JP6089131B2 - High carbon cold rolled steel sheet and method for producing the same - Google Patents

High carbon cold rolled steel sheet and method for producing the same Download PDF

Info

Publication number
JP6089131B2
JP6089131B2 JP2016076330A JP2016076330A JP6089131B2 JP 6089131 B2 JP6089131 B2 JP 6089131B2 JP 2016076330 A JP2016076330 A JP 2016076330A JP 2016076330 A JP2016076330 A JP 2016076330A JP 6089131 B2 JP6089131 B2 JP 6089131B2
Authority
JP
Japan
Prior art keywords
steel sheet
mass
rolled steel
carbide
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016076330A
Other languages
Japanese (ja)
Other versions
JP2017036492A (en
Inventor
栄司 土屋
栄司 土屋
雄太 松村
雄太 松村
佳弘 細谷
佳弘 細谷
友佳 宮本
友佳 宮本
崇 小林
崇 小林
長滝 康伸
康伸 長滝
瀬戸 一洋
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOKUSHU KINZOKU EXCEL CO Ltd
Original Assignee
JFE Steel Corp
TOKUSHU KINZOKU EXCEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, TOKUSHU KINZOKU EXCEL CO Ltd filed Critical JFE Steel Corp
Priority to PCT/JP2016/071133 priority Critical patent/WO2017029922A1/en
Priority to CN201680008133.0A priority patent/CN107208224B/en
Priority to EP16836913.0A priority patent/EP3216889B1/en
Priority to KR1020177014614A priority patent/KR101953495B1/en
Priority to TW105125451A priority patent/TWI591187B/en
Publication of JP2017036492A publication Critical patent/JP2017036492A/en
Application granted granted Critical
Publication of JP6089131B2 publication Critical patent/JP6089131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Description

本発明は、焼入れ焼戻し処理によって製造される各種機械部品の素材となる高炭素冷延鋼板に関するもので、特に短時間の溶体化処理で焼入れし、低温の焼戻し処理後に十分な硬さ(600〜750HV)と衝撃特性(靱性)を兼備し、さらに耐久性、耐摩耗性などに対する要求が厳しいメリヤス針などに適用される板厚1.0mm未満の高炭素冷延鋼板に関するものである。ここで、短時間の溶体化処理とは、760〜820℃の範囲で3〜15分の時間での処理をいい、低温の焼戻し処理とは200〜350℃の温度範囲での処理をいう。   The present invention relates to a high-carbon cold-rolled steel sheet used as a raw material for various machine parts produced by quenching and tempering, and is particularly hardened by a short-time solution treatment and sufficiently hard after low-temperature tempering (600 to 750 HV) and impact characteristics (toughness), and further relates to a high carbon cold-rolled steel sheet having a thickness of less than 1.0 mm, which is applied to knitting needles and the like that have severe requirements for durability, wear resistance and the like. Here, the short-time solution treatment refers to a treatment in the range of 760 to 820 ° C. for 3 to 15 minutes, and the low temperature tempering treatment refers to a treatment in the temperature range of 200 to 350 ° C.

一般に、JISに規定される機械構造用炭素鋼鋼材(S××C)や炭素工具鋼鋼材(SK)は、大小各種機械部品に使用されている。展伸材として使用される場合は、打抜き加工や各種の塑性加工を経て部品形状にした後、焼入れ・焼戻し処理を行うことで所定の硬さと靱性(衝撃特性)が付与される。その中でも、ニット地を編むメリヤス針は、高速で往復運動を繰返しながら糸を手繰り寄せてメリヤス地を編むため、回転駆動部と接触する針本体のバット部には十分な強度と耐摩耗性が、さらに糸と擦れ合うフック部には十分な耐摩耗性に加えて往復運動に伴う先端部の衝撃特性に優れることが求められる。   In general, carbon steel materials for machine structures (SxxC) and carbon tool steel materials (SK) specified in JIS are used for various types of machine parts. When used as a wrought material, a predetermined hardness and toughness (impact characteristics) are imparted by performing quenching and tempering treatment after forming into a part shape through punching and various plastic processing. Among them, knitted fabric knitting needles knit the knitted fabric by pulling back the yarn while repeating reciprocating motion at a high speed, so that the butt portion of the needle body that comes into contact with the rotary drive part has sufficient strength and wear resistance. In addition, the hook portion that rubs against the yarn is required to have excellent impact characteristics at the tip portion due to reciprocation in addition to sufficient wear resistance.

メリヤス針用素材として使われる高炭素冷延鋼板は、板厚が1.0mm以上の場合には横編機用メリヤス針向けとされ、板厚が1.0mm未満の場合には丸編機や縦編機用メリヤス針向けとして用いられる。後者の針では細径の糸を高速で編むため、使用される素材の板厚は0.4〜0.7mmとなることが多い。さらに、素材には、優れた冷間加工性(2次加工性とも云う)に加えて、針形状に2次加工後、焼入れ焼戻しした際に十分な硬さと針先端部で十分な靱性を有することが求められる。   The high carbon cold-rolled steel sheet used as the material for knitting needles is used for knitting needles for flat knitting machines when the thickness is 1.0 mm or more, and when the thickness is less than 1.0 mm, a circular knitting machine or Used for knitting needles for warp knitting machines. In the latter needle, since a thin yarn is knitted at high speed, the thickness of the material used is often 0.4 to 0.7 mm. Furthermore, in addition to excellent cold workability (also called secondary workability), the material has sufficient hardness and sufficient toughness at the needle tip when quenched and tempered after secondary processing into a needle shape. Is required.

また、JISに規定される機械構造用炭素鋼鋼材(S××C)や炭素工具鋼鋼材(SK)などの所謂高炭素鋼板は、C量によって用途が細かく分類されている。C量が0.8mass%未満の領域、すなわち亜共析組成の鋼板では、フェライト相の分率が高いため冷間加工性には優れるが、十分な焼入れ硬さを得ることが難しく、フック部の耐摩耗性や針本体の耐久性が求められるメリヤス針用途等には向かない。一方、0.8mass%以上の過共析組成の中でもC量が1.1mass%より大きい高炭素鋼板は優れた焼入れ性を有する反面、多量に含まれる炭化物(セメンタイト)のために冷間加工性が極端に劣り、溝切加工等の精密かつ微細な加工が行われるメリヤス針用途等には向かず、刃物や冷間金型等、単純形状で高硬度が求められる部品用途に限定される。   In addition, so-called high carbon steel plates such as carbon steel materials for machine structures (SxxC) and carbon tool steel materials (SK) specified in JIS are finely classified according to the amount of C. In the region where the amount of C is less than 0.8 mass%, that is, the steel sheet of hypoeutectoid composition, the ferrite phase has a high fraction and is excellent in cold workability, but it is difficult to obtain sufficient quenching hardness, It is not suitable for knitting needle applications that require wear resistance and durability of the needle body. On the other hand, among the hypereutectoid composition of 0.8 mass% or more, the high carbon steel sheet having a C content of 1.1 mass% or more has excellent hardenability, but cold workability due to a large amount of carbide (cementite). However, it is not suitable for knitting needles where precision and fine processing such as grooving is performed, and is limited to parts that require a simple shape and high hardness, such as blades and cold dies.

従来、メリヤス針には、C:0.8〜1.1mass%の炭素工具鋼や合金工具鋼又はこれらの鋼組成をベースとして第3元素を添加した鋼組成の素材が広く用いられている。このメリヤス針の製造過程では、その素材は打抜き(せん断加工)、切削、伸線、かしめ、曲げなどの多種多様な塑性加工に供される。したがって、このメリヤス針製造用の素材は、針の製造工程での素材加工時に十分な加工性(2次加工性)を有していることに併せて、針として実際に使用するときに要求される焼入れ焼戻し処理後の硬さ特性や衝撃特性(靱性)を具備する必要がある。   Conventionally, carbon material steel or alloy tool steel of C: 0.8 to 1.1 mass% or a steel composition material added with a third element based on these steel compositions has been widely used for knitted needles. In the manufacturing process of the knitted needle, the material is subjected to various plastic workings such as punching (shearing), cutting, wire drawing, caulking, bending, and the like. Therefore, this material for manufacturing knitted needles is required when actually used as a needle, in addition to having sufficient workability (secondary workability) during material processing in the needle manufacturing process. It is necessary to have hardness characteristics and impact characteristics (toughness) after quenching and tempering.

メリヤス針の製造では、所定の硬さ特性を確保するため素材に焼入れ焼戻し処理が行われる。この焼戻しの温度は、200〜350℃の低温とするケースが一般的に採用されている。しかし、硬さ特性を重視して焼入れ性に有効なMnやCrの添加量を増量したり、その他の第3元素を多量に添加すると、上述の200〜350℃の温度範囲での低温焼戻し処理では、マルテンサイト相の焼戻しが十分になされず、衝撃特性(靱性)の向上が不十分であったり靱性値がばらついたりする場合があった。
一方、メリヤス針の衝撃特性を向上させることを目的として、素材の化学組成のうち不純物元素であるPやSを低減し、Pの粒界偏析やMnS介在物の生成を極小化させ、それら元素の悪影響の軽減を図ることも有効な対策とされている。しかし、製鋼技術上及びコスト経済性の観点から、PやSを低減してメリヤス針の衝撃特性の向上を図るには限界がある。
In the manufacture of knitted needles, the material is subjected to quenching and tempering in order to ensure a predetermined hardness characteristic. A case where the tempering temperature is a low temperature of 200 to 350 ° C. is generally adopted. However, if the amount of Mn or Cr effective for hardenability is increased with emphasis on hardness characteristics, or if a large amount of other third elements are added, low temperature tempering treatment in the temperature range of 200 to 350 ° C. However, the tempering of the martensite phase is not sufficiently performed, and the impact characteristics (toughness) are not sufficiently improved or the toughness value may vary.
On the other hand, for the purpose of improving the impact characteristics of knitted needles, P and S, which are impurity elements, are reduced in the chemical composition of the material, and the grain boundary segregation of P and the generation of MnS inclusions are minimized. Reducing the adverse effects of this is also an effective measure. However, there is a limit in reducing the P and S to improve the impact characteristics of the knitted needle from the viewpoint of steelmaking technology and cost economy.

また、衝撃特性を向上させる手段として金属組織の微細化が有効であることは従来から知られている。例えば、特許文献1及び2には、Ti、Nb、Vなどの炭窒化物形成元素を添加してそれらの元素の微細炭窒化物を利用して金属組織を微細化する技術が開示されている。しかし、これらの元素は、Cが0.8mass%以下の亜共析組成の鋼の靱性向上対策として添加されるのが一般的であった。
特に、200〜350℃の低温焼戻し状態でのマルテンサイト相の衝撃特性に対する個々の第3元素の影響(特に相互作用)に関しては十分に解明されておらず、個々の元素の効果を等価と見なして成分設計されるケースが多くあった。
Further, it has been conventionally known that the refinement of the metal structure is effective as means for improving the impact characteristics. For example, Patent Documents 1 and 2 disclose a technique for adding a carbonitride-forming element such as Ti, Nb, or V and refining the metal structure using a fine carbonitride of these elements. . However, these elements are generally added as a measure for improving the toughness of steel having a hypoeutectoid composition with C of 0.8 mass% or less.
In particular, the influence (particularly the interaction) of the individual third elements on the impact properties of the martensite phase in the low-temperature tempered state at 200 to 350 ° C. has not been fully elucidated, and the effects of the individual elements are regarded as equivalent. In many cases, the ingredients were designed.

例えば、特許文献1には、C:0.5〜0.7mass%の亜共析鋼を対象として、V、Ti、Nbなどの炭窒化物形成元素を添加することで、旧オーステナイト粒を微細化し、靱性値(衝撃特性)を向上させる技術が開示されている。   For example, in Patent Document 1, by adding carbonitride-forming elements such as V, Ti, and Nb to hypoeutectoid steel of C: 0.5 to 0.7 mass%, the prior austenite grains are refined. And a technique for improving the toughness value (impact characteristics) is disclosed.

特許文献2には、C:0.60〜1.30mass%の亜共析鋼から過共析鋼の広範な炭素含有量の鋼を対象とし、必要に応じてNi≦1.8mass%、Cr≦2.0mass%、V≦0.5mass%、Mo≦0.5mass%、Nb≦0.3mass%、Ti≦0.3mass%、B≦0.01mass%、Ca≦0.01mass%の一種または二種以上を添加して、未溶解炭化物の体積率(Vf)を8.5<15.3×Cmass%−Vf<10.0の範囲にコントロールすることで衝撃特性を向上させる技術が開示されている。   In Patent Document 2, C: 0.60 to 1.30 mass% hypoeutectoid steel to hypereutectoid steel with a wide range of carbon content, Ni ≦ 1.8 mass%, Cr as necessary. ≦ 2.0 mass%, V ≦ 0.5 mass%, Mo ≦ 0.5 mass%, Nb ≦ 0.3 mass%, Ti ≦ 0.3 mass%, B ≦ 0.01 mass%, Ca ≦ 0.01 mass% or A technique for improving impact characteristics by adding two or more kinds and controlling the volume fraction (Vf) of undissolved carbide in the range of 8.5 <15.3 × Cmass% −Vf <10.0 is disclosed. ing.

特開2009−24233号公報JP 2009-24233 A 特開2006−63384号公報JP 2006-63384 A

しかしながら、特許文献1に記載された技術は、亜共析鋼に限定されたものであり、V、Ti、Nbなどの炭窒化物形成元素を添加することで、それらの微細炭窒化物によって旧オーステナイト粒を微細化する効果を期待した技術である。また、特許文献1に記載された技術は、炭素レベルが亜共析組成であるため、フェライト母相の成形性を改善した技術でもあり、メリヤス針のような高硬度が求められる機械部品への適用は難しい。   However, the technique described in Patent Document 1 is limited to hypoeutectoid steel, and by adding carbonitride-forming elements such as V, Ti, Nb, etc., these fine carbonitrides are used in the past. This technology is expected to have the effect of refining austenite grains. The technique described in Patent Document 1 is also a technique for improving the formability of the ferrite matrix because the carbon level is a hypoeutectoid composition, and is suitable for machine parts that require high hardness such as knitted needles. It is difficult to apply.

また、特許文献2に記載された技術は、Mo、V、Ti、Nb、Bなどを添加した炭素含有量が、0.67〜0.81mass%の範囲の鋼種についてであり、その技術は、あきらかに亜共析鋼の特性改善を意図した添加と解される。特許文献2には、0.81mass%を超える炭素量の鋼における個々の第3元素の作用とその最適化に関する開示は全くない。
さらに、特許文献2に記載された技術では、第3元素の添加量に関し、明細書中に記載の如く衝撃値に悪影響を及ぼさない上限値を規定しているだけであり、特許文献2には、その下限値の規定が無いことから第3元素を意図した範囲で添加して、添加元素の作用によって積極的に衝撃特性の向上を図った技術の開示もない。
Moreover, the technique described in patent document 2 is about the steel grade in which the carbon content which added Mo, V, Ti, Nb, B etc. is 0.67-0.81 mass%, The technique is Obviously, this addition is intended to improve the properties of hypoeutectoid steel. In Patent Document 2, there is no disclosure regarding the action and optimization of individual third elements in steel having a carbon content exceeding 0.81 mass%.
Furthermore, in the technique described in Patent Document 2, only the upper limit value that does not adversely affect the impact value as described in the specification is specified for the addition amount of the third element. Also, since there is no lower limit, there is no disclosure of a technique in which the third element is added within the intended range and the impact characteristics are positively improved by the action of the added element.

さらに、特許文献1、特許文献2には、高炭素冷延鋼板について、3〜15分のような短時間の溶体化処理保持時間で焼入れ、200〜350℃の低温焼戻しにより、所望の衝撃特性及び所定硬さを有利に改善するような技術の開示もなく、また、板厚が1.0mm未満の鋼板について衝撃特性を評価した技術の開示もない。
そこで、本発明は、短時間の溶体化処理後、焼入れ及び低温焼戻し処理を施し、衝撃特性を実際に使用される板厚近傍で評価して、衝撃値が5J/cm以上で、かつ硬さが600〜750HVの範囲である機械的特性を発現することができる、板厚が1.0mm未満の高炭素冷延鋼板(以下、単に「冷延鋼板ともいう」)を提供することを目的とする。
Further, Patent Document 1 and Patent Document 2 disclose that high-carbon cold-rolled steel sheets are quenched with a short solution treatment holding time such as 3 to 15 minutes, and desired impact characteristics are obtained by low-temperature tempering at 200 to 350 ° C. In addition, there is no disclosure of a technology that advantageously improves the predetermined hardness, and there is no disclosure of a technology that evaluates impact characteristics of a steel plate having a thickness of less than 1.0 mm.
Accordingly, the present invention is, after a short time of solution treatment, subjected to quenching and low temperature tempering treatment, the impact characteristics are evaluated in thickness near that is actually used, the impact value is 5 J / cm 2 or more, and hardness The object is to provide a high carbon cold-rolled steel sheet (hereinafter, also simply referred to as “cold-rolled steel sheet”) having a thickness of less than 1.0 mm, which can exhibit mechanical properties having a thickness of 600 to 750 HV. And

本発明者等は、上記した課題を解決するために、高炭素冷延鋼板の化学成分の適正な添加範囲と鋼中の炭化物の粒径や存在形態について鋭意検討した。
本発明は、加工性、焼入れ性、低温焼戻し後の硬さと靱性などの観点からメリヤス針に好適な0.85mass%≦C≦1.10mass%の炭素量に限定したものであるが、その範囲で第3元素としてNbを所定の範囲添加し、炭化物の平均粒径と球状化の程度を制御することが有効であるとの知見を得たのが本技術の核心である。
In order to solve the above-described problems, the present inventors diligently studied the appropriate addition range of chemical components of the high-carbon cold-rolled steel sheet and the grain size and existence form of carbides in the steel.
The present invention is limited to a carbon amount of 0.85 mass% ≦ C ≦ 1.10 mass% suitable for a knitted needle from the viewpoint of workability, hardenability, hardness and toughness after low temperature tempering, etc. Thus, the core of the present technology is that it has been found that it is effective to add Nb as a third element in a predetermined range and control the average particle size of carbide and the degree of spheroidization.

特に本発明では200〜350℃の低温焼戻し状態での衝撃値に着眼し、従来靱性評価が難しかった1.0mm未満の鋼板を対象とした後述する新試験法(図1及び2)を考案した。その新試験法を利用して調査した結果、所定量のNb添加が唯一要求特性を満足すると言う新規な知見に基づいてなされたものである。   In particular, in the present invention, a new test method (FIGS. 1 and 2), which will be described later, has been devised, focusing on the impact value in a low-temperature tempering state of 200 to 350 ° C., and targeting a steel sheet of less than 1.0 mm, which has conventionally been difficult to evaluate toughness. . As a result of investigation using the new test method, it was made based on a novel finding that a predetermined amount of Nb addition satisfies only the required characteristics.

すなわち、本発明者らは、上記課題を解決するために鋭意研究し、基本成分をC:0.85〜1.10mass%、Mn:0.50〜1.0mass%、Si:0.10〜0.35mass%、P≦0.030mass%、S≦0.030mass%、0.35≦Cr≦0.45mass%の範囲に規定した高炭素鋼に0.005〜0.020mass%のNbを添加することを必須とし、炭化物の球状化と平均粒径を所定の範囲に制御することにより、焼入れ性と靱性を兼備した高炭素冷延鋼板を得ることができ、さらに焼入れ処理時間の短縮や焼戻し温度の低下も可能であることを見出した。また、薄板の衝撃特性を適正に評価する試験方法を採用することで、適正な化学成分および炭化物の球状化率、平均粒径を規定することが達成されるようになった。
まず、本発明者等が行った実験結果について説明する。
mass%で、1.01%C−0.26%Si−0.73%Mn−0.42%Cr−0.02%Moを含み、さらにNbを0%、0.010%、0.020%、0.055%と変化させて添加し、残部Feおよび不可避的不純物からなる組成の熱延鋼板(4mm厚)に、冷間圧延(圧下率:25〜65%、最終は3〜50%)と、軟化焼鈍および球状化焼鈍(640〜700℃)とを、それぞれ5回繰り返して、冷延鋼板(1mm未満)とした。得られた冷延鋼板に、加熱温度を780℃、800℃の2水準で、保持時間を0〜16分の範囲で変化させた溶体化処理を施したのち、油焼入れして、ビッカース硬さ(HV)を測定した。得られた結果を、溶体化処理の加熱保持時間(分)と焼入れ硬さ(HV)との関係で図3(加熱温度:800℃)、図4(加熱温度:780℃)に示す。
図3、図4から、Nb含有量が0.010mass%である冷延鋼板が、最も短い加熱保持時間で、700HVを超える焼入れ硬さを確保できることがわかる。Nb含有量が0.010mass%を超えて増加すると、短時間加熱保持での硬さ上昇は鈍化する。図4の結果から、溶体化処理の加熱温度が780℃である場合に、焼入れ硬さが700HVに達する加熱保持時間とNb含有量との関係を図5に示す。
図5から、Nb含有量が0.020mass%以上では、焼入れ硬さが700HVに達する溶体化処理の加熱保持時間はほぼ一定となる。Nb含有量が0.005〜0.015mass%の範囲では、所望の焼入れ硬さ(700HV)を確保するための溶体化処理の加熱保持時間が最も短くなり、しかも安定した焼入れ性を確保できる。さらに、この範囲のNb含有量であれば、溶体化処理の加熱保持時間を短時間とすることができる。このことから、Nb含有量を0.005〜0.015mass%の範囲とすることは、針加工メーカーで問題とされる焼伸びばらつきや焼曲りを防止できる対策として有効となることを知見した。
また、各種Nb含有量の冷延鋼板に、加熱温度:800℃、加熱保持時間:10分とする溶体化処理を施し、油焼入れしたのち、さらに焼戻し処理を施した。焼戻し処理では、焼戻し温度は、150℃、200℃、250℃、300℃、350℃の各種温度とし、保持時間を1時間とした。焼戻し処理後、衝撃特性を調査した。なお、衝撃特性は図1、図2に示す新試験法を用いて行った。得られた結果を図6に示す。衝撃値は、焼戻し温度が200℃以上の場合には、Nb含有量が0.010mass%の場合が最も高かった。
図6から、衝撃値:5J/cmが得られる焼戻し温度を求め、Nb含有量との関係で図7に示す。図7から、衝撃値:5J/cmが得られる焼戻し温度は、Nb含有量:0.010mass%の鋼板の場合が最も低い。0.020mass%を超えてNb含有量が増加すると、衝撃値:5J/cmが得られる焼戻し温度は高温側となる。焼戻し温度が高温となると、硬さが低下し、針としての耐久性が低下する。また、Nb含有量が0.005mass%未満では、所望の衝撃値を確保するために、焼戻し温度を高温にする必要があることを知見した。
図5、図7から、焼戻し後の高い硬さと衝撃特性を兼備させるためには、Nb含有量は0.005mass%が下限、0.020mass%が上限である。さらに、溶体化処理の加熱保持時間を短時間とするには、Nb含有量の上限を0.015mass%とすることが好ましい。
That is, the present inventors have intensively studied in order to solve the above problems, and the basic components are C: 0.85 to 1.10 mass%, Mn: 0.50 to 1.0 mass%, Si: 0.10. Add 0.005 to 0.020 mass% of Nb to high carbon steel defined in the range of 0.35 mass%, P ≦ 0.030 mass%, S ≦ 0.030 mass%, 0.35 ≦ Cr ≦ 0.45 mass% By controlling the spheroidization of carbide and the average particle size within a predetermined range, it is possible to obtain a high carbon cold-rolled steel sheet that has both hardenability and toughness, and further shortens the quenching time and tempering. It was found that the temperature could be lowered. In addition, by adopting a test method for appropriately evaluating the impact characteristics of a thin plate, it has become possible to define appropriate chemical components, carbide spheroidization rate, and average particle size.
First, the experimental results conducted by the present inventors will be described.
mass%, 1.01% C-0.26% Si-0.73% Mn-0.42% Cr-0.02% Mo, and Nb 0%, 0.010%, 0.020 %, 0.055%, and cold rolled (rolling ratio: 25 to 65%, final 3 to 50%) to a hot rolled steel sheet (4 mm thick) having the composition of the balance Fe and inevitable impurities. ) And softening annealing and spheroidizing annealing (640 to 700 ° C.) were each repeated 5 times to obtain a cold-rolled steel sheet (less than 1 mm). The obtained cold-rolled steel sheet was subjected to a solution treatment in which the heating temperature was changed to two levels of 780 ° C. and 800 ° C. and the holding time was changed in the range of 0 to 16 minutes, and then it was oil-quenched to obtain Vickers hardness. (HV) was measured. The obtained results are shown in FIG. 3 (heating temperature: 800 ° C.) and FIG. 4 (heating temperature: 780 ° C.) in relation to the heat retention time (minutes) of the solution treatment and the quenching hardness (HV).
3 and 4, it can be seen that the cold-rolled steel sheet having an Nb content of 0.010 mass% can secure a quenching hardness exceeding 700 HV in the shortest heat holding time. When the Nb content increases beyond 0.010 mass%, the increase in hardness by heating and holding for a short time is slowed down. From the result of FIG. 4, when the heating temperature of the solution treatment is 780 ° C., the relationship between the heating holding time at which the quenching hardness reaches 700 HV and the Nb content is shown in FIG.
From FIG. 5, when the Nb content is 0.020 mass% or more, the heating and holding time of the solution treatment in which the quenching hardness reaches 700 HV is substantially constant. When the Nb content is in the range of 0.005 to 0.015 mass%, the heating and holding time of the solution treatment for securing the desired quenching hardness (700 HV) is the shortest, and stable hardenability can be secured. Furthermore, if it is Nb content of this range, the heat retention time of solution treatment can be made into a short time. From this, it has been found that setting the Nb content in the range of 0.005 to 0.015 mass% is effective as a measure that can prevent the variation in firing elongation and the bending that are problems in the needle processing manufacturer.
Further, the cold-rolled steel sheets having various Nb contents were subjected to a solution treatment with a heating temperature of 800 ° C. and a heating and holding time of 10 minutes, and after oil quenching, further tempering was performed. In the tempering treatment, the tempering temperature was 150 ° C., 200 ° C., 250 ° C., 300 ° C., 350 ° C., and the holding time was 1 hour. After tempering, the impact properties were investigated. The impact characteristics were measured using the new test method shown in FIGS. The obtained result is shown in FIG. When the tempering temperature was 200 ° C. or higher, the impact value was highest when the Nb content was 0.010 mass%.
From FIG. 6, the tempering temperature at which an impact value of 5 J / cm 2 is obtained is obtained and shown in FIG. 7 in relation to the Nb content. From FIG. 7, the tempering temperature at which an impact value of 5 J / cm 2 is obtained is the lowest in the case of a steel plate with Nb content: 0.010 mass%. When the Nb content is increased beyond 0.020 mass%, the tempering temperature at which an impact value of 5 J / cm 2 is obtained becomes higher. When the tempering temperature becomes high, the hardness decreases, and the durability as a needle decreases. Further, it has been found that when the Nb content is less than 0.005 mass%, it is necessary to increase the tempering temperature in order to secure a desired impact value.
From FIG. 5 and FIG. 7, in order to combine high hardness after tempering and impact characteristics, the Nb content is 0.005 mass% as the lower limit and 0.020 mass% as the upper limit. Furthermore, in order to shorten the heating and holding time of the solution treatment, it is preferable to set the upper limit of the Nb content to 0.015 mass%.

本発明は、かかる知見に基づきさらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
[1]鋼板の化学組成がC:0.85〜1.10mass%、Mn:0.50〜1.0mass%、Si:0.10〜0.35mass%、P≦0.030mass%、S≦0.030mass%、Cr:0.35〜0.45mass%、Nb:0.005〜0.020mass%を含有し、残部Fe及び不可避不純物からなり、前記鋼板中に分散する炭化物の平均粒径(dav)と球状化率(NSC/NTC)×100%がそれぞれ下記(1)式及び(2)式を満たし、前記鋼板の板厚は1.0mm未満であることを特徴とする高炭素冷延鋼板。

0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
ここで、(1)式の平均粒径(dav)は、鋼板断面で観察される個々の炭化物と同等の面積の円を想定したときの個々の円の直径(円相当径)の平均値である。
また、(2)式のNTC及びNSCは、それぞれNTC:観察面積100μm当たりの炭化物の総個数、NSC:d/d≦1.4の条件を満たす炭化物個数であり、ここで炭化物の長径をd、短径をdとする。
[2]前記化学成分が、さらに、Mo及びVの内から選ばれる1種または2種を含有し、それぞれの含有量がいずれも0.001mass%以上0.05mass%未満であることを特徴とする、前記[1]に記載の高炭素冷延鋼板。
[3]前記[1]又は[2]に記載の化学組成からなる熱延鋼板に冷間圧延及び球状化焼鈍を繰り返し行い高炭素冷延鋼板を製造する方法において、前記高炭素冷延鋼板中に分散する炭化物の平均粒径(dav)と、球状化率(NSC/NTC)がそれぞれ下記(1)式及び(2)式を満たし、前記鋼板の板厚は1.0mm未満であることを特徴とする高炭素冷延鋼板の製造方法。

0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
ここで、(1)式の平均粒径(dav)は、鋼板断面で観察される個々の炭化物と同等の面積の円を想定したときの個々の円の直径(円相当径)の平均値である。
また、(2)式のNTC及びNSCは、それぞれNTC:観察面積100μm当たりの炭化物の総個数、NSC:d/d≦1.4の条件を満たす炭化物個数であり、ここで炭化物の長径をd、短径をdとする。
[4]前記熱延鋼板に冷間圧延及び球状化焼鈍を繰り返し行う回数を2〜5回とすることを特徴とする、前記[3]に記載の高炭素冷延鋼板の製造方法。
[5]前記冷間圧延の圧下率が25〜65%で、前記球状化焼鈍の温度が640〜720℃であることを特徴とする、前記[3]又は[4]に記載の高炭素冷延鋼板の製造方法。
The present invention has been completed by further studies based on this finding. That is, the gist of the present invention is as follows.
[1] The chemical composition of the steel sheet is C: 0.85 to 1.10 mass%, Mn: 0.50 to 1.0 mass%, Si: 0.10 to 0.35 mass%, P ≦ 0.030 mass%, S ≦ 0.030 mass%, Cr: 0.35 to 0.45 mass%, Nb: 0.005 to 0.020 mass%, comprising the balance Fe and inevitable impurities, and the average particle size of carbides dispersed in the steel sheet ( d av ) and the spheroidization ratio (N SC / N TC ) × 100% satisfy the following formulas (1) and (2), respectively, and the plate thickness of the steel sheet is less than 1.0 mm. Carbon cold rolled steel sheet.
0.2 ≦ d av ≦ 0.7 (μm) (1)
(N SC / N TC ) × 100 ≧ 90% (2)
Here, the average particle diameter (d av ) in the formula (1) is the average value of the diameters of the individual circles (equivalent circle diameters) when assuming a circle having the same area as each carbide observed in the cross section of the steel sheet. It is.
N TC and N SC in the formula (2) are respectively N TC : the total number of carbides per observation area of 100 μm 2 , and N SC : the number of carbides satisfying the condition of d L / d S ≦ 1.4, Here, the major axis of the carbide is d L and the minor axis is d S.
[2] The chemical component further contains one or two selected from Mo and V, and each content is 0.001 mass% or more and less than 0.05 mass%. The high carbon cold-rolled steel sheet according to [1].
[3] In the method for producing a high carbon cold rolled steel sheet by repeatedly performing cold rolling and spheroidizing annealing on the hot rolled steel sheet having the chemical composition described in [1] or [2], The average particle diameter (d av ) and the spheroidization ratio (N SC / N TC ) of the carbide dispersed in the above satisfy the following formulas (1) and (2), respectively, and the plate thickness of the steel sheet is less than 1.0 mm A method for producing a high carbon cold-rolled steel sheet, comprising:
0.2 ≦ d av ≦ 0.7 (μm) (1)
(N SC / N TC ) × 100 ≧ 90% (2)
Here, the average particle diameter (d av ) in the formula (1) is the average value of the diameters of the individual circles (equivalent circle diameters) when assuming a circle having the same area as each carbide observed in the cross section of the steel sheet. It is.
N TC and N SC in the formula (2) are respectively N TC : the total number of carbides per observation area of 100 μm 2 , and N SC : the number of carbides satisfying the condition of d L / d S ≦ 1.4, Here, the major axis of the carbide is d L and the minor axis is d S.
[4] The method for producing a high carbon cold-rolled steel sheet according to the above [3], wherein the hot-rolled steel sheet is repeatedly subjected to cold rolling and spheroidizing annealing 2 to 5 times.
[5] The high carbon cooling according to [3] or [4], wherein the rolling reduction of the cold rolling is 25 to 65%, and the temperature of the spheroidizing annealing is 640 to 720 ° C. A method for producing rolled steel sheets.

本発明に係る高炭素冷延鋼板は、板厚1.0mm未満、特に板厚0.4〜0.7mmという薄い高炭素冷延鋼板で熱処理前の炭化物の平均粒径の大きさを0.2〜0.7μmの大きさに制御し、なおかつ後述する球状化率を90%以上に制御することによって、3〜15分という短時間の溶体化処理でも焼入れ、焼戻しにより良好な衝撃特性(衝撃値;5J/cm以上)及び硬さ特性(600〜750HV)が得られる。 The high-carbon cold-rolled steel sheet according to the present invention is a thin high-carbon cold-rolled steel sheet having a thickness of less than 1.0 mm, particularly 0.4 to 0.7 mm. By controlling to a size of 2 to 0.7 μm and controlling the spheroidization rate described later to 90% or more, good impact characteristics (impact) can be obtained by quenching and tempering even in a solution treatment for a short time of 3 to 15 minutes. Value; 5 J / cm 2 or more) and hardness properties (600-750 HV).

さらに、本発明に係る高炭素冷延鋼板は、短時間の溶体化処理後からフルマルテンサイト組織に焼入れた後、200〜350℃のいわゆる低温焼戻し条件下で、従来の高炭素鋼に対して硬さと衝撃特性(靱性)のバランスの点で明確な優位性を発揮する。つまり、優れた焼入れ性を確保しつつ、焼入れ焼戻し後の靭性に優れた高炭素鋼製機械工具部品を得ることができる。特に本発明で開示される冷延鋼板は、硬さと靱性のバランスのみならず耐摩耗性や耐疲労特性が求められる、メリヤス針のような過酷な使用環境下で優れた耐久性が求められる用途に好適である。   Furthermore, the high carbon cold-rolled steel sheet according to the present invention is hardened into a full martensite structure after a short-time solution treatment, and then compared to conventional high-carbon steel under so-called low-temperature tempering conditions of 200 to 350 ° C. Demonstrates a clear advantage in terms of the balance between hardness and impact properties (toughness). That is, it is possible to obtain a machine tool part made of high carbon steel having excellent toughness after quenching and tempering while ensuring excellent hardenability. In particular, the cold-rolled steel sheet disclosed in the present invention requires not only a balance between hardness and toughness but also wear resistance and fatigue resistance, and applications that require excellent durability in harsh usage environments such as knitted needles. It is suitable for.

本発明の評価に用いた衝撃試験の試験装置の例を示す説明図である。It is explanatory drawing which shows the example of the test apparatus of the impact test used for evaluation of this invention. 本発明の評価に用いた衝撃試験の試験片の形状を示す説明図である。It is explanatory drawing which shows the shape of the test piece of the impact test used for evaluation of this invention. 焼入れ硬さと溶体化処理の加熱保持時間との関係を示すグラフである(加熱温度:800℃)。It is a graph which shows the relationship between hardening hardness and the heat retention time of solution treatment (heating temperature: 800 degreeC). 焼入れ硬さと溶体化処理の加熱保持時間との関係を示すグラフである(加熱温度:780℃)。It is a graph which shows the relationship between hardening hardness and the heat retention time of solution treatment (heating temperature: 780 degreeC). 焼入れ硬さ700HVが得られる溶体化処理の加熱保持時間とNb含有量との関係を示すグラフである。It is a graph which shows the relationship between the heating holding time and Nb content of the solution treatment from which quenching hardness 700HV is obtained. 衝撃値と焼戻温度との関係を示すグラフである。It is a graph which shows the relationship between an impact value and tempering temperature. 衝撃値:5J/cmが得られる焼戻温度とNb含有量との関係を示すグラフである。It is a graph which shows the relationship between the tempering temperature and Nb content from which an impact value: 5 J / cm < 2 > is obtained.

以下、本発明の実施の形態を説明する。
まず、本発明に係る鋼板は、熱延鋼板を、必要に応じて軟化焼鈍を行い、冷間圧延と球状化焼鈍を交互に繰り返し、板厚1.0mm未満の高炭素冷延鋼板として得られるものである。その後、この高炭素冷延鋼板に所定の2次加工及び溶体化処理を行い、焼入れ、焼戻し処理を施し、メリヤス針等の部材に供するものである。
Embodiments of the present invention will be described below.
First, a steel sheet according to the present invention is obtained as a high-carbon cold-rolled steel sheet having a thickness of less than 1.0 mm by subjecting a hot-rolled steel sheet to soft annealing as needed, and repeatedly repeating cold rolling and spheroidizing annealing. Is. Thereafter, the high-carbon cold-rolled steel sheet is subjected to predetermined secondary processing and solution treatment, subjected to quenching and tempering treatment, and is provided to a member such as a knitted needle.

まず、本発明鋼板の化学成分を、C:0.85〜1.10mass%、Mn:0.50〜1.0mass%、Si:0.10〜0.35mass%、P≦0.030mass%、S≦0.030mass%、Cr:0.35〜0.45mass%、Nb:0.005〜0.020mass%に規定した理由について以下に説明する。   First, the chemical composition of the steel sheet of the present invention is as follows: C: 0.85 to 1.10 mass%, Mn: 0.50 to 1.0 mass%, Si: 0.10 to 0.35 mass%, P ≦ 0.030 mass%, The reasons for defining S ≦ 0.030 mass%, Cr: 0.35 to 0.45 mass%, and Nb: 0.005 to 0.020 mass% will be described below.

C:0.85〜1.10mass%
Cは高炭素冷延鋼板の熱処理後に十分な硬さを得るための必須元素である。その下限値は、メリヤス針等のような精密部品で600〜750HVの硬さを確保できるように、またその上限値は、多種多様の冷間加工を阻害しないレベルの炭化物量に制御できるように決定した。つまり、下限値は、短時間の焼入れ焼戻し処理で安定して600HVの硬さを確保するため0.85mass%に規定した。また、上限値は、打抜き性、スェージング性、曲げ性、切削性など多岐に渡る塑性加工に耐えうる上限として1.10mass%に規定した。冷間圧延と球状化焼鈍を繰り返すことで炭化物の球状化処理を行うと冷間加工性が改善されるが、1.10mass%を超えると、熱間圧延工程、冷間圧延工程での圧延負荷が高くなり、またコイル端部の割れの頻度が著しく高くなるなど、製造工程上の問題も顕在化する。好ましくは、0.95〜1.05mass%である。
C: 0.85 to 1.10 mass%
C is an essential element for obtaining sufficient hardness after heat treatment of the high carbon cold rolled steel sheet. The lower limit value can ensure a hardness of 600 to 750 HV with precision parts such as knitted needles, and the upper limit value can be controlled to a level of carbide that does not hinder a wide variety of cold working. Were determined. That is, the lower limit value was defined as 0.85 mass% in order to stably secure a hardness of 600 HV by a short-time quenching and tempering treatment. Further, the upper limit value is defined as 1.10 mass% as an upper limit that can withstand various plastic workings such as punchability, swaging properties, bendability, and machinability. When the carbide spheroidization treatment is performed by repeating cold rolling and spheroidizing annealing, the cold workability is improved, but if it exceeds 1.10 mass%, the rolling load in the hot rolling process and the cold rolling process is improved. In addition, problems in the manufacturing process, such as the frequency of cracks at the coil ends becoming extremely high, become obvious. Preferably, it is 0.95-1.05 mass%.

Mn:0.50〜1.0mass%
Mnは鋼の脱酸に有効な元素であるとともに、鋼の焼入れ性を向上させて所定の硬さを安定的に得ることができる。過酷な用途に適用される高炭素鋼板を対象とした場合、0.50mass%以上で本発明の効果が顕著となる。一方、1.0mass%を超えると熱間圧延時にMnSが多量に析出して粗大化するため、部品加工時に割れなどが多発するようになる。そこで、Mnの上限は1.0mass%に規定した。好ましくは0.50〜0.80mass%である。
Mn: 0.50 to 1.0 mass%
Mn is an element effective for deoxidation of steel, and can improve the hardenability of steel and stably obtain a predetermined hardness. When the target is a high carbon steel plate applied to a severe use, the effect of the present invention becomes remarkable at 0.50 mass% or more. On the other hand, if it exceeds 1.0 mass%, a large amount of MnS precipitates and becomes coarse during hot rolling, so that cracks and the like frequently occur during parts processing. Therefore, the upper limit of Mn is defined as 1.0 mass%. Preferably it is 0.50 to 0.80 mass%.

Si:0.10〜0.35mass%
Siは鋼の脱酸元素であるため清浄鋼を溶製する上で有効な元素である。また、マルテンサイトの焼戻し軟化抵抗を有する元素である。このようなことから、下限値を0.10mass%に規定した。また、多量に添加すると低温焼戻しでのマルテンサイトの焼戻しが不十分となり、衝撃特性を劣化させるため上限値を0.35mass%とした。
Si: 0.10 to 0.35 mass%
Since Si is a deoxidizing element for steel, it is an effective element for melting clean steel. Further, it is an element having resistance to temper softening of martensite. For this reason, the lower limit value is defined as 0.10 mass%. Further, when added in a large amount, tempering of martensite at low temperature tempering becomes insufficient, and the upper limit value is set to 0.35 mass% in order to deteriorate the impact characteristics.

P≦0.030mass%、S≦0.030mass%
P、Sは不純物元素として不可避的に鋼中に存在し、何れも衝撃特性(靱性)に悪影響を及ぼすため、できる限り低減することが好ましい。Pは0.030mass%まで、Sは0.030mass%までの含有は実用上問題ない。より優れた衝撃特性を維持するためにはPは0.020mass%まで、Sは0.010mass%までの含有とすることが好ましい。
P ≦ 0.030 mass%, S ≦ 0.030 mass%
P and S are unavoidably present in the steel as impurity elements, and both have an adverse effect on impact properties (toughness), so it is preferable to reduce them as much as possible. P contains up to 0.030 mass%, and S contains up to 0.030 mass%. In order to maintain more excellent impact characteristics, it is preferable to contain P up to 0.020 mass% and S up to 0.010 mass%.

Cr:0.35〜0.45mass%
Crは鋼の焼入れ性を向上させる元素ではあるが、炭化物(セメンタイト)中に固溶して加熱段階での炭化物の再溶解を遅滞させるため、多量に添加すると逆に焼入れ性を阻害する。そのため、上限値を0.45mass%に規定した。焼入れ焼戻し後の硬さと衝撃特性のバランスより、下限値は0.35mass%にした。
Cr: 0.35-0.45 mass%
Although Cr is an element that improves the hardenability of steel, it dissolves in the carbide (cementite) and delays the remelting of the carbide in the heating stage. Therefore, if added in a large amount, the hardenability is adversely affected. Therefore, the upper limit value is defined as 0.45 mass%. From the balance between hardness and impact characteristics after quenching and tempering, the lower limit was set to 0.35 mass%.

Nb:0.005〜0.020mass%
Nbは、従来から、熱間圧延時に鋼の未再結晶温度域を拡大し、同時にNbCとして析出しオーステナイト粒の微細化に寄与する元素であることが知られており、高炭素鋼においても冷間圧延工程以降における組織の微細化効果を期待して添加される場合がある。本発明では、焼入れ後の低温での焼戻しによる靭性回復を主目的に、Nbを0.005〜0.020mass%添加する。微量のNb添加であれば、組織の微細化に寄与するほどのNbCは形成されず、Nbは希薄固溶状態となっている。Nbが希薄固溶状態となっていることにより、BCC構造であるフェライト相とマルテンサイト相中でのCの拡散が促進されるものと考えられる。すなわち、焼入れ処理における加熱時に炭化物からフェライト相へ溶けたCのオーステナイト相への拡散、および、焼戻し処理における加熱時にマルテンサイト相中の過飽和固溶Cの拡散と析出が促進され、その結果、短時間加熱での焼入れ性の向上と低温焼戻し処理による靭性の回復とを両立させることができると、現時点では考えている。Nbが0.020mass%を超えて添加されると、NbCの析出が顕著になり、Nbの希薄固溶状態が確保できず、Nbの希薄固溶状態に起因するCの拡散の促進効果が認められなくなる。このため、Nb添加量の上限は0.020mass%に限定した。なお、好ましくは0.015mass%以下である。Nb添加量が0.005mass%未満では、上記した効果を期待できなくなる。
Nb: 0.005-0.020 mass%
Nb has been conventionally known to be an element that expands the non-recrystallization temperature range of steel during hot rolling and at the same time precipitates as NbC and contributes to the refinement of austenite grains. It may be added in anticipation of the effect of refining the structure after the hot rolling process. In the present invention, 0.005 to 0.020 mass% of Nb is added mainly for the purpose of toughness recovery by tempering at a low temperature after quenching. If a small amount of Nb is added, NbC that contributes to the refinement of the structure is not formed, and Nb is in a dilute solid solution state. When Nb is in a dilute solid solution state, it is considered that diffusion of C in a ferrite phase and a martensite phase having a BCC structure is promoted. That is, the diffusion of C dissolved in the ferrite phase into the austenite phase during heating in the quenching process and the diffusion and precipitation of supersaturated solid solution C in the martensite phase during heating in the tempering process are promoted. At the present time, it is thought that improvement in hardenability by time heating and recovery of toughness by low-temperature tempering treatment can be achieved at the same time. When Nb is added in excess of 0.020 mass%, the precipitation of NbC becomes remarkable, the Nb dilute solid solution state cannot be secured, and the effect of promoting the diffusion of C due to the Nb dilute solid solution state is recognized. It becomes impossible. For this reason, the upper limit of Nb addition amount was limited to 0.020 mass%. In addition, Preferably it is 0.015 mass% or less. If the Nb addition amount is less than 0.005 mass%, the above-described effects cannot be expected.

Mo及びVは、不可避的にそれぞれMo<0.001mass%、V<0.001mass%含有することがある。さらに本発明では、任意の選択元素として、焼入れ性や焼戻し後の衝撃特性を向上させるために、MoとVを不可避的に含有する水準よりも多く添加することができる。しかし、MoやVを所定量以上添加するとNbの添加効果は失われるので、Nbの添加効果を最大限発揮するために、添加する場合には、MoとVの含有量を以下の範囲で制限することが好ましい。   Mo and V may inevitably contain Mo <0.001 mass% and V <0.001 mass%, respectively. Furthermore, in this invention, in order to improve hardenability and the impact characteristic after tempering as arbitrary selection elements, it can add more than the level which inevitably contains Mo and V. However, if Mo or V is added in a predetermined amount or more, the effect of Nb addition is lost. Therefore, in order to maximize the effect of Nb addition, the contents of Mo and V are limited within the following ranges. It is preferable to do.

0.001mass%≦Mo<0.05mass%
Moは鋼の焼入れ性向上に有効な元素であるが、添加量が多いと200〜350℃の低温焼戻しでは衝撃特性を悪化させることがある。したがって、添加する場合には、衝撃特性を阻害しない範囲で0.05mass%未満に規定した。好ましくはMoの添加は、0.01〜0.03mass%である。
0.001 mass% ≦ Mo <0.05 mass%
Mo is an element effective for improving the hardenability of steel, but if the addition amount is large, the low temperature tempering at 200 to 350 ° C. may deteriorate the impact characteristics. Therefore, when added, it is specified to be less than 0.05 mass% within a range that does not inhibit the impact characteristics. Preferably, the addition of Mo is 0.01 to 0.03 mass%.

0.001mass%≦V<0.05mass%
Vは鋼組織を微細化することで衝撃特性の向上には有効な元素であるが、焼入れ性を悪化させることがある。したがって、添加する場合には、焼入れ性を阻害しない範囲で0.05mass%未満に規定した。好ましくはVの添加は、0.01〜0.03mass%である。上記した成分以外の残部はFeおよび不可避的不純物である。
0.001 mass% ≦ V <0.05 mass%
V is an element effective for improving the impact characteristics by refining the steel structure, but may deteriorate the hardenability. Therefore, when added, it is specified to be less than 0.05 mass% within a range not impairing the hardenability. Preferably, the addition of V is 0.01 to 0.03 mass%. The balance other than the above components is Fe and inevitable impurities.

次に、本発明に係る鋼板の炭化物について説明する。
本発明の高炭素冷延鋼板に分散する炭化物の平均粒径(dav)と、球状化率(NSC/NTC)がそれぞれ下記(1)式及び(2)式を満たし、前記鋼板の板厚は1.0mm未満であることが必要である。
0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
ここで(1)式の平均粒径(dav)は、鋼板断面で観察される個々の炭化物と同等の面積の円を想定したときの個々の円の直径(円相当径)の平均値である。平均粒径(dav)が、この範囲にあると、衝撃特性に優れ、さらに短時間の溶体化処理でも所望の焼入れ硬さが容易に達成できるという効果がある。平均粒径(dav)が、0.2μm未満であると、経験上、針形状への2次加工の負荷が増大し、また、0.7μmを超えると短時間の溶体化処理が達成し難くなり好ましくない。
Next, the carbide of the steel plate according to the present invention will be described.
The average particle size (d av ) and the spheroidization rate (N SC / N TC ) of the carbide dispersed in the high carbon cold-rolled steel sheet of the present invention satisfy the following expressions (1) and (2), respectively. The plate thickness needs to be less than 1.0 mm.
0.2 ≦ d av ≦ 0.7 (μm) (1)
(N SC / N TC ) × 100 ≧ 90% (2)
Here, the average particle diameter (d av ) in the formula (1) is an average value of the diameters of the individual circles (equivalent circle diameters) when assuming a circle having the same area as each carbide observed in the cross section of the steel sheet. is there. When the average particle diameter (d av ) is in this range, the impact properties are excellent, and the desired quenching hardness can be easily achieved even with a solution treatment for a short time. When the average particle size (d av ) is less than 0.2 μm, experience shows that the secondary processing load on the needle shape increases, and when it exceeds 0.7 μm, a short time solution treatment is achieved. It becomes difficult and not preferable.

また、本発明では、炭化物が球状化している割合である球状化率を(2)式のNTC及びNSCで定義した。ここにおいて、NTCは、観察面積100μmあたりの炭化物の総個数である。また、NSCは、同一観察視野で球状化しているとみなせる炭化物の個数であり、d/d≦1.4の条件を満たす炭化物個数とした。ここで炭化物の長径をd、短径をdとした。 In the present invention, carbides defined in N TC and N SC of the spheroidization ratio is a ratio which is spheroidized (2). Here, N TC is the total number of carbides per 100 μm 2 observation area. Further, N SC is the number of carbide which can be regarded to be spheroidized in the same observation field, and satisfies the condition carbides number of d L / d S ≦ 1.4. Here, the major axis of the carbide was d L and the minor axis was d S.

炭化物は完全な球状に形成されているとは云えず、また観察面によっても楕円形として観察される場合が多いので、長径と短径との比(d/d)により、球状化の程度を規定した。このような事情から、本発明においては、d/d≦1.4の条件を満たす炭化物を球状化しているとみなしてその個数であるNSCを定義した。また、球状化率(NSC/NTC)×100が、90%以上であるとしたのは、この範囲であれば鋼板の2次加工性が良好となるとの経験的な知見を見出したためである。 The carbide is not necessarily formed into a perfect sphere, and is often observed as an ellipse depending on the observation surface. Therefore, the ratio of the major axis to the minor axis (d L / d S ) determines the spheroidization. The degree was specified. Under such circumstances, in the present invention, and the satisfying carbide d L / d S ≦ 1.4 defines the N SC is its number is regarded as being spheroidized. Further, the reason why the spheroidization ratio (N SC / N TC ) × 100 is 90% or more is that empirical knowledge has been found that the secondary workability of the steel sheet is good within this range. is there.

以上、説明した炭化物の平均粒径及び球状化率の測定は、走査型電子顕微鏡を用いて、二次電子像を2千倍の倍率で観察することにより行った。
炭化物は、冷間圧延後の鋼板を用いて熱処理前のサンプルの圧延方向と直角方向で板状試験片を切り取り、樹脂埋込等の処理を行い、板厚中央部近辺の観察面積100μmの範囲で、円相当径、d/d比、NTC、NSCを測定し、5視野分の平均値を算出した。これら測定及び算出は、市販の画像解析ソフトwinroofを用いた。
As described above, the measurement of the average particle size and the spheroidization ratio of the carbide described above was performed by observing the secondary electron image at a magnification of 2000 times using a scanning electron microscope.
Carbide cuts a plate-shaped test piece in a direction perpendicular to the rolling direction of the sample before heat treatment using a steel sheet after cold rolling, and performs processing such as resin embedding, and an observation area of 100 μm 2 near the center of the plate thickness. The equivalent circle diameter, d L / d S ratio, N TC , and N SC were measured in the range, and the average value for five fields of view was calculated. A commercially available image analysis software winroof was used for these measurements and calculations.

次に、本発明に係る鋼板の製造方法について説明する。
本発明で用いる熱延鋼板は、通常の製造条件で得られるものでよく、例えば、前記した化学組成を有する鋼片(スラブ)を1050〜1250℃に加熱し、800〜950℃の仕上温度で熱間圧延し、600〜750℃の巻取温度でコイルとすることで製造できる。なお、熱延鋼板の板厚は、所望の冷延鋼板の板厚から好適な冷間圧下率となるように適宜設定すればよい。
Next, the manufacturing method of the steel plate which concerns on this invention is demonstrated.
The hot-rolled steel sheet used in the present invention may be obtained under normal production conditions. For example, a steel piece (slab) having the above-described chemical composition is heated to 1050 to 1250 ° C. and a finishing temperature of 800 to 950 ° C. It can manufacture by carrying out hot rolling and setting it as a coil by the coiling temperature of 600-750 degreeC. In addition, what is necessary is just to set suitably the plate | board thickness of a hot-rolled steel plate so that it may become a suitable cold reduction rate from the plate | board thickness of desired cold-rolled steel plate.

冷間圧延(25〜65%)と球状化焼鈍(640〜720℃)を複数回繰り返すことで、板厚1.0mm未満の高炭素冷延鋼板を製造する。この冷間圧延(25〜65%)と球状化焼鈍(640〜720℃)は、それぞれ2〜5回繰り返すことが好ましい。   By repeating cold rolling (25 to 65%) and spheroidizing annealing (640 to 720 ° C.) a plurality of times, a high carbon cold rolled steel sheet having a thickness of less than 1.0 mm is produced. This cold rolling (25 to 65%) and spheroidizing annealing (640 to 720 ° C.) are preferably repeated 2 to 5 times.

冷間圧延(25〜65%)と球状化焼鈍(640〜720℃)を複数回繰り返す理由は以下に述べるように炭化物の平均粒径(dav)と、球状化率(NSC/NTC)×100がそれぞれ上記した(1)式及び(2)式を満たすように制御するためである。
まず、冷間圧延によって炭化物にひびが導入され、球状化焼鈍によってくだけはじめた炭化物が球状化していくが、1回の球状化焼鈍回数のみでは炭化物の球状化率を90%以上まで高めるのは困難であり、棒状又は板状の炭化物が残留する。そのような場合、焼入れ性にも悪影響を及ぼし、精密部品への冷間加工性を悪化させる。そのため、炭化物の球状化率(NSC/NTC)×100を90%以上にするには、冷間圧延と球状化焼鈍を交互に繰返すことが最適で、結果として鋼板中に微細かつ球状化率の高い炭化物の分布が得られる。
特に好ましくは、2〜5回の冷間圧延と2〜5回の球状化焼鈍である。
The reason why cold rolling (25 to 65%) and spheroidizing annealing (640 to 720 ° C.) are repeated a plurality of times is as follows. The average particle size (d av ) of carbides and the spheroidizing rate (N SC / N TC) ) × 100 is controlled so as to satisfy the above-described expressions (1) and (2).
First, cracks are introduced into the carbide by cold rolling, and the carbide started only by spheroidizing annealing is spheroidized, but the spheroidizing rate of the carbide is increased to 90% or more by only one spheroidizing annealing. It is difficult and a rod-like or plate-like carbide remains. In such a case, the hardenability is also adversely affected and the cold workability of precision parts is deteriorated. Therefore, in order to increase the spheroidization rate of carbide (N SC / N TC ) × 100 to 90% or more, it is optimal to alternately repeat cold rolling and spheroidizing annealing, resulting in fine and spheroidizing in the steel sheet. A high-rate carbide distribution is obtained.
Particularly preferred are 2-5 cold rolling and 2-5 spheroidizing annealing.

冷間圧延圧下率が25%未満の鋼板(冷延鋼板)に、球状化焼鈍を施すと、炭化物が粗大化してしまう。一方、冷間圧延圧下率が65%超では、冷間圧延操業の負荷が大きすぎることがあるため、冷間圧延圧下率は、好ましくは25〜65%の範囲である。
なお、冷間圧延後に球状化焼鈍を施さない最終の冷間圧延については、圧下率の下限は特に限定されない。
When spheroidizing annealing is performed on a steel sheet (cold rolled steel sheet) having a cold rolling reduction of less than 25%, carbides are coarsened. On the other hand, if the cold rolling reduction ratio exceeds 65%, the cold rolling operation load may be too large, and therefore the cold rolling reduction ratio is preferably in the range of 25 to 65%.
In addition, about the last cold rolling which does not give spheroidizing annealing after cold rolling, the minimum of a rolling reduction is not specifically limited.

球状化焼鈍温度が、640℃より低いと、球状化が不十分となりやすく、720℃より高温で球状化焼鈍を繰り返すと炭化物が粗大化しやすいため、球状化焼鈍温度は640〜720℃の範囲とすることが好ましい。球状化焼鈍の保持時間は、この範囲の温度で9〜30時間の範囲で適宜選択して行うことが出来る。
なお、冷間圧延前の熱延鋼板の軟化を目的とする軟化焼鈍についても、同様の温度範囲が好ましい。
以上が本発明に係る高炭素冷延鋼板の製造方法であるが、この鋼板を最終の目的である、メリヤス針のような機械部品とするには、所定の形状に加工したのち、以下の熱処理を行うことが好ましい。
When the spheroidizing annealing temperature is lower than 640 ° C., the spheroidizing tends to be insufficient, and when spheroidizing annealing is repeated at a temperature higher than 720 ° C., the carbide tends to coarsen, so the spheroidizing annealing temperature is in the range of 640 to 720 ° C. It is preferable to do. The holding time for the spheroidizing annealing can be appropriately selected at a temperature in this range within a range of 9 to 30 hours.
In addition, the same temperature range is preferable also about the softening annealing aiming at softening of the hot rolled steel sheet before cold rolling.
The above is the method for producing a high carbon cold-rolled steel sheet according to the present invention. In order to make this steel sheet the final object, a mechanical part such as a knitted needle, the following heat treatment is performed after processing into a predetermined shape. It is preferable to carry out.

90%以上球状化した炭化物が分布した高炭素冷延鋼板を、各種機械部品に加工後(プレス加工、溝切加工、スエージング加工等)、溶体化処理し、急冷(焼入れ)し、ついで焼戻し処理を施す。溶体化処理は、加熱温度を760〜820℃で、保持時間を短時間の3〜15分とする。焼入れ(急冷)は油を用いることが好ましい。焼戻し処理では、焼戻し温度を200〜350℃とすることが好ましい。さらに、より好ましくは250〜300℃である。これにより、硬さ600〜750HVを持つ各種機械部品を製造することができる。   After processing high carbon cold-rolled steel sheets with carbides with spheroidization of 90% or more into various machine parts (pressing, grooving, swaging, etc.), solution treatment, rapid cooling (quenching), and tempering Apply processing. In the solution treatment, the heating temperature is 760 to 820 ° C., and the holding time is short 3 to 15 minutes. It is preferable to use oil for quenching (rapid cooling). In the tempering treatment, the tempering temperature is preferably 200 to 350 ° C. Furthermore, it is 250-300 degreeC more preferably. Thereby, various machine parts with hardness 600-750HV can be manufactured.

溶体化処理の保持時間が、15分より長いと炭化物が溶け込みすぎ、オーステナイト粒が粗大化することで焼入れ後のマルテンサイト相が粗くなり、衝撃特性が劣化する。そのため溶体化処理の保持時間の上限は15分が好ましい。一方3分より短いと、炭化物の溶け込みが不十分で焼が入りにくくなるため、溶体化処理の保持時間の下限は3分が好ましい。より好ましくは5〜10分の範囲である。   If the retention time of the solution treatment is longer than 15 minutes, the carbide is excessively dissolved, and the austenite grains are coarsened, so that the martensite phase after quenching becomes coarse and impact characteristics are deteriorated. Therefore, the upper limit of the solution treatment holding time is preferably 15 minutes. On the other hand, if the time is shorter than 3 minutes, the carbide is not sufficiently dissolved and it is difficult to burn, so the lower limit of the solution treatment holding time is preferably 3 minutes. More preferably, it is the range for 5 to 10 minutes.

焼戻し温度が200℃未満ではマルテンサイト相の靱性回復が不十分である。一方、焼戻し温度が350℃を超えると衝撃値は回復するが硬さが600HVを下回るため、耐久性や耐摩耗性が問題となる。よって焼戻し温度の適正範囲は200〜350℃とすることが好ましい。より好ましくは250〜300℃である。焼戻しの保持時間は、30分〜3時間の範囲で適宜選択して行うことが出来る。   When the tempering temperature is less than 200 ° C., the toughness recovery of the martensite phase is insufficient. On the other hand, when the tempering temperature exceeds 350 ° C., the impact value is recovered, but since the hardness is lower than 600 HV, durability and wear resistance become a problem. Therefore, the appropriate range of the tempering temperature is preferably 200 to 350 ° C. More preferably, it is 250-300 degreeC. The tempering holding time can be appropriately selected within the range of 30 minutes to 3 hours.

種々の化学組成を有する鋼を真空溶解して30kgの鋼塊に鋳込んだ。この鋼塊を分塊圧延後、加熱温度1150℃、仕上げ温度870℃の条件で熱間圧延を行い、4mm及び2mmの熱延鋼板とした。その後、表1に示すいくつかの製造条件で冷間圧延及び球状化焼鈍を行って板厚が0.4mm以上1.0mm未満の冷間圧延材とした。この冷間圧延材を表2に示す条件で、800℃の炉に10分挿入し溶体化処理を行ったのち油焼入れし、250℃で焼戻しを行った。焼戻し処理後の鋼板から所定の試験片を採取し、衝撃試験及び硬さ測定試験に供した。硬さ測定は、JIS Z 2244の規定に準拠して、ビッカース硬度計で荷重5kg重(試験力:49.0N)の条件で行った。   Steels having various chemical compositions were melted in vacuum and cast into 30 kg steel ingots. This steel ingot was subjected to hot rolling under conditions of a heating temperature of 1150 ° C. and a finishing temperature of 870 ° C. to obtain hot rolled steel sheets of 4 mm and 2 mm. Thereafter, cold rolling and spheroidizing annealing were performed under several production conditions shown in Table 1 to obtain a cold rolled material having a plate thickness of 0.4 mm or more and less than 1.0 mm. The cold-rolled material was inserted into an 800 ° C. furnace for 10 minutes under the conditions shown in Table 2 and subjected to a solution treatment, followed by oil quenching and tempering at 250 ° C. Predetermined specimens were collected from the tempered steel sheet and subjected to an impact test and a hardness measurement test. The hardness was measured according to JIS Z 2244 under a condition of a load of 5 kg (test force: 49.0 N) with a Vickers hardness tester.

衝撃特性をシャルピー衝撃試験により評価した。衝撃試験片は、ノッチ幅0.2mmのUノッチ試験片(ノッチ深さ2.5mm、ノッチ半径0.1mm)とした。試験装置に試験片を設置した状態を図1に、試験片の形状を図2に示す。このような試験片及び試験方法を採用したのは以下の理由からである。   Impact properties were evaluated by Charpy impact test. The impact test piece was a U-notch test piece (notch depth 2.5 mm, notch radius 0.1 mm) with a notch width of 0.2 mm. FIG. 1 shows a state where the test piece is installed in the test apparatus, and FIG. 2 shows the shape of the test piece. The reason for adopting such a test piece and test method is as follows.

本発明が対象とする板厚1.0mm未満の鋼板に対して、従来使用されている金属材料用シャルピー衝撃試験装置では、試験装置の定格容量が50J以上と大きすぎてしまうため、正確な評価ができないという問題があった。試験装置の定格容量が50Jより小さい衝撃試験装置として、1Jの衝撃試験装置((株)東洋精機製作所製、型式DG−GB)を用いた。この試験装置は、炭素繊維強化プラスチックのシャルピー衝撃試験方法(JIS K 7077)に基づいたシャルピー衝撃試験機である。この試験装置を改良して支持台間距離を60mmから40mmにして用いた。本試験装置で、支持台間距離を60mmから40mmにしたのは、金属材料のシャルピー衝撃試験方法である、JIS規格JIS Z 2242に近い条件にするためである。   For a steel plate with a thickness of less than 1.0 mm targeted by the present invention, a conventional Charpy impact test apparatus for metal materials has a rated capacity of 50 J or more, which is an accurate evaluation. There was a problem that could not. As an impact test device having a rated capacity of less than 50 J, a 1 J impact test device (model DG-GB, manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used. This test apparatus is a Charpy impact tester based on a Charpy impact test method (JIS K 7077) for carbon fiber reinforced plastic. This test apparatus was improved and the distance between the support bases was changed from 60 mm to 40 mm. In this test apparatus, the distance between the support bases was changed from 60 mm to 40 mm in order to make the conditions close to JIS standard JIS Z 2242, which is a Charpy impact test method for metal materials.

試験片は、図2に示したように、ノッチ深さ2.5mm、ノッチ半径0.1mm(ノッチ幅0.2mm)とし、Uノッチを放電加工で形成した試験片を用いた。ノッチ半径を小さくしたのは、シャルピー衝撃試験時、1.0mm未満の薄板の場合には板のたわみが問題となるため、応力集中係数を高めることでシャルピー衝撃試験時の板のたわみを最小限にし、安定した衝撃値を得るためである。この試験方法及び試験片形状を採用することで、実際の使用環境に近い状態の衝撃特性を得ることが出来ることを確認している。本発明では衝撃値の数値が5J/cm以上である場合に衝撃特性が優れていると判断した。 As shown in FIG. 2, a test piece having a notch depth of 2.5 mm, a notch radius of 0.1 mm (notch width of 0.2 mm), and a U notch formed by electric discharge machining was used. The reason why the notch radius is reduced is that the deflection of the plate becomes a problem in the case of a thin plate of less than 1.0 mm during the Charpy impact test. Therefore, the deflection of the plate during the Charpy impact test is minimized by increasing the stress concentration factor. In order to obtain a stable impact value. By adopting this test method and test piece shape, it has been confirmed that impact characteristics in a state close to the actual use environment can be obtained. In the present invention, it was determined that the impact characteristics were excellent when the numerical value of the impact value was 5 J / cm 2 or more.

Figure 0006089131
Figure 0006089131

Figure 0006089131
Figure 0006089131

(実施例1)
溶体化処理後に油焼入れし、焼戻した後の断面硬さ及び衝撃値に及ぼす各種添加元素の影響を確認した試験結果を化学成分と共に、表3及び表4に示す。冷延鋼板の製造条件は、両者共に、5Aの条件(表1)を用いた。圧下率は、表1に記載されている範囲で制御した。断面硬さは、圧延直角方向に切り出した試験片を樹脂に埋め込み、断面を研磨し、板厚中央部で測定した。衝撃値は、圧延平行方向に採取した衝撃試験片を用いて測定した。得られた結果(硬さ、衝撃値)を表3及び表4に示した。
衝撃値が5J/cmより大きく、かつ硬さHVが600〜750を満足する場合の評価を◎、衝撃値及び硬さの上記目標値のいずれかが満足していないものを×とした。
Example 1
Tables 3 and 4 show the test results of the effects of various additive elements on the cross-sectional hardness and impact value after oil quenching and tempering, together with chemical components, after solution treatment. The manufacturing conditions of the cold-rolled steel sheet were both 5A conditions (Table 1). The rolling reduction was controlled within the range described in Table 1. The cross section hardness was measured at the center of the plate thickness by embedding a test piece cut in the direction perpendicular to the rolling direction into a resin, polishing the cross section. The impact value was measured using an impact test piece taken in the rolling parallel direction. The obtained results (hardness, impact value) are shown in Tables 3 and 4.
The evaluation when the impact value is larger than 5 J / cm 2 and the hardness HV satisfies 600 to 750 is evaluated as “、”, and the case where any of the above target values of the impact value and the hardness is not satisfied is evaluated as “X”.

Figure 0006089131
Figure 0006089131

Figure 0006089131
Figure 0006089131

C量が下限を外れたとき(鋼種No1)は、衝撃値及び焼入れ焼戻し硬さが目標値を外れていた。C量が上限値をはずれたもの(鋼種No6)は、焼入れ焼戻し硬さが目標値を上回り、衝撃値が5J/cmを下回っていた。C:0.85mass%(鋼種No2、比較例)、C:1.10mass%(鋼種No4、比較例)はそれぞれ衝撃値が5J/cmを下回り、評価は×であった。それに対し、本発明例の化学成分に相当する鋼板(鋼種No3、5、7、8、9、10)は、焼入れ焼戻し硬さが目標範囲内であり、衝撃特性も優れていた。 When the amount of C deviated from the lower limit (steel type No. 1), the impact value and the quenching and tempering hardness deviated from the target values. In the case where the amount of C deviated from the upper limit (steel type No. 6), the quenching and tempering hardness exceeded the target value, and the impact value was less than 5 J / cm 2 . C: 0.85mass% (steel types No2, Comparative Example), C: 1.10mass% (steel types No4, Comparative Example) Each impact value falls below 5 J / cm 2, evaluation was ×. On the other hand, the steel plates (steel types Nos. 3, 5, 7, 8, 9, 10) corresponding to the chemical components of the examples of the present invention had quenching and tempering hardness within the target range and excellent impact characteristics.

表4に示す例では、発明例に相当する化学成分の鋼はすべて焼入れ焼戻し硬さが目標値を満たし、衝撃特性に優れていた(鋼種No15、16、17、19、21)。V添加量が0.05mass%を超えるもの(鋼種No12)、Mo添加量が0.05mass%を超えるもの(鋼種No13)、Nb添加量が0.005mass%より少ないもの(鋼種No14)、Nb添加量が0.020mass%を超えるもの(鋼種No18)、Nb+Mo複合添加でMo添加量が0.05mass%より多いもの(鋼種No20)、Nb+V複合添加でV添加量が0.05mass%より多いもの(鋼種No22)は、硬さ目標値に入っているが衝撃特性が劣っているか、目標衝撃値を満足しているが硬さが低下しているか、硬さおよび衝撃特性がともに目標値の下限を下回っていた。   In the examples shown in Table 4, all the steels having the chemical components corresponding to the inventive examples had the quenching and tempering hardness satisfying the target values and excellent impact properties (steel types Nos. 15, 16, 17, 19, and 21). V addition amount exceeding 0.05 mass% (steel grade No. 12), Mo addition amount exceeding 0.05 mass% (steel grade No. 13), Nb addition amount less than 0.005 mass% (steel grade No. 14), Nb addition Amount exceeding 0.020 mass% (steel grade No. 18), Nb + Mo composite addition with Mo addition amount greater than 0.05 mass% (steel grade No. 20), Nb + V composite addition with V addition amount greater than 0.05 mass% ( Steel type No. 22) is in the hardness target value, but the impact characteristics are inferior, the target impact value is satisfied, but the hardness is reduced, or both the hardness and impact characteristics are lower than the lower limit of the target value. It was below.

(実施例2)
鋼種No3(表3)の化学成分を有する熱延鋼板を用いて、表1に記載の冷間圧延と球状化処理の製造条件を変化させときの球状化率、炭化物平均粒径、さらに溶体化処理後油焼入れし焼戻した後の硬さ及び衝撃値を表5に示した。
(Example 2)
Using a hot-rolled steel sheet having the chemical composition of steel type No. 3 (Table 3), the spheroidizing ratio, carbide average particle diameter, and solution treatment when changing the production conditions of cold rolling and spheroidizing treatment described in Table 1 Table 5 shows the hardness and impact value after oil quenching and tempering after the treatment.

Figure 0006089131
Figure 0006089131

球状化焼鈍回数が1回のもの(製造条件No1)は球状化率が不十分で、衝撃特性が劣っていた。球状化焼鈍回数が2回の場合、球状化焼鈍温度を600〜635℃、圧下率を10〜20%で組み合わせて、それぞれ2回行うと、球状化が不十分となり、衝撃特性が劣っていた(製造条件No2A)。球状化焼鈍温度を600〜635℃、圧下率を70〜85%で組み合わせてそれぞれ2回繰り返すと、衝撃特性は十分であるが、炭化物の平均粒径が下限を外れ、焼入れ焼戻し処理後の硬さが目標値を上回っていた(製造条件No2C)。   When the number of spheroidizing annealing was one (manufacturing condition No. 1), the spheroidizing rate was insufficient and the impact characteristics were inferior. When the number of times of spheroidizing annealing was 2, when the spheroidizing annealing temperature was 600 to 635 ° C. and the rolling reduction was 10 to 20% and each was performed twice, spheroidization was insufficient and the impact characteristics were inferior. (Manufacturing condition No2A). If the spheroidizing annealing temperature is 600 to 635 ° C. and the rolling reduction is 70 to 85% and each is repeated twice, the impact characteristics are sufficient, but the average particle size of the carbide is outside the lower limit, and the hardness after quenching and tempering treatment is sufficient. Exceeded the target value (manufacturing condition No. 2C).

球状化焼鈍温度を640〜720℃、圧下率を10〜20%で組み合わせてそれぞれ2回繰り返すと、球状化は十分だが、炭化物の平均粒径が目標値の上限を超え、衝撃特性が劣っていた(製造条件No2D)。これは炭化物が大きすぎると、焼入れ時に、マルテンサイト素地の未溶解炭化物が大きめとなり、破壊時の起点となりやすい未溶解の炭化物とマルテンサイト素地の界面の面積が大きいため、衝撃特性に劣ることになったものと思われる。それに対し、球状化焼鈍温度を640〜720℃、圧下率を25〜65%の組み合わせでそれぞれ2回繰り返すと球状化率、炭化物粒径、焼入れ焼戻し後の硬さはそれぞれ目標設定値の範囲に収まり、衝撃特性が優れていた(製造条件No2B)。   If the spheroidizing annealing temperature is 640 to 720 ° C. and the rolling reduction is 10 to 20% and each is repeated twice, the spheroidization is sufficient, but the average particle size of the carbide exceeds the upper limit of the target value, and the impact characteristics are inferior. (Production conditions No. 2D). This is because if the carbide is too large, the undissolved carbide in the martensite substrate becomes larger during quenching, and the area of the interface between the undissolved carbide and the martensite substrate that tends to be the starting point for fracture is large, so the impact characteristics are inferior. It seems to have become. On the other hand, when the spheroidizing annealing temperature is 640 to 720 ° C. and the rolling reduction is 25 to 65% and repeated twice each, the spheroidizing ratio, carbide particle size, and hardness after quenching and tempering are within the range of the target set values, respectively. The impact characteristics were excellent (manufacturing condition No. 2B).

球状化焼鈍回数を4回にしたとき、1回目〜4回目の冷間圧延圧下率を全て25〜65%にすると、球状化率、炭化物粒径が目標値の範囲におさまり、衝撃特性も優れていた(製造条件No5A)。製造条件No5Aと焼鈍温度を同じにして、1回目〜4回目の冷間圧延圧下率を全て10〜20%にすると、炭化物粒径が目標値を超えて大きくなりすぎ、衝撃特性も劣っていた(製造条件No5B)。   When the number of spheroidizing annealing is set to 4 and the first to fourth cold rolling reduction ratios are all set to 25 to 65%, the spheroidizing ratio and carbide particle size are within the target values, and the impact characteristics are excellent. (Manufacturing condition No5A). When the manufacturing conditions No. 5A and the annealing temperature were made the same, and the first to fourth cold rolling reductions were all made 10 to 20%, the carbide particle size exceeded the target value and the impact characteristics were inferior. (Manufacturing condition No5B).

(実施例3)
鋼種No16(表4)の化学成分を有する熱延鋼板を用いて、表1に記載の製造条件を変化させたときの球状化率、炭化物平均粒径、さらに溶体化処理後油焼入れし焼戻した後の硬さ及び衝撃値を表6に示した。本発明の製造方法に相当する製造条件No2B、No5Aを用いて冷延、球状化焼鈍を行った鋼板は、目標球状化率、目標衝撃値を満たしていた。
(Example 3)
Using a hot-rolled steel sheet having the chemical composition of steel type No. 16 (Table 4), the spheroidization ratio, carbide average particle diameter when changing the production conditions described in Table 1, and further, oil quenching and tempering after solution treatment. The later hardness and impact values are shown in Table 6. The steel sheets that were subjected to cold rolling and spheroidizing annealing using the manufacturing conditions No2B and No5A corresponding to the manufacturing method of the present invention satisfied the target spheroidization rate and the target impact value.

Figure 0006089131
Figure 0006089131

本発明範囲の化学成分を有する鋼板は、Nb添加によって焼入れ性が向上し、熱処理後の衝撃特性が改善されるため、過共析鋼で過酷な環境で使用される機械工具部品用途に適している。
Cが0.85〜1.10mass%の過共析鋼板は、メリヤス針のような過酷な使用環境下で硬さと靭性バランスが求められる用途に好適である。
Steel sheets having chemical components within the scope of the present invention are hardened by Nb addition and impact properties after heat treatment are improved, so they are suitable for machine tool parts used in harsh environments with hypereutectoid steels. Yes.
A hyper-eutectoid steel sheet having a C of 0.85 to 1.10 mass% is suitable for applications that require a balance between hardness and toughness in a severe use environment such as a knitted needle.

Claims (5)

鋼板の化学組成が、C:0.85〜1.10mass%、Mn:0.50〜1.0mass%、Si:0.10〜0.35mass%、P≦0.030mass%、S≦0.030mass%、Cr:0.35〜0.45mass%、Nb:0.005〜0.020mass%を含有し、残部Fe及び不可避不純物からなり、前記鋼板中に分散する炭化物の平均粒径(dav)と球状化率(NSC/NTC)×100%がそれぞれ下記(1)式及び(2)式を満たし、前記鋼板の板厚は1.0mm未満であることを特徴とする高炭素冷延鋼板。

0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
ここで、(1)式の平均粒径(dav)は、鋼板断面で観察される個々の炭化物と同等の面積の円を想定したときの個々の円の直径(円相当径)の平均値である。
また、(2)式のNTC及びNSCは、それぞれNTC:観察面積100μm当たりの炭化物の総個数、NSC:d/d≦1.4の条件を満たす炭化物個数であり、ここで炭化物の長径をd、短径をdとする。
The chemical composition of the steel sheet was C: 0.85 to 1.10 mass%, Mn: 0.50 to 1.0 mass%, Si: 0.10 to 0.35 mass%, P ≦ 0.030 mass%, S ≦ 0. 030 mass%, Cr: 0.35 to 0.45 mass%, Nb: 0.005 to 0.020 mass%, consisting of the balance Fe and inevitable impurities, and the average particle size of carbides dispersed in the steel sheet (d av ) And spheroidization ratio (N SC / N TC ) × 100% satisfy the following formulas (1) and (2), respectively, and the thickness of the steel sheet is less than 1.0 mm, Rolled steel sheet.
0.2 ≦ d av ≦ 0.7 (μm) (1)
(N SC / N TC ) × 100 ≧ 90% (2)
Here, the average particle diameter (d av ) in the formula (1) is the average value of the diameters of the individual circles (equivalent circle diameters) when assuming a circle having the same area as each carbide observed in the cross section of the steel sheet. It is.
N TC and N SC in the formula (2) are respectively N TC : the total number of carbides per observation area of 100 μm 2 , and N SC : the number of carbides satisfying the condition of d L / d S ≦ 1.4, Here, the major axis of the carbide is d L and the minor axis is d S.
前記化学組成が、さらに、Mo及びVの内から選ばれる1種または2種を含有し、それぞれの含有量がいずれも0.001mass%以上0.05mass%未満であることを特徴とする、請求項1に記載の高炭素冷延鋼板。   The chemical composition further contains one or two selected from Mo and V, and each content is 0.001 mass% or more and less than 0.05 mass%. Item 5. The high carbon cold rolled steel sheet according to Item 1. 請求項1又は2に記載の化学組成からなる熱延鋼板に冷間圧延及び球状化焼鈍を繰り返し行い高炭素冷延鋼板を製造する方法において、前記高炭素冷延鋼板中に分散する炭化物の平均粒径(dav)と、球状化率(NSC/NTC)がそれぞれ下記(1)式及び(2)式を満たし、前記鋼板の板厚は1.0mm未満であることを特徴とする高炭素冷延鋼板の製造方法。

0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
ここで、(1)式の平均粒径(dav)は、鋼板断面で観察される個々の炭化物と同等の面積の円を想定したときの個々の円の直径(円相当径)の平均値である。
また、(2)式のNTC及びNSCは、それぞれNTC:観察面積100μm当たりの炭化物の総個数、NSC:d/d≦1.4の条件を満たす炭化物個数であり、ここで炭化物の長径をd、短径をdとする。
The average of the carbide | carbonized_material disperse | distributed in the said high carbon cold-rolled steel sheet in the method of manufacturing a high-carbon cold-rolled steel sheet by repeatedly performing cold rolling and spheroidizing annealing to the hot-rolled steel sheet which consists of the chemical composition of Claim 1 or 2. The particle size (d av ) and the spheroidization rate (N SC / N TC ) satisfy the following formulas (1) and (2), respectively, and the plate thickness of the steel sheet is less than 1.0 mm: Manufacturing method of high carbon cold-rolled steel sheet.
0.2 ≦ d av ≦ 0.7 (μm) (1)
(N SC / N TC ) × 100 ≧ 90% (2)
Here, the average particle diameter (d av ) in the formula (1) is the average value of the diameters of the individual circles (equivalent circle diameters) when assuming a circle having the same area as each carbide observed in the cross section of the steel sheet. It is.
N TC and N SC in the formula (2) are respectively N TC : the total number of carbides per observation area of 100 μm 2 , and N SC : the number of carbides satisfying the condition of d L / d S ≦ 1.4, Here, the major axis of the carbide is d L and the minor axis is d S.
前記熱延鋼板に冷間圧延及び球状化焼鈍を繰り返し行う回数を2〜5回とすることを特徴とする、請求項3に記載の高炭素冷延鋼板の製造方法。   The method for producing a high-carbon cold-rolled steel sheet according to claim 3, wherein the hot-rolled steel sheet is repeatedly subjected to cold rolling and spheroidizing annealing 2 to 5 times. 前記冷間圧延の圧下率が25〜65%で、前記球状化焼鈍の温度が640〜720℃であることを特徴とする、請求項3又は4に記載の高炭素冷延鋼板の製造方法。   The method for producing a high carbon cold-rolled steel sheet according to claim 3 or 4, wherein the rolling reduction of the cold rolling is 25 to 65%, and the temperature of the spheroidizing annealing is 640 to 720 ° C.
JP2016076330A 2015-08-14 2016-04-06 High carbon cold rolled steel sheet and method for producing the same Active JP6089131B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/071133 WO2017029922A1 (en) 2015-08-14 2016-07-19 High-carbon cold-rolled steel sheet and method for manufacturing same
CN201680008133.0A CN107208224B (en) 2015-08-14 2016-07-19 Cold-rolled high-carbon steel plate and its manufacturing method
EP16836913.0A EP3216889B1 (en) 2015-08-14 2016-07-19 High-carbon cold-rolled steel sheet and method for manufacturing same
KR1020177014614A KR101953495B1 (en) 2015-08-14 2016-07-19 High carbon cold-rolled steel sheet and method of manufacturing the same
TW105125451A TWI591187B (en) 2015-08-14 2016-08-10 High-carbon cold-rolled steel sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160015 2015-08-14
JP2015160015 2015-08-14

Publications (2)

Publication Number Publication Date
JP2017036492A JP2017036492A (en) 2017-02-16
JP6089131B2 true JP6089131B2 (en) 2017-03-01

Family

ID=58049194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076330A Active JP6089131B2 (en) 2015-08-14 2016-04-06 High carbon cold rolled steel sheet and method for producing the same

Country Status (6)

Country Link
EP (1) EP3216889B1 (en)
JP (1) JP6089131B2 (en)
KR (1) KR101953495B1 (en)
CN (1) CN107208224B (en)
TW (1) TWI591187B (en)
WO (1) WO2017029922A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467441B2 (en) * 2017-01-17 2019-02-13 トクセン工業株式会社 Needle wire
SE543422C2 (en) * 2019-06-07 2021-01-12 Voestalpine Prec Strip Ab Steel strip for flapper valves
CN110306027A (en) * 2019-07-02 2019-10-08 浙江豪环新材料有限公司 A kind of T8 carbon steel cold-rolling production process
WO2021090472A1 (en) 2019-11-08 2021-05-14 株式会社特殊金属エクセル High-carbon cold-rolled steel sheet and production method therefor, and mechanical parts made of high-carbon steel
KR102502011B1 (en) * 2020-12-21 2023-02-21 주식회사 포스코 Qt heat treated high carbon hot rolled steel sheet, high carbon cold rolled steel sheet, qt heat treated high carbon cold rolled steel shhet and method of manufacturing thereof
CN114055082B (en) * 2021-11-15 2024-02-06 江苏九天光电科技有限公司 Production method of high-grade special steel precision steel strip for crochet hook
CN114855076B (en) * 2022-04-15 2023-03-17 首钢集团有限公司 High-spheroidization-rate high-carbon steel and preparation method thereof
CN114959222A (en) * 2022-06-27 2022-08-30 安徽楚江特钢有限公司 Production method of steel belt for wave spring
CN115261565B (en) * 2022-06-29 2023-11-21 河钢股份有限公司 Heat treatment method suitable for 35MnB steel wear-resistant piece

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161090B2 (en) * 1999-03-16 2008-10-08 日新製鋼株式会社 High carbon steel plate with excellent punchability
JP2003147485A (en) * 2001-11-14 2003-05-21 Nisshin Steel Co Ltd High toughness high carbon steel sheet having excellent workability, and production method therefor
JP3999727B2 (en) * 2003-11-10 2007-10-31 株式会社神戸製鋼所 Hypereutectoid steel
JP4530268B2 (en) * 2004-08-26 2010-08-25 日新製鋼株式会社 High carbon steel member with excellent impact characteristics and method for producing the same
JP5030280B2 (en) 2007-07-20 2012-09-19 日新製鋼株式会社 High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same
JP5197076B2 (en) * 2008-03-11 2013-05-15 日新製鋼株式会社 Medium and high carbon steel sheet with excellent workability and manufacturing method thereof
CN102851579A (en) * 2012-09-07 2013-01-02 首钢总公司 Nb-containing micro-alloyed high-carbon steel hot-rolled wire rod and manufacturing method thereof
US10407748B2 (en) * 2013-11-22 2019-09-10 Nippon Steel Corporation High-carbon steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
TWI591187B (en) 2017-07-11
CN107208224A (en) 2017-09-26
KR101953495B1 (en) 2019-02-28
TW201712130A (en) 2017-04-01
CN107208224B (en) 2018-11-09
EP3216889B1 (en) 2018-12-12
WO2017029922A1 (en) 2017-02-23
JP2017036492A (en) 2017-02-16
EP3216889A1 (en) 2017-09-13
EP3216889A4 (en) 2017-10-25
KR20170075783A (en) 2017-07-03

Similar Documents

Publication Publication Date Title
JP6089131B2 (en) High carbon cold rolled steel sheet and method for producing the same
KR102021216B1 (en) Wire rods for bolts with excellent delayed fracture resistance after pickling and quenching tempering, and bolts
JP6880245B1 (en) High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts
JP5862802B2 (en) Carburizing steel
JP2010007143A (en) Steel for machine structure having excellent fatigue limit ratio and machinability
CN103124801A (en) Case hardened steel and method for producing same
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2009127095A (en) Case-hardening steel for power transmission component
JP2015017283A (en) High carbon hot-rolled steel sheet excellent in hardenability and workability, and method for manufacturing the same
WO2015146173A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP6620490B2 (en) Age-hardening steel
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP4159009B2 (en) Steel sheet for punched parts with excellent fatigue characteristics
JP2007107046A (en) Steel material to be induction-hardened
JP7031428B2 (en) Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods
JP2017071859A (en) Non-heat-treated steel and method for producing the same
JP5505264B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP2008144270A (en) Non-heat-treated steel for machine structure excellent in fatigue property and toughness, its manufacturing method, component for machine structure, and its manufacturing method
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
JP4411096B2 (en) Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization
JP2015017285A (en) High carbon hot-rolled steel sheet excellent in hardenability and workability, and method for manufacturing the same
JP5392857B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent machinability
JP2017119900A (en) Induction hardening gear

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6089131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250