part and their manufacture method
US20150041026A1 (en) * 2011-09-30 2015-02-12 Jfe Steel Corporation Ingot for bearing and production process
US9732395B2 (en) * 2011-09-30 2017-08-15 Jfe Steel Corporation Ingot for bearing and production process
JP2016199786A (en) * 2015-04-09 2016-12-01 株式会社神戸製鋼所 High strength steel
CN105671442A (en) * 2016-01-26 2016-06-15 安徽同盛环件股份有限公司 Bearing collar alloy steel and heat treatment process thereof

Also Published As

Publication number Publication date
JP4631618B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
WO2006008960A1 (en) Component for machine structure, method for producing same, and material for high-frequency hardening
JP4868935B2 (en) High strength spring steel wire with excellent sag resistance
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
JP2010007143A (en) Steel for machine structure having excellent fatigue limit ratio and machinability
JP5824063B2 (en) Manufacturing method of steel parts
JP2010159476A (en) Steel wire rod having excellent cold forgeability after low temperature annealing and method for producing the same, and method for producing steel wire rod having excellent cold forgeability
JP2005133152A (en) High-strength wire rod to be induction-hardened superior in cold workability and impact resistance, and steel component using the wire rod
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP2008088478A (en) Steel component for bearing having excellent fatigue property
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP2007231345A (en) Steel component for bearing and its manufacturing method
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP4631617B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP2008088484A (en) Steel component for bearing having excellent fatigue property, and its production method
JP4487748B2 (en) Manufacturing method of bearing parts
JP5332410B2 (en) Manufacturing method of carburizing steel
JP4488228B2 (en) Induction hardening steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP5679440B2 (en) Induction hardening steel with excellent cold forgeability and excellent torsional strength after induction hardening, and method for producing the same
JP2009242918A (en) Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP2007204803A (en) Steel parts for bearing, and manufacturing method therefor
JP2006009150A (en) Steel for carburizing and its production method
JPWO2013018893A1 (en) Non-tempered steel for hot forging, non-tempered hot forged product, and method for producing the same
JP2004124190A (en) Induction-tempered steel having excellent twisting property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250