JP4957362B2 - CVT shaft and manufacturing method thereof - Google Patents

CVT shaft and manufacturing method thereof Download PDF

Info

Publication number
JP4957362B2
JP4957362B2 JP2007119794A JP2007119794A JP4957362B2 JP 4957362 B2 JP4957362 B2 JP 4957362B2 JP 2007119794 A JP2007119794 A JP 2007119794A JP 2007119794 A JP2007119794 A JP 2007119794A JP 4957362 B2 JP4957362 B2 JP 4957362B2
Authority
JP
Japan
Prior art keywords
tooth
press
sheave
shaft
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007119794A
Other languages
Japanese (ja)
Other versions
JP2008275077A (en
Inventor
輝元 藤原
裕司 安達
重人 堀野
友之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2007119794A priority Critical patent/JP4957362B2/en
Publication of JP2008275077A publication Critical patent/JP2008275077A/en
Application granted granted Critical
Publication of JP4957362B2 publication Critical patent/JP4957362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、自動車等の変速機として利用されるベルトドライブ方式無段変速機(ベルトドライブ方式には、ゴムベルト式、金属ベルト式、チェーンベルト式等を含む。以下、ベルト式無段変速機と記す。)に用いられるCVT用シャフトに関する。   The present invention relates to a belt drive type continuously variable transmission used as a transmission of an automobile or the like (the belt drive type includes a rubber belt type, a metal belt type, a chain belt type, etc. Hereinafter, a belt type continuously variable transmission and It is related with the shaft for CVT used for.

一般的に、自動車等の変速機に利用されるベルト式無段変速機(CVT)は、一対のシャフト(プライマリシャフト、セカンダリシャフト)を有している。各シャフトは、シャフトに固定された固定シーブとシャフトに摺動自在に装着された可動シーブとを有する。これら固定シーブと可動シーブとが、溝幅が可変のプーリ(プライマリプーリ、セカンダリプーリ)を構成する。また、この一対のプーリ間には、金属等のベルトが巻き掛けてあり、固定シーブと可動シーブとの溝幅を変化させることによって、変速可能に構成されている。   Generally, a belt type continuously variable transmission (CVT) used for a transmission such as an automobile has a pair of shafts (a primary shaft and a secondary shaft). Each shaft has a fixed sheave fixed to the shaft and a movable sheave slidably mounted on the shaft. These fixed sheave and movable sheave constitute a pulley (primary pulley, secondary pulley) having a variable groove width. Further, a belt made of metal or the like is wound between the pair of pulleys, and the gears can be shifted by changing the groove width between the fixed sheave and the movable sheave.

上記のCVTのうち、シャフトと固定シーブ(以下、適宜、単にシーブという)とは、現状強度上の問題からほとんどが一体部品として製造されている。そして、このうちシーブの表面には、上述したような金属等のベルトが巻き掛けられ、走行中にベルトとの間に大きな負荷がかかった状態で使用されることから、優れた耐摩耗性の確保が必須となる。そのため、通常、浸炭や浸炭窒化等の処理を行って表面硬度を高めることにより、必要な耐摩耗性を確保している。   Of the above CVTs, most shafts and fixed sheaves (hereinafter simply referred to as sheaves as appropriate) are manufactured as integral parts because of problems with current strength. Of these, a belt made of metal or the like as described above is wound around the surface of the sheave, and it is used in a state in which a large load is applied between the belt and the belt during running. Securing is essential. Therefore, the required wear resistance is usually ensured by increasing the surface hardness by performing a process such as carburizing or carbonitriding.

また、ごく一部に限定されるが、シャフトと固定シーブとを別体で製造し、後から一体化して製造される場合がある。この例としては、特許文献1の実施例に記載されているように、シャフトと固定側プーリをスプライン嵌合により結合したものや、非特許文献1に記載されているように、圧入により結合して一体部品とし、使用している例が報告されている。   Moreover, although it is limited to a part, a shaft and a fixed sheave may be manufactured separately, and may be manufactured integrally afterward. For example, as described in the embodiment of Patent Document 1, the shaft and the fixed pulley are coupled by spline fitting, or as described in Non-Patent Document 1, they are coupled by press-fitting. An example of using it as an integral part has been reported.

しかしながら、上述したCVTには、以下のような問題がある。
通常のCVTの場合、シャフトは、浸炭や浸炭窒化等の処理をしなくても強度上問題なく、部分的に高周波等の焼入れをすれば充分な強度を確保することができる場合が多い。したがって、このような場合、シーブに使用される材料には、耐摩耗性を確保しなければならないために浸炭性に優れていることが要求されるが、シャフトに使用される材料にはそれが要求されない。
However, the above-mentioned CVT has the following problems.
In the case of ordinary CVT, there is no problem in strength even if the carburizing or carbonitriding is not performed, and a sufficient strength can often be secured by partially quenching with high frequency or the like. Therefore, in such a case, the material used for the sheave is required to have excellent carburization because the wear resistance must be ensured, but the material used for the shaft is Not required.

ところが、一体で製造される場合には、製造上当然のごとく、材料は1種類に固定して選択しなければならず、シャフト及びシーブについて各々に適した材料を選択することが不可能となるため、結果的に浸炭性を重視して材料を選択することになる。この結果、より高価な材料を選択しなければならなくなり、材料コストが増加するという問題が生じる。
また、一体の場合には、浸炭等の処理の際に当然のごとく一体部品全体を丸ごと処理する必要が生じる。そのため、部品が大きいことにより浸炭歪が大きくなるのはもちろんのこと、同じ大きさの浸炭処理炉であっても、1回に処理できる部品の数が大幅に少なくなり、生産性が低下すると共に、より多大なエネルギーが必要になるという問題がある。
However, in the case of being manufactured integrally, as a matter of course in manufacturing, the material must be fixed to one type and it is impossible to select a suitable material for each of the shaft and the sheave. Therefore, as a result, the material is selected with an emphasis on carburization. As a result, a more expensive material must be selected, resulting in a problem that the material cost increases.
In addition, in the case of integration, it is necessary to process the entire integrated component as a matter of course in the case of processing such as carburization. Therefore, not only the carburizing distortion increases due to the large parts, but also the number of parts that can be processed at one time is greatly reduced even in the same size carburizing furnace, and the productivity is lowered. There is a problem that more energy is required.

また、スプライン嵌合や圧入により結合して製造される場合には、シャフトとシーブとの接触面が強固に固定された状態となっていないため、いくら精度を高めて製造したとしても、使用中における互いの接触面上の微小なズレを完全に防止することができず、長時間の使用によりフレッティング疲労を起こす可能性がある。
さらに、スプライン嵌合は、嵌合前に極めて高い精度での機械加工が必須となるため、製造コストが高くなるという問題がある。また、圧入の場合には、圧入代にもよるが、シャフトとシーブとの間の接触面をかなり大きくしないと充分な強度を得ることができず、部品が大きくなって重くなるという問題がある。
In addition, when manufactured by spline fitting or press-fitting, the contact surface between the shaft and sheave is not firmly fixed, so it is in use no matter how high the accuracy is. In other words, it is not possible to completely prevent a minute shift on the contact surfaces of each other, and there is a possibility of causing fretting fatigue due to long-term use.
Furthermore, since spline fitting requires machining with extremely high accuracy before fitting, there is a problem that the manufacturing cost increases. In the case of press-fitting, although depending on the press-fitting allowance, there is a problem that sufficient strength cannot be obtained unless the contact surface between the shaft and the sheave is considerably enlarged, and the parts become larger and heavier. .

特開2002−106658号公報JP 2002-106658 A ATZ/MTZ“Der neue Audi A4”,November2000,137〜140頁ATZ / MTZ “Der new Audi A4”, November 2000, pp. 137-140

本発明は、かかる従来の問題点に鑑みてなされたもので、別部材よりなるシャフトとシーブとを一体化させて固定し、寸法精度や耐久性に優れ、さらには生産性の向上、コストの低減を図ることができるCVT用シャフト及びその製造方法を提供しようとするものである。   The present invention has been made in view of such a conventional problem. The shaft and sheave made of different members are integrated and fixed, excellent in dimensional accuracy and durability, and further improved in productivity and cost. It is an object of the present invention to provide a CVT shaft that can be reduced and a method for manufacturing the same.

第1の発明は、ベルト式無段変速機(以下、CVTという)に用いられるCVT用シャフトであって、
該CVT用シャフトは、機械構造用鋼よりなる棒状のシャフト部と、該シャフト部に外挿する機械構造用鋼よりなる円盤状のシーブ部を塑性結合部と圧入部とを介して結合してなり、
該シーブ部は、上記シャフト部を挿入する挿入穴を有し、該挿入穴は、上記塑性結合部を形成するための結合内面部と、上記圧入部を形成するための圧入内面部とを軸方向に連ねて、かつ、上記圧入内面部がシーブ面に近い側に位置するように設けてなり、
上記結合内面部の内周面には、軸方向に歯筋を有すると共に内方に突出する複数の歯部を有しており、
上記圧入内面部の内周面は、平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有しており、
また、上記シーブ部は、上記シャフト部との結合の前に、少なくとも歯部の表面を硬化する硬化処理を施してあり、
上記シャフト部は、上記塑性結合部を形成するための結合外面部と、上記圧入部を形成するための圧入外面部とを軸方向に連ねて有しており、
上記結合外面部は、上記歯部の内接円の径よりも大きい外径を有しており、
上記圧入外面部は、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有しており、
上記シーブ部の上記歯部は、表面硬さがHv600以上であり、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きく、
また、上記シーブ部の上記歯部は、上記シャフト部の軸線を含む軸平面となす角度がαである受圧面と、上記軸平面となす角度がβ(β>α)である傾斜面とにより鋭角状を呈していると共に、上記受圧面を周方向における第1の方向に位置させた第1締結歯と、その反対側の第2の方向に上記受圧面を位置させた第2締結歯のいずれかを構成し、
上記第1締結歯を並べた第1領域と、上記第2締結歯を並べた第2領域とは、上記挿入穴の周方向に交互に配列されており、
上記第1締結歯の上記傾斜面と上記第2締結歯の上記傾斜面とが対面する部位には、上記受圧面と上記傾斜面とにより形成された谷部の外接円よりも内側に出ないように外方に位置し、対面する上記傾斜面を滑らかに繋いだ第1控え部を設けてあり、
上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた上記塑性結合部を形成すると共に、上記圧入内面部に上記圧入外面部を圧入した上記圧入部を形成することにより、上記シャフト部と上記シーブ部とを一体的に結合していることを特徴とするCVT用シャフトにある(請求項1)。
第2の発明は、ベルト式無段変速機(以下、CVTという)に用いられるCVT用シャフトであって、
該CVT用シャフトは、機械構造用鋼よりなる棒状のシャフト部と、該シャフト部に外挿する機械構造用鋼よりなる円盤状のシーブ部を塑性結合部と圧入部とを介して結合してなり、
該シーブ部は、上記シャフト部を挿入する挿入穴を有し、該挿入穴は、上記塑性結合部を形成するための結合内面部と、上記圧入部を形成するための圧入内面部とを軸方向に連ねて、かつ、上記圧入内面部がシーブ面に近い側に位置するように設けてなり、
上記結合内面部の内周面には、軸方向に歯筋を有すると共に内方に突出する複数の歯部を有しており、
上記圧入内面部の内周面は、平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有しており、
また、上記シーブ部は、上記シャフト部との結合の前に、少なくとも歯部の表面を硬化する硬化処理を施してあり、
上記シャフト部は、上記塑性結合部を形成するための結合外面部と、上記圧入部を形成するための圧入外面部とを軸方向に連ねて有しており、
上記結合外面部は、上記歯部の内接円の径よりも大きい外径を有しており、
上記圧入外面部は、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有しており、
上記シーブ部の上記歯部は、表面硬さがHv600以上であり、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きく、
また、上記シーブ部の上記歯部は、軸方向に直交する断面において、該歯部間に形成される歯溝が該歯溝の外接円となる基準円よりも小径の円弧となり、かつ該基準円に内接する上記歯溝が周方向に規則的に並んで花びら形状を呈するように構成されており、
上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた上記塑性結合部を形成すると共に、上記圧入内面部に上記圧入外面部を圧入した上記圧入部を形成することにより、上記シャフト部と上記シーブ部とを一体的に結合していることを特徴とするCVT用シャフトにある(請求項2)。
A first invention is a CVT shaft used in a belt-type continuously variable transmission (hereinafter referred to as CVT),
The CVT shaft is formed by connecting a rod-shaped shaft portion made of mechanical structural steel and a disk-shaped sheave portion made of mechanical structural steel extrapolated to the shaft portion via a plastic coupling portion and a press-fit portion. Become
The sheave portion has an insertion hole into which the shaft portion is inserted, and the insertion hole has a coupling inner surface portion for forming the plastic coupling portion and a press-fit inner surface portion for forming the press-fit portion. Continuing in the direction and provided so that the press-fit inner surface portion is located on the side closer to the sheave surface,
The inner peripheral surface of the inner surface portion has a plurality of tooth portions protruding inward and having tooth traces in the axial direction,
The inner peripheral surface of the press-fitted inner surface portion is a flat surface and has an inner diameter smaller than the diameter of the inscribed circle of the tooth portion,
In addition, the sheave portion is subjected to a curing treatment for curing at least the surface of the tooth portion before being coupled to the shaft portion,
The shaft portion has a coupling outer surface portion for forming the plastic coupling portion and a press-fitting outer surface portion for forming the press-fitting portion in an axial direction.
The coupling outer surface portion has an outer diameter larger than the diameter of the inscribed circle of the tooth portion,
The press-fit outer surface portion has an outer diameter smaller than the diameter of the inscribed circle of the tooth portion and an outer diameter larger than the inner diameter of the press-fit inner surface portion so as to allow press-fitting,
The tooth portion of the sheave portion has a surface hardness of Hv 600 or more, and is greater than the surface hardness of the coupling outer surface portion of the shaft portion by Hv 300 or more,
Further, the tooth portion of the sheave portion includes a pressure receiving surface having an angle α with an axial plane including the axis of the shaft portion, and an inclined surface having an angle β with the axial plane β (β> α). A first fastening tooth having an acute angle shape and having the pressure receiving surface positioned in the first direction in the circumferential direction and a second fastening tooth having the pressure receiving surface positioned in the second direction opposite to the first fastening tooth. Configure one,
The first region in which the first fastening teeth are arranged and the second region in which the second fastening teeth are arranged are alternately arranged in the circumferential direction of the insertion hole,
The portion where the inclined surface of the first fastening tooth and the inclined surface of the second fastening tooth face each other does not come inward from the circumscribed circle of the valley formed by the pressure receiving surface and the inclined surface. As shown in FIG. 1, a first holding part is provided that smoothly connects the inclined surfaces facing each other.
The tooth portion is bitten into the joint outer surface portion to form the plastic joint portion in which a part of the joint outer surface portion is plastically flowed, and the press-fit portion is formed by press-fitting the press-fit outer surface portion into the press-fit inner surface portion. Accordingly, the CVT shaft is characterized in that the shaft portion and the sheave portion are integrally coupled to each other (claim 1).
A second invention is a CVT shaft used in a belt-type continuously variable transmission (hereinafter referred to as CVT),
The CVT shaft is formed by connecting a rod-shaped shaft portion made of mechanical structural steel and a disk-shaped sheave portion made of mechanical structural steel extrapolated to the shaft portion via a plastic coupling portion and a press-fit portion. Become
The sheave portion has an insertion hole into which the shaft portion is inserted, and the insertion hole has a coupling inner surface portion for forming the plastic coupling portion and a press-fit inner surface portion for forming the press-fit portion. Continuing in the direction and provided so that the press-fit inner surface portion is located on the side closer to the sheave surface,
The inner peripheral surface of the inner surface portion has a plurality of tooth portions protruding inward and having tooth traces in the axial direction,
The inner peripheral surface of the press-fitted inner surface portion is a flat surface and has an inner diameter smaller than the diameter of the inscribed circle of the tooth portion,
In addition, the sheave portion is subjected to a curing treatment for curing at least the surface of the tooth portion before being coupled to the shaft portion,
The shaft portion has a coupling outer surface portion for forming the plastic coupling portion and a press-fitting outer surface portion for forming the press-fitting portion in an axial direction.
The coupling outer surface portion has an outer diameter larger than the diameter of the inscribed circle of the tooth portion,
The press-fit outer surface portion has an outer diameter smaller than the diameter of the inscribed circle of the tooth portion and an outer diameter larger than the inner diameter of the press-fit inner surface portion so as to allow press-fitting,
The tooth portion of the sheave portion has a surface hardness of Hv 600 or more, and is greater than the surface hardness of the coupling outer surface portion of the shaft portion by Hv 300 or more,
Further, the tooth portion of the sheave portion has an arc having a smaller diameter than a reference circle in which a tooth groove formed between the tooth portions is a circumscribed circle of the tooth groove in a cross section orthogonal to the axial direction, and the reference The tooth gap inscribed in the circle is configured to form a petal shape regularly arranged in the circumferential direction,
The tooth portion is bitten into the joint outer surface portion to form the plastic joint portion in which a part of the joint outer surface portion is plastically flowed, and the press-fit portion is formed by press-fitting the press-fit outer surface portion into the press-fit inner surface portion. Accordingly, the CVT shaft is characterized in that the shaft portion and the sheave portion are integrally coupled (claim 2).

上記第1及び第2の発明のCVT用シャフトは、シャフト(プライマリシャフト、セカンダリシャフト)とシャフトに固定されるシーブ(固定シーブ)とで構成されたものである。
すなわち、上記CVT用シャフトは、上記シャフト部と該シャフト部に外挿した上記シーブ部とを有している。そして、上記シャフト部と上記シーブ部とは、上記シャフト部の上記結合外面部に上記シーブ部の上記歯部を食い込ませ、上記結合外面部の一部を上記歯部間の歯溝に塑性流動(塑性変形)させた塑性結合部を形成すると共に、上記シーブ部の圧入内面部に上記シャフト部の圧入外面部を圧入させた圧入部を形成することによって一体的に結合している。そのため、両者間の結合力は非常に高い。
The CVT shaft according to the first and second aspects of the present invention includes a shaft (primary shaft, secondary shaft) and a sheave (fixed sheave) fixed to the shaft.
That is, the CVT shaft has the shaft portion and the sheave portion extrapolated to the shaft portion. The shaft portion and the sheave portion cause the tooth portion of the sheave portion to bite into the coupling outer surface portion of the shaft portion, and a part of the coupling outer surface portion is plastically flowed into the tooth gap between the tooth portions. In addition to forming a plastically joined portion that is (plastically deformed), a press-fit portion is formed by press-fitting the press-fit outer surface portion of the shaft portion into the press-fit inner surface portion of the sheave portion. Therefore, the bonding strength between the two is very high.

特に、上記結合外面部と上記歯部とは、接触面上において、塑性変形により圧縮の残留応力が働いた状態で強固に固定されるため、使用中においても接触面に微小のズレが繰り返し生じることを抑制でき、フレッティングの心配をする必要がない。
また、上記圧入部は、塑性結合部よりもシーブ面に近い側に設けられている。ここで、シーブ面は、CVT用シャフトとして使用する際にベルトの巻き掛けによる負荷によってシーブ面の円周方向に最も高い引張応力が生じる部位であるが、上記圧入外面部と上記圧入内面部との接触面(圧入部の界面)はフラットであり、塑性結合部と比較して割れが発生し難い形状となっている。そのため、上記圧入内面部をシーブ面に近い側に位置するように設けることにより、応力集中を回避でき、シーブ面圧に対する強度を向上することができる。その結果、二部品結合という耐久性を確保するのに難しい工法を採用しているにも関わらず、必要な駆動伝達力は塑性結合部によって十分に確保して、ベルト巻き掛けによる大きな負荷にも十分耐え得る耐久性の確保を可能としたという大きな効果を有するものである。
In particular, since the joint outer surface portion and the tooth portion are firmly fixed on the contact surface in a state in which compressive residual stress is exerted by plastic deformation, minute displacements repeatedly occur on the contact surface even during use. This can be suppressed and there is no need to worry about fretting.
The press-fit portion is provided on the side closer to the sheave surface than the plastic coupling portion. Here, the sheave surface is a portion where the highest tensile stress is generated in the circumferential direction of the sheave surface due to a load caused by winding of the belt when used as a CVT shaft, and the press-fit outer surface portion, the press-fit inner surface portion, The contact surface (interface of the press-fit portion) is flat, and has a shape in which cracks are unlikely to occur compared to the plastic joint portion. Therefore, by providing the press-fitting inner surface portion so as to be positioned on the side closer to the sheave surface, stress concentration can be avoided and the strength against the sheave surface pressure can be improved. As a result, despite the fact that the construction method that is difficult to secure the durability of the two-part joint is adopted, the necessary drive transmission force is sufficiently secured by the plastic joint part, and even with a large load caused by belt wrapping. It has a great effect that it is possible to ensure the durability that can be sufficiently endured.

また、上記シャフト部と上記シーブ部との間の結合力を充分に確保することができるため、非特許文献1に記載されているような圧入のみで製造したCVTシャフトに比べて短い軸長で必要なねじり強度を確保することができる。これにより、生産性の向上、コストの低減を図ることができる。
また、結合力の高い塑性結合と、シーブ面圧に対する十分な強度を与える圧入とを組み合わせることによって、上記シャフト部と上記シーブ部との結合部分の接触面積を小さくすることができ、かつ、十分な耐面圧強度やねじり強度を有することができる。これにより、上記CVT用シャフトの小型軽量化を実現することができる。
In addition, since the coupling force between the shaft portion and the sheave portion can be sufficiently ensured, the shaft length is shorter than that of a CVT shaft manufactured only by press fitting as described in Non-Patent Document 1. Necessary torsional strength can be ensured. Thereby, improvement of productivity and reduction of cost can be aimed at.
Further, by combining plastic bonding with high bonding force and press-fitting that provides sufficient strength against sheave surface pressure, the contact area of the coupling portion between the shaft portion and the sheave portion can be reduced, and sufficient It can have high surface pressure resistance and torsional strength. As a result, the CVT shaft can be reduced in size and weight.

また、本発明のCVT用シャフトは、上述のごとく、上記シャフト部と上記シーブ部とをそれぞれ別部材で設け、これらを一体的に結合している。そのため、両者を一体品として設けた場合に比べて、上記CVT用シャフトの寸法精度や生産性を向上させ、コストの低減に寄与することができる。   In the CVT shaft of the present invention, as described above, the shaft portion and the sheave portion are provided as separate members, and these are integrally coupled. Therefore, compared with the case where both are provided as an integrated product, the dimensional accuracy and productivity of the CVT shaft can be improved and the cost can be reduced.

すなわち、別部材で設けることにより、上記シャフト部及び上記シーブ部の各部材の形状は一体品に比べて単純となり、小型軽量となる。そのため、各部材を精度よく加工、成形することができると共に、効率よく生産することができる。特に、上記シーブ部に浸炭等の硬化処理を施す際には、部材の単純化、小型化によって、同じ熱処理炉であっても1回の処理でより多くの個数を処理できるため、処理時間を短縮することができる。これにより、上記シャフト部と上記シーブ部とを結合させた上記CVT用シャフトは、寸法精度や生産性が高いものとなり、コスト低減が期待できる。   That is, by providing separate members, the shape of each member of the shaft portion and the sheave portion is simpler than that of an integrated product, and is small and light. Therefore, each member can be processed and molded with high accuracy and can be produced efficiently. In particular, when carrying out a hardening process such as carburizing on the sheave part, it is possible to process a larger number of parts in one process even in the same heat treatment furnace due to simplification and miniaturization of the members, so that the processing time is reduced. It can be shortened. Accordingly, the CVT shaft in which the shaft portion and the sheave portion are coupled has high dimensional accuracy and productivity, and cost reduction can be expected.

さらに、上記シャフト部及び上記シーブ部を別部材で設けることにより、両者に対して、コスト、生産性、要求される性能等に見合った素材をそれぞれ選択的に用いて生産することができる。これにより、上記CVT用シャフトにおけるコストの低減、性能の確保等を容易に行うことができる。   Furthermore, by providing the shaft portion and the sheave portion as separate members, it is possible to produce materials using materials that are suitable for cost, productivity, required performance, and the like. Thereby, it is possible to easily reduce the cost and secure the performance of the CVT shaft.

また、本発明における塑性結合は、硬度の高いものに対して硬度の低いものを塑性変形させ、両者を結合する方法である。したがって、本発明では、少なくとも上記シーブ部の上記歯部の硬度(表面硬さ)が、上記シャフト部の上記結合外面部よりも大きいことが前提となる。このため、上記シーブ部は、少なくとも上記歯部の表面について硬化処理を施してある。これにより、上記歯部の表面硬さを向上させることができ、上記結合外面部と上記歯部との塑性結合を精度よく行うことができる。
また、上記シーブ部における上記歯部以外の部分にも同時に、少なくとも表面を硬化させる硬化処理を施しておくことにより、金属等のベルトに接触し、摩耗の激しい上記シーブ部の耐摩耗性を向上させることができる。
Further, the plastic bonding in the present invention is a method in which a material having a low hardness is plastically deformed and a material having a high hardness is bonded. Therefore, in the present invention, it is premised that at least the hardness (surface hardness) of the tooth portion of the sheave portion is larger than that of the outer surface portion of the shaft portion. For this reason, the sheave part is subjected to a hardening process at least on the surface of the tooth part. Thereby, the surface hardness of the said tooth part can be improved, and the plastic coupling of the said coupling | bonding outer surface part and the said tooth part can be performed accurately.
In addition, by applying a hardening process that hardens at least the surface of the sheave part other than the tooth part at the same time, it improves the wear resistance of the sheave part that comes into contact with a belt made of metal or the like and is heavily worn. Can be made.

このように、本発明によれば、別部材よりなるシャフトとシーブとを一体化させて構成し、寸法精度や耐久性に優れ、さらには生産性の向上、コストの低減を図ることができるCVT用シャフトを提供することができる。
なお、本発明では、主として塑性結合により必要なねじり強度確保しているため、ねじり強度を十分に確保できる場合には、圧入部の圧入代を0とし、シャフト部の圧入外面部の径をシーブ部の圧入内面部の径より小さくすることも可能である。但し、その場合でも結合品の精度確保のためには、両者の径の差を0.05mm以内とすることが望ましい。
As described above, according to the present invention, a shaft and a sheave made of different members are integrated to form a CVT that is excellent in dimensional accuracy and durability, and that can further improve productivity and reduce costs. Shafts can be provided.
In the present invention, the necessary torsional strength is mainly secured by plastic bonding. Therefore, when sufficient torsional strength can be ensured, the press-fitting allowance of the press-fitting portion is set to 0, and the diameter of the press-fitting outer surface portion of the shaft portion is set to the sheave. It is also possible to make it smaller than the diameter of the press-fitting inner surface part of the part. However, even in that case, in order to ensure the accuracy of the combined product, it is desirable that the difference in diameter between the two is within 0.05 mm.

の発明は、CVTに用いられるCVT用シャフトの製造方法において、
機械構造用鋼よりなり、内周面に軸方向に歯筋を有すると共に内方に突出する複数の歯部とを有する結合内面部と、内周面が平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有する圧入内面部とを軸方向に連ねてなる挿入穴を中央に有する円盤状のシーブ部を準備するシーブ部準備工程と、
少なくとも上記歯部の表面を硬化するシーブ部硬化処理工程と、
機械構造用鋼よりなり、上記歯部の内接円の径よりも大きい外径の結合外面部と、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有する圧入外面部とを軸方向に連ねて有する棒状のシャフト部を準備するシャフト部準備工程と、
上記シャフト部を上記シーブ部の上記挿入穴に挿入すると共に、上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた塑性結合部を形成する塑性結合処理と、上記圧入内面部に上記圧入外面部を圧入した圧入部を形成する圧入処理とを有し、上記シャフト部と上記シーブ部とを一体的に結合する結合工程とを有し、
上記シーブ部準備工程では、上記シャフト部の軸線を含む軸平面となす角度がαである受圧面と、上記軸平面となす角度がβ(β>α)である傾斜面とにより鋭角状に構成されていると共に、上記受圧面を周方向における第1の方向に位置させた第1締結歯と、その反対側の第2の方向に上記受圧面を位置させた第2締結歯を形成し、
上記第1締結歯を並べた第1領域と、上記第2締結歯を並べた第2領域とは、上記挿入穴の周方向に交互に配列し、
上記第1締結歯の上記傾斜面と上記第2締結歯の上記傾斜面とが対面する部位には、上記受圧面と上記傾斜面とにより形成された谷部の外接円よりも内側に出ないように外方に位置し、対面する上記傾斜面を滑らかに繋いだ第1控え部を設け、
上記シーブ部硬化処理工程では、上記シーブ部の上記歯部の表面硬さをHv600以上とし、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きくすることを特徴とするCVT用シャフトの製造方法にある(請求項)。
第4の発明は、CVTに用いられるCVT用シャフトの製造方法において、
機械構造用鋼よりなり、内周面に軸方向に歯筋を有すると共に内方に突出する複数の歯部とを有する結合内面部と、内周面が平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有する圧入内面部とを軸方向に連ねてなる挿入穴を中央に有する円盤状のシーブ部を準備するシーブ部準備工程と、
少なくとも上記歯部の表面を硬化するシーブ部硬化処理工程と、
機械構造用鋼よりなり、上記歯部の内接円の径よりも大きい外径の結合外面部と、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有する圧入外面部とを軸方向に連ねて有する棒状のシャフト部を準備するシャフト部準備工程と、
上記シャフト部を上記シーブ部の上記挿入穴に挿入すると共に、上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた塑性結合部を形成する塑性結合処理と、上記圧入内面部に上記圧入外面部を圧入した圧入部を形成する圧入処理とを有し、上記シャフト部と上記シーブ部とを一体的に結合する結合工程とを有し、
上記シーブ部準備工程では、上記シーブ部の上記歯部を、軸方向に直交する断面において、該歯部間に形成される歯溝が該歯溝の外接円となる基準円よりも小径の円弧となり、かつ該基準円に内接する上記歯溝が周方向に規則的に並んで花びら形状を呈するように形成し、
上記シーブ部硬化処理工程では、上記シーブ部の上記歯部の表面硬さをHv600以上とし、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きくすることを特徴とするCVT用シャフトの製造方法にある(請求項10)。
3rd invention is the manufacturing method of the shaft for CVT used for CVT,
It is made of steel for machine structural use, and has an inner peripheral surface having axial teeth on the inner peripheral surface and a plurality of tooth portions projecting inward, and an inner peripheral surface formed of a flat surface and A sheave part preparation step of preparing a disk-shaped sheave part having an insertion hole formed in the center of a press-fitting inner surface part having an inner diameter smaller than the diameter of the inscribed circle;
A sheave portion curing process for curing at least the surface of the tooth portion;
It is made of steel for machine structural use, has a coupling outer surface portion having an outer diameter larger than the diameter of the inscribed circle of the tooth portion, an outer diameter smaller than the diameter of the inscribed circle of the tooth portion, and is capable of being press-fit. A shaft portion preparation step of preparing a rod-shaped shaft portion having a press-fit outer surface portion having an outer diameter larger than the inner diameter of the press-fit inner surface portion in the axial direction;
A plastic coupling process for inserting the shaft portion into the insertion hole of the sheave portion and forming a plastic coupling portion in which the tooth portion is bitten into the coupling outer surface portion and a part of the coupling outer surface portion is plastically flowed. , and a press-fitting process of forming a press-fit portion press-fitted to the press-fit outer surface to the press-fit the inner surface portion, possess a binding step of combining integrally the shaft portion and the sheave portion,
In the sheave portion preparing step, the pressure receiving surface having an angle α with the axial plane including the axis of the shaft portion and an inclined surface having an angle β with the axial plane β (β> α) And forming a first fastening tooth in which the pressure receiving surface is positioned in the first direction in the circumferential direction and a second fastening tooth in which the pressure receiving surface is positioned in the second direction on the opposite side.
The first region in which the first fastening teeth are arranged and the second region in which the second fastening teeth are arranged are alternately arranged in the circumferential direction of the insertion hole,
The portion where the inclined surface of the first fastening tooth and the inclined surface of the second fastening tooth face each other does not come inward from the circumscribed circle of the valley formed by the pressure receiving surface and the inclined surface. So as to be located outside and provide a first holding part that smoothly connects the inclined surfaces facing each other,
In the said sheave part hardening process process, the surface hardness of the said tooth | gear part of the said sheave part shall be Hv600 or more, and Hv300 or more is made larger than the surface hardness of the said coupling outer surface part of the said shaft part, The manufacture of the shaft for CVT characterized by the above-mentioned. It is in the method (claim 9 ).
4th invention is the manufacturing method of the shaft for CVT used for CVT,
It is made of steel for machine structural use, and has an inner peripheral surface having axial teeth on the inner peripheral surface and a plurality of tooth portions projecting inward, and an inner peripheral surface formed of a flat surface and A sheave part preparation step of preparing a disk-shaped sheave part having an insertion hole formed in the center of a press-fitting inner surface part having an inner diameter smaller than the diameter of the inscribed circle;
A sheave portion curing process for curing at least the surface of the tooth portion;
It is made of steel for machine structural use, has a coupling outer surface portion having an outer diameter larger than the diameter of the inscribed circle of the tooth portion, an outer diameter smaller than the diameter of the inscribed circle of the tooth portion, and is capable of being press-fit. A shaft portion preparation step of preparing a rod-shaped shaft portion having a press-fit outer surface portion having an outer diameter larger than the inner diameter of the press-fit inner surface portion in the axial direction;
A plastic coupling process for inserting the shaft portion into the insertion hole of the sheave portion and forming a plastic coupling portion in which the tooth portion is bitten into the coupling outer surface portion and a part of the coupling outer surface portion is plastically flowed. A press-fitting process for forming a press-fitting part in which the press-fitting outer surface part is press-fitted into the press-fitting inner surface part, and a coupling step for integrally joining the shaft part and the sheave part,
In the sheave portion preparation step, the tooth portion of the sheave portion is an arc having a smaller diameter than a reference circle in which a tooth groove formed between the tooth portions is a circumscribed circle of the tooth groove in a cross section orthogonal to the axial direction. And the tooth gap inscribed in the reference circle is regularly arranged in the circumferential direction to form a petal shape,
In the said sheave part hardening process process, the surface hardness of the said tooth | gear part of the said sheave part shall be Hv600 or more, and Hv300 or more is made larger than the surface hardness of the said coupling outer surface part of the said shaft part, The manufacture of the shaft for CVT characterized by the above-mentioned. In the method (claim 10).

上記第3及び第4の発明のCVT用シャフトの製造方法は、上記結合工程において、塑性結合処理により上記シャフト部を上記シーブ部の上記挿入穴に挿入すると共に、上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動(塑性変形)させた塑性結合部を形成し、圧入処理により上記圧入内面部に上記圧入外面部を圧入した圧入部を形成し、上記シャフト部と上記シーブ部とを一体的に結合する。これにより、本発明の製造方法によれば、上述したごとく、上記シャフト部と上記シーブ部との結合力が非常に高く、小型化を実現することができ、耐面圧強度やねじり強度等の強度が高く、耐久性を有し、性能が確保されたCVT用シャフトを、優れた寸法精度や生産性で、低コストで得ることができる。 In the method of manufacturing the CVT shaft according to the third and fourth inventions, in the coupling step, the shaft portion is inserted into the insertion hole of the sheave portion by a plastic coupling process, and the tooth portion is formed on the coupling outer surface portion. And forming a press-fitting part in which the press-fitting outer surface part is press-fitted into the press-fitting inner surface part by press-fitting treatment to form a plastic joint part in which a part of the joint outer surface part is plastically flowed (plastic deformation). And the sheave portion are integrally coupled. Thus, according to the manufacturing method of the present invention, as described above, the coupling force between the shaft portion and the sheave portion is very high, and downsizing can be realized, such as surface pressure resistance strength and torsion strength. A CVT shaft having high strength, durability, and performance can be obtained with excellent dimensional accuracy and productivity at low cost.

上記第3及び第4の発明の製造方法は、上述したごとく、シーブ部準備工程と、シーブ部硬化処理工程と、シャフト部準備工程と、結合工程とを有する。
上記シーブ部準備工程においては、機械構造用鋼に対して、熱間鍛造、冷間鍛造、切削加工等を行うことにより、上記シーブ部を準備する。
The manufacturing method of the said 3rd and 4th invention has a sheave part preparation process, a sheave part hardening process process, a shaft part preparation process, and a coupling | bonding process as mentioned above.
In the sheave part preparation step, the sheave part is prepared by performing hot forging, cold forging, cutting, or the like on the machine structural steel.

また、上記シーブ部硬化処理工程においては、浸炭、浸炭窒化、高周波焼入のような表面及びその周辺部を集中して硬化させるいわゆる表面硬化処理や、部品全体をズブ焼入れ焼戻しすることにより内部まで同時に硬化させる調質処理等を適用し、少なくとも上記歯部の表面を硬化する。従って、必然的に実施する表面硬化処理に適した材料を選択する必要があり、特に、浸炭、浸炭窒化処理を行う場合は、Cr鋼、Cr−Mo鋼等の肌焼鋼が適している。   In addition, in the above-mentioned sheave part hardening treatment process, the surface and its peripheral part such as carburizing, carbonitriding, and induction hardening are concentrated and hardened, and the entire part is completely quenched and tempered. A tempering treatment or the like for curing at the same time is applied to cure at least the surface of the tooth part. Therefore, it is necessary to select a material suitable for the surface hardening treatment to be performed inevitably. In particular, when carburizing or carbonitriding is performed, case hardening steel such as Cr steel or Cr—Mo steel is suitable.

また、上記シャフト部準備工程においても、前期シーブ部準備工程と同様に、機械構造用鋼に対して、熱間鍛造、冷間鍛造、切削加工等を行うことにより、上記シャフト部を準備する。シャフト部も部分的に高強度が必要な部位に高周波焼入される場合はあるが、シーブ部よりは高強度を必要としないので、材料としてはCr鋼、Cr−Mo鋼に比べ安価な炭素鋼(SC)を使用することができる。なお、必要に応じて、焼なまし、焼きならし処理を施してもよい。   Moreover, also in the said shaft part preparatory process, the said shaft part is prepared by performing hot forging, cold forging, cutting, etc. with respect to steel for machine structure similarly to the first sheave part preparatory process. The shaft part may also be induction-hardened in parts that require high strength, but it does not require higher strength than the sheave part, so the material is cheaper carbon than Cr steel and Cr-Mo steel. Steel (SC) can be used. In addition, you may perform an annealing and a normalizing process as needed.

次に、上記第1〜第4の発明においては、後述の図4に示すごとく、上記圧入内面部の内径をd1、上記シーブ部の直径をd2、中央径d3=(d1+d2)/2とした場合に、上記シーブ部の表面における上記中央径d3位置から中心軸に対して垂直な垂線を引いた場合に該垂線と上記挿入穴内面との交差する位置が圧入内面部であることが好ましい(請求項11)。
この場合には、塑性結合部によるねじり強度と、圧入部による耐面圧強度の効果を特に良好に得ることができる。
Next, in the first to fourth inventions, as shown in FIG. 4 described later, the inner diameter of the press-fitting inner surface portion is d 1 , the diameter of the sheave portion is d 2 , and the center diameter d 3 = (d 1 + d in case of a 2) / 2, the position is pressed inner surface which intersects the said vertical line and said insertion hole inner surface when minus the line perpendicular to the center axis of the central diameter d 3 position on the surface of the sheave portion (Claims 3 and 11 ).
In this case, the effects of the torsional strength by the plastic joint and the surface pressure resistance by the press-fit portion can be obtained particularly well.

圧入部が狭く、上記垂線と上記挿入穴内面との交差する位置が塑性結合部となるような場合には、圧入部に比べ割れが発生しやすい形状である塑性結合部より割れが発生しやすくなり、実際のベルト巻き掛けによる負荷に対する耐面圧強度が不十分になるおそれがある。   When the press-fitting part is narrow and the position where the perpendicular and the inner surface of the insertion hole intersect is a plastic joint part, cracks are more likely to occur than the plastic joint part, which is more likely to crack than the press-fitting part. Therefore, the surface pressure resistance against the load caused by actual belt winding may be insufficient.

また、上記シーブ部の上記歯部は、表面硬さがHv600以上である
この場合には、上記歯部の優れた強度特性によって、結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させることにより形成される上記塑性結合部がより安定した結合部となり、2部品の結合時の位置精度の安定性も高くすることができる。
Further, the tooth portion of the sheave portion has a surface hardness of Hv600 or more .
In this case, due to the excellent strength characteristics of the tooth part, the plastic joint part formed by causing the tooth part to bite into the joint outer surface part and plastically flowing a part of the joint outer surface part is more stable. It becomes a coupling part, and the stability of the positional accuracy when two parts are coupled can be increased.

また、上記シーブ部の上記歯部は、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きい
すなわち、硬度差が小さい場合には、塑性結合時における上記結合外面部表面の塑性流動がスムーズに進まなくなり、結合後の寸法精度が低下する。したがって、硬度差をHv300以上としておくことにより、上記歯部と上記結合外面部との硬度差によって、塑性変形した上記結合外面部が上記歯部間に塑性流動し易くなり、より一層安定して、精度のよい上記塑性結合部を得ることができる。
Further, the tooth portion of the sheave portion is Hv300 or more larger than the surface hardness of the coupling outer surface portion of the shaft portion .
That is, when the difference in hardness is small, the plastic flow on the surface of the outer surface of the joint at the time of plastic joining does not proceed smoothly, and the dimensional accuracy after joining decreases. Therefore, by setting the hardness difference to be Hv300 or more, due to the hardness difference between the tooth part and the joint outer surface part, the plastically deformed joint outer surface part is likely to plastically flow between the tooth parts, and is more stable. Thus, it is possible to obtain the above-described plastic coupling portion with high accuracy.

また、上記シャフト部は、下記式により示される炭素当量Ceqが0.4以上の素材よりなり、上記シーブ部との結合前又は結合後に、上記結合外面部以外の少なくとも一部に、高周波焼入処理によって表面硬化処理を施してあることが好ましい(請求項12)。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4、(各元素記号はそれぞれの質量%を意味する。)
Further, the shaft portion is made of a material having a carbon equivalent Ceq of 0.4 or more represented by the following formula, and before or after the coupling with the sheave portion, at least a part other than the coupling outer surface portion is induction-hardened. It is preferable that the surface hardening process is performed by the process (Claims 4 and 12 ).
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 (each element symbol means mass%)

勿論、結合外面部については高周波熱処理は行わないが、結合外面部以外の部位で高強度を必要とする部位に高周波焼入処理を施すことにより、上記シャフト部の表面硬さを高めることができる。なお、上記シャフト部の炭素当量Ceqが0.4未満の場合には、高周波焼入後の硬さ不足、強度不足、摺動部位の耐摩耗性の低下等の不具合を生じる場合がある。   Of course, the induction outer surface portion is not subjected to induction heat treatment, but the surface hardness of the shaft portion can be increased by applying induction hardening treatment to a portion requiring high strength at a portion other than the attachment outer surface portion. . In addition, when the carbon equivalent Ceq of the shaft portion is less than 0.4, problems such as insufficient hardness after induction hardening, insufficient strength, and reduced wear resistance of the sliding portion may occur.

また、上記シーブ部の上記歯部は、上記硬化処理を施した後に、ショットピーニング処理を施してあることが好ましい(請求項13)。
この場合には、ショットピーニング処理を施すことにより、上記シーブ部の上記歯部に圧縮の残留応力が発生する。そのため、上記結合外面部と上記歯部との塑性結合の際、及びその後の使用時に、上記歯部の歯底面に生じる引張応力を低減させることができ、塑性結合後における上記シーブ部の遅れ破壊を抑制することができる。
Moreover, it is preferable that the said tooth | gear part of the said sheave part has performed the shot peening process after performing the said hardening process (Claims 5 and 13 ).
In this case, compressive residual stress is generated in the teeth of the sheave by performing shot peening. Therefore, the tensile stress generated in the bottom surface of the tooth part can be reduced during the plastic connection between the outer surface part and the tooth part and during subsequent use, and the sheave part after the plastic connection is delayed. Can be suppressed.

また、上記第2及び第4の発明において、上記シーブ部の上記歯部は、軸方向に直交する断面において、該歯部間に形成される歯溝が該歯溝の外接円となる基準円よりも小径の円弧となり、かつ該基準円に内接する上記歯溝が周方向に規則的に並んで花びら形状(後述の図5、図6参照)を呈するように構成されている。
花びら形状を構成する歯部は、冷間鍛造で形成することができるためコストの低減を図ることができる。
また、歯溝部分が滑らかな曲線状に形成されているため、十分なねじり強度を得ることができるだけでなく、塑性結合後における歯元の引っ張り応力を緩和することができ、上記シーブ部の破裂、遅れ破壊、置き狂い等を抑制することができ、上記CVT用シャフトの寸法精度を向上させることができる。なお、上記歯部は、細かいほどねじりトルクに対して高強度となる。
In the second and fourth inventions, the tooth portion of the sheave portion is a reference circle in which a tooth groove formed between the tooth portions is a circumscribed circle of the tooth groove in a cross section orthogonal to the axial direction. Further, the above-described tooth groove inscribed in the reference circle is regularly arranged in the circumferential direction to form a petal shape (see FIGS. 5 and 6 to be described later).
Since the tooth part which comprises a petal shape can be formed by cold forging, cost reduction can be aimed at.
In addition, since the tooth gap portion is formed in a smooth curved shape, not only can a sufficient torsional strength be obtained, but also the tensile stress of the tooth root after plastic bonding can be relieved, and the sheave portion is ruptured. Thus, delayed destruction, misplacement, and the like can be suppressed, and the dimensional accuracy of the CVT shaft can be improved. In addition, the said tooth | gear part becomes high intensity | strength with respect to torsion torque, so that it is fine.

また、上記第1及び第3の発明において、塑性結合部において特に高いねじり強度を確保するために、上記シーブ部の歯部の形状を以下のように形成する
具体的には、上記歯部は、上記シャフト部の軸線を含む軸平面となす角度がαである受圧面と、上記軸平面となす角度がβ(β>α)である傾斜面とにより鋭角状を呈していると共に、上記受圧面を周方向における第1の方向に位置させた第1締結歯と、その反対側の第2の方向に上記受圧面を位置させた第2締結歯のいずれかを構成し、上記第1締結歯を並べた第1領域と、上記第2締結歯を並べた第2領域とは、上記挿入穴の周方向に交互に配列されており、上記第1締結歯の上記傾斜面と上記第2締結歯の上記傾斜面とが対面する部位には、上記受圧面と上記傾斜面とにより形成された谷部の外接円よりも内側に出ないように外方に位置し、対面する上記傾斜面を滑らかに繋いだ第1控え部を設ける
In the first and third invention, in order to ensure a particularly high torsional strength in the plastic coupling part, the shape of the teeth of the sheave portion, formed as follows.
Specifically, the tooth portion has an acute angle due to a pressure receiving surface having an angle α with an axial plane including the axis of the shaft portion and an inclined surface having an angle β (β> α) with the axial plane. And the first fastening tooth in which the pressure receiving surface is positioned in the first direction in the circumferential direction and the second fastening tooth in which the pressure receiving surface is positioned in the second direction opposite to the first fastening tooth. The first region in which the first fastening teeth are arranged and the second region in which the second fastening teeth are arranged are alternately arranged in the circumferential direction of the insertion hole, and the first fastening The portion where the inclined surface of the tooth and the inclined surface of the second fastening tooth face each other is outward so as not to come inward from the circumscribed circle of the valley formed by the pressure-receiving surface and the inclined surface. A first holding portion is provided that smoothly connects the inclined surfaces facing each other .

この場合には、シャフト部の結合外面部にシーブ部の歯部を食い込ませ、結合外面部の一部を歯部の谷部に塑性流動(塑性変形)させ、結合力が極めて高く、高いねじり強度を確保することができる塑性結合部を形成することができる。
また、上記歯部と上記結合外面部とを塑性結合する際に、上記第1締結歯の上記傾斜面と上記第2締結歯の上記傾斜面とが対面する部位には、最も大きな引張応力が発生する。そのため、その部位には、上記受圧面と上記傾斜面とにより形成された上記谷部の外接円よりも内側に出ないように外方に位置し、対面する上記傾斜面を滑らかに繋いだ上記第1控え部を設ける。すなわち、応力が集中する部位に滑らかな形状の上記第1控え部を設けることによって、発生する引張応力を低減することができる。これにより、塑性結合後における上記シーブ部の破裂、遅れ破壊、置き狂い等を抑制することができ、CVT用シャフトの寸法精度を向上させることができる。
In this case, the tooth portion of the sheave portion is bitten into the coupling outer surface portion of the shaft portion, and a part of the coupling outer surface portion is plastically flowed (plastically deformed) into the trough portion of the tooth portion, resulting in extremely high coupling force and high torsion. It is possible to form a plastic joint that can ensure strength.
Further, when the tooth portion and the joint outer surface portion are plastically coupled, the largest tensile stress is applied to a portion where the inclined surface of the first fastening tooth and the inclined surface of the second fastening tooth face each other. appear. Therefore, the part is located outside so as not to come out of the circumscribed circle of the trough formed by the pressure receiving surface and the inclined surface, and the inclined surface facing each other is smoothly connected. A first holding part is provided. In other words, the tensile stress generated can be reduced by providing the first holding portion having a smooth shape at a portion where the stress is concentrated. Thereby, rupture, delayed fracture, misplacement, and the like of the sheave portion after plastic bonding can be suppressed, and the dimensional accuracy of the CVT shaft can be improved.

また、上記歯部と上記結合外面部との塑性結合の際に、上記第1控え部に発生する引張応力をさらに効果的に低減するために、上記第1控え部は、塑性流動した結合外面部との間に間隙を設けて配置されていることが好ましい。   Further, in order to further effectively reduce the tensile stress generated in the first holding portion during the plastic bonding between the tooth portion and the bonding outer surface portion, the first holding portion is formed by a plastic flowed bonding outer surface. It is preferable that a gap is provided between the two portions.

また、上記第1締結歯の上記受圧面と上記第2締結歯の上記受圧面とが対面する部位には、上記結合外面部の外径よりも内側に出ないように外方に位置し、対面する上記受圧面を滑らかに繋いだ第2控え部を設けてあることが好ましい。
この場合には、塑性結合する際に上記第2控え部が障害とならないため、上記結合外面部の外径、上記歯部の内径の寸法精度にばらつきが生じても、上記結合外面部の塑性流動をスムーズに行うことができる。なお、塑性結合後において、上記第2控え部に上記結合外面部が当接するように上記第2控え部の寸法調整をしておくことにより、上記シャフト部と上記シーブ部との軸方向位置のズレを抑制することができ、上記CVT用シャフトの寸法精度を向上させることができる。
また、上記谷部は、各谷部に発生する引張応力を低減するために、滑らかな曲線状に形成されていることが好ましい。
Further, the portion where the pressure receiving surface of the first fastening tooth and the pressure receiving surface of the second fastening tooth face each other is located outward so as not to come inward from the outer diameter of the coupling outer surface portion, It is preferable that a second holding portion that smoothly connects the pressure-receiving surfaces facing each other is provided.
In this case, since the second holding part does not become an obstacle when plastically coupled, even if the dimensional accuracy of the outer diameter of the coupled outer surface part and the inner diameter of the tooth part varies, the plasticity of the coupled outer surface part The flow can be performed smoothly. After the plastic coupling, by adjusting the dimensions of the second retaining portion so that the coupling outer surface portion contacts the second retaining portion, the axial position of the shaft portion and the sheave portion can be adjusted. Misalignment can be suppressed, and the dimensional accuracy of the CVT shaft can be improved.
Moreover, it is preferable that the said trough part is formed in the smooth curve shape, in order to reduce the tensile stress which generate | occur | produces in each trough part.

また、上記第1〜第4の発明において、上記シーブ部の上記結合内面部と上記圧入内面部との間には、上記歯部の内径よりも大きい内径を有する凹部が形成されていることが好ましい(請求項14)。
この場合には、上記結合外面部と上記歯部との塑性結合の際に、上記結合外面部の一部が上記凹部に塑性流動することができ、上記CVT用シャフトのシャフト部とシーブ部の位置精度を向上させることができる。
In the first to fourth inventions, a recess having an inner diameter larger than the inner diameter of the tooth portion may be formed between the coupling inner surface portion and the press-fitting inner surface portion of the sheave portion. Preferred (Claims 6 and 14 ).
In this case, at the time of the plastic coupling between the coupling outer surface portion and the tooth portion, a part of the coupling outer surface portion can plastically flow into the recess, and the shaft portion and the sheave portion of the CVT shaft are Position accuracy can be improved.

また、上記シャフト部の上記結合外面部は、その外周角部に傾斜した接触面を有しており、
上記歯部は、上記結合外面部を内周側に収容可能な大径先端部を有すると共に、その後端側に徐々に縮径する位置決め傾斜部を有しており、
上記塑性結合部は、上記歯部の上記大径先端部内に上記結合外面部を収容すると共に上記接触面と上記位置決め傾斜部とを当接した後に、上記歯部を上記結合外面部に食い込ませて形成してあることが好ましい(請求項15)。
この場合には、上記シャフト部と上記シーブ部との軸方向の位置決めを行うことができ、上記CVT用シャフトのシャフト部とシーブ部の位置精度を向上させることができる。
Further, the coupling outer surface portion of the shaft portion has a contact surface inclined at an outer peripheral corner portion,
The tooth portion has a large-diameter tip portion that can accommodate the combined outer surface portion on the inner peripheral side, and a positioning inclined portion that gradually decreases in diameter on the rear end side,
The plastic coupling portion accommodates the coupling outer surface portion in the large-diameter tip portion of the tooth portion and causes the tooth portion to bite into the coupling outer surface portion after contacting the contact surface and the positioning inclined portion. It is preferable that they are formed (claims 7 and 15 ).
In this case, the shaft portion and the sheave portion can be positioned in the axial direction, and the positional accuracy of the shaft portion and the sheave portion of the CVT shaft can be improved.

また、上記シャフト部は、上記結合外面部よりも外径が大きい外鍔部を有しており、
上記歯部の軸方向端面には、上記外鍔部に当接可能な先端当接面を有しており、上記塑性結合部形成状態において、上記外鍔部と上記先端当接面とが当接していることが好ましい(請求項16)。
この場合には、上記シャフト部と上記シーブ部とは、充分に固定されたものとなる。
Further, the shaft portion has an outer flange portion having an outer diameter larger than that of the coupling outer surface portion,
An axial end surface of the tooth portion has a tip contact surface that can contact the outer flange portion. When the plastic coupling portion is formed, the outer flange portion and the tip contact surface are in contact with each other. It is preferable that it contacts (Claims 8 and 16 ).
In this case, the shaft portion and the sheave portion are sufficiently fixed.

また、上記塑性結合処理と上記圧入処理は同時に開始しても良いし、上記塑性結合処理を開始した後に圧入処理を開始しても良いし、上記圧入処理を開始した後に塑性結合処理を開始しても良いが、特に、上記第3及び第4の発明のCVT用シャフトの製造方法では、上記結合工程は、上記圧入処理を開始した後に塑性結合処理を開始することが好ましい(請求項17)。
この場合には、上記シャフト部と上記シーブ部との位置関係が精度よく固定された状態で塑性結合させることができるため、寸法精度のばらつきの少ないCVTシャフトを製造することができる。
Further, the plastic bonding process and the press-fitting process may be started simultaneously, the press-fitting process may be started after the plastic bonding process is started, or the plastic bonding process is started after the press-fitting process is started. and may be, but in particular, in the third and fourth manufacturing method of the CVT shaft of the invention, the coupling step is preferably started plastic binding process after the start of the press-process (claim 17) .
In this case, the CVT shaft can be manufactured with little variation in dimensional accuracy because it can be plastically coupled with the positional relationship between the shaft portion and the sheave portion being accurately fixed.

(実施例1)
本発明の実施例にかかるCVT用シャフト及びその製造方法について、図を用いて説明する。
本例のCVT用シャフト1は、図1に示すごとく、自動車等の変速機に利用されるベルト式無段変速機(CVT)に用いられるものであり、シャフト(シャフト部2)とシャフトに固定されるシーブ(シーブ部3)とで構成されている。
Example 1
The shaft for CVT concerning the Example of this invention and its manufacturing method are demonstrated using figures.
As shown in FIG. 1, the CVT shaft 1 of this example is used for a belt type continuously variable transmission (CVT) used for a transmission of an automobile or the like, and is fixed to the shaft (shaft portion 2) and the shaft. Sheave (sheave part 3).

CVT用シャフト1は、図1〜図9に示すごとく、機械構造用鋼よりなる棒状のシャフト部2と、該シャフト部2に外挿する機械構造用鋼よりなる円盤状のシーブ部3を、塑性結合部4と圧入部5とを介して結合してなる。   As shown in FIGS. 1 to 9, the CVT shaft 1 includes a rod-shaped shaft portion 2 made of mechanical structural steel, and a disk-shaped sheave portion 3 made of mechanical structural steel to be extrapolated to the shaft portion 2. It is connected via the plastic connecting portion 4 and the press-fit portion 5.

上記シーブ部3は、上記シャフト部2を挿入する挿入穴31を有し、該挿入穴31は、上記塑性結合部4を形成するための結合内面部32と、上記圧入部5を形成するための圧入内面部33とを軸方向に連ねて、かつ、上記圧入内面部33がシーブ面30に近い側に位置するように設けてなり、上記結合内面部32の内周面には、軸方向に歯筋を有すると共に内方に突出する複数の歯部34を有しており、上記圧入内面部33の内周面は、平坦な面からなると共に上記歯部34の内接円の径よりも小さい内径を有しており、また、上記シーブ部3は、上記シャフト部2との結合の前に、少なくとも歯部34の表面を硬化する硬化処理を施してある。   The sheave portion 3 has an insertion hole 31 into which the shaft portion 2 is inserted. The insertion hole 31 forms a coupling inner surface portion 32 for forming the plastic coupling portion 4 and the press-fit portion 5. The press-fit inner surface portion 33 is connected to the axial direction, and is provided so that the press-fit inner surface portion 33 is located on the side closer to the sheave surface 30. And has a plurality of tooth portions 34 projecting inwardly, and the inner peripheral surface of the press-fit inner surface portion 33 is a flat surface and is smaller than the diameter of the inscribed circle of the tooth portion 34. Further, the sheave portion 3 is subjected to a hardening process for hardening at least the surface of the tooth portion 34 before being coupled to the shaft portion 2.

上記シャフト部2は、上記塑性結合部4を形成するための結合外面部21と、上記圧入部5を形成するための圧入外面部22とを軸方向に連ねて有しており、上記結合外面部21は、上記歯部34の内接円の径よりも大きい外径を有しており、上記圧入外面部22は、上記歯部34の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部33の内径よりも大きい外径を有している。   The shaft portion 2 has a coupling outer surface portion 21 for forming the plastic coupling portion 4 and a press-fit outer surface portion 22 for forming the press-fit portion 5 in an axial direction, and the coupling outer surface. The portion 21 has an outer diameter larger than the diameter of the inscribed circle of the tooth portion 34, and the press-fit outer surface portion 22 has an outer diameter smaller than the diameter of the inscribed circle of the tooth portion 34. It has an outer diameter larger than the inner diameter of the press-fitting inner surface portion 33 so that press-fitting is possible.

そして、上記シャフト部2の結合外面部21に上記シーブ部3の歯部34を食い込ませて上記結合外面部21の一部を塑性流動させた上記塑性結合部4を形成すると共に、上記圧入内面部33に上記圧入外面部22を圧入した上記圧入部5を形成することにより、上記シャフト部2と上記シーブ部3とを一体的に結合している。
以下、これを詳説する。
Then, the toothed portion 34 of the sheave portion 3 is bitten into the coupling outer surface portion 21 of the shaft portion 2 to form the plastic coupling portion 4 in which a part of the coupling outer surface portion 21 is plastically flowed, and the press-fitting inner surface The shaft portion 2 and the sheave portion 3 are integrally coupled by forming the press-fit portion 5 in which the press-fit outer surface portion 22 is press-fitted into the portion 33.
This will be described in detail below.

図4、図5に示すごとく、シーブ部3は、上述したようにシャフト部2を挿入する挿入穴31を有しており、挿入穴31の結合内面部32には、軸方向に歯筋を有すると共に内方に突出する複数の歯部34を有している。上記歯部34のシーブ面30と反対側には、図6に示すごとく、上記結合外面部21を内周側に収容可能な大径先端部35を有すると共に、その後端側に徐々に縮径する位置決め傾斜部36を有している。また、歯部34の軸方向端面には、後述するシャフト部の外鍔部23に当接可能な先端当接面37を有している。上記シーブ部3の軸方向に直交する面である後端面9に対する先端当接面37の傾斜角度γを150°、上記傾斜部36と上記先端当接面37とがなす角ωを140°とした。   As shown in FIGS. 4 and 5, the sheave portion 3 has the insertion hole 31 into which the shaft portion 2 is inserted as described above, and the joint inner surface portion 32 of the insertion hole 31 has tooth traces in the axial direction. And a plurality of teeth 34 projecting inwardly. On the side opposite to the sheave surface 30 of the tooth portion 34, as shown in FIG. 6, it has a large-diameter tip portion 35 that can accommodate the coupling outer surface portion 21 on the inner peripheral side, and gradually reduces the diameter toward the rear end side. The positioning inclined portion 36 is provided. Further, a tip end contact surface 37 capable of contacting an outer flange portion 23 of the shaft portion described later is provided on the axial end surface of the tooth portion 34. The inclination angle γ of the tip contact surface 37 with respect to the rear end surface 9, which is a surface orthogonal to the axial direction of the sheave portion 3, is 150 °, and the angle ω formed by the inclined portion 36 and the tip contact surface 37 is 140 °. did.

図4に示すごとく、上記圧入内面部33の内径をd1、上記シーブ部3の直径をd2、中央径d3=(d1+d2)/2とした場合に、上記シーブ部3の表面における上記中央径d3位置から中心軸Oに対して垂直な垂線を引いた場合に該垂線と上記挿入穴内面との交差する位置311は圧入内面部33である。
本例では、上記圧入内面部33の内径をd1を48mm、上記シーブ部3の直径をd2を156mm、上記中央径d3を102mm、シーブ面の傾斜θを11°とした。また、上記圧入部33の軸方向の長さは8.5mmとした。
As shown in FIG. 4, when the inner diameter of the press-fitting inner surface portion 33 is d 1 , the diameter of the sheave portion 3 is d 2 , and the center diameter d 3 = (d 1 + d 2 ) / 2, the sheave portion 3 When a perpendicular perpendicular to the central axis O is drawn from the position of the center diameter d 3 on the surface, a position 311 where the perpendicular intersects the inner surface of the insertion hole is the press-fitting inner surface portion 33.
In this example, the inner diameter of the press-fit inner surface portion 33 is d 1 is 48 mm, the diameter of the sheave portion 3 is d 2 is 156 mm, the central diameter d 3 is 102 mm, and the sheave surface inclination θ is 11 °. The axial length of the press-fit portion 33 was 8.5 mm.

そして、図5に示すごとく、上記シーブ部3の上記歯部34は、基準円91よりも小径の円弧92を上記基準円91に内接するように規則的に並べて形成される花びら形状を呈している。また、上記シーブ部3の上記結合内面部32と上記圧入内面部33との界面は、上記歯部34の内径よりも大きい内径を有する凹部38が形成されている。   As shown in FIG. 5, the tooth portion 34 of the sheave portion 3 has a petal shape formed by regularly arranging arcs 92 having a smaller diameter than the reference circle 91 so as to be inscribed in the reference circle 91. Yes. A concave portion 38 having an inner diameter larger than the inner diameter of the tooth portion 34 is formed at the interface between the coupling inner surface portion 32 and the press-fit inner surface portion 33 of the sheave portion 3.

また、図2、図3に示すごとく、シャフト部2は、円筒形状を呈しており、上記歯部34の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部33の内径よりも大きい外径の圧入外面部22と、シーブ部3の歯部34の内接円の径よりも大きい外径の結合外面部21と、結合外面部21よりも外径が大きい外鍔部23とを有している。また、上記シャフト部2の上記結合外面部21は、その外周角部に傾斜した接触面24を有している。   As shown in FIGS. 2 and 3, the shaft portion 2 has a cylindrical shape, has an outer diameter smaller than the diameter of the inscribed circle of the tooth portion 34, and the press-fit inner surface portion so that press-fit is possible. The press-fit outer surface portion 22 having an outer diameter larger than the inner diameter of 33, the coupling outer surface portion 21 having an outer diameter larger than the diameter of the inscribed circle of the tooth portion 34 of the sheave portion 3, and the outer diameter larger than the coupling outer surface portion 21. And an outer casing 23. Moreover, the said coupling | bonding outer surface part 21 of the said shaft part 2 has the contact surface 24 inclined in the outer peripheral corner | angular part.

また、図7〜図9に示すごとく、シャフト部2とシーブ部3とは、上記結合外面部21に上記歯部34を食い込ませて上記結合外面部21の一部を塑性流動させた上記塑性結合部4を形成すると共に、上記圧入内面部33に上記圧入外面部22を圧入した上記圧入部5を形成することにより、上記シャフト部2と上記シーブ部3とを一体的に結合している。   Further, as shown in FIGS. 7 to 9, the shaft portion 2 and the sheave portion 3 have the plasticity in which the tooth portion 34 is bitten into the joint outer surface portion 21 and a part of the joint outer surface portion 21 is plastically flowed. The shaft portion 2 and the sheave portion 3 are integrally coupled by forming the joint portion 4 and forming the press-fit portion 5 in which the press-fit outer surface portion 22 is press-fitted into the press-fit inner surface portion 33. .

上記塑性結合部4は、上記歯部34の上記大径先端部35内に上記結合外面部21を収容すると共に上記接触面24と上記位置決め傾斜部36とを当接した後に、上記歯部34を上記結合外面部21に食い込ませて形成してある。また、上記塑性結合部形成状態において、上記外鍔部23と上記先端当接面37とが当接している。   The plastic coupling portion 4 accommodates the coupling outer surface portion 21 in the large-diameter tip portion 35 of the tooth portion 34 and contacts the contact surface 24 and the positioning inclined portion 36, and then the tooth portion 34. Is formed by biting into the joint outer surface portion 21. Further, in the state where the plastic coupling portion is formed, the outer flange portion 23 and the tip contact surface 37 are in contact with each other.

また、シャフト部2及びシーブ部3の素材としては、いずれも機械構造用鋼を用いている。
シャフト部2の素材としては、炭素当量Ceq(Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4、各元素記号はそれぞれの質量%を意味する。以下同様。)が0.4以上のS45C(炭素鋼)を用いた。
シーブ部3の素材としては、SCM20(クロムモリブデン鋼)を用いた。シーブ部3における歯部34は、表面硬化処理としての浸炭処理(焼入れ、焼戻し)を施してあり、表面硬さがHv750(JIS G0557による硬化深さ0.5mm)である。
Further, as the material for the shaft portion 2 and the sheave portion 3, steel for machine structure is used.
As a material of the shaft portion 2, a carbon equivalent Ceq (Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4, each element symbol means each mass%. The same shall apply hereinafter) having S45C of 0.4 or more. Carbon steel) was used.
As a material for the sheave portion 3, SCM20 (chromium molybdenum steel) was used. The tooth part 34 in the sheave part 3 is subjected to carburizing treatment (quenching, tempering) as a surface hardening treatment, and the surface hardness is Hv750 (hardening depth of 0.5 mm according to JIS G0557).

また、シャフト部2の結合外面部21は、加熱処理(焼きならし)を施してあり、表面硬さがHv250である。また、シャフト部2の結合外面部21以外の部分において、より表面硬さが必要な部分には、表面硬化処理としての高周波焼入処理を施してある。   Moreover, the joint outer surface part 21 of the shaft part 2 is subjected to heat treatment (normalizing), and the surface hardness is Hv250. Further, in the portion other than the coupling outer surface portion 21 of the shaft portion 2, a portion requiring a higher surface hardness is subjected to an induction hardening treatment as a surface hardening treatment.

次に、CVT用シャフト1の製造方法について、図を用いて説明する。
本例のCVT用シャフト1の製造方法は、図1〜図9に示すごとく、機械構造用鋼よりなり、内周面に軸方向に歯筋を有すると共に内方に突出する複数の歯部34を有する結合内面部32と、内周面が平坦な面からなると共に上記歯部34の内接円の径よりも小さい内径を有する圧入内面部33とを軸方向に連ねてなる挿入穴31を中央に有する円盤状のシーブ部3を準備するシーブ部準備工程と、少なくとも上記歯部34の表面を硬化するシーブ部硬化処理工程と、機械構造用鋼よりなり、上記歯部34の内接円の径よりも大きい外径の結合外面部21と、上記歯部34の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部33の内径よりも大きい外径を有する圧入外面部22とを軸方向に連ねて有する棒状のシャフト部2を準備するシャフト部準備工程と、上記シャフト部2を上記シーブ部3の上記挿入穴31に挿入すると共に、上記結合外面部21に上記歯部34を食い込ませて上記結合外面部21の一部を塑性流動させた塑性結合部4を形成する塑性結合処理と、上記圧入内面部33に上記圧入外面部22を圧入した圧入部5を形成する圧入処理とを有し、上記シャフト部2と上記シーブ部3とを一体的に結合する結合工程とを有する。
以下、これを詳説する。
Next, a method for manufacturing the CVT shaft 1 will be described with reference to the drawings.
As shown in FIGS. 1 to 9, the manufacturing method of the CVT shaft 1 of this example is made of steel for machine structural use, and has a plurality of tooth portions 34 having teeth on the inner peripheral surface in the axial direction and projecting inward. And an insertion hole 31 formed by connecting an inner surface 32 having a flat inner surface and a press-fitting inner surface 33 having an inner diameter smaller than the diameter of the inscribed circle of the tooth portion 34 in the axial direction. A sheave portion preparing step for preparing a disk-shaped sheave portion 3 at the center, a sheave portion hardening treatment step for hardening at least the surface of the tooth portion 34, a steel for machine structural use, and an inscribed circle of the tooth portion 34 And an outer diameter larger than the inner diameter of the press-fitting inner surface portion 33 so as to allow press-fitting and an outer diameter smaller than the diameter of the inscribed circle of the tooth portion 34. A rod-shaped sheath having a press-fit outer surface portion 22 connected in the axial direction. The shaft portion preparing step for preparing the shaft portion 2, the shaft portion 2 is inserted into the insertion hole 31 of the sheave portion 3, and the toothed portion 34 is bitten into the coupling outer surface portion 21, thereby the coupling outer surface portion 21. A plastic bonding process for forming a plastic coupling part 4 in which a part of the press-fitting part is plastically flowed, and a press-fitting process for forming a press-fitting part 5 in which the press-fitting outer surface part 22 is press-fitted into the press-fitting inner surface part 33. 2 and the sheave part 3 are integrally joined.
This will be described in detail below.

<シーブ部準備工程>
シーブ部3の素材として用いるSCM20(クロムモリブデン鋼)を所定長さに切断する。その後、熱間鍛造、加熱処理(焼きならし)、冷間加工(塑性加工)、機械加工を行い、内周面に軸方向に歯筋を有すると共に内方に突出する複数の歯部34を有する結合内面部32と、内周面が平坦な面からなると共に上記歯部34の内接円の径よりも小さい内径を有する圧入内面部33とを軸方向に連ねてなる挿入穴31を中央に有する円盤状のシーブ部3(図4、図5)を準備する。
なお、歯部34の形状は、花びら形状を呈している(図5参照)。
<Sheave part preparation process>
SCM20 (chromium molybdenum steel) used as a material for the sheave portion 3 is cut into a predetermined length. Thereafter, hot forging, heat treatment (normalizing), cold working (plastic working), and machining are performed, and a plurality of tooth portions 34 that have teeth on the inner peripheral surface in the axial direction and protrude inward are formed. The insertion hole 31 is formed by connecting the connecting inner surface portion 32 and the press-fitting inner surface portion 33 having an inner diameter smaller than the diameter of the inscribed circle of the tooth portion 34 in the axial direction. A disk-shaped sheave portion 3 (FIGS. 4 and 5) is prepared.
In addition, the shape of the tooth | gear part 34 is exhibiting the petal shape (refer FIG. 5).

<シーブ部硬化処理工程>
次に、シーブ部3に対して、表面硬化処理としての浸炭処理(焼入れ、焼戻し)を行い、シーブ部3の表面を硬化する。このとき、シーブ部3の歯部34の表面硬さをHv600以上とする。本例では、歯部34の表面硬さをHv750とした。
なお、本工程におけるシーブ部3の硬化処理としては、浸炭処理に代えて、浸炭窒化処理、高周波焼入処理、調質処理等を行うこともできる。
<Sheave part curing process>
Next, carburizing treatment (quenching and tempering) as surface hardening treatment is performed on the sheave portion 3 to cure the surface of the sheave portion 3. At this time, the surface hardness of the tooth portion 34 of the sheave portion 3 is set to Hv 600 or more. In this example, the surface hardness of the tooth portion 34 is Hv750.
In addition, as a hardening process of the sheave part 3 in this process, it can replace with a carburizing process and can also perform a carbonitriding process, an induction hardening process, a tempering process, etc.

<ショットピーニング処理工程>
次に、本例では、シーブ部硬化処理工程後、シーブ部3の歯部34にショットピーニング処理を行う。
<Shot peening process>
Next, in this example, a shot peening process is performed on the tooth part 34 of the sheave part 3 after the sheave part curing process.

<シャフト部準備工程>
次に、シャフト部2の素材として用いる炭素当量Ceqが0.4以上のS45C(炭素鋼)を所定長さに切断する。その後、加熱処理(焼きならし)、冷間加工(塑性加工、切削加工)を行い、シーブ部3における歯部34の内接円の径よりも大きい外径の結合外面部21と、上記歯部34の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部33の内径よりも大きい外径の圧入外面部22を有する棒状のシャフト部2(図2及び図3)を準備する。
なお、本工程における加熱処理(焼きならし)は、必要がなければ省略することもできる。本例では、上記シャフト部の上記結合外面部の表面硬さをHv230とした。
<Shaft section preparation process>
Next, S45C (carbon steel) having a carbon equivalent Ceq of 0.4 or more used as a material for the shaft portion 2 is cut into a predetermined length. Thereafter, heat treatment (normalizing) and cold working (plastic working, cutting work) are performed, and the outer surface of the coupling outer surface portion 21 is larger than the diameter of the inscribed circle of the tooth portion 34 in the sheave portion 3, and the tooth A rod-shaped shaft portion 2 having an outer diameter smaller than the diameter of the inscribed circle of the portion 34 and having a press-fit outer surface portion 22 having an outer diameter larger than the inner diameter of the press-fit inner surface portion 33 so as to allow press-fitting (FIGS. 2 and Prepare 3).
Note that the heat treatment (normalizing) in this step can be omitted if not necessary. In this example, the surface hardness of the joint outer surface portion of the shaft portion is Hv230.

<結合工程>
次に、シャフト部2をシーブ部3の挿入穴31に挿入し、シャフト部2とシーブ部3とを塑性結合処理及び圧入処理を施すことにより一体的に結合する。以下、これについて詳しく説明する。
(塑性結合処理)
上記塑性結合処理は、まず、図7に示すごとく、受け型6にシーブ部3をセットし、シャフト部2をシーブ部3の挿入穴31に押し込んでいく。そして、図8に示すごとく、シーブ部3の歯部34の大径先端部35内にシャフト部2の結合外面部21を収容すると共に、シャフト部2の接触面24とシーブ部3の位置決め傾斜部36とを当接させる。これにより、シャフト部2及びシーブ部3の軸方向の位置決めを行う。
<Bonding process>
Next, the shaft portion 2 is inserted into the insertion hole 31 of the sheave portion 3, and the shaft portion 2 and the sheave portion 3 are integrally coupled by performing a plastic coupling process and a press-fitting process. This will be described in detail below.
(Plastic bonding process)
First, as shown in FIG. 7, the sheave portion 3 is set in the receiving die 6 and the shaft portion 2 is pushed into the insertion hole 31 of the sheave portion 3 in the plastic bonding process. As shown in FIG. 8, the coupling outer surface portion 21 of the shaft portion 2 is accommodated in the large-diameter tip portion 35 of the tooth portion 34 of the sheave portion 3, and the positioning inclination of the contact surface 24 of the shaft portion 2 and the sheave portion 3. The part 36 is brought into contact. Thereby, the shaft part 2 and the sheave part 3 are positioned in the axial direction.

その後、図9に示すごとく、シーブ部3の歯部34をシャフト部2の結合外面部21に食い込ませながら、すなわち、結合外面部21を、図5及び図6に示す歯部34間の歯溝39に塑性流動させながら、シャフト部2の外鍔部23とシーブ部3の先端当接面37とが当接するまで、シャフト部2をシーブ部3の挿入穴31に押し込んでいく。これにより、結合外面部21の一部を歯部34の歯溝39に塑性流動させた塑性結合部4が形成され、結合される。   Thereafter, as shown in FIG. 9, while the tooth portion 34 of the sheave portion 3 is biting into the coupling outer surface portion 21 of the shaft portion 2, that is, the coupling outer surface portion 21 is a tooth between the tooth portions 34 shown in FIGS. 5 and 6. While causing the groove 39 to plastically flow, the shaft portion 2 is pushed into the insertion hole 31 of the sheave portion 3 until the outer flange portion 23 of the shaft portion 2 and the tip contact surface 37 of the sheave portion 3 abut. As a result, the plastic coupling portion 4 in which a part of the coupling outer surface portion 21 is plastically flowed into the tooth groove 39 of the tooth portion 34 is formed and coupled.

(圧入処理)
上記圧入処理は、上述したように、受け型6にシーブ部3をセットし、シャフト部2をシーブ部3の挿入穴31に押し込んでいく。
その後、上記圧入内面部33に、圧入可能なように上記圧入内面部33の内径よりも大きい外径を有する上記圧入外面部22を圧入していく。これにより、圧入部5が形成され、結合される。
(Press-fit process)
In the press-fitting process, as described above, the sheave portion 3 is set on the receiving die 6 and the shaft portion 2 is pushed into the insertion hole 31 of the sheave portion 3.
Thereafter, the press-fit outer surface portion 22 having an outer diameter larger than the inner diameter of the press-fit inner surface portion 33 is press-fitted into the press-fit inner surface portion 33 so as to be press-fit. As a result, the press-fit portion 5 is formed and joined.

<シャフト部表面硬化処理工程>
次に、本例では、塑性結合工程後、シャフト部の結合外面部以外の部分において、より表面硬さが必要な部分に高周波焼入処理を行う。
なお、このシャフト部表面硬化処理工程は、塑性結合工程前に行ってもよい。
<Shaft surface treatment process>
Next, in this example, after the plastic bonding step, induction hardening is performed on a portion other than the outer surface portion of the shaft portion where surface hardness is required.
In addition, you may perform this shaft part surface hardening process process before a plastic joining process.

<仕上げ加工>
最後に、シャフト部及びシーブ部の寸法を調整するための仕上げ加工(切削加工)を行う。
以上により、CVT用シャフト1(図1)を得る。
<Finishing>
Finally, a finishing process (cutting process) for adjusting the dimensions of the shaft part and the sheave part is performed.
Thus, the CVT shaft 1 (FIG. 1) is obtained.

次に、本例のCVT用シャフト1の作用効果を説明する。
本例のCVT用シャフト1は、シャフト部2とシャフト部2に外挿したシーブ部3とを有している。そして、シャフト部2とシーブ部3とは、上記シャフト部2の結合外面部21に上記シーブ部3の歯部34を食い込ませて上記結合外面部21の一部を塑性流動させた塑性結合部4を形成し、上記シーブ部3の圧入内面部33に上記シャフト部2の圧入外面部22を圧入した圧入部5を形成することによって一体的に結合している。そのため、両者間の結合力は高くなる。
Next, the effect of the CVT shaft 1 of this example will be described.
The CVT shaft 1 of this example includes a shaft portion 2 and a sheave portion 3 that is extrapolated to the shaft portion 2. The shaft portion 2 and the sheave portion 3 are a plastic coupling portion in which a tooth portion 34 of the sheave portion 3 is bitten into the coupling outer surface portion 21 of the shaft portion 2 and a part of the coupling outer surface portion 21 is plastically flowed. 4, and a press-fitting portion 5 in which the press-fitting outer surface portion 22 of the shaft portion 2 is press-fitted into the press-fitting inner surface portion 33 of the sheave portion 3. Therefore, the binding force between the two becomes high.

特に、上記塑性結合部4は、接触面上において、塑性変形により圧縮の残留応力が働いた状態で強固に固定されるため、使用中においても接触面に微小のズレが繰り返し生じることを抑制でき、フレッティングの心配をする必要がない。
また、上記圧入部分5は、接触面がフラットであるため、上記圧入内面部33と上記圧入外面部22との界面において割れが発生し難く、この割れにくい形状の圧入部を、本発明では、ベルトの巻き掛けにより最も高い引張応力が生じるシーブ面側に設けている。その結果、CVT用シャフト1のシーブ面圧に対する強度を高めることができ、かつ耐久性を向上させることができる。
In particular, since the plastic coupling portion 4 is firmly fixed on the contact surface in a state where compressive residual stress is exerted due to plastic deformation, it is possible to suppress repeated occurrence of minute displacement on the contact surface even during use. There is no need to worry about fretting.
Further, since the press-fitting portion 5 has a flat contact surface, cracks are unlikely to occur at the interface between the press-fitting inner surface portion 33 and the press-fitting outer surface portion 22, and the press-fitting portion having a shape that is difficult to crack is used in the present invention. It is provided on the sheave surface side where the highest tensile stress is generated by winding the belt. As a result, the strength against the sheave surface pressure of the CVT shaft 1 can be increased, and the durability can be improved.

また、シャフト部2とシーブ部3との間の結合力を充分に確保することができるため、圧入のみで製造したCVTシャフトに比べて短い軸長で必要なねじり強度を確保することができる。これにより、生産性を向上、コストの低減を図ることができる。
そして、結合力の高い塑性結合と、シーブ面圧に対する十分な強度を与える圧入とを組み合わせて用いることによって、シャフト部2とシーブ部3との結合部分の接触面積を小さくしても十分な耐面圧強度とねじり強度を確保することができ、CVT用シャフト1の小型軽量化を実現することができると共に、優れた耐久力を得ることができる。
In addition, since the coupling force between the shaft portion 2 and the sheave portion 3 can be sufficiently ensured, the necessary torsional strength can be ensured with a short shaft length as compared with the CVT shaft manufactured only by press-fitting. Thereby, productivity can be improved and cost can be reduced.
Further, by using a combination of plastic bonding having a high bonding force and press-fitting that provides sufficient strength against the sheave surface pressure, even if the contact area of the coupling portion between the shaft portion 2 and the sheave portion 3 is reduced, sufficient resistance is achieved. The surface pressure strength and torsional strength can be ensured, the CVT shaft 1 can be reduced in size and weight, and excellent durability can be obtained.

また、CVT用シャフト1は、シャフト部2とシーブ部3とをそれぞれ別部材で設け、これらを一体的に結合している。そのため、両者を一体品として設けた場合に比べて、CVT用シャフト1のシャフト部2とシーブ部3の位置精度や生産性を向上させることができる。すなわち、別部材で設けることにより、シャフト部2及びシーブ部3の各部材の形状は一体品に比べて単純となり、小型となる。そのため、各部材を精度よく加工、成形することができると共に、効率よく生産することができる。特に、シーブ部3及びシャフト部2に硬化処理を施す際には、部材の単純化、小型化によって処理時間を短縮することができる。これにより、シャフト部2とシーブ部3とを結合させたCVT用シャフト1は、位置精度や生産性が高いものとなる。   Moreover, the shaft 1 for CVT is provided with a shaft portion 2 and a sheave portion 3 as separate members, and these are integrally coupled. Therefore, the positional accuracy and productivity of the shaft portion 2 and the sheave portion 3 of the CVT shaft 1 can be improved as compared with the case where both are provided as an integrated product. That is, by providing separate members, the shape of each member of the shaft portion 2 and the sheave portion 3 is simpler and smaller than the integrated product. Therefore, each member can be processed and molded with high accuracy and can be produced efficiently. In particular, when the curing process is performed on the sheave part 3 and the shaft part 2, the processing time can be shortened by simplifying and downsizing the members. As a result, the CVT shaft 1 in which the shaft portion 2 and the sheave portion 3 are coupled has high positional accuracy and productivity.

さらに、シャフト部2及びシーブ部3を別部材で設けて生産することにより、両者に対して、コスト、生産性、要求される性能等に見合った素材をそれぞれ選択的に用いることができる。これにより、CVT用シャフト1におけるコストの低減、性能の確保等を容易に行うことができる。   Furthermore, by providing the shaft portion 2 and the sheave portion 3 as separate members and producing them, it is possible to selectively use materials suitable for the cost, productivity, required performance, and the like. Thereby, the cost reduction, performance ensuring, etc. in the CVT shaft 1 can be easily performed.

また、シーブ部3の歯部34は花びら形状を呈している。花びら形状の歯部34は鍛造で形成できるため、コストの低減につながる。また、花びら形状の歯部34は、歯溝部分39が滑らかな曲線状に形成されているため、十分なねじり強度を得ることができるだけでなく、塑性結合後における歯元の引っ張り応力を緩和することができ、上記シーブ部3の破裂、遅れ破壊、置き狂い等を抑制することができ、耐久性を向上させることができる。
また、シーブ部3は、歯部34の表面について硬化処理を施してある。これにより、歯部34の表面硬さを向上させることができ、結合外面部21と歯部34との塑性結合を精度よく行うことができる。
Further, the tooth portion 34 of the sheave portion 3 has a petal shape. Since the petal-shaped tooth portion 34 can be formed by forging, it leads to cost reduction. Further, the petal-shaped tooth portion 34 is formed with a smooth curved shape of the tooth gap portion 39, so that not only a sufficient torsional strength can be obtained, but also the tensile stress of the tooth root after plastic bonding is relieved. It is possible to suppress rupture, delayed fracture, misplacement, and the like of the sheave portion 3 and improve durability.
Further, the sheave portion 3 is subjected to a hardening process on the surface of the tooth portion 34. Thereby, the surface hardness of the tooth | gear part 34 can be improved and the plastic coupling of the coupling | bonding outer surface part 21 and the tooth | gear part 34 can be performed accurately.

また、本例において、シーブ部3の歯部34は、シャフト部2の結合外面部21の表面硬さよりHv300以上大きい。そのため、歯部34と結合外面部21との硬度差によって、塑性変形した結合外面部21が歯部34の谷部に塑性流動し易くなり、より一層安定して、精度のよい塑性結合部を得ることができる。   Moreover, in this example, the tooth part 34 of the sheave part 3 is Hv300 or more larger than the surface hardness of the coupling outer surface part 21 of the shaft part 2. Therefore, due to the hardness difference between the tooth portion 34 and the coupling outer surface portion 21, the plastically deformed coupling outer surface portion 21 is likely to plastically flow into the valley portion of the tooth portion 34, thereby making the plastic coupling portion more stable and accurate. Obtainable.

また、本例の製造方法において、シーブ部処理工程の後に、シーブ部3の歯部34に、ショットピーニング処理を施すショットピーニング処理工程を行う。これにより、シーブ部3の歯部34に圧縮の残留応力が発生する。そのため、塑性結合処理においてシャフト部2とシーブ部3とを塑性結合する際に、歯部34に生じる引張応力を低減させることができ、塑性結合後のシーブ部3の遅れ破壊を抑制することができる。   Moreover, in the manufacturing method of this example, after the sheave portion processing step, a shot peening processing step for performing shot peening processing on the tooth portion 34 of the sheave portion 3 is performed. Thereby, compressive residual stress is generated in the tooth portion 34 of the sheave portion 3. Therefore, when the shaft portion 2 and the sheave portion 3 are plastically joined in the plastic joining process, the tensile stress generated in the tooth portion 34 can be reduced, and the delayed fracture of the sheave portion 3 after the plastic joining can be suppressed. it can.

このように、本例によれば、別部材よりなるシャフト部2とシーブ部3とを一体化させて構成し、シャフト部2とシーブ部3の位置精度や耐久性に優れ、さらには生産性の向上、コストの低減を図ることができるCVT用シャフトを提供することができる。   As described above, according to this example, the shaft portion 2 and the sheave portion 3 made of different members are integrated, and the position accuracy and durability of the shaft portion 2 and the sheave portion 3 are excellent, and further, productivity is achieved. The shaft for CVT which can aim at improvement and cost reduction can be provided.

(実施例2)
本例は、CVT用シャフトの耐面圧強度、ねじり強度、及び寸法精度を評価したものである。
本発明品としては、別部材よりなるシャフト部とシーブ部とを結合した実施例1のCVT用シャフト(試料E1)を準備した。
また、比較品としては、シャフト部とシーブ部とを圧入のみで結合した試料C1、シャフト部とシーブ部とを塑性結合のみで結合した試料C2を準備した。
(Example 2)
In this example, the surface pressure resistance strength, torsional strength, and dimensional accuracy of the CVT shaft are evaluated.
As a product of the present invention, a CVT shaft (sample E1) of Example 1 in which a shaft portion and a sheave portion made of different members were combined was prepared.
Further, as a comparative product, a sample C1 in which the shaft portion and the sheave portion were joined only by press fitting, and a sample C2 in which the shaft portion and the sheave portion were joined only by plastic joining were prepared.

試料E1は、シャフト部2の結合外面部21の直径が54mm、圧入外面部22の直径が48.05mm、内穴径が15mmである。また、シーブ部3は、軸方向の高さが40mm(圧入内面部の高さが8.5mm、結合内面部の高さが15mm)、外径が102m、シーブ面30の傾斜が11°である。また、結合内面部32の歯部34の突出高さは1mmであり、歯部数は40歯(第1締結歯41:20歯、第2締結歯42:20歯)、歯部の内接円の径は53mm、圧入内面部33の直径は48mmである。   In the sample E1, the diameter of the coupling outer surface portion 21 of the shaft portion 2 is 54 mm, the diameter of the press-fit outer surface portion 22 is 48.05 mm, and the inner hole diameter is 15 mm. Further, the sheave portion 3 has an axial height of 40 mm (the press-fitting inner surface portion is 8.5 mm high and the coupling inner surface portion is 15 mm high), the outer diameter is 102 m, and the sheave surface 30 has an inclination of 11 °. is there. Moreover, the protrusion height of the tooth part 34 of the coupling inner surface part 32 is 1 mm, the number of tooth parts is 40 teeth (first fastening teeth 41: 20 teeth, second fastening teeth 42: 20 teeth), and the inscribed circle of the tooth parts. The diameter of the press-fit inner surface portion 33 is 48 mm.

また、試料C1は、結合部の軸長が試料E1と同一になるように、圧入代(70μm)を径方向の両側に設けて圧入により結合部を形成している。シャフト部の圧入外面部の直径、内穴径、シーブ部3の軸方向の高さ(圧入内面部の高さ)、外径、シーブ面の傾斜角度、圧入内面部の直径は上記試料E1と同様のサイズにして行った。なお、各部材の素材、硬さ等の条件は、試料E1と同様である。また、熱処理としては、シャフト部及びシーブ部に浸炭処理を施してある。   Further, in the sample C1, a coupling portion is formed by press-fitting by providing a press-fitting allowance (70 μm) on both sides in the radial direction so that the axial length of the coupling portion is the same as that of the sample E1. The diameter of the press-fitting outer surface portion of the shaft portion, the diameter of the inner hole, the height in the axial direction of the sheave portion 3 (height of the press-fit inner surface portion), the outer diameter, the inclination angle of the sheave surface, and the diameter of the press-fitted inner surface portion are The same size was used. In addition, conditions, such as a raw material of each member and hardness, are the same as that of the sample E1. Further, as the heat treatment, carburizing treatment is performed on the shaft portion and the sheave portion.

また、試料C2は、結合部の軸長が試料E1と同一になるように、塑性結合により結合部を形成している。シャフト部の結合外面部の直径、内穴径、シーブ部の軸方向の高さ(結合内面部の高さ)、外径、シーブ面の傾斜角度、結合内面部の歯部の突出高さ、歯部数、歯部の内接円の径は上記試料E1と同様のサイズにして行った。なお、各部材の素材、硬さ等の条件は、試料E1と同様である。また、熱処理としては、シャフト部及びシーブ部に浸炭処理を施してある。   In addition, the sample C2 has a coupling portion formed by plastic coupling so that the axial length of the coupling portion is the same as that of the sample E1. The diameter of the coupling outer surface part of the shaft part, the inner hole diameter, the height of the sheave part in the axial direction (height of the coupling inner surface part), the outer diameter, the inclination angle of the sheave surface, the protruding height of the tooth part of the coupling inner part, The number of teeth and the diameter of the inscribed circle of the teeth were set to the same size as the sample E1. In addition, conditions, such as a raw material of each member and hardness, are the same as that of the sample E1. Further, as the heat treatment, carburizing treatment is performed on the shaft portion and the sheave portion.

<耐面圧強度>
耐面圧強度の評価方法を、図10〜図12を用いて説明する。
図10に示すごとく、CVT用シャフト1について、シーブ部3の表面が下側にくるように、固定された下ジグ71と、上下に可動する上ジグ72とを用いてCVT用シャフト1を保持した。下ジグ71には、2つの直径35mmの球73がCVT用シャフト1の軸心を中心に120°(角度α)の位置に配置してある(図11参照)。そして、上ジグ72を下方(方向B)に向けてストロークさせることにより、上記CVTシャフト1のシーブ部3表面に圧力を負荷した。そして、図11示すD点(角度β=60°(最大引張応力を受ける部分))に亀裂が入るまでに測定された最大負荷力を耐面圧強度とした。結果を図12に示す。
<Surface pressure strength>
A method for evaluating the surface pressure resistance will be described with reference to FIGS.
As shown in FIG. 10, for the CVT shaft 1, the CVT shaft 1 is held by using a fixed lower jig 71 and an upper jig 72 movable up and down so that the surface of the sheave portion 3 is on the lower side. did. In the lower jig 71, two spheres 73 having a diameter of 35 mm are arranged at a position of 120 ° (angle α) around the axis of the CVT shaft 1 (see FIG. 11). Then, pressure was applied to the surface of the sheave portion 3 of the CVT shaft 1 by causing the upper jig 72 to stroke downward (direction B). Then, the maximum load force measured until the crack occurred at point D shown in FIG. 11 (angle β = 60 ° (portion receiving the maximum tensile stress)) was defined as the surface pressure resistance. The results are shown in FIG.

上記図12は、右縦軸には、耐面圧強度[N]をとり、左縦軸には、後述するねじり強度[Nm]をとり、横軸は、各試料の結合の仕方を記載した。同図における符号E1は試料E1、符号C1は試料C1、符号C2は試料C2の結果を示し、符号Sは耐面圧強度、符号Tはねじり強度を示す。   In FIG. 12, the right vertical axis represents surface pressure resistance [N], the left vertical axis represents torsional strength [Nm] described later, and the horizontal axis describes how samples were bonded. . In the figure, reference numeral E1 indicates the result of the sample E1, reference numeral C1 indicates the result of the sample C1, reference numeral C2 indicates the result of the sample C2, reference sign S indicates the resistance to surface pressure, and reference sign T indicates the torsion strength.

図12より知られるごとく、シーブ部の表面側の結合部分が圧入によるフラットな結合部となっている試料E1及び試料C1は、シーブ部の表面側の結合部分が塑性結合による結合部である試料C2と比較して、割れが発生し難く、優れた耐面圧強度を示した。   As is known from FIG. 12, the sample E1 and the sample C1 in which the joint part on the surface side of the sheave part is a flat joint part by press-fitting are samples in which the joint part on the surface side of the sheave part is a joint part by plastic joining. Compared with C2, cracking hardly occurred and excellent surface pressure strength was exhibited.

<ねじり強度>
ねじり強度の測定は、シーブ部を回転しないように固定した状態でシャフト部にねじりトルクを負荷させる。
塑性結合部がねじりトルクに負けて塑性変形し始めるまでに測定された最大のねじりトルク、あるいは、圧入部の摩擦力が負けてすべりが生じるまでに測定された最大ねじりトルクを測定し、ねじり強度とした。結果を図12に併せて示す。
<Torsion strength>
The torsional strength is measured by applying a torsional torque to the shaft portion while the sheave portion is fixed so as not to rotate.
The torsional strength is measured by measuring the maximum torsional torque measured until the plastic joint loses torsional torque and begins plastic deformation or the frictional force of the press-fit part loses and slips It was. The results are also shown in FIG.

図12より知られるごとく、塑性結合部を有する試料E1及び試料C2は、圧入部のみからなる結合部を有する試料C1と比較して、優れたねじり強度を示した。
このように、圧入部と塑性結合部を組み合わせることによって、ねじり強度、耐面圧強度の両方について、バランス良く優れたCVT用シャフトを製造できることが確認できた。
As can be seen from FIG. 12, the sample E1 and the sample C2 having the plastic joint portion showed excellent torsional strength as compared with the sample C1 having the joint portion including only the press-fit portion.
As described above, it was confirmed that by combining the press-fit portion and the plastic joint portion, it was possible to manufacture a CVT shaft excellent in balance with respect to both torsion strength and surface pressure strength.

なお、これは結合部の寸法を同一とした場合である。したがって、圧入の場合には、圧入部の軸方向の長さを長くして、同等のねじり強度となるようにすれば同様のねじり強度を得ることはできるが、その場合には、重量が増加するという別の問題が生じることとなる。
また、従来の一体品の場合、当然本発明のCVTシャフトに比べてねじれ強度が高いものとなるが、最弱部位は、この試験で評価している位置ではなく、トルクを伝達する細径部となるため、本発明品は、上述したねじり強度であれば問題のない強度であるということができる。
In addition, this is a case where the dimension of a coupling | bond part is made the same. Therefore, in the case of press-fitting, it is possible to obtain the same torsional strength by increasing the axial length of the press-fitting part so as to obtain the same torsional strength, but in that case, the weight increases. Another problem will arise.
Further, in the case of the conventional integrated product, naturally the torsional strength is higher than that of the CVT shaft of the present invention, but the weakest part is not the position evaluated in this test, but a small diameter part that transmits torque. Therefore, it can be said that the product of the present invention has a problem-free strength as long as it is the torsional strength described above.

<寸法精度>
寸法精度は、シーブ部の振れを測定し評価した。シーブ部の振れの測定は、シャフト部を1回転させた際のシーブ部の外周端における軸方向の変位を測定した。なお、試料については、結合後、仕上げ加工前の状態のものを測定した。
ここで、比較のために、素材としてSCM20を用い、熱間鍛造によりシャフト部とシーブ部とを有する一体品を成形し、浸炭処理を施したものを別途用意した。
<Dimensional accuracy>
The dimensional accuracy was evaluated by measuring the shake of the sheave part. The sheave portion was measured by measuring the axial displacement at the outer peripheral end of the sheave portion when the shaft portion was rotated once. The sample was measured after bonding and before finishing.
Here, for comparison, SCM20 was used as a material, an integrated product having a shaft portion and a sheave portion was formed by hot forging, and a carburized treatment was separately prepared.

その結果、上記一体品は焼入による歪が大きくなりやすく、振れは0.1mmであったのに対し、上記試料E1、試料C1、及び試料C2の振れは0.05mmであり、良好な結果を示した。すなわち、一体品に対して、別部材からなるCVT用シャフトは、焼入歪を小さくできるため、高精度化が可能になり、削り代を低減できる。
なお、比較として、上記シーブ部の上記歯部の表面硬さと、上記シャフト部の上記結合外面部の表面硬さの差が小さい(Hv200(シーブ部の歯部がHv600、シャフト部の結合外面部がHv400))場合の評価を行ったところ、振れは0.30mmと大きくなった。従って、両者の硬さの差をHv300以上としないと、結合時の材料流れがスムーズに進まず、精度の良いCVT用シャフトの製造が困難となることがわかる。
As a result, the distortion due to quenching tends to increase in the integrated product, and the deflection was 0.1 mm, whereas the deflection of the sample E1, the sample C1, and the sample C2 was 0.05 mm. showed that. That is, the CVT shaft made of a separate member with respect to the integrated product can reduce the quenching distortion, so that high accuracy can be achieved and the machining allowance can be reduced.
For comparison, the difference between the surface hardness of the tooth portion of the sheave portion and the surface hardness of the coupling outer surface portion of the shaft portion is small (Hv200 (the tooth portion of the sheave portion is Hv600, the coupling outer surface portion of the shaft portion). When Hv400)) was evaluated, the deflection was as large as 0.30 mm. Therefore, it can be seen that if the difference in hardness between the two is not Hv300 or more, the material flow at the time of joining does not proceed smoothly, and it becomes difficult to manufacture a highly accurate CVT shaft.

これにより、本発明によれば、別部材よりなるシャフトとシーブとを一体化させて固定し、寸法精度や耐久性に優れ、さらには生産性の向上、コストの低減を図ることができるCVT用シャフト及びその製造方法を提供することができることが分かる。   Thereby, according to this invention, the shaft and sheave which consist of another member are integrated and fixed, and it is excellent in dimensional accuracy and durability, and also can improve productivity and cost reduction. It can be seen that a shaft and a method for manufacturing the shaft can be provided.

(実施例3)
本例は、実施例1のシーブ部の歯部の花びら形状を後述する形状に変更し、CVT用シャフト102を作製した例である。その他は、実施例1と同様に行った。
本例のシーブ部302は、図13〜図15に示すごとく、結合内面部32に設けた各歯部34は、シャフト部2の軸線を含む軸平面200となす角度がαである受圧面81と、軸平面となす角度がβ(β>α)である傾斜面82とにより鋭角状を呈している。なお、本例では、α=0°であり、図示を省略した。
(Example 3)
In this example, the CVT shaft 102 is manufactured by changing the petal shape of the tooth portion of the sheave portion of the first embodiment to a shape described later. Others were performed in the same manner as in Example 1.
As shown in FIGS. 13 to 15, in the sheave portion 302 of this example, each tooth portion 34 provided on the coupling inner surface portion 32 has a pressure receiving surface 81 whose angle formed with the axial plane 200 including the axis of the shaft portion 2 is α. And an inclined surface 82 having an angle of β (β> α) with respect to the axial plane. In this example, α = 0 ° and is not shown.

また、歯部34は、受圧面81を周方向における第1の方向G1(時計回りの方向)に位置させた第1締結歯341と、その反対側の第2の方向G2(反時計回りの方向)に受圧面82を位置させた第2締結歯342とで構成されている。また、歯部34において、第1締結歯341を並べた第1領域83と、第2締結歯342を並べた第2領域84とが、挿入穴31の周方向に交互に配列されている。   Further, the tooth portion 34 includes a first fastening tooth 341 in which the pressure receiving surface 81 is positioned in the first direction G1 (clockwise direction) in the circumferential direction, and a second direction G2 (counterclockwise direction) on the opposite side. And a second fastening tooth 342 having the pressure receiving surface 82 positioned in the direction). Further, in the tooth portion 34, the first regions 83 in which the first fastening teeth 341 are arranged and the second regions 84 in which the second fastening teeth 342 are arranged are alternately arranged in the circumferential direction of the insertion hole 31.

また、図14に示すごとく、第1締結歯341の傾斜面82と第2締結歯342の傾斜面82とが対面する傾斜面対面部位85には、受圧面81と傾斜面82とにより形成された谷部86の外接円860よりも内側に出ないように外方に位置し、対面する傾斜面82を滑らかに繋いだ第1控え部851が設けてある。なお、谷部86は、滑らかな曲線状に形成されている。   Further, as shown in FIG. 14, an inclined surface facing portion 85 where the inclined surface 82 of the first fastening tooth 341 and the inclined surface 82 of the second fastening tooth 342 face each other is formed by the pressure receiving surface 81 and the inclined surface 82. There is provided a first holding portion 851 that is located outwardly so as not to come out of the circumscribed circle 860 of the valley portion 86 and that smoothly connects the inclined surfaces 82 facing each other. In addition, the trough part 86 is formed in the smooth curve shape.

一方、図15に示すごとく、第1締結歯341の受圧面81と第2締結歯342の受圧面81とが対面する受圧面対面部位87には、歯部34の内接円340よりも内側に出ないように外方に位置し、対面する受圧面81を滑らかに繋いだ第2控え部871が設けてある。   On the other hand, as shown in FIG. 15, the pressure receiving surface facing portion 87 where the pressure receiving surface 81 of the first fastening tooth 341 and the pressure receiving surface 81 of the second fastening tooth 342 face each other is inside the inscribed circle 340 of the tooth portion 34. The second holding portion 871 is provided so as to be located outside and smoothly connect the pressure-receiving surfaces 81 facing each other.

本例のCVT用シャフト102の製造方法は、上記実施例1の製造方法のシーブ部準備工程を変更した以外は、実施例1と同様に行った。
シーブ部準備工程においては、まず、実施例1と同様の素材を所定長さに切断する。その後、熱間鍛造、加熱処理(焼きならし)、切削加工を行い、内周面に軸方向に歯筋を有すると共に内方に突出する複数の歯部34を有する結合内面部32と、内周面が平坦な面からなると共に上記歯部34の内接円の径よりも小さい内径を有する圧入内面部とを軸方向に連ねてなる挿入穴31を中央に有する円盤状のシーブ部302を準備する。
なお、歯部34の形状は、上述したとおりである(図13〜図15参照)。
The manufacturing method of the CVT shaft 102 of this example was performed in the same manner as in Example 1 except that the sheave part preparation step of the manufacturing method of Example 1 was changed.
In the sheave part preparation step, first, a material similar to that in Example 1 is cut into a predetermined length. Thereafter, hot forging, heat treatment (normalizing), and cutting are performed, and an inner surface 32 having a plurality of tooth portions 34 that have inwardly protruding teeth and an inward protrusion on the inner peripheral surface, A disk-shaped sheave portion 302 having an insertion hole 31 in the center formed by connecting a press-fitting inner surface portion having an inner diameter smaller than the diameter of the inscribed circle of the tooth portion 34 in the axial direction and having a flat peripheral surface. prepare.
In addition, the shape of the tooth | gear part 34 is as having mentioned above (refer FIGS. 13-15).

結合工程は実施例1と同様に行うが、得られたCVT用シャフトの塑性結合部は、図13〜図15に示すごとく、シャフト部2とシーブ部3とが、結合外面部の一部を歯部34の受圧面81と傾斜面82とにより形成された谷部86に塑性流動(塑性変形)させた塑性結合部402を形成している。
また、第1控え部851は、塑性流動(塑性変形)した結合外面部211との間に間隙852を設けた状態で配置されている。
また、第2控え部871は、塑性流動した結合外面部211に当接した状態で配置されている。
なお、図14、図15においては、結合前(塑性変形前)の結合外面部21の外周面210を示してある。
The joining process is performed in the same manner as in Example 1. However, as shown in FIGS. 13 to 15, the plastic joint part of the obtained CVT shaft is composed of the shaft part 2 and the sheave part 3, and a part of the joint outer surface part. A plastic coupling portion 402 is formed by plastic flow (plastic deformation) in a valley portion 86 formed by the pressure receiving surface 81 and the inclined surface 82 of the tooth portion 34.
In addition, the first holding portion 851 is disposed in a state where a gap 852 is provided between the first outer surface portion 211 and the joined outer surface portion 211 that has undergone plastic flow (plastic deformation).
Moreover, the 2nd holding | maintenance part 871 is arrange | positioned in the state contact | abutted to the joint outer surface part 211 which flowed plastically.
14 and 15, the outer peripheral surface 210 of the coupling outer surface portion 21 before coupling (before plastic deformation) is shown.

次に、本例のCVT用シャフト102の作用効果を説明する。
本例のCVT用シャフト102は、シーブ部準備工程において、切削加工によって歯部の加工を行うため、実施例1の冷間鍛造による加工と比較すると、製造コストがかかる。しかしながら、塑性結合部402において、シャフト部2の結合外面部にシーブ部302の歯部34を食い込ませ、結合外面部の一部を歯部34の谷部86に塑性流動(塑性変形)させ、特に高いねじり強度を確保することができる塑性結合部402を形成することができる。そのため、シャフト部2とシーブ部302との結合力が極めて高くなる。
Next, the effect of the CVT shaft 102 of this example will be described.
Since the shaft for CVT 102 of this example processes the tooth portion by cutting in the sheave portion preparation step, the manufacturing cost is higher than the processing by the cold forging of the first embodiment. However, in the plastic coupling portion 402, the tooth portion 34 of the sheave portion 302 bites into the coupling outer surface portion of the shaft portion 2, and a part of the coupling outer surface portion is plastically flowed (plastically deformed) into the valley portion 86 of the tooth portion 34, In particular, it is possible to form the plastic coupling portion 402 that can ensure a high torsional strength. Therefore, the coupling force between the shaft portion 2 and the sheave portion 302 becomes extremely high.

また、第1締結歯341の傾斜面82と第2締結歯342の傾斜面82とが対面する傾斜面対面部位85には、受圧面81と傾斜面82とにより形成された谷部86の外接円860よりも内側に出ないように外方に位置し、対面する傾斜面82を滑らかに繋いだ第1控え部851を設けてある。
シャフト部2とシーブ部302との塑性結合時において応力が集中する傾斜面対面部位85に、滑らかな形状の第1控え部851を設けることによって、発生する引張応力を低減することができる。これにより、塑性結合後におけるシーブ部302の破裂、遅れ破壊、置き狂い等を抑制することができ、CVT用シャフト102の寸法精度を向上させることができる。
また、本例のCVT用シャフト102は、その他、実施例1と同様の効果を得ることができる。
In addition, the sloped surface facing portion 85 where the sloped surface 82 of the first fastening tooth 341 and the sloped surface 82 of the second fastening tooth 342 face each other is circumscribed by the valley 86 formed by the pressure receiving surface 81 and the sloped surface 82. A first holding portion 851 is provided which is located outward so as not to come out of the circle 860 and smoothly connects the facing inclined surfaces 82.
By providing the first holding portion 851 having a smooth shape on the inclined surface facing portion 85 where stress is concentrated when the shaft portion 2 and the sheave portion 302 are plastically coupled, the generated tensile stress can be reduced. Thereby, rupture, delayed fracture, misplacement and the like of the sheave portion 302 after plastic bonding can be suppressed, and the dimensional accuracy of the CVT shaft 102 can be improved.
In addition, the CVT shaft 102 of this example can obtain the same effects as those of the first embodiment.

実施例1における、CVT用シャフトを示す説明図。FIG. 3 is an explanatory view showing a CVT shaft in the first embodiment. 実施例1における、シャフト部を示す説明図。FIG. 3 is an explanatory diagram showing a shaft portion in the first embodiment. 実施例1における、シャフト部を示す断面図。Sectional drawing which shows the shaft part in Example 1. FIG. 実施例1における、シーブ部を示す断面図。Sectional drawing which shows the sheave part in Example 1. FIG. 図4のA方向から見た図。The figure seen from the A direction of FIG. 図4のH部をA方向から見た拡大図。The enlarged view which looked at the H section of Drawing 4 from the A direction. 実施例1における、シャフト部及びシーブ部の結合前の状態を示す説明図。Explanatory drawing which shows the state before the coupling | bonding of the shaft part and sheave part in Example 1. FIG. 実施例1における、塑性結合処理の位置決めの状態を示す説明図。Explanatory drawing which shows the state of the positioning of the plastic coupling process in Example 1. FIG. 実施例1における、シャフト部及びシーブ部の結合後の状態を示す説明図。Explanatory drawing which shows the state after the coupling | bonding of the shaft part and sheave part in Example 1. FIG. 実施例2における、耐圧面強度の測定方法を示す説明図。Explanatory drawing which shows the measuring method of pressure | voltage resistant surface strength in Example 2. FIG. 図11のC−C矢視断面図。CC sectional view taken on the line of FIG. 実施例2における、評価結果を示す図。The figure which shows the evaluation result in Example 2. FIG. 実施例3における、塑性結合部を示す説明図。Explanatory drawing which shows the plastic coupling part in Example 3. FIG. 図13のE部の拡大図。The enlarged view of the E section of FIG. 図13のF部の拡大図。The enlarged view of the F section of FIG.

符号の説明Explanation of symbols

1 CVT用シャフト
2 シャフト部
3 シーブ部
4 塑性結合部
5 圧入部
DESCRIPTION OF SYMBOLS 1 Shaft for CVT 2 Shaft part 3 Sheave part 4 Plastic coupling part 5 Press-fit part

Claims (17)

ベルト式無段変速機(以下、CVTという)に用いられるCVT用シャフトであって、
該CVT用シャフトは、機械構造用鋼よりなる棒状のシャフト部と、該シャフト部に外挿する機械構造用鋼よりなる円盤状のシーブ部を塑性結合部と圧入部とを介して結合してなり、
該シーブ部は、上記シャフト部を挿入する挿入穴を有し、該挿入穴は、上記塑性結合部を形成するための結合内面部と、上記圧入部を形成するための圧入内面部とを軸方向に連ねて、かつ、上記圧入内面部がシーブ面に近い側に位置するように設けてなり、
上記結合内面部の内周面には、軸方向に歯筋を有すると共に内方に突出する複数の歯部を有しており、
上記圧入内面部の内周面は、平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有しており、
また、上記シーブ部は、上記シャフト部との結合の前に、少なくとも歯部の表面を硬化する硬化処理を施してあり、
上記シャフト部は、上記塑性結合部を形成するための結合外面部と、上記圧入部を形成するための圧入外面部とを軸方向に連ねて有しており、
上記結合外面部は、上記歯部の内接円の径よりも大きい外径を有しており、
上記圧入外面部は、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有しており、
上記シーブ部の上記歯部は、表面硬さがHv600以上であり、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きく、
また、上記シーブ部の上記歯部は、上記シャフト部の軸線を含む軸平面となす角度がαである受圧面と、上記軸平面となす角度がβ(β>α)である傾斜面とにより鋭角状を呈していると共に、上記受圧面を周方向における第1の方向に位置させた第1締結歯と、その反対側の第2の方向に上記受圧面を位置させた第2締結歯のいずれかを構成し、
上記第1締結歯を並べた第1領域と、上記第2締結歯を並べた第2領域とは、上記挿入穴の周方向に交互に配列されており、
上記第1締結歯の上記傾斜面と上記第2締結歯の上記傾斜面とが対面する部位には、上記受圧面と上記傾斜面とにより形成された谷部の外接円よりも内側に出ないように外方に位置し、対面する上記傾斜面を滑らかに繋いだ第1控え部を設けてあり、
上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた上記塑性結合部を形成すると共に、上記圧入内面部に上記圧入外面部を圧入した上記圧入部を形成することにより、上記シャフト部と上記シーブ部とを一体的に結合していることを特徴とするCVT用シャフト。
A CVT shaft used in a belt type continuously variable transmission (hereinafter referred to as CVT),
The CVT shaft is formed by connecting a rod-shaped shaft portion made of mechanical structural steel and a disk-shaped sheave portion made of mechanical structural steel extrapolated to the shaft portion via a plastic coupling portion and a press-fit portion. Become
The sheave portion has an insertion hole into which the shaft portion is inserted, and the insertion hole has a coupling inner surface portion for forming the plastic coupling portion and a press-fit inner surface portion for forming the press-fit portion. Continuing in the direction and provided so that the press-fit inner surface portion is located on the side closer to the sheave surface,
The inner peripheral surface of the inner surface portion has a plurality of tooth portions protruding inward and having tooth traces in the axial direction,
The inner peripheral surface of the press-fitted inner surface portion is a flat surface and has an inner diameter smaller than the diameter of the inscribed circle of the tooth portion,
In addition, the sheave portion is subjected to a curing treatment for curing at least the surface of the tooth portion before being coupled to the shaft portion,
The shaft portion has a coupling outer surface portion for forming the plastic coupling portion and a press-fitting outer surface portion for forming the press-fitting portion in an axial direction.
The coupling outer surface portion has an outer diameter larger than the diameter of the inscribed circle of the tooth portion,
The press-fit outer surface portion has an outer diameter smaller than the diameter of the inscribed circle of the tooth portion and an outer diameter larger than the inner diameter of the press-fit inner surface portion so as to allow press-fitting,
The tooth portion of the sheave portion has a surface hardness of Hv 600 or more, and is greater than the surface hardness of the coupling outer surface portion of the shaft portion by Hv 300 or more,
Further, the tooth portion of the sheave portion includes a pressure receiving surface having an angle α with an axial plane including the axis of the shaft portion, and an inclined surface having an angle β with the axial plane β (β> α). A first fastening tooth having an acute angle shape and having the pressure receiving surface positioned in the first direction in the circumferential direction and a second fastening tooth having the pressure receiving surface positioned in the second direction opposite to the first fastening tooth. Configure one,
The first region in which the first fastening teeth are arranged and the second region in which the second fastening teeth are arranged are alternately arranged in the circumferential direction of the insertion hole,
The portion where the inclined surface of the first fastening tooth and the inclined surface of the second fastening tooth face each other does not come inward from the circumscribed circle of the valley formed by the pressure receiving surface and the inclined surface. As shown in FIG. 1, a first holding part is provided that smoothly connects the inclined surfaces facing each other.
The tooth portion is bitten into the joint outer surface portion to form the plastic joint portion in which a part of the joint outer surface portion is plastically flowed, and the press-fit portion is formed by press-fitting the press-fit outer surface portion into the press-fit inner surface portion. By doing so, the shaft portion and the sheave portion are integrally coupled to each other.
ベルト式無段変速機(以下、CVTという)に用いられるCVT用シャフトであって、A CVT shaft used in a belt type continuously variable transmission (hereinafter referred to as CVT),
該CVT用シャフトは、機械構造用鋼よりなる棒状のシャフト部と、該シャフト部に外挿する機械構造用鋼よりなる円盤状のシーブ部を塑性結合部と圧入部とを介して結合してなり、The CVT shaft is formed by connecting a rod-shaped shaft portion made of mechanical structural steel and a disk-shaped sheave portion made of mechanical structural steel extrapolated to the shaft portion via a plastic coupling portion and a press-fit portion. Become
該シーブ部は、上記シャフト部を挿入する挿入穴を有し、該挿入穴は、上記塑性結合部を形成するための結合内面部と、上記圧入部を形成するための圧入内面部とを軸方向に連ねて、かつ、上記圧入内面部がシーブ面に近い側に位置するように設けてなり、The sheave portion has an insertion hole into which the shaft portion is inserted, and the insertion hole has a coupling inner surface portion for forming the plastic coupling portion and a press-fit inner surface portion for forming the press-fit portion. Continuing in the direction and provided so that the press-fit inner surface portion is located on the side closer to the sheave surface,
上記結合内面部の内周面には、軸方向に歯筋を有すると共に内方に突出する複数の歯部を有しており、The inner peripheral surface of the inner surface portion has a plurality of tooth portions protruding inward and having tooth traces in the axial direction,
上記圧入内面部の内周面は、平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有しており、The inner peripheral surface of the press-fitted inner surface portion is a flat surface and has an inner diameter smaller than the diameter of the inscribed circle of the tooth portion,
また、上記シーブ部は、上記シャフト部との結合の前に、少なくとも歯部の表面を硬化する硬化処理を施してあり、In addition, the sheave portion is subjected to a curing treatment for curing at least the surface of the tooth portion before being coupled to the shaft portion,
上記シャフト部は、上記塑性結合部を形成するための結合外面部と、上記圧入部を形成するための圧入外面部とを軸方向に連ねて有しており、The shaft portion has a coupling outer surface portion for forming the plastic coupling portion and a press-fitting outer surface portion for forming the press-fitting portion in an axial direction.
上記結合外面部は、上記歯部の内接円の径よりも大きい外径を有しており、The coupling outer surface portion has an outer diameter larger than the diameter of the inscribed circle of the tooth portion,
上記圧入外面部は、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有しており、The press-fit outer surface portion has an outer diameter smaller than the diameter of the inscribed circle of the tooth portion and an outer diameter larger than the inner diameter of the press-fit inner surface portion so as to allow press-fitting,
上記シーブ部の上記歯部は、表面硬さがHv600以上であり、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きく、The tooth portion of the sheave portion has a surface hardness of Hv 600 or more, and is greater than the surface hardness of the coupling outer surface portion of the shaft portion by Hv 300 or more,
また、上記シーブ部の上記歯部は、軸方向に直交する断面において、該歯部間に形成される歯溝が該歯溝の外接円となる基準円よりも小径の円弧となり、かつ該基準円に内接する上記歯溝が周方向に規則的に並んで花びら形状を呈するように構成されており、Further, the tooth portion of the sheave portion has an arc having a smaller diameter than a reference circle in which a tooth groove formed between the tooth portions is a circumscribed circle of the tooth groove in a cross section orthogonal to the axial direction, and the reference The tooth gap inscribed in the circle is configured to form a petal shape regularly arranged in the circumferential direction,
上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた上記塑性結合部を形成すると共に、上記圧入内面部に上記圧入外面部を圧入した上記圧入部を形成することにより、上記シャフト部と上記シーブ部とを一体的に結合していることを特徴とするCVT用シャフト。The tooth portion is bitten into the joint outer surface portion to form the plastic joint portion in which a part of the joint outer surface portion is plastically flowed, and the press-fit portion is formed by press-fitting the press-fit outer surface portion into the press-fit inner surface portion. By doing so, the shaft portion and the sheave portion are integrally coupled to each other.
請求項1又は2において、上記圧入内面部の内径をd1、上記シーブ部の直径をd2、中央径d3=(d1+d2)/2とした場合に、上記シーブ部の表面における上記中央径d3位置から中心軸に対して垂直な垂線を引いた場合に該垂線と上記挿入穴内面との交差する位置が圧入内面部であることを特徴とするCVT用シャフト。 In claim 1 or 2 , when the inner diameter of the press-fitted inner surface is d 1 , the diameter of the sheave is d 2 , and the center diameter is d 3 = (d 1 + d 2 ) / 2, the surface of the sheave is A shaft for CVT, wherein when a perpendicular perpendicular to the central axis is drawn from the position of the center diameter d 3, a position where the perpendicular intersects the inner surface of the insertion hole is a press-fitting inner surface portion. 請求項1〜のいずれか1項において、上記シャフト部は、下記式により示される炭素当量Ceqが0.4以上の素材よりなり、上記シーブ部との結合前又は結合後に、上記結合外面部以外の少なくとも一部に、高周波焼入処理によって表面硬化処理を施してあることを特徴とするCVT用シャフト。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4、(各元素記号はそれぞれの質量%を意味する。)
The shaft portion according to any one of claims 1 to 3 , wherein the shaft portion is made of a material having a carbon equivalent Ceq of 0.4 or more represented by the following formula, and before or after being combined with the sheave portion. A shaft for CVT, wherein a surface hardening treatment is applied to at least a part other than by an induction hardening treatment.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 (each element symbol means mass%)
請求項1〜のいずれか1項において、上記シーブ部の上記歯部は、上記硬化処理を施した後に、ショットピーニング処理を施してあることを特徴とするCVT用シャフト。 The shaft for CVT according to any one of claims 1 to 4 , wherein the tooth portion of the sheave portion is subjected to shot peening after the curing treatment. 請求項1〜のいずれか1項において、上記シーブ部の上記結合内面部と上記圧入内面部との間には、上記歯部の内径よりも大きい内径を有する凹部が形成されていることを特徴とするCVT用シャフト。 In any 1 item | term of Claims 1-5, the recessed part which has an internal diameter larger than the internal diameter of the said tooth | gear part is formed between the said joint inner surface part and the said press-fit inner surface part of the said sheave part. Characteristic CVT shaft. 請求項1〜のいずれか1項において、上記シャフト部の上記結合外面部は、その外周角部に傾斜した接触面を有しており、
上記歯部は、上記結合外面部を内周側に収容可能な大径先端部を有すると共に、その後端側に徐々に縮径する位置決め傾斜部を有しており、
上記塑性結合部は、上記歯部の上記大径先端部内に上記結合外面部を収容すると共に上記接触面と上記位置決め傾斜部とを当接した後に、上記歯部を上記結合外面部に食い込ませて形成してあることを特徴とするCVT用シャフト。
In any one of Claims 1-6 , the said coupling | bonding outer surface part of the said shaft part has a contact surface inclined in the outer peripheral corner | angular part,
The tooth portion has a large-diameter tip portion that can accommodate the combined outer surface portion on the inner peripheral side, and a positioning inclined portion that gradually decreases in diameter on the rear end side,
The plastic coupling portion accommodates the coupling outer surface portion in the large-diameter tip portion of the tooth portion and causes the tooth portion to bite into the coupling outer surface portion after contacting the contact surface and the positioning inclined portion. A shaft for CVT characterized by being formed.
請求項1〜のいずれか1項において、上記シャフト部は、上記結合外面部よりも外径が大きい外鍔部を有しており、
上記歯部の軸方向端面には、上記外鍔部に当接可能な先端当接面を有しており、上記塑性結合部形成状態において、上記外鍔部と上記先端当接面とが当接していることを特徴とするCVT用シャフト。
In any one of claims 1 to 7, wherein the shaft portion has an outer collar portion having a larger outer diameter than the coupling outer surface,
An axial end surface of the tooth portion has a tip contact surface that can contact the outer flange portion. When the plastic coupling portion is formed, the outer flange portion and the tip contact surface are in contact with each other. A shaft for CVT, which is in contact with each other.
CVTに用いられるCVT用シャフトの製造方法において、
機械構造用鋼よりなり、内周面に軸方向に歯筋を有すると共に内方に突出する複数の歯部とを有する結合内面部と、内周面が平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有する圧入内面部とを軸方向に連ねてなる挿入穴を中央に有する円盤状のシーブ部を準備するシーブ部準備工程と、
少なくとも上記歯部の表面を硬化するシーブ部硬化処理工程と、
機械構造用鋼よりなり、上記歯部の内接円の径よりも大きい外径の結合外面部と、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有する圧入外面部とを軸方向に連ねて有する棒状のシャフト部を準備するシャフト部準備工程と、
上記シャフト部を上記シーブ部の上記挿入穴に挿入すると共に、上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた塑性結合部を形成する塑性結合処理と、上記圧入内面部に上記圧入外面部を圧入した圧入部を形成する圧入処理とを有し、上記シャフト部と上記シーブ部とを一体的に結合する結合工程とを有し、
上記シーブ部準備工程では、上記シャフト部の軸線を含む軸平面となす角度がαである受圧面と、上記軸平面となす角度がβ(β>α)である傾斜面とにより鋭角状に構成されていると共に、上記受圧面を周方向における第1の方向に位置させた第1締結歯と、その反対側の第2の方向に上記受圧面を位置させた第2締結歯を形成し、
上記第1締結歯を並べた第1領域と、上記第2締結歯を並べた第2領域とは、上記挿入穴の周方向に交互に配列し、
上記第1締結歯の上記傾斜面と上記第2締結歯の上記傾斜面とが対面する部位には、上記受圧面と上記傾斜面とにより形成された谷部の外接円よりも内側に出ないように外方に位置し、対面する上記傾斜面を滑らかに繋いだ第1控え部を設け、
上記シーブ部硬化処理工程では、上記シーブ部の上記歯部の表面硬さをHv600以上とし、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きくすることを特徴とするCVT用シャフトの製造方法。
In the manufacturing method of the shaft for CVT used for CVT,
It is made of steel for machine structural use, and has an inner peripheral surface having axial teeth on the inner peripheral surface and a plurality of tooth portions projecting inward, and an inner peripheral surface formed of a flat surface and A sheave part preparation step of preparing a disk-shaped sheave part having an insertion hole formed in the center of a press-fitting inner surface part having an inner diameter smaller than the diameter of the inscribed circle;
A sheave portion curing process for curing at least the surface of the tooth portion;
It is made of steel for machine structural use, has a coupling outer surface portion having an outer diameter larger than the diameter of the inscribed circle of the tooth portion, an outer diameter smaller than the diameter of the inscribed circle of the tooth portion, and is capable of being press-fit. A shaft portion preparation step of preparing a rod-shaped shaft portion having a press-fit outer surface portion having an outer diameter larger than the inner diameter of the press-fit inner surface portion in the axial direction;
A plastic coupling process for inserting the shaft portion into the insertion hole of the sheave portion and forming a plastic coupling portion in which the tooth portion is bitten into the coupling outer surface portion and a part of the coupling outer surface portion is plastically flowed. , and a press-fitting process of forming a press-fit portion press-fitted to the press-fit outer surface to the press-fit the inner surface portion, possess a binding step of combining integrally the shaft portion and the sheave portion,
In the sheave portion preparing step, the pressure receiving surface having an angle α with the axial plane including the axis of the shaft portion and an inclined surface having an angle β with the axial plane β (β> α) And forming a first fastening tooth in which the pressure receiving surface is positioned in the first direction in the circumferential direction and a second fastening tooth in which the pressure receiving surface is positioned in the second direction on the opposite side.
The first region in which the first fastening teeth are arranged and the second region in which the second fastening teeth are arranged are alternately arranged in the circumferential direction of the insertion hole,
The portion where the inclined surface of the first fastening tooth and the inclined surface of the second fastening tooth face each other does not come inward from the circumscribed circle of the valley formed by the pressure receiving surface and the inclined surface. So as to be located outside and provide a first holding part that smoothly connects the inclined surfaces facing each other,
In the said sheave part hardening process process, the surface hardness of the said tooth | gear part of the said sheave part shall be Hv600 or more, and Hv300 or more is made larger than the surface hardness of the said coupling outer surface part of the said shaft part, The manufacture of the shaft for CVT characterized by the above-mentioned. Method.
CVTに用いられるCVT用シャフトの製造方法において、In the manufacturing method of the shaft for CVT used for CVT,
機械構造用鋼よりなり、内周面に軸方向に歯筋を有すると共に内方に突出する複数の歯部とを有する結合内面部と、内周面が平坦な面からなると共に上記歯部の内接円の径よりも小さい内径を有する圧入内面部とを軸方向に連ねてなる挿入穴を中央に有する円盤状のシーブ部を準備するシーブ部準備工程と、It is made of steel for machine structural use, and has an inner peripheral surface having axial teeth on the inner peripheral surface and a plurality of tooth portions projecting inward, and an inner peripheral surface formed of a flat surface and A sheave part preparation step of preparing a disk-shaped sheave part having an insertion hole formed in the center of a press-fitting inner surface part having an inner diameter smaller than the diameter of the inscribed circle;
少なくとも上記歯部の表面を硬化するシーブ部硬化処理工程と、A sheave portion curing process for curing at least the surface of the tooth portion;
機械構造用鋼よりなり、上記歯部の内接円の径よりも大きい外径の結合外面部と、上記歯部の内接円の径よりも小さい外径を有すると共に圧入可能なように上記圧入内面部の内径よりも大きい外径を有する圧入外面部とを軸方向に連ねて有する棒状のシャフト部を準備するシャフト部準備工程と、It is made of steel for machine structural use, has a coupling outer surface portion having an outer diameter larger than the diameter of the inscribed circle of the tooth portion, an outer diameter smaller than the diameter of the inscribed circle of the tooth portion, and is capable of being press-fit. A shaft portion preparation step of preparing a rod-shaped shaft portion having a press-fit outer surface portion having an outer diameter larger than the inner diameter of the press-fit inner surface portion in the axial direction;
上記シャフト部を上記シーブ部の上記挿入穴に挿入すると共に、上記結合外面部に上記歯部を食い込ませて上記結合外面部の一部を塑性流動させた塑性結合部を形成する塑性結合処理と、上記圧入内面部に上記圧入外面部を圧入した圧入部を形成する圧入処理とを有し、上記シャフト部と上記シーブ部とを一体的に結合する結合工程とを有し、A plastic coupling process for inserting the shaft portion into the insertion hole of the sheave portion and forming a plastic coupling portion in which the tooth portion is bitten into the coupling outer surface portion and a part of the coupling outer surface portion is plastically flowed. A press-fitting process for forming a press-fitting part in which the press-fitting outer surface part is press-fitted into the press-fitting inner surface part, and a coupling step for integrally joining the shaft part and the sheave part,
上記シーブ部準備工程では、上記シーブ部の上記歯部を、軸方向に直交する断面において、上記歯部間に形成される歯溝の内壁面が所定の基準円よりも小径の円弧となり、上記歯溝が上記基準円に内接して周方向に規則的に並んで花びら形状を呈するように形成し、In the sheave part preparing step, the tooth part of the sheave part is a cross section orthogonal to the axial direction, and the inner wall surface of the tooth gap formed between the tooth parts becomes an arc having a smaller diameter than a predetermined reference circle, The tooth gap is inscribed in the reference circle and is regularly arranged in the circumferential direction to form a petal shape,
上記シーブ部準備工程では、上記シーブ部の上記歯部を、軸方向に直交する断面において、該歯部間に形成される歯溝が該歯溝の外接円となる基準円よりも小径の円弧となり、かつ該基準円に内接する上記歯溝が周方向に規則的に並んで花びら形状を呈するように形成し、In the sheave portion preparation step, the tooth portion of the sheave portion is an arc having a smaller diameter than a reference circle in which a tooth groove formed between the tooth portions is a circumscribed circle of the tooth groove in a cross section orthogonal to the axial direction. And the tooth gap inscribed in the reference circle is regularly arranged in the circumferential direction to form a petal shape,
上記シーブ部硬化処理工程では、上記シーブ部の上記歯部の表面硬さをHv600以上とし、上記シャフト部の上記結合外面部の表面硬さよりHv300以上大きくすることを特徴とするCVT用シャフトの製造方法。In the said sheave part hardening process process, the surface hardness of the said tooth | gear part of the said sheave part shall be Hv600 or more, and Hv300 or more is made larger than the surface hardness of the said coupling outer surface part of the said shaft part, The manufacture of the shaft for CVT characterized by the above-mentioned. Method.
請求項9又は10において、上記シーブ部準備工程では、上記圧入内面部の内径をd1、中央径d3=(d1+d2)/2とした場合に、上記シーブ部の表面における上記中央径d3位置から中心軸に対して垂直な垂線を引いた場合に該垂線と上記挿入穴内面との交差する位置が圧入内面部とすることを特徴とするCVT用シャフトの製造方法。 11. The sheave portion preparation step according to claim 9, wherein the inner surface portion of the press-fit inner surface portion is d 1 and the center diameter is d 3 = (d 1 + d 2 ) / 2. A method for producing a CVT shaft, wherein when a perpendicular perpendicular to the central axis is drawn from the position of the diameter d 3, a position where the perpendicular intersects the inner surface of the insertion hole is a press-fitted inner surface. 請求項11のいずれか1項において、上記シャフト部は、下記式により示される炭素当量Ceqが0.4以上の素材よりなり、上記塑性結合処理の前又は後に、上記結合外面部以外の少なくとも一部に、高周波焼入処理によって表面硬化処理を施すシャフト部表面硬化処理工程をさらに有することを特徴とするCVT用シャフトの製造方法。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4、(各元素記号はそれぞれの質量%を意味する。)
In any one of claims 9-11, the shaft portion, the carbon equivalent Ceq represented by the following formula is from 0.4 or more materials, before or after the plastic coupling process, other than the binding outer surface A method for producing a shaft for CVT, characterized by further comprising a shaft portion surface hardening treatment step in which at least a portion is subjected to a surface hardening treatment by induction hardening.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 (each element symbol means mass%)
請求項12のいずれか1項において、上記シーブ部硬化処理工程の後に、上記シーブ部の上記歯部に、ショットピーニング処理を施すショットピーニング処理工程をさらに有することを特徴とするCVT用シャフトの製造方法。 The shaft for CVT according to any one of claims 9 to 12 , further comprising a shot peening treatment step of performing shot peening treatment on the tooth portion of the sheave portion after the sheave portion curing treatment step. Manufacturing method. 請求項13のいずれか1項において、上記シーブ部準備工程では、上記シーブ部の上記結合内面部と上記圧入内面部との間に、上記歯部の内径よりも大きい内径を有する凹部を形成することを特徴とするCVT用シャフトの製造方法。 In any one of claims 9-13, in the sheave portion preparation step, between the coupling inner surface portion and the press-fit the inner surface of the sheave portion, the recess having an inner diameter larger than the inner diameter of the teeth A method of manufacturing a shaft for CVT, characterized by comprising: 請求項14のいずれか1項において、上記シャフト部準備工程では、上記シャフト部の上記結合外面部は、その外周角部に傾斜した接触面を設け、
上記シーブ部形成工程では、上記歯部に、上記結合外面部を内周側に収容可能な大径先端部を設けると共に、その後端側に徐々に縮径する位置決め傾斜部を設け、
上記塑性結合工程では、上記歯部の上記大径先端部内に上記結合外面部を収容すると共に上記接触面と上記位置決め傾斜部とを当接した後に、上記歯部を上記結合外面部に食い込ませて上記塑性結合部を形成することを特徴とするCVT用シャフトの製造方法。
In any one of claims 9-14, in the shaft portion preparation step, the coupling outer surface of the shaft portion is provided with a contact surface inclined in the outer peripheral corner portion,
In the sheave portion forming step, the tooth portion is provided with a large-diameter leading end portion that can accommodate the coupling outer surface portion on the inner peripheral side, and a positioning inclined portion that gradually decreases in diameter on the rear end side,
In the plastic coupling step, the coupling outer surface portion is accommodated in the large-diameter tip portion of the tooth portion, and after the contact surface and the positioning inclined portion are brought into contact with each other, the tooth portion is bitten into the coupling outer surface portion. And forming the plastic joint. A method for producing a CVT shaft, wherein:
請求項15のいずれか1項において、上記シャフト部準備工程では、上記シャフト部に、上記結合外面部よりも外径が大きい外鍔部を設け、
上記歯部形成工程では、上記歯部の軸方向端面に、上記外鍔部に当接可能な先端当接面を設け、
上記塑性結合処理では、上記外鍔部と上記先端当接面とを当接させることを特徴とするCVT用シャフトの製造方法。
In any one of claims 9-15, in the shaft portion preparation step, onto the shaft portion is provided with an outer collar portion having a larger outer diameter than the coupling outer surface,
In the tooth portion forming step, a tip contact surface capable of contacting the outer flange portion is provided on the axial end surface of the tooth portion,
In the plastic bonding process, the outer flange portion and the tip contact surface are brought into contact with each other.
請求項16のいずれか1項において、上記結合工程は、上記圧入処理を開始した後に塑性結合処理を開始することを特徴とするCVT用シャフトの製造方法。 The method of manufacturing a shaft for CVT according to any one of claims 9 to 16 , wherein the joining step starts plastic joining after starting the press-fitting.
JP2007119794A 2007-04-27 2007-04-27 CVT shaft and manufacturing method thereof Active JP4957362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119794A JP4957362B2 (en) 2007-04-27 2007-04-27 CVT shaft and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119794A JP4957362B2 (en) 2007-04-27 2007-04-27 CVT shaft and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008275077A JP2008275077A (en) 2008-11-13
JP4957362B2 true JP4957362B2 (en) 2012-06-20

Family

ID=40053278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119794A Active JP4957362B2 (en) 2007-04-27 2007-04-27 CVT shaft and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4957362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160082440A (en) * 2014-12-30 2016-07-08 지엠비코리아 주식회사 Auto-tensioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2002325C2 (en) * 2008-12-12 2010-06-15 Bosch Gmbh Robert ADJUSTABLE POELIE FOR A CONTINUALLY VARIABLE TRANSMISSION, AND METHOD FOR ASSEMBLY THEREOF.
JP7376793B2 (en) 2020-02-25 2023-11-09 愛知製鋼株式会社 A workpiece rotation device for inspection, a workpiece inspection device equipped with the workpiece rotation device for inspection, and a workpiece inspection method using the workpiece inspection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105368A (en) * 1984-10-30 1986-05-23 Nissan Motor Co Ltd Manufacturing method of pulley for belting type stepless transmission
JPH11320274A (en) * 1998-05-08 1999-11-24 Hitachi Ltd Structure and method for connecting metal pipes to each other or connecting metal pipe to metal bar
JP2004138209A (en) * 2002-10-21 2004-05-13 Daihatsu Motor Co Ltd Pulley for continuously variable transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160082440A (en) * 2014-12-30 2016-07-08 지엠비코리아 주식회사 Auto-tensioner
KR101716554B1 (en) * 2014-12-30 2017-03-14 지엠비코리아 주식회사 Auto-tensioner

Also Published As

Publication number Publication date
JP2008275077A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5718003B2 (en) Outer joint member of constant velocity universal joint and friction welding method thereof
US8313587B2 (en) Method for producing a torque transmission device useful as a fixed constant velocity ball joint for drive shafts
KR20090102746A (en) Constant velocity universal joint
US20100307128A1 (en) Link chain
JP4957362B2 (en) CVT shaft and manufacturing method thereof
JP2010065815A (en) Power transmission shaft
JP4853776B2 (en) CVT shaft and manufacturing method thereof
US10018219B2 (en) Hollow drive shaft and method for manufacturing same
JP2009121673A (en) Constant speed universal joint
JP2009097716A (en) Differential gear
US20080268991A1 (en) Method for producing a conical pulley, a conical pulley, and a belt-driven conical-pulley transmission
JP2014091125A5 (en)
JP2007253192A (en) Method for manufacturing shaft
JP2007211926A (en) Inner member of constant velocity universal joint and its manufacturing method
KR20140024080A (en) Universal joint for vehicle and manufacturing method thereof
JP2007198401A (en) Spline interconnecting structure, power transmission shaft and outer ring stem of constant velocity universal joint
JP2005098450A (en) Outside joint member of constant velocity universal joint and manufacturing method thereof
JP2005146313A (en) Power transmission shaft
JP4559276B2 (en) Cage for constant velocity universal joint
WO2020135929A1 (en) Method for manufacturing a drive belt for a continuously variable transmission and a drive belt thus manufactured
JP4853777B2 (en) Plastic coupling member and manufacturing method thereof
JP2007107593A (en) Disk for v-belt type continuously variable transmission pulley and manufacturing method thereof
JPWO2019065046A1 (en) Continuously variable transmission and manufacturing method thereof
JP4128926B2 (en) Method for manufacturing movable flange of pulley for continuously variable transmission
JP7034875B2 (en) Waveform cage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250