JP6527709B2 - Metal belt element for continuously variable transmission - Google Patents

Metal belt element for continuously variable transmission Download PDF

Info

Publication number
JP6527709B2
JP6527709B2 JP2015025882A JP2015025882A JP6527709B2 JP 6527709 B2 JP6527709 B2 JP 6527709B2 JP 2015025882 A JP2015025882 A JP 2015025882A JP 2015025882 A JP2015025882 A JP 2015025882A JP 6527709 B2 JP6527709 B2 JP 6527709B2
Authority
JP
Japan
Prior art keywords
curved surface
neck
saddle
arc
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015025882A
Other languages
Japanese (ja)
Other versions
JP2016148409A (en
Inventor
雅道 原田
雅道 原田
高田 健太郎
健太郎 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015025882A priority Critical patent/JP6527709B2/en
Priority to CN201610037348.7A priority patent/CN105889414B/en
Publication of JP2016148409A publication Critical patent/JP2016148409A/en
Application granted granted Critical
Publication of JP6527709B2 publication Critical patent/JP6527709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/24Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using chains or toothed belts, belts in the form of links; Chains or belts specially adapted to such gearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は無段変速機の金属ベルト用エレメントに関し、より詳細には金属ベルト駆動時にエレメントのネック根元部に発生する応力を好適に低減し繰り返し疲労強度を向上させ、これにより無段変速機のトルク伝達容量を向上させると共に、オーバードライブレシオ領域付近における無段変速機の動力伝達効率を向上させることが可能な無段変速機の金属ベルト用エレメントに関するものである。   The present invention relates to an element for a metal belt of a continuously variable transmission, and more specifically, suitably reduces stress generated at a neck root portion of the element at the time of driving the metal belt to improve repeated fatigue strength, thereby making the continuously variable transmission The present invention relates to an element for a metal belt of a continuously variable transmission capable of improving the torque transmission capacity and improving the power transmission efficiency of the continuously variable transmission in the vicinity of the overdrive ratio region.

無段変速機の金属ベルト用エレメントは、図8に示されるように、略台形状のエレメントのエレメント本体と、金属リング集合体が嵌合する左右一対のリングスリットを間に有するネック部と、ネック部を介して本体の上部に形成される略三角形状のイヤー部とを備えている。エレメント本体の左右方向両端部には、ドライブプーリ(図示せず)及びドリブンプーリ(図示せず)のV面に当接可能な一対の当接面が形成されている。またエレメントの進行方向前側および後側には隣接するエレメントに当接する主面がそれぞれ形成され、また、進行方向前側の主面の下部には左右方向に延びるロッキングエッジを介して傾斜面が形成されている。更に、前後に隣接するエレメントを結合すべく、イヤー部の前後面に相互に嵌合可能なノーズ部およびホール部(図9(b))がそれぞれ形成されている。そして左右のリングスリットの下縁に、金属リング集合体の内周面(最内周の金属リングの内周面)を支持するサドル面が形成されている。   The metal belt element of the continuously variable transmission, as shown in FIG. 8, includes an element body of a substantially trapezoidal element, and a neck portion having a pair of left and right ring slits into which the metal ring assembly is fitted; And a substantially triangular shaped ear portion formed on the upper portion of the main body via the neck portion. At both end portions in the left-right direction of the element body, a pair of contact surfaces that can contact the V surface of a drive pulley (not shown) and a driven pulley (not shown) are formed. Further, the main surface in contact with the adjacent element is formed on the front side and the rear side in the advancing direction of the element, and an inclined surface is formed on the lower side of the main surface on the front side in the advancing direction ing. Further, in order to connect the elements adjacent to each other in the front and rear sides, a nose portion and a hole portion (FIG. 9B) which can be fitted to each other are formed on the front and rear surfaces of the ear portion. And the saddle surface which supports the inner peripheral surface (inner peripheral surface of the metal ring of innermost periphery) of a metal ring assembly is formed in the lower edge of a ring slit on either side.

そして上記金属リング集合体と上記エレメントとから成る金属ベルトは一対のプーリ(ドライブプーリ、ドリブンプーリ)間に巻き掛けられ、エレメントの両当接面がプーリのV面に押圧され、その当接面とプーリのV面との摩擦力によってエンジンからの回転動力をドライブプーリからドリブンプーリへ伝達する。このようにエレメントは金属ベルトの回転時においてサドル面を金属リング集合体によって下方に押圧されながら両当接面をプーリのV面で押圧されることになる。更に、エレメントがドライブプーリとドリブンプーリに伝達トルクを受け渡すときにエレメント本体にはトルクの伝達方向によって前後方向への曲げモーメントが作用する。従って、エレメントのネック部、特にサドル面との交差部であるネック根元部(図中の点円部)に応力が集中する。   A metal belt consisting of the above metal ring assembly and the above element is wound around a pair of pulleys (drive pulley and driven pulley), both contact surfaces of the element are pressed against the V surface of the pulley, and the contact surfaces The rotational power from the engine is transmitted from the drive pulley to the driven pulley by the frictional force between the belt and the V surface of the pulley. In this manner, when the metal belt rotates, the element is pressed by the V surface of the pulley while the saddle surface is pressed downward by the metal ring assembly. Furthermore, when the element transfers the transmission torque to the drive pulley and the driven pulley, a bending moment in the front-rear direction acts on the element body depending on the transmission direction of the torque. Therefore, stress is concentrated at the neck portion of the element, particularly at the neck root portion (point circle portion in the figure) which is a crossing portion with the saddle surface.

上記ネック根元部には、ネック側面からサドル面にかけて滑らかに窪ませた円弧凹部が形成されている。この円弧凹部の断面形状が、ネック側面に連続する曲率半径R1の第1円弧と、第1円弧に連続しながら底部を形成する曲率半径R2の第2円弧とで構成され、曲率半径R1が曲率半径R2より大きいことを特徴とするエレメントが知られている(例えば、特許文献1を参照。)。   At the root portion of the neck, an arc concave portion is formed which is smoothly recessed from the side surface of the neck to the saddle surface. The cross-sectional shape of the arc concave portion is constituted by a first arc of curvature radius R1 continuous to the side surface of the neck and a second arc of curvature radius R2 forming the bottom portion continuously to the first arc, the curvature radius R1 being a curvature An element characterized by being larger than the radius R2 is known (see, for example, Patent Document 1).

また、円弧凹部が曲率半径R1,R2,R3,R4の4つの円弧で構成され、これら曲率半径の内で底部を形成する第2円弧の曲率半径R2が最大値であることを特徴とするエレメントが知られている(例えば、特許文献2を参照。)。   An element characterized in that the arc concave portion is constituted by four arcs of curvature radii R1, R2, R3 and R4, and the curvature radius R2 of the second arc forming the bottom portion among these curvature radii is the maximum value. Are known (see, for example, Patent Document 2).

また、サドル面からの円弧の深さDと曲率半径Rとの比D/Rが0.3から0.75の範囲内であることを特徴とするエレメントも知られている(例えば、特許文献3を参照。)。   There is also known an element characterized in that the ratio D / R of the depth D of the arc from the saddle surface to the radius of curvature R is in the range of 0.3 to 0.75 (e.g. See 3).

他方、エレメント材料の炭素含有量(含有C%)はネック根元部の応力集中に大きな影響を与えることが知られている。炭素含有量(含有C%)が0.50〜0.70%である鋼材によってエレメントを製作する場合、エレメントの耐摩耗性および耐疲労性を向上させることが知られている(例えば、特許文献4を参照。)。   On the other hand, it is known that the carbon content (content C%) of the element material has a great influence on the stress concentration at the neck root. It is known to improve the wear resistance and fatigue resistance of an element when the element is made of a steel material having a carbon content (containing C%) of 0.50 to 0.70% (e.g., patent documents See 4).

特許第4766064号Patent No. 4766064 特許第3975791号Patent No. 3975791 特許第4321119号Patent No. 4321119 特許第5594521号Patent No. 5594521

上記特許文献1及び2は、サドル面とネック側面を滑らかな円弧(曲面)で繋げることでネック根元部に発生する応力を低減する為の手法である。つまり、エレメント全体の形状を変更することなく、円弧の曲率半径Rを大きくすることでネック根元部に発生する応力を低減する為の手法である。
しかしながら、ネック根元部に発生する応力については、曲率半径Rよりもサドル面から円弧最下部までの距離(深さ)Dの影響が大きいことが強度解析により明らかになっている。上記特許文献1及び2ではサドル面からの円弧最下部までの距離(D)が考慮されていない。
The patent documents 1 and 2 are methods for reducing the stress generated at the neck root portion by connecting the saddle surface and the neck side surface with a smooth arc (curved surface). That is, it is a method for reducing the stress generated at the neck root portion by enlarging the curvature radius R of the arc without changing the shape of the entire element.
However, with regard to the stress generated at the root portion of the neck, strength analysis has revealed that the influence of the distance (depth) D from the saddle surface to the lowermost portion of the arc is greater than the curvature radius R. In the above Patent Documents 1 and 2, the distance (D) from the saddle surface to the lowermost part of the arc is not taken into consideration.

図10は、図9(a)に示されるように、エレメントが拘束された状態でエレメントのサドル面上に下向きの荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示している。また、図11は、図9(b)に示されるように、エレメントが拘束された状態でサドル面とロッキングエッジの中間位置に当る背面に、ホール部側からノーズ部側へ荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示している。図10(a)(b)及び図11(a)(b)から明らかな通り、R1<R2(R1/R2<1)かつR3<R2(R3/R2<1)の関係であっても発生する応力は高い値で大きくばらついている。従って、上記特許文献1及び2はネック根元部の応力を低減することに関して大きな効果を有しているとは必ずしも言えない。
他方、上記特許文献3では、サドル面からの円弧最下部までの距離(D)が考慮されている。
しかしながら、図10(c)及び図11(c)から明らかな通り、0.3≦D/R≦0.75においてネック根元部に高い応力が発生していることが分かる。従って、上記特許文献3についてもネック根元部の応力を低減することに関して大きな効果を有しているとは必ずしも言えない。
そこで、本発明は、上記従来技術の問題点に鑑み成されたものであり、その目的は、金属ベルト駆動時にエレメントのネック根元部に発生する応力を好適に低減し繰り返し疲労強度を向上させ、これにより無段変速機のトルク伝達容量を向上させると共に、オーバードライブレシオ領域付近における無段変速機の動力伝達効率を向上させることが可能な無段変速機の金属ベルト用エレメントを提供することにある。
As shown in FIG. 9A, in FIG. 10, when stress is generated at the neck root when a downward load is applied on the saddle surface of the element in a state in which the element is restrained, it is determined by strength analysis. Shows the analysis result of. In addition, as shown in FIG. 9 (b), when a load is applied from the hole side to the nose side to the back side that hits the middle position between the saddle surface and the locking edge in the state where the element is restrained. The analysis results are shown when the stress generated at the root of the neck is determined by strength analysis. As apparent from FIGS. 10 (a) and (b) and FIGS. 11 (a) and (b), the occurrence occurs even in the relation of R1 <R2 (R1 / R2 <1) and R3 <R2 (R3 / R2 <1). Stress varies widely at high values. Therefore, it can not be said that the said patent documents 1 and 2 have a big effect regarding reducing the stress of a neck root part.
On the other hand, in the patent document 3, the distance (D) from the saddle surface to the lowermost part of the arc is considered.
However, as is apparent from FIGS. 10C and 11C, it can be seen that high stress is generated at the neck root portion at 0.3 ≦ D / R ≦ 0.75. Therefore, it can not always be said that Patent Document 3 also has a great effect on reducing the stress at the neck root.
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to suitably reduce the stress generated at the neck root portion of the element at the time of driving the metal belt and to improve the repeated fatigue strength. Accordingly, it is possible to provide an element for a metal belt of a continuously variable transmission capable of improving the torque transmission capacity of the continuously variable transmission and improving the power transmission efficiency of the continuously variable transmission in the vicinity of the overdrive ratio region. is there.

上記目的を達成するための本発明に係る無段変速機の金属ベルト用エレメントでは、帯状の金属リングが複数枚積層された金属リング集合体によって位相を揃えて該金属リング集合体に沿って環状に複数枚積層され、該金属リング集合体を支持するサドル面と該サドル面から上方へ延設されたネック部とを有する無段変速機の金属ベルト用エレメントにおいて、
前記サドル面と前記ネック部が交差するネック根元部に該サドル面側に窪んだ凹部が形成され、該凹部は前記ネック部の側面に滑らかに繋がると共に前記凹部の底面部分に達しない範囲に形成される下向き凸状の第1曲面(R1)と、該第1曲面(R1)に滑らかに繋がると共に前記底面部分を形成する下向き凸状の第2曲面(R2)と、該第2曲面と前記サドル面の双方に滑らかに繋がる上向き凸状の第3曲面(R3)とから構成され、
前記第1曲面(R1)、前記第2曲面(R2)および前記第3曲面(R3)の順に各曲率半径は大きくなると共に、前記第2曲面の曲率半径(R2)に対する前記第2曲面の深さ(D)の比は0.3以下の値であることを特徴とする。
In the metal belt element of a continuously variable transmission according to the present invention for achieving the above object, a metal ring assembly in which a plurality of strip-shaped metal rings are laminated aligns the phases and annularly extends along the metal ring assembly. An element for a metal belt of a continuously variable transmission, comprising a plurality of sheets laminated on one another, a saddle surface supporting the metal ring assembly, and a neck portion extending upward from the saddle surface,
A recess recessed toward the saddle surface is formed at a neck root portion where the saddle surface intersects the neck portion, and the recess is formed so as to be connected smoothly to the side surface of the neck and not reach the bottom portion of the recess And a second convex surface (R2) which is smoothly connected to the first curved surface (R1) and which forms the bottom portion, and the second curved surface and the second curved surface. It is composed of an upwardly convex third curved surface (R3) smoothly connected to both sides of the saddle surface,
The radius of curvature increases in the order of the first curved surface (R1), the second curved surface (R2), and the third curved surface (R3), and the depth of the second curved surface with respect to the radius of curvature (R2) of the second curved surface The ratio of D (D) is characterized by a value of 0.3 or less.

上記構成では、サドル面とネック部が交差するネック根元部(コーナ部)が、ネック部からサドル面にかけてその曲率半径が順に大きくなり且つ底面部分を形成する曲率半径がサドル面からの深さに依存している3つの上記各曲面(円弧)が滑らかに繋がって構成されている。すなわち、ネック側面に繋がる第1曲面の曲率半径をR1、底面部分を形成する第2曲面の曲率半径をR2、サドル面に繋がる第3曲面の曲率半径をR3、サドル面を基準とした第2曲面の深さをDとした時、R1<R2<R3かつD/R2≦0.3を満たす3つの上記各曲面(円弧)によってサドル面とネック部が交差するネック根元部(コーナ部)が構成されている。特に曲率半径を順に大きくしながら、底面部分を形成する曲率半径R2をサドル面からの深さDに依存させることにより、ネック根元部に発生する応力を好適に低減することが可能となる。   In the above configuration, the neck root portion (corner portion) where the saddle surface intersects the neck portion has a radius of curvature gradually increasing from the neck portion to the saddle surface and the radius of curvature forming the bottom portion is the depth from the saddle surface. The three curved surfaces (arcs) that depend on each other are connected smoothly. That is, the radius of curvature of the first curved surface connected to the neck side surface is R1, the radius of curvature of the second curved surface forming the bottom portion is R2, the radius of curvature of the third curved surface connected to the saddle surface is R3, the second based on the saddle surface Assuming that the depth of the curved surface is D, a neck root portion (corner portion) where the saddle surface intersects the neck portion is formed by the three curved surfaces (arcs) satisfying R1 <R2 <R3 and D / R2 ≦ 0.3. It is configured. In particular, by making the radius of curvature R2 forming the bottom surface portion dependent on the depth D from the saddle surface while sequentially increasing the radius of curvature, it is possible to suitably reduce the stress generated at the neck root portion.

本発明に係る無段変速機の金属ベルト用エレメントの第2の特徴は、前記エレメントを構成する鋼材は、添加物として少なくとも炭素(C)、珪素(Si)、マンガン(Mn)及びクロム(Cr)を含み、前記炭素の含有量(%)は0.61%以上0.71%以下である。   A second feature of the metal belt element of the continuously variable transmission according to the present invention is that the steel material constituting the element contains at least carbon (C), silicon (Si), manganese (Mn) and chromium (Cr) as additives. And the carbon content (%) is 0.61% or more and 0.71% or less.

上記構成では、上記炭素含有率の鋼材を用いることで上記円弧凹部の形状的特徴と相俟って、ネック根元部に発生する応力を好適に低減すると共にエレメントの繰り返し疲労強度を向上させることが可能となる。   In the above configuration, by using the steel material having the above-mentioned carbon content, in combination with the shape feature of the above-mentioned arc concave portion, it is possible to suitably reduce the stress generated at the neck root portion and to improve the repeated fatigue strength of the element. It becomes possible.

本発明のエレメントによれば、ネック根元部の上記形状的特徴とエレメントを構成する鋼材の上記材料的特徴が相俟ってエレメントのネック根元部に発生する応力を好適に低減すると共に、エレメントの繰り返し疲労強度を向上させることが可能となる。また、本発明のエレメントではサドル面から底面部分に到る距離(D)は小さくなりネック根元部に発生する応力は小さくなるため、ロッキングエッジをサドル面側に移動させることが可能となる。これにより、オーバードライブレシオ領域付近において、リングとサドル面との間で生じる滑りによるトルクロスを低減することができ、無段変速機の動力伝達効率の向上に寄与することが可能となる。   According to the element of the present invention, the above-mentioned shape characteristic of the neck root portion and the above-mentioned material characteristic of the steel material constituting the element combine to suitably reduce the stress generated at the neck root portion of the element and It is possible to improve the repeated fatigue strength. Further, in the element of the present invention, the distance (D) from the saddle surface to the bottom surface portion is reduced and the stress generated at the neck root portion is reduced, so that the locking edge can be moved to the saddle surface side. As a result, it is possible to reduce torque loss due to slippage between the ring and the saddle surface in the vicinity of the overdrive ratio region, which can contribute to the improvement of the power transmission efficiency of the continuously variable transmission.

本発明のエレメントのネック根元部を示す要部断面説明図である。It is principal part cross-sectional explanatory drawing which shows the neck root part of the element of this invention. 本発明のエレメントにおいてサドル面上に下向きの荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示すグラフである。It is a graph which shows an analysis result when stress generated at a neck root part when a downward load is applied on a saddle surface in an element of the present invention is determined by strength analysis. 本発明のエレメントにおいてサドル面とロッキングエッジの中間位置に当る背面に、ホール部側からノーズ部側へ荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示すグラフである。In the element of the present invention, the stress generated at the root of the neck when a load is applied from the hole side to the nose side on the back surface corresponding to the middle position between the saddle surface and the locking edge FIG. 鋼材、ネック根元部形状および繰り返し疲労強度の相関を示すグラフである。It is a graph which shows correlation of steel materials, neck root part shape, and repetition fatigue strength. 炭素含有量、ネック根元部形状および繰り返し疲労強度の相関を示すグラフである。It is a graph which shows correlation of carbon content, neck root shape, and repetition fatigue strength. 本発明のエレメントに係るロッキングエッジを示す説明図である。It is explanatory drawing which shows the locking edge which concerns on the element of this invention. 本発明のエレメントを使用する無段変速機に係る動力伝達効率を示す説明図である。It is an explanatory view showing the power transmission efficiency concerning the continuously variable transmission which uses the element of the present invention. 従来のエレメントを示す斜視図である。It is a perspective view which shows the conventional element. エレメントに加えられる荷重の向きを示す説明図である。It is explanatory drawing which shows the direction of the load added to an element. 従来のエレメントにおいてサドル面上に下向きの荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示すグラフである。It is a graph which shows an analysis result when stress generated at a neck root part when a downward load is applied on a saddle surface in a conventional element is determined by strength analysis. 従来のエレメントにおいてサドル面とロッキングエッジの中間位置に当る背面に、ホール部側からノーズ部側へ荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示すグラフである。In the conventional element, the stress generated at the root of the neck when load is applied from the hole side to the nose side is shown by the strength analysis on the back surface that hits the middle position between the saddle surface and the locking edge. It is a graph. 図4及び図5に係る「繰り返し数1.0E+5回における疲労強度に相当する荷重」を説明するS-N線図である。FIG. 6 is an SN diagram for describing “a load corresponding to fatigue strength in a repetition number of 1.0E + 5 times” according to FIGS. 4 and 5;

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail by the embodiments shown in the drawings.

図1は、本発明に係る無段変速機の金属ベルト用エレメント(以下、「エレメント」という。)100のネック根元部を示す要部断面説明図である。なお、図1(b)は各曲率半径Rと深さDの相関を示すグラフである。また、記号Dはサドル面上端から最深部(点)PCに到る深さ(距離)であり、記号Wはネック側面からサドル面のR開始点PEに到る距離である。
このエレメント100では、サドル面とネック側面を滑らかに繋ぐネック根元部に係る接続面が、ネック側面からサドル面にかけてその曲率半径が順に大きくなり且つ底面部分を形成する曲率半径R2がサドル面からの深さDに依存している3つの曲面(円弧):下向き凸状の曲面(円弧)PA-PB、下向き凸状の曲面(円弧)PB-PD、上向き凸状の曲面(円弧)PD-PEが滑らかに繋がって構成されている。また、詳細については後述するが、本エレメント100を構成する鋼材としては炭素含有量(質量%)が0.61〜0.71%である鋼材が使用されている。なお、ここでは説明の都合上、曲面と円弧は同じ意味で用いることとする。
FIG. 1 is a cross-sectional view showing the neck root portion of a metal belt element (hereinafter referred to as “element”) 100 of a continuously variable transmission according to the present invention. In addition, FIG.1 (b) is a graph which shows the correlation of each curvature radius R and the depth D. FIG. The symbol D is a depth (distance) from the upper end of the saddle surface to the deepest portion (point) PC, and the symbol W is a distance from the side of the neck to the R start point PE of the saddle surface.
In this element 100, the connecting surface relating to the neck root that smoothly connects the saddle surface and the side surface of the neck gradually increases in radius of curvature from the side surface of the neck to the surface of the saddle and the radius of curvature R2 forming the bottom portion from the saddle surface. Three curved surfaces (arcs) depending on depth D: downward convex curved surfaces (arcs) PA-PB, downward convex curved surfaces (arcs) PB-PD, upward convex curved surfaces (arcs) PD-PE Are connected smoothly. Moreover, although mentioned later for details, as steel materials which constitute this element 100, steel materials whose carbon content (mass%) is 0.61 to 0.71% are used. Here, for convenience of explanation, the curved surface and the arc are used in the same meaning.

また、ここで言う「滑らか」とは、隣接する曲面(円弧)が同一の接平面(接線)を持って接続している、ことを意味している。従って、各円弧の中心は両接続点における各法線の交点として求められ、その曲率半径はその円弧中心から接続点までの距離として求められる。逆に、各曲面の円弧中心と曲率半径が既知の場合は、2つの円弧中心を結ぶ直線が法線となり、その法線と曲率半径によって接続点の位置が自動的に求められ、接続点の位置から円弧の長さが自動的に決定される。例えば、円弧PB-PDの接続点PB,PDの位置については、円弧中心C1とC2を結ぶ法線n2と、円弧中心C2とC3を結ぶ法線n3と、曲率半径R2とによって自動的に求められ、接続点PB,PDの位置から円弧PB-PDの長さが自動的に決定される。   Moreover, "smooth" as used herein means that adjacent curved surfaces (arcs) are connected with the same tangent plane (tangent). Therefore, the center of each arc is determined as the intersection of each normal at both connection points, and the radius of curvature is determined as the distance from the arc center to the connection point. Conversely, when the arc center and curvature radius of each curved surface are known, the straight line connecting the two arc centers becomes the normal, and the position of the connection point is automatically determined by the normal line and the curvature radius. The length of the arc is automatically determined from the position. For example, the positions of the connection points PB and PD of the arc PB-PD are automatically determined by the normal line n2 connecting the arc centers C1 and C2, the normal line n3 connecting the arc centers C2 and C3, and the curvature radius R2. The length of the arc PB-PD is automatically determined from the positions of the connection points PB and PD.

円弧PA-PBは、接続点PAにおいてネック側面に滑らかに繋がると共に最深部PCに達しない接続点PBにおいて円弧PB-PDに滑らかに繋がっている。円弧PA-PBは曲率半径がR1で円弧中心C1が面外に位置する下向き凸状の円弧である。また、円弧PA-PBはネック側面と円弧PB-PDに接線接続しているため、共通接線L1,L2を有し、従って円弧中心C1は接続点PA,PBにおける共通接線L1,L2に対応する各法線n1,n2の交点として求められる。また、円弧PA-PBの開始点である接続点PAの高さ位置については、本実施例においてはサドル面上端PFと一致しているが、サドル面上端PFから上下にリング(図8)板厚の半分以内、すなわち±1/2Δ以内に位置することが望ましい。   The arc PA-PB is smoothly connected to the side surface of the neck at the connection point PA and is smoothly connected to the arc PB-PD at the connection point PB which does not reach the deepest portion PC. The arc PA-PB is a downward convex arc having a radius of curvature R1 and an arc center C1 located out of the plane. In addition, since arc PA-PB is tangentially connected to the side surface of the neck and arc PB-PD, it has common tangents L1 and L2, and therefore arc center C1 corresponds to common tangents L1 and L2 at connection points PA and PB. It is obtained as an intersection point of the normals n1 and n2. The height position of the connection point PA, which is the start point of the arc PA-PB, coincides with the saddle surface upper end PF in this embodiment, but the ring (FIG. 8) plate vertically from the saddle surface upper end PF It is desirable to be within half of the thickness, ie within ± 1 / 2Δ.

円弧PB-PDは、接続点PBにおいて円弧PA-PBに滑らかに繋がると共に最深点PCを含む接続点PBから接続点PDに到る範囲に形成され、円弧中心C2が面上に位置し曲率半径がR2である下向き凸状の円弧である。また、円弧PB-PDは円弧PA-PBと円弧PD-PEの双方に接線接続しているため、共通接線L2,L3を有し、従って円弧中心C2は接続点PB,PDにおける共通接線L2,L3に対応する各法線n2,n3の交点として求められる。また、後述する通り、サドル面上端PFから最深点PCに到る深さDと半径R2は相互に依存しており、D/R2≦0.3という関係を有している。   The arc PB-PD is smoothly connected to the arc PA-PB at the connection point PB and is formed in a range from the connection point PB including the deepest point PC to the connection point PD, and the arc center C2 is located on the surface and the curvature radius Is a downward convex arc having R 2. Further, since arc PB-PD is tangentially connected to both arc PA-PB and arc PD-PE, it has common tangents L2 and L3, and therefore arc center C2 is common tangent L2 at connection point PB, PD. It is obtained as an intersection point of normals n2 and n3 corresponding to L3. Further, as described later, the depth D from the upper end PF of the saddle surface to the deepest point PC and the radius R2 are mutually dependent, and have a relationship of D / R2 ≦ 0.3.

円弧PD-PEは、接続点PDにおいて円弧PB-PDに滑らかに繋がると共に接続点PEにおいてサドル面に滑らかに繋がっており、円弧中心C3が面内にあり曲率半径がR3である上向き凸状の円弧である。円弧PD-PEは円弧PB-PDとサドル面に接線接続しているため、共通接線L3,L4を有し、従って円弧中心C3は接続点PD,PEにおける共通接線L3,L4に対応する各法線n3,n4の交点として求められる。   The arc PD-PE is smoothly connected to the arc PB-PD at the connection point PD and smoothly connected to the saddle surface at the connection point PE, and is upward convex having an arc center C3 in the plane and a radius of curvature R3. It is a circular arc. Since arc PD-PE is tangentially connected to arc PB-PD and the saddle surface, it has common tangents L3 and L4, so that arc center C3 corresponds to common tangents L3 and L4 at connection points PD and PE. It is determined as the point of intersection of the lines n3 and n4.

また、ネック側面からサドル面のR開始点までの距離Wについては、大きくなると、リングとサドル面との接触面が小さくなり、リング挙動に悪影響が起きる為、1.6〜1.7mmが望ましい。   In addition, as the distance W from the neck side to the R start point of the saddle surface increases, the contact surface between the ring and the saddle surface decreases, which adversely affects the ring behavior, so 1.6 to 1.7 mm is desirable .

各曲率半径R1,R2,R3について、図1(b)に示されるように、R1<R2<R3という関係を有し、同時に曲率半径R2のみ上記深さDに依存し、D/R2≦0.3という関係を有している。従って、接続点PAと接続点PEが固定されている場合、深さDが決定されると、D/R2≦0.3という関係から曲率半径R2が決定される。同時に、円弧中心C2も自動的に決定される(円弧中心C2は最深点PCにおける接線L5に対応する法線n5上で最深点PCから距離R2に位置するため)。続いて、R1<R2という関係および接線接続(接続点を通る法線上に円弧中心が位置する)という拘束条件から、円弧中心C1、曲率半径R1および接続点PBがそれぞれ自動的に決定される。同様に、R2<R3という関係および接線接続という拘束条件から円弧中心C3、半径R3および接続点PDについてもそれぞれ自動的に決定される。このように、本発明のエレメント100では、(円弧PA-PB、円弧PB-PD、および円弧PD-PEが滑らかに繋がった)ネック根元部形状については、深さDと曲率半径R2が決定されると、自動的に決定されることになる。   For each radius of curvature R1, R2 and R3, as shown in FIG. 1 (b), there is a relationship of R1 <R2 <R3 and at the same time only the radius of curvature R2 depends on the depth D, D / R2 ≦ 0 It has a relationship of .3. Therefore, when the connection point PA and the connection point PE are fixed, when the depth D is determined, the curvature radius R2 is determined from the relationship of D / R2 ≦ 0.3. At the same time, the arc center C2 is also automatically determined (since the arc center C2 is located at a distance R2 from the deepest point PC on the normal line n5 corresponding to the tangent L5 at the deepest point PC). Subsequently, the arc center C1, the radius of curvature R1 and the connection point PB are automatically determined from the relationship of R1 <R2 and the constraint of tangent connection (the arc center is located on the normal line passing the connection point). Similarly, the arc center C3, the radius R3, and the connection point PD are also automatically determined from the relationship of R2 <R3 and the constraint of tangent connection. Thus, in the element 100 of the present invention, the depth D and the curvature radius R2 are determined for the shape of the neck root portion (where the arc PA-PB, arc PB-PD, and arc PD-PE are smoothly connected). Will be determined automatically.

図2は、図9(a)と同様に、エレメントが拘束された状態でエレメントのサドル面上に下向きの荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示している。なお、図2(a)はD/R2≦0.3という拘束条件を伴わないR1<R2<R3のみの場合を、図2(b)はD/R2≦0.3という拘束条件を伴うR1<R2<R3の場合をそれぞれ示している。
図から明らかな通り、D/R2≦0.3という拘束条件ありの場合は、D/R2≦0.3という拘束条件なしの場合に比べネック根元部に発生する最大応力Smaxがより低減しており、且つ応力のバラツキも小さくなっている。なお、詳細については省略するが、D/R2≦0.3かつR1<R2<R3という関係ならびに接続点における接線接続という条件から、半径R2の値は必然的に約1.0mm以上の範囲に限定される。
Similarly to FIG. 9 (a), FIG. 2 is an analysis when stress generated at the root of the neck when a downward load is applied on the saddle surface of the element in a state in which the element is restrained is obtained by strength analysis. The results are shown. FIG. 2 (a) shows the case of R1 <R2 <R3 without the constraint of D / R2 ≦ 0.3, and FIG. 2 (b) shows the case of R1 with the constraint of D / R2 ≦ 0.3. The cases of <R2 <R3 are shown.
As apparent from the figure, when there is a constraint condition of D / R2 ≦ 0.3, the maximum stress Smax generated at the neck root portion is further reduced compared to the case without the constraint condition of D / R2 ≦ 0.3. And the variation in stress is also reduced. Although details will be omitted, the value of the radius R2 is necessarily in the range of about 1.0 mm or more from the relationship of D / R2 ≦ 0.3 and R1 <R2 <R3 and the condition of tangential connection at the connection point. It is limited.

図3は、図9(b)と同様に、エレメントが拘束された状態でネック部にホール部側からノーズ部側へ荷重を加えた時のネック根元部に発生する応力を強度解析によって求めた時の解析結果を示している。なお、図3(a)はD/R2≦0.3という拘束条件を伴わないR1<R2<R3のみの場合を、図3(b)はD/R2≦0.3という拘束条件を伴うR1<R2<R3の場合をそれぞれ示している。
図から明らかな通り、D/R2≦0.3という拘束条件ありの場合は、拘束条件なしの場合に比べネック根元部に発生する最大応力Smaxが低減しており、且つ応力のバラツキも小さくなっている。
As in FIG. 9 (b), FIG. 3 shows the stress generated at the base of the neck when a load is applied from the hole side to the nose side in the neck with the element restrained, by stress analysis. Shows the analysis results of the 3 (a) shows the case of only R1 <R2 <R3 without the constraint of D / R2 ≦ 0.3, and FIG. 3 (b) shows the case of R1 with the constraint of D / R2 ≦ 0.3. The cases of <R2 <R3 are shown.
As apparent from the figure, in the case of the constraint condition of D / R2 ≦ 0.3, the maximum stress Smax generated at the neck root portion is reduced and the variation of the stress is smaller as compared with the case of no constraint condition. ing.

このように、図2及び図3に示される通り、D/R2≦0.3という拘束条件はネック根元部に発生する応力を低減するのに大きな効果を有していることが分かる。   Thus, as shown in FIG. 2 and FIG. 3, it can be seen that the constraint of D / R2 ≦ 0.3 has a great effect in reducing the stress generated at the neck root.

ところで、ネック根元部に係る上記形状的特徴(R1<R2<R3かつD/R2≦0.3)に、材料的特徴(炭素含有量:0.61〜0.71%の範囲、望ましくは0.61〜0.67%の範囲)が加わる場合、すなわち、炭素含有量が上記範囲内にある鋼材を使用して上記形状的特徴(R1<R2<R3かつD/R2≦0.3)を有するネック根元部を製作する場合、そのエレメントはネック根元部における応力低減効果だけでなく繰り返し疲労強度の向上においても大きな効果を有するようになる。以下、本エレメント100に係る繰り返し疲労強度の向上について説明する。   By the way, the material characteristic (carbon content: in the range of 0.61 to 0.71%, preferably 0) is added to the above-mentioned shape characteristic (R1 <R2 <R3 and D / R2 ≦ 0.3) relating to the neck root portion. .61 to 0.67%), that is, using a steel material having a carbon content in the above range, the above-mentioned geometrical characteristics (R1 <R2 <R3 and D / R2 ≦ 0.3) In the case of producing the neck root portion, the element has a great effect not only in the stress reduction effect at the neck root portion but also in the improvement of the repeated fatigue strength. Hereinafter, improvement of the repeated fatigue strength according to the present element 100 will be described.

図4は、炭素含有量[%]が0.84の鋼材Aと0.61の鋼材Bに対し同様の焼入れ・焼戻し処理をそれぞれ行い、これら熱処理された鋼材Aおよび鋼材Bを用いてネック根元部形状の異なる(D/R2=0.298、1.0)合計4種類のエレメントに加工し、図9(a)又は図9(b)と同様の荷重条件で単体疲労試験をそれぞれ行い、S−N線図を求めて繰り返し数1.0E+5回における疲労強度に相当する荷重を上記4種類のエレメントについてそれぞれ求めた結果である。なお、ここで言う「繰り返し数1.0E+5回における疲労強度に相当する荷重」とは、図12に示されるように、繰り返し数が1.0E+5回以下で破損した試験体の荷重データを統計的に処理して得られるS-N線図におけるN=1.0E+5(cycle)での値Sのことである。また、「疲労強度が向上する」とは上記S-N線図全体が上方へシフトすることである。   In FIG. 4, the same quenching and tempering treatment is performed on steel materials A and B with a carbon content [%] of 0.84 and 0.61, respectively, and using these heat-treated steel materials A and B, the neck root (D / R2 = 0.298, 1.0) A total of four types of elements with different part shapes are processed, single unit fatigue tests are performed under the same load conditions as in Fig. 9 (a) or Fig. 9 (b) It is the result of calculating | requiring a figure and calculating | requiring the load corresponded to the fatigue strength in repetition number 1.0E + 5 times, respectively about said 4 types of elements. As used herein, “load equivalent to fatigue strength at a repetition rate of 1.0E + 5 times” refers to the load data of a test body broken at a repetition rate of 1.0E + 5 times or less, as shown in FIG. It is the value S at N = 1.0E + 5 (cycle) in the SN diagram obtained by Further, "the fatigue strength is improved" means that the entire SN chart is shifted upward.

鋼材Aに比べて鋼材Bは含有C量が少ない分、靱性に富み、材料試験片等での1.0E+5回疲労強度は鋼材Aに比べておよそ20%以上高くなる。しかし、D/R2=1.0 のネック根元部形状では鋼材Aと鋼材Bを比較すると強度の向上分は5%程度と材料自体の強度差がほとんど得られない。これはネック根元部における応力集中が高くなり、材料強度差がほとんど失われてしまうことによる。   The steel material B is rich in toughness because the content of the steel material B is smaller than the steel material A, and the 1.0E + 5 times fatigue strength of the material test piece or the like is about 20% or more higher than the steel material A. However, in the shape of the neck root portion of D / R2 = 1.0, when the steel A and the steel B are compared, the improvement in strength is about 5% and the strength difference of the material itself is hardly obtained. This is because the stress concentration at the root of the neck is high and the difference in material strength is almost lost.

一方、鋼材Aの結果と鋼材BのD/R2=0.298の結果を比較すると、疲労強度が50%以上向上した。これは、鋼材Bから成るD/R2=0.298のネック根元形状の場合、上記形状的特徴(R1<R2<R3かつD/R2≦0.3)による応力集中を緩和する効果に加えて、材料自体の効果も活かされて、形状効果と材料効果の相乗効果によってより高強度になることを意味している。   On the other hand, when the result of steel material A and the result of D / R2 = 0.298 of steel material B are compared, the fatigue strength is improved by 50% or more. This is in addition to the effect of alleviating the stress concentration due to the above-mentioned geometric feature (R1 <R2 <R3 and D / R2 ≦ 0.3) in the case of the neck root shape of D / R2 = 0.298 made of steel material B The effect of the material itself is also taken advantage of, which means that the synergistic effect of the shape effect and the material effect results in higher strength.

図4に示される通り、材料効果による疲労強度の向上は、ネック根元部形状すなわちD/R2の値によって異なることが分かる。以下、ネック根元部形状と炭素含有量[%]の相関について説明する。   As shown in FIG. 4, it can be seen that the improvement of the fatigue strength due to the material effect is different depending on the shape of the neck root portion, that is, the value of D / R 2. Hereinafter, the correlation between the neck root shape and the carbon content [%] will be described.

図5は、様々な炭素含有量[%]の鋼材に対し上記図4と同様の焼入れ・焼戻し処理を行って、これら熱処理された鋼材をネック根元部形状の異なる(D/R2=0.298、0.4、1.0)の様々なエレメントに加工し、同様の単体疲労試験をそれぞれ行い、S-N線図を求めて繰り返し数1.0E+5回における疲労強度に相当する荷重を各エレメントについてそれぞれ求めた結果である。   In FIG. 5, the steel materials having various carbon contents [%] are subjected to the same quenching and tempering treatment as the above-mentioned FIG. 4, and these heat-treated steel materials are different in neck root shape (D / R2 = 0.298, 0.4 , 1.0), and the same single fatigue test was carried out, respectively, SN graph was obtained, and the load corresponding to the fatigue strength at the repetition number of 1.0E + 5 times was determined for each element.

D/R2=0.298の時、応力緩和されたネック根元部形状のエレメントでは炭素含有量[%]が0.6付近(0.61〜0.71)で最大の強度になるが、それ以上でもそれ以下でも強度は低くなる。これは炭素含有量が低い領域では硬度不足による強度の低下が起こり、逆に炭素含有量の高い領域では靱性が低くなることによる強度の低下が生じるためと考えられる。すなわち、上記形状的特徴に適合する炭素含有量[%]は、0.61〜0.71、望ましくは0.61〜0.67の最適値をもっている。   When D / R2 = 0.298, in the stress-relaxed neck root shape element, the carbon content [%] becomes maximum strength around 0.6 (0.61 to 0.71), but Above or below, the strength is low. This is considered to be due to the decrease in strength due to insufficient hardness in the region where the carbon content is low, and the decrease in strength due to the decrease in toughness in the region where the carbon content is high. That is, the carbon content [%] which conforms to the above-mentioned topographical features has an optimum value of 0.61 to 0.71, preferably 0.61 to 0.67.

D/R2=0.4の時、炭素含有量[%]の減少するにつれて疲労強度は緩やかに上昇するが、0.65付近で頭打ち状態に達する。材料効果についてもD/R2=0.298の材料効果に比べ小さい。   When D / R2 = 0.4, the fatigue strength gradually increases as the carbon content [%] decreases, but reaches a plateau near 0.65. The material effect is also smaller than the material effect of D / R 2 = 0.298.

D/R2=1.0の時、炭素含有量[%]の減少するにつれて疲労強度は非常に緩やかに上昇するが、0.6付近で頭打ち状態に達する。材料効果については、図4にて上述した通り、疲労強度の上昇は5%程度である。   When D / R2 = 1.0, the fatigue strength increases very slowly as the carbon content [%] decreases, but reaches a plateau near 0.6. Regarding the material effect, as described above in FIG. 4, the increase in fatigue strength is about 5%.

図6は、本発明のエレメントの形状と従来のエレメントの形状との比較を示す説明図である。
本発明のエレメントに係るネック根元部の深さDは、従来のエレメントに比べ小さくなる。この差分(変化量)はロッキングエッジをリスクなくサドル面側に移動させる取り代(移動代)として利用することができる。
FIG. 6 is an explanatory view showing a comparison between the shape of the element of the present invention and the shape of the conventional element.
The depth D of the neck root according to the element of the present invention is smaller than that of the conventional element. This difference (amount of change) can be used as a cutting allowance (moving allowance) for moving the locking edge toward the saddle surface without risk.

ロッキングエッジがサドル面に近づくと、図7に示されるように、オーバードライブ(OD)レシオ領域付近において、リングとサドル面との間で生じる滑りによるトルクロスを低減することができ、これにより無段変速機の動力伝達効率が好適に向上するようになる。   When the locking edge approaches the saddle surface, torque loss due to slippage between the ring and the saddle surface can be reduced near the overdrive (OD) ratio area, as shown in FIG. The power transmission efficiency of the transmission can be suitably improved.

以上の通り、本発明のエレメント100によれば、ネック根元部の上記形状的特徴(R1<R2<R3かつD/R2≦0.3)とエレメントを構成する鋼材の上記材料的特徴(炭素含有量:0.61〜0.71%、望ましくは0.61〜0.67%)が相俟ってエレメントのネック根元部に発生する応力を好適に低減すると共に、エレメントの繰り返し疲労強度を向上させることが可能となる。これは、図4及び図5に示されるように、疲労限度ならびにS-N線図全体が向上するためである。これにより、エレメントのサイズを拡大することなく、トルク伝達容量の向上が可能となる。また、本発明のエレメントではサドル面から底面部分に到る距離(D)は小さくなりネック根元部に発生する応力は小さくなるため、ロッキングエッジをサドル面側に移動させることが可能となる。これにより、オーバードライブレシオ領域付近において、リングとサドル面との間で生じる滑りによるトルクロスを低減することができ、無段変速機の動力伝達効率の向上に寄与することが可能となる。   As described above, according to the element 100 of the present invention, the above-mentioned geometrical characteristics (R1 <R2 <R3 and D / R2 ≦ 0.3) of the neck root portion and the above-mentioned material characteristics (carbon-containing steel material constituting the element) The amount of 0.61 to 0.71%, preferably 0.61 to 0.67%) is combined to suitably reduce the stress generated at the neck root of the element and to improve the cyclic fatigue strength of the element It is possible to This is because, as shown in FIGS. 4 and 5, the fatigue limit and the entire SN diagram are improved. As a result, the torque transmission capacity can be improved without enlarging the size of the element. Further, in the element of the present invention, the distance (D) from the saddle surface to the bottom surface portion is reduced and the stress generated at the neck root portion is reduced, so that the locking edge can be moved to the saddle surface side. As a result, it is possible to reduce torque loss due to slippage between the ring and the saddle surface in the vicinity of the overdrive ratio region, which can contribute to the improvement of the power transmission efficiency of the continuously variable transmission.

100 エレメント
C1、C2、C3、C4 円弧中心
L1、L2、L3、L4、L5 接線
n1、n2、n3、n4、n5 法線
PA、PB、PD、PE 接続点
PC 最深点
PF サドル面上端
PA-PB、PB-PD、PD-PE 曲面(円弧)
R1、R2、R3 曲率半径
D サドル面上端から最深点に到る距離(深さ)
W ネック側面からサドル面のR開始点に到る距離
100 elements
C1, C2, C3, C4 Arc center
L1, L2, L3, L4, L5 tangent line
n1, n2, n3, n4, n5 normal
PA, PB, PD, PE connection point
PC deepest point
PF saddle top end
PA-PB, PB-PD, PD-PE Curved surface (arc)
R1, R2, R3 Radius of curvature D Distance from the top of the saddle surface to the deepest point (depth)
Distance from W neck side to R start point of saddle surface

Claims (3)

帯状の金属リングが複数枚積層された金属リング集合体によって位相を揃えて該金属リング集合体に沿って環状に複数枚積層され、該金属リング集合体を支持するサドル面と該サドル面から上方へ延設されたネック部とを有する無段変速機の金属ベルト用エレメントにおいて、
前記サドル面と前記ネック部が交差するネック根元部に該サドル面側に窪んだ凹部が形成され、該凹部は前記ネック部の側面に滑らかに繋がると共に前記凹部の底面部分に達しない範囲に形成される下向き凸状の第1曲面と、該第1曲面に滑らかに繋がると共に前記底面部分を形成する下向き凸状の第2曲面と、該第2曲面と前記サドル面の双方に滑らかに繋がる上向き凸状の第3曲面とから構成され、
前記第1曲面、前記第2曲面および前記第3曲面の順に各曲率半径は大きくなると共に、前記第2曲面の曲率半径に対する前記第2曲面の深さの比は0.3以下の値であることを特徴とする無段変速機の金属ベルト用エレメント。
A plurality of strip-shaped metal rings are laminated in an annular pattern along the metal ring assembly by aligning the phases by a plurality of laminated metal ring assemblies, and a saddle surface supporting the metal ring assembly and an upper side from the saddle surface An element for a metal belt of a continuously variable transmission having a neck portion extended to
A recess recessed toward the saddle surface is formed at a neck root portion where the saddle surface intersects the neck portion, and the recess is formed so as to be connected smoothly to the side surface of the neck and not reach the bottom portion of the recess Downward convex first curved surface, and a downward convex second curved surface smoothly connected to the first curved surface and forming the bottom portion, and an upward facing smoothly connected to both the second curved surface and the saddle surface It is composed of a convex third curved surface,
The radius of curvature increases in the order of the first curved surface, the second curved surface, and the third curved surface, and the ratio of the depth of the second curved surface to the radius of curvature of the second curved surface is a value of 0.3 or less An element for a metal belt of a continuously variable transmission characterized by
前記エレメントを構成する鋼材は、添加物として少なくとも炭素(C)、珪素(Si)、マンガン(Mn)及びクロム(Cr)を含み、前記炭素の含有量(%)は0.61%以上0.71%以下であることを特徴とする請求項1に記載の無段変速機の金属ベルト用エレメント。   The steel material constituting the element contains at least carbon (C), silicon (Si), manganese (Mn) and chromium (Cr) as additives, and the content (%) of carbon is 0.61% or more. The element for a metal belt of a continuously variable transmission according to claim 1, characterized in that it is 71% or less. 前記第2曲面の深さは、ロッキングエッジを含む平面と前記サドル面との距離よりも小さいことを特徴とする請求項1又は2に記載の無段変速機の金属ベルト用エレメント。3. The element for a metal belt of a continuously variable transmission according to claim 1, wherein a depth of the second curved surface is smaller than a distance between a plane including a locking edge and the saddle surface.
JP2015025882A 2015-02-12 2015-02-12 Metal belt element for continuously variable transmission Active JP6527709B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015025882A JP6527709B2 (en) 2015-02-12 2015-02-12 Metal belt element for continuously variable transmission
CN201610037348.7A CN105889414B (en) 2015-02-12 2016-01-20 The metal tape element of buncher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025882A JP6527709B2 (en) 2015-02-12 2015-02-12 Metal belt element for continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2016148409A JP2016148409A (en) 2016-08-18
JP6527709B2 true JP6527709B2 (en) 2019-06-05

Family

ID=56687806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025882A Active JP6527709B2 (en) 2015-02-12 2015-02-12 Metal belt element for continuously variable transmission

Country Status (2)

Country Link
JP (1) JP6527709B2 (en)
CN (1) CN105889414B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1015491C2 (en) * 2000-06-21 2001-12-28 Doornes Transmissie Bv Drive belt and cross element for a drive belt.
JP3975791B2 (en) * 2002-03-18 2007-09-12 トヨタ自動車株式会社 Endless metal belt
JP4321119B2 (en) * 2003-05-29 2009-08-26 トヨタ自動車株式会社 Block element with optimized arc groove for stress concentration relaxation
JP3973606B2 (en) * 2003-07-04 2007-09-12 本田技研工業株式会社 Belt for continuously variable transmission
NL1032506C2 (en) * 2006-09-15 2008-03-18 Bosch Gmbh Robert Transverse element for a drive belt for a continuously variable transmission.
JP4766064B2 (en) * 2008-02-15 2011-09-07 トヨタ自動車株式会社 Belt element for continuously variable transmission and belt for continuously variable transmission
JP5146595B2 (en) * 2009-08-28 2013-02-20 トヨタ自動車株式会社 Transmission belt and manufacturing method thereof
JP5594521B2 (en) * 2010-06-21 2014-09-24 本田技研工業株式会社 Steel for element of belt type CVT and element using the same
JP5619668B2 (en) * 2011-04-18 2014-11-05 本田技研工業株式会社 Cold stamping steel and steel belt element using the same

Also Published As

Publication number Publication date
JP2016148409A (en) 2016-08-18
CN105889414A (en) 2016-08-24
CN105889414B (en) 2018-04-06

Similar Documents

Publication Publication Date Title
JP4803423B2 (en) Power transmission chain and power transmission device including the same
CN106536978B (en) Amphistyly Wave gear device
US8550946B2 (en) Non-circular joint openings in toothed plates of silent chains
JP6673473B2 (en) Transmission belt
JP2017516966A (en) Drive belt for continuously variable transmission comprising a substantially V-shaped cross member
EP2243980A1 (en) Element of belt for continuously variable transmission and belt for continuously variable transmission
JP4678307B2 (en) CVT element and method for manufacturing CVT element
JP2009515108A (en) Transmission with pulley and drive belt
JP2010503804A (en) Transverse element for continuously variable transmission drive belt
JP5044416B2 (en) Drive belt
JP6527709B2 (en) Metal belt element for continuously variable transmission
US20100069189A1 (en) Power transmission chain and power transmission apparatus including power transmission chain
CN100451381C (en) Driving belt
CN106461020B (en) The traversing section of the tilting zone with protrusion of pushing-type band for contiuously variable transmission
JP4957362B2 (en) CVT shaft and manufacturing method thereof
JP3975791B2 (en) Endless metal belt
KR102230400B1 (en) Transverse segment for a drive belt with a carrier ring and multiple transverse segments
EP2738419B1 (en) Drive belt for a pulley-type continuously variable transmission with transverse members provided with multiple pulley contact surfaces
JP5684484B2 (en) Band saw blade
EP3397876A1 (en) Transverse member for a drive belt for a continuously variable transmission
JP4545709B2 (en) Belt for continuously variable transmission
JP2008144825A (en) Power transmission chain and power transmission device
JP2012097866A (en) Belt for continuously variable transmission
JP5614019B2 (en) Power transmission device
JP7078390B2 (en) A drive belt used for a continuously variable transmission, which comprises a cross member and a ring stack, and a method for manufacturing the same.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190513

R150 Certificate of patent or registration of utility model

Ref document number: 6527709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150