JP5739689B2 - Mechanical structural member - Google Patents

Mechanical structural member Download PDF

Info

Publication number
JP5739689B2
JP5739689B2 JP2011042729A JP2011042729A JP5739689B2 JP 5739689 B2 JP5739689 B2 JP 5739689B2 JP 2011042729 A JP2011042729 A JP 2011042729A JP 2011042729 A JP2011042729 A JP 2011042729A JP 5739689 B2 JP5739689 B2 JP 5739689B2
Authority
JP
Japan
Prior art keywords
mass
hardness
less
carbides
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011042729A
Other languages
Japanese (ja)
Other versions
JP2012180541A (en
Inventor
秋月 誠
誠 秋月
浩次 面迫
浩次 面迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2011042729A priority Critical patent/JP5739689B2/en
Publication of JP2012180541A publication Critical patent/JP2012180541A/en
Application granted granted Critical
Publication of JP5739689B2 publication Critical patent/JP5739689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、良好な加工性と焼入性を兼備し、自動車部品をはじめとする各種機械部品に適した浸炭用ボロン鋼の鋼板に関する。   The present invention relates to a steel plate of carburized boron steel that has both good workability and hardenability and is suitable for various machine parts including automobile parts.

少量のBを添加した炭素鋼(ボロン鋼)は焼入性に優れることから、板厚中心部まで十分に焼きが入る(マルテンサイト組織となる)ことが要求される種々の部品用途において、低コスト材として使用されている。ボロン鋼の焼鈍鋼板は、打抜き、曲げなどのプレス成形や、鍛造、切削などの工程により所定の部品形状に加工された後、浸炭焼入れ等の熱処理を施して使用される。したがって、素材であるボロン鋼鋼板には、加工性、焼入性、および用途に応じた熱処理後の特性が要求される。   Since carbon steel (boron steel) to which a small amount of B is added has excellent hardenability, it is low in various parts applications that require sufficient quenching to the center of the plate thickness (becomes a martensite structure). Used as a cost material. An annealed steel sheet of boron steel is used after being processed into a predetermined part shape by press forming such as punching and bending, forging and cutting, and then subjected to heat treatment such as carburizing and quenching. Therefore, the boron steel sheet as a material is required to have workability, hardenability, and characteristics after heat treatment according to the application.

耐摩耗性が要求される部品では表面硬さを高めるために浸炭するが、ボロン鋼鋼板を浸炭焼入れした場合、逆に硬さが低下することがある。通常の浸炭(カーボンポテンシャルが0.8%以上、有効硬化深さが1mm以上、表面硬さが700HV以上)では、表面硬さ低下は現れ難いが、カーボンポテンシャル(C.P.)が0.8%未満の軽微な浸炭により表面硬さ500〜650HV程度を狙った場合に表面硬さ低下が起こりやすい。   Parts that require wear resistance are carburized to increase the surface hardness. However, when a boron steel sheet is carburized and quenched, the hardness may decrease. In normal carburization (carbon potential is 0.8% or more, effective hardening depth is 1 mm or more, surface hardness is 700 HV or more), the surface hardness is hardly lowered, but the carbon potential (CP) is 0. When a surface hardness of about 500 to 650 HV is targeted by slight carburization of less than 8%, the surface hardness is likely to decrease.

ボロン鋼鋼板における表面硬さ低下の原因は、以下(1)〜(3)のように考えられる。
(1)鋼板の製造段階、あるいは部品成形後の焼入れ時に施される高温加熱によって、鋼材表層部の固溶Bが減少する(脱B現象)。
(2)脱Bによって表層部の焼入性が低下し、焼入れの際に表層部分に不完全焼入れ組織を生じて表面硬さが低下する。
(3)特に板厚が大きい場合、焼入れ時の冷却速度が低下するため、表面硬さの低下が顕著になる。
The causes of the surface hardness reduction in the boron steel sheet are considered as follows (1) to (3).
(1) Solid solution B in the steel surface layer portion is reduced by the high-temperature heating applied during the steel plate manufacturing stage or during quenching after forming the part (de-B phenomenon).
(2) The hardenability of the surface layer portion is reduced by the removal of B, and an incompletely hardened structure is formed in the surface layer portion during quenching to reduce the surface hardness.
(3) Especially when the plate thickness is large, the cooling rate at the time of quenching is lowered, so the surface hardness is significantly reduced.

不完全焼入れ組織の生成を防止する手法が、これまでにも提案されている。
例えば、特許文献1は、C含有量が0.1〜0.3質量%のボロン鋼を使用し、TiおよびNbの炭窒化物を微細析出させることによって浸炭時における粗大粒の発生を防止し、さらにCrおよびMoを添加して脱Bによる焼入性低下を補い、表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を防止している。しかし、特許文献1では、TiおよびNbの炭窒化物を微細析出させるために800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する必要があり、製造性に劣る。
Techniques for preventing the formation of incompletely quenched structures have been proposed so far.
For example, Patent Document 1 uses boron steel having a C content of 0.1 to 0.3% by mass, and prevents the generation of coarse grains during carburizing by finely depositing Ti and Nb carbonitrides. Further, Cr and Mo are added to make up for a decrease in hardenability due to de-B, and generation of an incompletely hardened structure formed to a depth of 0.2 to 0.7 mm from the surface is prevented. However, in Patent Document 1, it is necessary to gradually cool a temperature range of 800 to 500 ° C. at a cooling rate of 1 ° C./second or less in order to finely precipitate Ti and Nb carbonitrides, resulting in poor productivity.

特許文献2は、C含有量が0.10〜0.30質量%のボロン鋼を使用し、MnおよびCr含有量の上限を1.5質量%としている。しかし、特許文献2では、MnやCrを上限程度まで添加することにより脱B部の焼入性は補完できるが、固溶強化元素であるこれらの元素は加工性を大きく低下させてしまう。一方、特許文献2で、MnおよびCr含有量が少ない場合には、脱Bによる焼入性の低下を補完することが困難となる。Niの添加は素材コスト上昇に繋がる。   Patent Document 2 uses boron steel having a C content of 0.10 to 0.30 mass%, and the upper limit of the Mn and Cr contents is 1.5 mass%. However, in Patent Document 2, the hardenability of the de-B portion can be complemented by adding Mn and Cr to the upper limit, but these elements that are solid solution strengthening elements greatly reduce the workability. On the other hand, in Patent Document 2, when the contents of Mn and Cr are small, it is difficult to supplement the decrease in hardenability due to de-B. Addition of Ni leads to an increase in material cost.

特許文献3は、C含有量が0.10〜0.30質量%のボロン鋼を使用し、非浸炭部の組織を、フェライトを10〜70面積%含むマルテンサイトからなる二相組織とすることで、熱処理によるひずみが小さい歯車用鋼材を提案している。しかし、特許文献3では、熱処理後の金属組織においてフェライトが存在するため、疲労特性や衝撃靭性などの低下が考えられる。   Patent Document 3 uses boron steel having a C content of 0.10 to 0.30 mass%, and the structure of the non-carburized part is a two-phase structure composed of martensite containing 10 to 70 area% of ferrite. The steel material for gears with a small distortion by heat treatment is proposed. However, in Patent Document 3, since the ferrite exists in the metal structure after the heat treatment, a decrease in fatigue characteristics, impact toughness, and the like can be considered.

特許文献4は、C含有量が0.10〜0.40質量%のボロン鋼を使用し、表層部の炭化物の面積率と板厚中心部の炭化物の面積率との比を0.90以上とし、合金成分により算出されるX値を24以上とすることで、表層部の焼入れ不良層を改善している。しかし、特許文献4では、表層部の焼入れ性を向上させるために、MnおよびCrを過剰に添加する必要がある。一方、MnおよびCrの過剰な添加により、伸びフランジ加工、打抜き加工、曲げ加工など種々の冷間加工性が低下する。   Patent Document 4 uses boron steel having a C content of 0.10 to 0.40 mass%, and the ratio of the area ratio of carbide in the surface layer portion to the area ratio of carbide in the center portion of the plate thickness is 0.90 or more. By setting the X value calculated by the alloy component to 24 or more, the poorly quenched layer in the surface layer portion is improved. However, in patent document 4, in order to improve the hardenability of a surface layer part, it is necessary to add Mn and Cr excessively. On the other hand, excessive addition of Mn and Cr deteriorates various cold workability such as stretch flange processing, punching processing, bending processing and the like.

特開2001−303172号公報JP 2001-303172 A 特開平04−297521号公報(特許3024245号)JP 04-297521 A (Patent No. 3024245) 特開2001−032036号公報(特許3989138号)JP 2001-032036 A (Patent No. 3989138) 特開2010−215961号公報JP 2010-215961 A

このように、従来技術により不完全焼入れ組織(フェライトやベイナイト)の生成を防止する手法が種々提案されているが、カーボンポテンシャル(C.P.)が低い、すなわち軽微な浸炭焼入れを施した場合の表面硬さ低下に対する対策は未だ不十分であるという課題があった。
従って、本発明は、上記のような課題に鑑みてなされたものであり、加工性に優れ、かつ低いカーボンポテンシャルでの浸炭焼入れにおいても表層部で目標どおりの焼入れ硬さが得られるボロン鋼の鋼板を提供しようというものである。
As described above, various techniques for preventing the formation of an incompletely quenched structure (ferrite or bainite) have been proposed by the prior art, but the carbon potential (C.P.) is low, that is, when a slight carburizing and quenching is performed. There has been a problem that the countermeasures against the decrease in surface hardness are still insufficient.
Accordingly, the present invention has been made in view of the above-described problems, and is excellent in workability, and boron steel that can achieve the desired quenching hardness in the surface layer portion even in carburizing and quenching at a low carbon potential. It is to provide steel sheets.

まず、本発明者らは、ボロン鋼に特有の脱B現象そのものを防止することは現状の製造プロセスにおいて極めて困難であり、脱Bが生じること自体はある程度許容することが得策であろうと考えた。この観点に立ち、本発明者らは、上記課題を解決すべく検討した結果、ボロン鋼の伸びフランジ性および表層部焼入性に関し、以下の知見を得た。
(1)伸びフランジ性(局部延性)の確保と、脱Bによって生じる焼入性低下の防止とは、化学組成を厳密にコントロールすることにより両立できる。
(2)金属組織において、球状化している炭化物の量と炭化物の距離をコントロールすることで伸びフランジ性をさらに高めることができる。
本発明者らは、上記(1)の化学組成および上記(2)の金属組織での対策を講じることで、ボロン鋼の伸びフランジ性を確保しつつ表層部焼入性を十分に確保することができることを見出し、本発明を完成するに至った。
すなわち、本発明は、C:0.10〜0.50質量%、Si:0.50質量%以下、Mn:0.20〜1.8質量%、Cr:0.20〜2.0質量%、P:0.02質量%以下、S:0.02質量%以下、Ti:0.01〜0.20質量%、Al:0.002〜0.10質量%、B:0.0005〜0.0050質量%、残部がFeおよび不可避的不純物であり、炭化物がフェライト中に分散しており、その炭化物間の平均距離が0.8μm以上であり、下記式(1)で定義されるX値が40以下であり、下記式(2)で定義されるY値が30以上であり、かつ硬さが150HV以下である加工性に優れた浸炭用鋼板である。
X=30C+30Si+20Mn+5Cr+150S+80Ti−1.5炭化物間平均距離・・・(1)
Y=5C+22Mn+32Cr・・・(2)
First, the present inventors considered that it is extremely difficult to prevent the de-B phenomenon inherent to boron steel in the current manufacturing process, and it would be advisable to allow the de-B to occur to some extent. . In view of this point, the present inventors have studied to solve the above problems, and as a result, have obtained the following knowledge regarding the stretch flangeability and surface layer hardenability of boron steel.
(1) Ensuring stretch flangeability (local ductility) and preventing hardenability deterioration caused by de-B can be achieved by strictly controlling the chemical composition.
(2) In the metal structure, stretch flangeability can be further improved by controlling the amount of spheroidized carbide and the distance between carbides.
The inventors of the present invention ensure sufficient surface layer hardenability while securing stretch flangeability of boron steel by taking measures with the chemical composition of (1) and the metal structure of (2). As a result, the present invention has been completed.
That is, the present invention includes C: 0.10 to 0.50 mass%, Si: 0.50 mass% or less, Mn: 0.20 to 1.8 mass%, Cr: 0.20 to 2.0 mass%. , P: 0.02 mass% or less, S: 0.02 mass% or less, Ti: 0.01-0.20 mass%, Al: 0.002-0.10 mass%, B: 0.0005-0 .0050% by mass, the balance being Fe and inevitable impurities, carbides are dispersed in ferrite, the average distance between the carbides is 0.8 μm or more, and the X value defined by the following formula (1) Is a carburizing steel plate having excellent workability, having a Y value defined by the following formula (2) of 30 or more and a hardness of 150 HV or less.
X = 30C + 30Si + 20Mn + 5Cr + 150S + 80Ti-1.5 Average distance between carbides (1)
Y = 5C + 22Mn + 32Cr (2)

本発明によれば、加工性に優れ、かつ低いカーボンポテンシャルでの浸炭焼入れにおいて表層部で高い焼入れ硬さが得られるボロン鋼の鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate of the boron steel which is excellent in workability and can obtain high quenching hardness in a surface layer part in the carburizing quenching with a low carbon potential can be provided.

実施例で得られた伸びフランジ加工品の斜視図である。It is a perspective view of the stretch flange processed goods obtained in the Example. 伸びフランジ加工性とX値との関係を示すグラフである。It is a graph which shows the relationship between stretch flange workability and X value. 伸びフランジ加工性と切り欠き引張伸び(Elv値)との関係を示すグラフである。It is a graph which shows the relationship between stretch flange workability and notch tensile elongation (Elv value). 表面から深さ100μmの位置における焼入れ硬さとY値との関係を示すグラフである。It is a graph which shows the relationship between the quenching hardness and Y value in the position of a depth of 100 micrometers from the surface. 表面からの深さと焼入れ硬さとの関係を示すグラフである。It is a graph which shows the relationship between the depth from the surface, and quenching hardness.

以下、本発明の浸炭用鋼板について詳細に説明する。
〔化学組成〕
C:0.10〜0.50質量%
Cは、自動車部品をはじめとする機械構造部材として必要な硬さを確保するためには重要な合金成分であり、0.10質量%以上のC含有量で所望の硬さが得られる。しかし、0.50質量%を超える多量のCが含まれると、焼入性および焼入れ硬さは十分確保されるが、鋼板の伸びフランジ性が著しく低下する。
Hereinafter, the carburized steel sheet of the present invention will be described in detail.
[Chemical composition]
C: 0.10 to 0.50 mass%
C is an important alloying component for ensuring the hardness necessary for machine structural members including automobile parts, and a desired hardness can be obtained with a C content of 0.10% by mass or more. However, when a large amount of C exceeding 0.50% by mass is contained, the hardenability and the quenching hardness are sufficiently ensured, but the stretch flangeability of the steel sheet is remarkably deteriorated.

Si:0.5質量%以下
Siは、延性に対して影響の大きい元素の1つである。Siを過剰に添加すると固溶強化作用によりフェライトが硬化し、成形加工時に割れ発生の原因となる。またSi含有量が増加すると製造工程で鋼板表面にスケール疵が発生する傾向を示し、表面品質の低下を招く。さらには、浸炭加熱中に粒界酸化が起こり疲労寿命の低下に繋がる。そのため、本発明においては、Si含有量の上限を0.5質量%に設定した。
Si: 0.5% by mass or less Si is one of elements having a great influence on ductility. If Si is added excessively, the ferrite is hardened by the solid solution strengthening action, which causes cracks during molding. Further, when the Si content increases, scale flaws tend to be generated on the surface of the steel sheet during the production process, leading to a reduction in surface quality. Furthermore, grain boundary oxidation occurs during carburizing heating, leading to a reduction in fatigue life. Therefore, in this invention, the upper limit of Si content was set to 0.5 mass%.

Mn:0.20〜1.8質量%
Mnは、焼入れ加熱後の冷却過程でフェライト変態を抑制し、比較的遅い冷却速度でもマルテンサイト主体の組織にすることにより、鋼材の焼入れ性を高める。Mnは、強靭化にも有効な合金成分である。しかし、0.20質量%未満のMn含有量では焼入れ性が大幅に低下し、冷却中にパーライト、上部ベイナイト等の高温生成物が形成され、自動車部品をはじめとする機械構造部材として必要な焼入れ硬さが得られなくなる。逆に、1.8質量%を超える多量のMnが含まれると、フェライトが硬化し、伸びフランジ性が劣化する。
Mn: 0.20 to 1.8% by mass
Mn suppresses ferrite transformation in the cooling process after quenching heating, and enhances the hardenability of the steel material by making the structure mainly martensite even at a relatively slow cooling rate. Mn is an alloy component effective for toughening. However, if the Mn content is less than 0.20% by mass, the hardenability is significantly lowered, and high-temperature products such as pearlite and upper bainite are formed during cooling, and quenching is necessary as a mechanical structural member including automobile parts. Hardness cannot be obtained. On the other hand, when a large amount of Mn exceeding 1.8% by mass is contained, the ferrite is cured and the stretch flangeability is deteriorated.

Cr:0.20〜2.0質量%
Crは、焼入れ性の改善に有効な合金成分であり、0.20質量%以上の含有量でCrの添加効果が顕著になる。これに対し、0.20質量%未満のCr含有量では、硬さが不足するばかりか、焼入れ時の冷却速度依存性が大きくなるため、焼入れ硬さが不安定になり易い。逆に、2.0質量%を超える多量のCrが含まれると、加工性が著しく劣化する。
Cr: 0.20 to 2.0% by mass
Cr is an alloy component effective for improving hardenability, and the effect of adding Cr becomes remarkable when the content is 0.20% by mass or more. On the other hand, when the Cr content is less than 0.20% by mass, not only the hardness is insufficient, but also the dependency on the cooling rate at the time of quenching is increased, so that the quenching hardness tends to be unstable. On the other hand, if a large amount of Cr exceeding 2.0% by mass is contained, the workability is remarkably deteriorated.

P:0.02質量%以下
Pは、延性や靭性を劣化させる元素であり、0.02質量%を超えるP含有量では焼入れ後において旧オーステナイト粒界の靭性が劣化し、熱処理後の部品の疲労特性が低下する。そのため、本発明においては、P含有量の上限を0.02質量%に設定した。
P: 0.02% by mass or less P is an element that deteriorates ductility and toughness. When the P content exceeds 0.02% by mass, the toughness of the prior austenite grain boundaries deteriorates after quenching, so that Fatigue properties are reduced. Therefore, in this invention, the upper limit of P content was set to 0.02 mass%.

S:0.02質量%以下
Sは、伸びフランジ性を支配する極めて重要な要因である。すなわち、Sは、MnS系の介在物を生成して特に局部的な延性を劣化させる。伸びフランジ加工では、生成したMnSが破断の起点になり、割れが発生し易くなる。そのため、本発明においては、S含有量を0.02質量%以下、好ましくは0.005質量%以下に規制する。
S: 0.02% by mass or less S is a very important factor governing stretch flangeability. That is, S produces MnS-based inclusions and deteriorates the local ductility. In stretch flange processing, the generated MnS becomes the starting point of breakage, and cracks are likely to occur. Therefore, in this invention, S content is controlled to 0.02 mass% or less, preferably 0.005 mass% or less.

Ti:0.01〜0.20質量%
Tiは、溶鋼の脱酸調整に添加される成分であるが、脱窒作用も呈する。
また、鋼板に固溶しているNを窒化物として固定するので、焼入れ性を改善する有効B量を高める。更に、炭窒化物を形成し、焼入れ加熱時に結晶粒の粗大化を防止する作用を呈する。これらの作用を安定して得るためには、0.01質量%以上のTi含有量が必要である。しかし、0.20質量%を超える多量のTiが含まれると、経済的に不利になるばかりか、伸びフランジ性を劣化させる原因ともなる。
Ti: 0.01-0.20 mass%
Ti is a component added to adjust the deoxidation of molten steel, but also exhibits a denitrification action.
Moreover, since N dissolved in the steel sheet is fixed as a nitride, the effective B amount for improving the hardenability is increased. Further, carbonitride is formed, and the effect of preventing the coarsening of crystal grains during quenching heating is exhibited. In order to stably obtain these actions, a Ti content of 0.01% by mass or more is necessary. However, when a large amount of Ti exceeding 0.20% by mass is contained, not only is it economically disadvantageous, but it also causes deterioration of stretch flangeability.

Al:0.002〜0.10質量%
Alは、溶鋼の脱酸剤として使用される成分であり、Nを固定する作用も呈する。このような作用は、0.002質量%以上のAl含有量で顕著になる。しかし、0.10質量%を超える多量のAlが含まれると、鋼の清浄度が損なわれ、表面疵が発生し易くなり、鋼板の表面品質を低下させる原因となる。
Al: 0.002 to 0.10% by mass
Al is a component used as a deoxidizer for molten steel, and also exhibits an effect of fixing N. Such an effect becomes remarkable when the Al content is 0.002% by mass or more. However, when a large amount of Al exceeding 0.10% by mass is contained, the cleanliness of the steel is impaired, surface flaws are easily generated, and the surface quality of the steel sheet is deteriorated.

B:0.0005〜0.0050質量%
Bは、極微量の添加で鋼材の焼入れ性を大幅に向上させる。また、粒界の歪みエネルギーを低下させることによって粒界を強化する作用を呈する。自動車部品をはじめとする機械構造部材として必要な硬さを安定して得るためにも、必要な合金成分である。このようなBの添加効果は、0.0005質量%以上の含有量で顕著になる。しかし、0.0050質量%を超えるBを添加しても、その効果が飽和し、逆に靭性を劣化させる欠点が生じる。
B: 0.0005-0.0050 mass%
B significantly improves the hardenability of the steel material by adding a very small amount. Moreover, the effect | action which strengthens a grain boundary is exhibited by reducing the distortion energy of a grain boundary. It is a necessary alloy component in order to stably obtain the necessary hardness for machine structural members such as automobile parts. Such an effect of addition of B becomes significant when the content is 0.0005% by mass or more. However, even if B exceeding 0.0050 mass% is added, the effect is saturated, and conversely, the toughness is deteriorated.

X値:40以下
各合金元素が前述の範囲に入っている場合でも、MnS系介在物、フェライト硬さ、球状化炭化物の粒径や炭化物間平均距離が複雑に関連して鋼板の伸びフランジ性に多大な影響を及ぼす。本発明では各合金成分の含有量が上記の範囲において、さらに下記式(1)で定義されるX値が40以下となるように成分調整されていることが重要である。
X=30C+30Si+20Mn+5Cr+150S+80Ti−1.5炭化物間平均距離・・・(1)
伸びフランジ性の指標としてのX値が40以下となる合金設計を採用したとき、局部延性が向上し、部品製造の際に要求される伸びフランジ加工性を満足する鋼材となる。
ここで、式(1)において、各元素の項には、それぞれの成分の含有率の値(質量%)を代入する。炭化物間平均距離は、μm単位の値を代入する。
X value: 40 or less Even when each alloy element is within the above-mentioned range, MnS inclusions, ferrite hardness, grain size of spheroidized carbides and average distance between carbides are complicatedly related to stretch flangeability of the steel sheet. It has a great influence on it. In the present invention, it is important that the content of each alloy component is adjusted so that the X value defined by the following formula (1) is 40 or less in the above range.
X = 30C + 30Si + 20Mn + 5Cr + 150S + 80Ti-1.5 Average distance between carbides (1)
When an alloy design having an X value of 40 or less as an index of stretch flangeability is employed, the local ductility is improved, and the steel material satisfies the stretch flangeability required in the production of parts.
Here, in Formula (1), the value (mass%) of the content rate of each component is substituted for the term of each element. For the average distance between carbides, a value in μm is substituted.

Y値:30以上
Y値は、鋼板表面における脱B部分の焼入れ性を現す指標であり、焼入れ性を向上させるC、MnおよびCr含有量を適正化すると共に、必要な焼入れ硬さを得るためのC、MnおよびCr含有量の決定に使用される。本発明では各合金成分の含有量が上記の範囲において、さらに下記式(2)で定義されるY値が30以上となるように成分調整されていることが重要である。
Y=5C+22Mn+32Cr・・・(2)
Y値が30以上となる合金設計を採用したとき、鋼板表面の焼入れ硬さが安定して得られる。
ここで、式(2)において、各元素の項には、それぞれの成分の含有率の値(質量%)を代入する。
Y value: 30 or more Y value is an index showing the hardenability of the de-B portion on the steel sheet surface, in order to optimize the contents of C, Mn and Cr for improving hardenability and to obtain the required quenching hardness. Used to determine the C, Mn, and Cr content. In the present invention, it is important that the content of each alloy component is adjusted so that the Y value defined by the following formula (2) is 30 or more in the above range.
Y = 5C + 22Mn + 32Cr (2)
When an alloy design with a Y value of 30 or more is adopted, the quenching hardness of the steel sheet surface can be stably obtained.
Here, in Formula (2), the value (mass%) of the content rate of each component is substituted for the term of each element.

〔金属組織〕
炭化物間の平均距離:0.8μm以上
本発明の浸炭用鋼板は、フェライトマトリクス中に炭化物が分散した焼鈍組織を有している。本発明者らの検討によれば、炭化物間平均距離は、伸びフランジ性等の局部延性を支配する因子として特に重要なものであり、炭化物間平均距離を0.8μm以上としたとき、従来の鋼板では実現が難しかった高い伸びフランジ加工性を付与することが可能であることが分かった。鋼板中の炭化物間平均距離が0.8μm未満であると、成形加工時に炭化物を起点として生成したミクロボイドの連結・成長を容易にし、そのようなミクロ的な欠陥の存在に敏感な局部延性が著しく低下する。したがって、本発明においては、鋼板の炭化物間平均距離を0.8μm以上に規定した。
[Metal structure]
Average distance between carbides: 0.8 μm or more The carburized steel sheet of the present invention has an annealed structure in which carbides are dispersed in a ferrite matrix. According to the study by the present inventors, the average distance between carbides is particularly important as a factor governing local ductility such as stretch flangeability, and when the average distance between carbides is 0.8 μm or more, It was found that it was possible to impart high stretch flangeability, which was difficult to achieve with steel plates. When the average distance between carbides in the steel sheet is less than 0.8 μm, it facilitates the connection and growth of microvoids generated from carbides during the forming process, and the local ductility is sensitive to the presence of such microscopic defects. descend. Therefore, in this invention, the average distance between carbide | carbonized_materials of a steel plate was prescribed | regulated to 0.8 micrometer or more.

なお、炭化物間平均距離は、鋼板断面における炭化物の面積率fおよび平均炭化物粒径D(μm)を次式に代入して求まるLの値(μm)をいう。
L=((π/(4×f))(1/2)−1)×D・・・(3)
ここで、炭化物の面積率fは、鋼板のC含有量をC(質量%)とするとき、f=C/6.67で求まる値である。これはC含有量が6.67質量%のとき100%セメンタイト(f=1)であるとして、セメンタイト面積率を実際のC含有量に比例した値で表したものである。例えば鋼板のC含有量が0.36質量%の場合、f=0.36/6.67=0.054となる。
また平均炭化物粒径Dは、鋼板断面の金属組織観察において、観察視野内の個々の炭化物について測定した円相当径を全測定炭化物について平均した値をいう。具体的には個々の炭化物について面積を測定し、その面積から円相当径を算出する。面積の測定は画像処理装置を用いて行うことができる。そして測定した全ての炭化物の円相当径の総和を求め、その総和を測定炭化物の総数で除した値を平均炭化物粒径D(μm)とする。数値の信頼性を高めるために、観察視野は測定炭化物総数が300個以上となる領域とする。
The average distance between carbides refers to the value (μm) of L obtained by substituting the carbide area ratio f and the average carbide particle size D (μm) in the steel sheet cross section into the following equation.
L = ((π / (4 × f)) (1/2) −1) × D (3)
Here, the area ratio f of the carbide is a value obtained by f = C / 6.67 when the C content of the steel sheet is C (mass%). This represents the area ratio of cementite as a value proportional to the actual C content, assuming 100% cementite (f = 1) when the C content is 6.67% by mass. For example, when the C content of the steel sheet is 0.36% by mass, f = 0.36 / 6.67 = 0.054.
The average carbide particle size D is a value obtained by averaging the equivalent circle diameters measured for individual carbides in the observation field in the observation of the metal structure of the cross section of the steel sheet for all the measured carbides. Specifically, the area of each carbide is measured, and the equivalent circle diameter is calculated from the area. The area can be measured using an image processing apparatus. And the sum total of the circle equivalent diameter of all the measured carbide | carbonized_materials is calculated | required, and the value which remove | divided the sum total with the total number of measurement carbide | carbonized_material is set to average carbide particle diameter D (micrometer). In order to increase the reliability of the numerical value, the observation visual field is an area where the total number of measured carbides is 300 or more.

この炭化物間の距離は、焼鈍工程における加熱保持温度を高く設定するほど、熱延パーライトの分断・球状化が進行し、微細な炭化物がフェライトマトリックス中に固溶して消失するので、残存した炭化物間の距離は大きくなる。逆に、保持温度が小さいほど炭化物間平均距離を小さくすることができる。加熱保持の時間の長短によっても焼鈍後における炭化物間の距離は変化するが、時間よりも温度の影響が大きい。保持時間が0.5時間未満であると、熱延パーライトの分断・球状化の進行が足らず焼鈍後の組織が不適当となる。   As the distance between the carbides is set higher in the annealing temperature, the hot rolled pearlite is divided and spheroidized, and fine carbides dissolve in the ferrite matrix and disappear. The distance between them increases. Conversely, the lower the holding temperature, the smaller the average distance between carbides. Although the distance between the carbides after annealing changes depending on the length of the heating and holding time, the influence of temperature is larger than the time. When the holding time is less than 0.5 hour, the hot-rolled pearlite is not sufficiently divided and spheroidized, and the structure after annealing becomes inappropriate.

〔機械的性質〕
硬さ:150HV以下
硬さ(ビッカース硬さ)は、加工性を示す最も簡便な指標である。軟質なものほど延性が高く加工性に優れている。伸びフランジ性の優れた鋼板を得るためには、150HV以下とする必要がある。
〔mechanical nature〕
Hardness: 150 HV or less Hardness (Vickers hardness) is the simplest indicator of workability. A softer one has higher ductility and better workability. In order to obtain a steel plate with excellent stretch flangeability, it is necessary to set it to 150 HV or less.

以下、本発明の浸炭用鋼板の製造方法について説明する。
〔熱延酸洗工程〕
熱延前のスラブ加熱温度は一般的な炭素鋼と同様に1150〜1350℃とすればよい。熱延仕上温度は800〜900℃とする。800℃を下回ると変形抵抗が大きくなり通板性が低下する。900℃を超えるとオーステナイト粒径が粗大化して熱延材の靱性が低下する。巻取温度は500〜700℃とする。500℃を下回ると熱延材が硬化して製造性が低下する。700℃を上回ると初析フェライトの量が増加し、セメンタイトの分布が不均一になることに加え、パーライトのラメラー間隔が大きくなるため焼鈍によるセメンタイトの球状化が困難になり、焼鈍後の加工性が低下する。巻取後は、通常の手法にて酸洗に供される。その後、必要に応じて、板厚調整のために冷間圧延を行うことができる。
Hereinafter, the manufacturing method of the steel plate for carburizing of this invention is demonstrated.
[Hot-roll pickling process]
The slab heating temperature before hot rolling may be 1150 to 1350 ° C. as in the case of general carbon steel. The hot rolling finishing temperature is 800 to 900 ° C. When the temperature is lower than 800 ° C., the deformation resistance is increased and the sheet passing property is lowered. When it exceeds 900 degreeC, an austenite particle size will coarsen and the toughness of a hot rolled material will fall. The winding temperature is 500 to 700 ° C. When the temperature is below 500 ° C., the hot-rolled material is cured and the productivity is lowered. Above 700 ° C, the amount of pro-eutectoid ferrite increases, the distribution of cementite becomes non-uniform, and the lamellar spacing of the pearlite increases, making it difficult to spheroidize the cementite, and workability after annealing. Decreases. After winding, it is subjected to pickling by a normal method. Then, if necessary, cold rolling can be performed to adjust the plate thickness.

〔焼鈍工程〕
前工程において酸洗を終え、必要に応じて冷間圧延が施された鋼板は、焼鈍に供される。シンプルな焼鈍方法としては、鋼板を650〜740℃の温度範囲で0.5h以上均熱保持する方法が採用できる。これにより、パーライト中の層状炭化物を分断し、球状化して加工性を付与する。保持時間は概ね50h以下とすればよい。均熱保持とは、板厚中心部まで所定の温度範囲に保持されることをいう。
[Annealing process]
The steel plate that has been pickled in the previous step and cold-rolled as necessary is subjected to annealing. As a simple annealing method, a method in which the steel sheet is soaked for 0.5 h or more in a temperature range of 650 to 740 ° C. can be adopted. Thereby, the layered carbide in the pearlite is divided and spheroidized to give processability. The holding time may be approximately 50 hours or less. The soaking is to be held in a predetermined temperature range up to the center of the plate thickness.

上記のようにして得られた本発明の浸炭用鋼板は、一般的な手法により、所定の機械部品に加工され、その後、カーボンポテンシャル(C.P.)が0.2%以上0.8%未満の浸炭雰囲気による浸炭焼入れ処理に供される。
カーボンポテンシャルは、浸炭ガスと平衡する材料中のFe表面のC%であり、浸炭ガスの組成や温度により所望のC.P.となるように調整することが一般的に行われている。
The carburized steel sheet of the present invention obtained as described above is processed into a predetermined machine part by a general method, and then the carbon potential (CP) is 0.2% or more and 0.8%. It is subjected to carburizing and quenching treatment with less than carburizing atmosphere.
The carbon potential is C% of the Fe surface in the material in equilibrium with the carburizing gas, and the desired C.I. P. It is generally performed to adjust so that.

表1に示す組成の鋼を溶製し、各鋼とも、スラブ加熱温度1230℃、熱延の仕上温度850℃、巻取温度600℃の条件で熱間圧延を施し、酸洗し、その後、710℃、均熱保持40hのヒートパターンでの焼鈍を施し、板厚5.0mmの鋼板(供試材)を得た。ただし、No.8とNo.16のみ、焼鈍条件を580℃、均熱保持25hとした。   Steels having the compositions shown in Table 1 were melted, and each steel was hot-rolled under conditions of a slab heating temperature of 1230 ° C, a hot rolling finishing temperature of 850 ° C, and a coiling temperature of 600 ° C, pickling, Annealing was performed at a heat pattern of 710 ° C. and soaking 40 h to obtain a steel sheet (test material) having a thickness of 5.0 mm. However, no. 8 and no. 16 only, annealing conditions were 580 ° C. and soaking was maintained for 25 h.

Figure 0005739689
Figure 0005739689

Figure 0005739689
Figure 0005739689

局部延性を評価するために、切り欠き引張伸びElvを評価した。まず、供試材から、供試材の圧延方向と試験片の長さ方向が一致するようにJIS5号試験片を切り出し、試験片の平行部の長手方向中央部の両エッジ部分に、開き角45度、深さ2mmのVノッチを加工して、これを切り欠き引張試験片とした。標点間距離は5mmとした。
この試験片により引張試験を行い、破断後の標点間距離を測定して試験前の標点間距離に対する伸び率(%)を求め、これを切り欠き引張伸びElvとした。Elv値は、局部延性を示す指標であり、通常の引張試験で、全伸び−均一伸びとして求められる局部伸びに比較して、より適切に局部延性を定量的に評価できる。結果を表1に示す。切り欠き引張伸びElv(%)が高いほど局部延性が高い材料である。
In order to evaluate local ductility, the notch tensile elongation Elv was evaluated. First, a JIS No. 5 test piece was cut out from the test material so that the rolling direction of the test material coincided with the length direction of the test piece, and an opening angle was formed at both edge portions of the central portion in the longitudinal direction of the parallel part of the test piece A V-notch having a depth of 45 degrees and a depth of 2 mm was processed, and this was used as a notched tensile test piece. The distance between the gauge points was 5 mm.
A tensile test was performed with this test piece, and the distance between the gauge points after the fracture was measured to obtain the elongation percentage (%) with respect to the distance between the gauge points before the test, which was defined as a notch tensile elongation Elv. The Elv value is an index indicating local ductility, and the local ductility can be more appropriately quantitatively evaluated as compared with the local elongation calculated as total elongation-uniform elongation in a normal tensile test. The results are shown in Table 1. The higher the notch tensile elongation Elv (%), the higher the local ductility.

伸びフランジ加工性の評価は、次のように行った。
まず、供試材から直径150mmの円盤を打抜きし、これを伸びフランジ加工用の素板(ブランク材)とした。次に、伸びフランジ加工に先立って、この素板の中心部に直径25mmの打抜き穴を設けた。この穴を初期穴として直径40mmのパンチを押し込み、高さ40mmの縦壁を加工する伸びフランジ加工を行った。なお、このとき、初期穴を打抜くときに生成したかえり(バリ)は、伸びフランジ加工の際にはパンチ側となるようにセットした。得られた伸びフランジ加工品の概略図を図1に示す。
フランジ上部端面における加工割れの有無を評価した。評価は、割れがないものを評点5、割れ長さが板厚に対して10%未満を評点4、割れ長さが板厚に対して10%以上25%未満を評点3、割れ長さが板厚に対して25%以上50%未満を評点2、割れ長さが50%以上を評点1とした。結果を表1に示す。
The stretch flangeability was evaluated as follows.
First, a disk having a diameter of 150 mm was punched from the test material, and this was used as a base plate (blank material) for stretch flange processing. Next, prior to stretch flange processing, a punching hole having a diameter of 25 mm was provided in the center of the base plate. Using this hole as an initial hole, a punch with a diameter of 40 mm was pushed in, and stretch flange processing for processing a vertical wall with a height of 40 mm was performed. At this time, the burr generated when the initial hole was punched was set so as to be on the punch side at the time of stretch flange processing. A schematic view of the obtained stretched flange processed product is shown in FIG.
The presence or absence of processing cracks on the flange upper end face was evaluated. The evaluation is as follows: grade 5 with no cracks, grade 4 with a crack length of less than 10% of the plate thickness, grade 3 with a crack length of 10% to less than 25% of the plate thickness, A rating of 2 or more and less than 50% of the plate thickness was rated 2, and a rating of 1 or more was 50% or more. The results are shown in Table 1.

合金成分が発明範囲内であってもX値が40を超えているNo.31、No.40およびNo.51は、切り欠き引張伸びが低下し、伸びフランジ加工においてフランジ上部端面に割れが発生した。また、合金元素が上限を超えているNo.9、No.13、No.14、No.26、No.29、No.30、No.35、No.48およびNo.50や、炭化物間平均距離が0.8μm未満であるNo.8、No.16およびNo.24や、素材硬さが150HVを超えるNo.2、No.5、No.6、No.23、No.32、No.33、No.36、No.41、No.42、No.43およびNo.46についても切り欠き引張伸びが低下し、伸びフランジ加工で割れが生じた。   Even if the alloy component is within the scope of the invention, the X value exceeds 40. 31, no. 40 and no. In No. 51, the notch tensile elongation decreased, and cracks occurred on the flange upper end surface in the stretch flange processing. In addition, No. in which the alloy element exceeds the upper limit. 9, no. 13, no. 14, no. 26, no. 29, no. 30, no. 35, no. 48 and no. No. 50 and No. 50 having an average distance between carbides of less than 0.8 μm. 8, no. 16 and no. No. 24, and No. 24 whose material hardness exceeds 150 HV. 2, no. 5, no. 6, no. 23, no. 32, no. 33, no. 36, no. 41, no. 42, no. 43 and no. For No. 46, the notch tensile elongation decreased and cracking occurred in the stretch flange processing.

伸びフランジ加工性をX値で整理すると、図2に示すように、X=30C+30Si+20Mn+5Cr+150S+80Ti−1.5炭化物間平均距離で定義されるX値が40以下になると加工割れがなく伸びフランジ性に優れていることが明らかである。   When the stretch flange workability is organized by X value, as shown in FIG. 2, when the X value defined by X = 30C + 30Si + 20Mn + 5Cr + 150S + 80Ti-1.5 average distance between carbides is 40 or less, there is no work cracking and the stretch flangeability is excellent. It is clear that

伸びフランジ加工性は、切欠き引張伸びElvとの間にも密接な相関関係をもつ。伸びフランジ加工性を切欠き引張伸びElv(%)で整理すると、図3に示すように、伸びフランジ加工性は、切欠き引張伸びElvが45%程度以上で良好となることが分かった。また、切欠き引張伸びElvが55%を超えると、割れを発生せず良好となることも分かった。   Stretch flange workability also has a close correlation with notch tensile elongation Elv. When the stretch flange workability is arranged by notch tensile elongation Elv (%), as shown in FIG. 3, it was found that the stretch flange workability is good when the notch tensile elongation Elv is about 45% or more. It was also found that when the notch tensile elongation Elv exceeds 55%, cracks do not occur and it becomes favorable.

焼入れ性の評価は、図1に示す伸びフランジ加工品を用いて浸炭処理を行った。
浸炭処理は、カーボンポテンシャル(C.P.)が0.6%の浸炭雰囲気中に880℃で3時間保持し、続いて60℃の油中に焼入れた。この時の浸炭ガスは、H:40%、CO:20%、N:40%の組成に調整した混合ガスを用いた。浸炭焼入れ後の加工品について、板厚が5mmの部分(フランジ底部)より硬さおよび金属組織観察用試験片を切り出した。
硬さ測定は、板厚断面の表層から深さ100μmの位置における硬さを無作為に10点測定し平均した。また、金属組織観察は、鏡面研磨仕上げした後、2%ナイタルで腐食し光学顕微鏡にて観察し、焼入れ不良層の有無を判別した。
Evaluation of hardenability performed the carburizing process using the stretch flange processed goods shown in FIG.
The carburizing treatment was carried out in a carburizing atmosphere having a carbon potential (C.P.) of 0.6% at 880 ° C. for 3 hours and subsequently quenched in oil at 60 ° C. As the carburizing gas at this time, a mixed gas adjusted to a composition of H 2 : 40%, CO: 20%, N 2 : 40% was used. About the processed product after carburizing and quenching, a test piece for observation of hardness and metal structure was cut out from a portion (flange bottom) having a plate thickness of 5 mm.
For the hardness measurement, 10 points of hardness at a position of a depth of 100 μm from the surface layer of the plate thickness section were randomly measured and averaged. In addition, the metal structure was mirror-polished and then corroded with 2% nital and observed with an optical microscope to determine the presence or absence of a poorly quenched layer.

合金成分が発明範囲内であってもY値が30未満であるNo.1、No.4、No.6、No.12、No.17、No.18、No.19、No.38およびNo.46や、MnまたはCr含有量が下限以下であるNo.34およびNo.52には、表層から深さ100μmの位置における硬さが低く、不完全焼入れ組織が観察された。   No. having a Y value of less than 30 even when the alloy component is within the scope of the invention. 1, no. 4, no. 6, no. 12, no. 17, no. 18, no. 19, no. 38 and no. No. 46, or Mn or Cr content below the lower limit. 34 and no. In 52, hardness at a position of 100 μm depth from the surface layer was low, and an incompletely quenched structure was observed.

表層から深さ100μmの位置における硬さをY値で整理すると、図4に示すように、Y値=5C+22Mn+32Crで定義されるY値が30以上になると、表層から深さ100μmの位置における硬さが安定して高い値を示すとともに、金属組織においてもフェライトやベイナイトが見られず、良好な焼入れ性を示すことが明らかである。   When the hardness at the position of 100 μm depth from the surface layer is arranged by Y value, as shown in FIG. 4, when the Y value defined by Y value = 5C + 22Mn + 32Cr is 30 or more, the hardness at the position of 100 μm depth from the surface layer Is stable and shows a high value, and it is clear that ferrite and bainite are not observed even in the metal structure, and that good hardenability is exhibited.

本発明例(No.21)と比較例(No.1)について、浸炭焼入れ後における板厚方向の硬さ分布を測定した一例を図5に示す。図5に示されるように、比較例の鋼板では、表面からの深さが50〜300μm付近で硬さが350Hv程度まで低下している領域が認められ、これが焼入れ不良による表面の硬さ不良である。これに対して本発明例の鋼板では、硬さ不良部が認められないことから、低いカーボンポテンシャルでの浸炭焼入れでも表層部で高い焼入れ硬さが得られていることが明らかである。   FIG. 5 shows an example in which the hardness distribution in the thickness direction after carburizing and quenching was measured for the inventive example (No. 21) and the comparative example (No. 1). As shown in FIG. 5, in the steel plate of the comparative example, a region where the hardness is reduced to about 350 Hv in the vicinity of the depth from the surface of 50 to 300 μm is recognized, which is a poor surface hardness due to poor quenching. is there. On the other hand, in the steel sheet of the present invention, since the hardness defect portion is not recognized, it is clear that high quenching hardness is obtained in the surface layer portion even by carburizing and quenching at a low carbon potential.

以上の実施例で示されたように、本発明は、合金成分およびその含有量を適正に調整し、X=30C+30Si+20Mn+5Cr+150S+80Ti−1.5炭化物間平均距離で規定されるX値を40以下とし、Y=5C+22Mn+32Crで規定されるY値を30以上とし、焼鈍材の硬さを150HV以下とすることで、優れた伸びフランジ加工性が得られ、浸炭加熱時に発生する板厚表層部分の脱Bによる焼入れ不良を改善することが可能である。   As shown in the above examples, the present invention appropriately adjusts the alloy components and the content thereof, and X = 30C + 30Si + 20Mn + 5Cr + 150S + 80Ti-1.5 The X value defined by the average distance between carbides is 40 or less. When the Y value specified by 5C + 22Mn + 32Cr is set to 30 or more and the hardness of the annealed material is set to 150 HV or less, excellent stretch flangeability can be obtained, and quenching by de-B of the plate thickness surface layer portion generated during carburizing heating. It is possible to improve defects.

Claims (1)

C:0.10〜0.50質量%、Si:0.50質量%以下、Mn:0.20〜1.8質量%、Cr:0.20〜2.0質量%、P:0.02質量%以下、S:0.02質量%以下、Ti:0.01〜0.20質量%、Al:0.002〜0.10質量%、B:0.0005〜0.0050質量%、残部がFeおよび不可避的不純物であり、炭化物がフェライト中に分散しており、その炭化物間の平均距離が0.8μm以上であり、下記式(1)で定義されるX値が40以下であり、下記式(2)で定義されるY値が30以上であり、かつ硬さが150HV以下である加工性に優れた浸炭用鋼板に、カーボンポテンシャルが0.2%以上0.8%未満である浸炭焼入れ処理を施して得られる機械構造部材
X=30C+30Si+20Mn+5Cr+150S+80Ti−1.5炭化物間平均距離・・・(1)
Y=5C+22Mn+32Cr・・・(2)
C: 0.10 to 0.50 mass%, Si: 0.50 mass% or less, Mn: 0.20 to 1.8 mass%, Cr: 0.20 to 2.0 mass%, P: 0.02 % By mass, S: 0.02% by mass or less, Ti: 0.01-0.20% by mass, Al: 0.002-0.10% by mass, B: 0.0005-0.0050% by mass, the balance Is Fe and inevitable impurities, carbides are dispersed in ferrite, the average distance between the carbides is 0.8 μm or more, the X value defined by the following formula (1) is 40 or less, The carburizing steel plate having excellent workability having a Y value defined by the following formula (2) of 30 or more and a hardness of 150 HV or less has a carbon potential of 0.2% or more and less than 0.8%. Mechanical structural member obtained by carburizing and quenching .
X = 30C + 30Si + 20Mn + 5Cr + 150S + 80Ti-1.5 Average distance between carbides (1)
Y = 5C + 22Mn + 32Cr (2)
JP2011042729A 2011-02-28 2011-02-28 Mechanical structural member Active JP5739689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011042729A JP5739689B2 (en) 2011-02-28 2011-02-28 Mechanical structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011042729A JP5739689B2 (en) 2011-02-28 2011-02-28 Mechanical structural member

Publications (2)

Publication Number Publication Date
JP2012180541A JP2012180541A (en) 2012-09-20
JP5739689B2 true JP5739689B2 (en) 2015-06-24

Family

ID=47011978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011042729A Active JP5739689B2 (en) 2011-02-28 2011-02-28 Mechanical structural member

Country Status (1)

Country Link
JP (1) JP5739689B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169433A (en) * 2015-03-13 2016-09-23 株式会社神戸製鋼所 Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP2016188422A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Carburized component
JP2019011510A (en) * 2018-08-20 2019-01-24 株式会社神戸製鋼所 Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP7125923B2 (en) * 2019-07-25 2022-08-25 Jfeスチール株式会社 High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104160A (en) * 1981-12-17 1983-06-21 Nisshin Steel Co Ltd Steel plate for precision blanking work with superior carburizing characteristic and hardenability and its manufacture

Also Published As

Publication number Publication date
JP2012180541A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5354135B2 (en) High-strength hot-dip galvanized steel sheet excellent in mechanical cutting characteristics, high-strength galvannealed steel sheet, and methods for producing them
JP5040475B2 (en) Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5030280B2 (en) High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same
JP7120461B2 (en) steel plate
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
KR101733513B1 (en) Steel sheet for nitriding and production method therefor
JP2009299189A (en) High carbon steel sheet for precision blanking
JP2000265240A (en) Carbon steel sheet excellent in fine blankability
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP7125923B2 (en) High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts
JP5739689B2 (en) Mechanical structural member
JP2010235977A (en) High workability steel plate for carburizing
JPWO2019131099A1 (en) Hot rolled steel sheet and method for producing the same
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JP2021116477A (en) High carbon steel sheet
JP4161090B2 (en) High carbon steel plate with excellent punchability
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability
JP2018141184A (en) Carbon steel plate
JP5633426B2 (en) Steel for heat treatment
JP2018028149A (en) Case hardened steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150424

R150 Certificate of patent or registration of utility model

Ref document number: 5739689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350