JP3845554B2 - Super high strength cold-rolled steel sheet with excellent bending workability - Google Patents

Super high strength cold-rolled steel sheet with excellent bending workability Download PDF

Info

Publication number
JP3845554B2
JP3845554B2 JP2001171969A JP2001171969A JP3845554B2 JP 3845554 B2 JP3845554 B2 JP 3845554B2 JP 2001171969 A JP2001171969 A JP 2001171969A JP 2001171969 A JP2001171969 A JP 2001171969A JP 3845554 B2 JP3845554 B2 JP 3845554B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
inclusions
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001171969A
Other languages
Japanese (ja)
Other versions
JP2002363694A (en
Inventor
一郎 塚谷
広幸 前田
隆行 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001171969A priority Critical patent/JP3845554B2/en
Publication of JP2002363694A publication Critical patent/JP2002363694A/en
Application granted granted Critical
Publication of JP3845554B2 publication Critical patent/JP3845554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は曲げ加工性に優れた、780MPa級以上の引張強さを有する超高強度冷延鋼板に関する。
【0002】
【従来の技術】
自動車の安全性の向上と燃費節減のための軽量化に対する要求の高まりを背景として、自動車用鋼板として加工性に優れた高強度冷延鋼板が使用されている。このような冷延鋼坂として、熱間制御圧延技術や連続焼鈍技術の普及に伴って、フェライト相と、マルテンサイトやべイナイトのような硬い低温変態生成相とを共存させた強度・延性バランスに優れる複合組織高強度鋼板が広く使用されるに至っている。
【0003】
近年では、高強度化への要求がより一層厳しくなってきており、780MPa級以上の引張強さを有する超高強度冷延鋼板も使用されるようになってきた。このような超高強度鋼板では、絞り成形や張り出し成形などの複雑形状を得るためのプレス成形性は要求されないものの、極めて高い曲げ加工性が要求される場合が多い。特に、最近では、シート用スライドレールなどの曲げ半径の小さい曲げ部を備えた部材に対しても超高強度冷延鋼板が適用されつつあり、従来に対してより厳しい曲げ加工性が要求される傾向にある。
【0004】
【発明が解決しようとする課題】
超高強度鋼板の曲げ加工性の改善については、例えば特開昭62−13533号公報や平特開昭63−293121号公報に記載されているように、低温変態生成相の硬さを低下して、フェライト相との硬度差を小さくし、これによって曲げ加工性を向上させることが行われている。しかしながら、近年要求される厳しい曲げ加工に対しては十分満足する結果が得られていない。
【0005】
本発明はかかる要求に鑑みなされたものであり、780MPa級以上の高強度を備えながら、優れた曲げ加工性を有する超高強度冷延鋼板を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、超高強度冷延鋼板を用いて曲げ半径の小さい曲げ加工を行い、その曲げ部の割れ発生状況と破面を子細に観察した結果、破面に特定の大きさの介在物、特に酸化物系介在物の存在個数が割れ発生に顕著に影響することを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明による超高強度冷延鋼板は、化学成分がmass%で、
C:0.08〜0.20%、Si:0.1〜1.5%、Mn:1.5〜2.5%、P :0.02%以下、S :0.002%以下、Al:0.02〜0.06%、N :0.0005%以下、Ca:0.0005%以下、O :0.0007%以下、あるいはさらにTi:0.005〜0.10%、さらにまたMo:0.05〜0.3%、Cr:0.1〜0.5%、Ni:0.1〜0.5%のうち1種または2種以上を含有し、残部Fe及び不可避的不純物からなり、組織がフェライト相と低温変態生成相とで構成され、組織中の酸化物系介在物の大きさをその面積に相当する円の直径で表したとき、直径5μm 以上の介在物が25個/mm2以下であり、引張強さが780MPa級以上であることを特徴とする。なお、前記化学成分において、P、S、N、Ca及びOは不純物である。
【0008】
【発明の実施の形態】
以下、本発明による超高強度冷延鋼板について詳細に説明する。まず、その化学成分の限定理由について説明する。以下、単位はmass%である。
【0009】
C:0.08〜0.20%
Cは加熱後の急冷によって低温変態生成相を生じさせるために必要であり、780MPa級以上の強度を確保するのに十分な量の低温変態生成相を得るためには、少なくとも0.08%を添加する必要がある。しかし、添加量が0.20%を越えると、延性が低下し、またスポット溶接性にも劣るようになるので、添加量の上限を0.20%とする。
【0010】
Si:0.1〜1.5%
Siは鋼を強化するとともに延性を改善する作用がある。0.1%未満ではかかる作用が過少であり、一方1.5%を超えると熱間圧延の際にSiスケールの発生が著しくなり、鋼板の表面性状を劣化させる。このため、下限を0.1%、上限を1.5%とする。
【0011】
Mn:1.5〜2.5%
Mnはオーステナイト相の焼き入れ性を高め、冷却過程において低温変態生成相、特に主としてマルテンサイトからなる低温変態生成相の生成を容易にすると共にフェライトを強化し、延性を高める効果を有する。1.5%未満ではかかる効果が過少であり、一方2.5%を越えて添加しても上記効果が飽和し、また偏析により加工性が劣化するようになるので、上限を2.5%とする。
【0012】
P:0.02%以下
Pは鋼を強化する作用を有するが、脆化により延性を低下させるので、その上限を0.02%とする。
【0013】
S:0.002%以下
Sは硫化物系の介在物を生成させ、加工性、溶接性を劣化させるため少ない程よく、0.002%以下に止める。
【0014】
Al:0.02〜0.06%
Alは脱酸の目的で添加されるが、0.02%未満ではその作用が過少であり、鋼中の酸素含有量を低減できない。一方、0.06%を越えて添加してもその効果が飽和するため、上限を0.06%とする。
【0015】
N:0.0005%以下
Nは一般的に不可避的不純物として鋼に含まれるが、その含有量が多くなると、曲げ加工性を劣化させるため、その上限を0.0005%とする。
【0016】
Ca:0.0005%以下
Caは介在物の形態を球状化する作用があるが、製鋼段階で酸素を巻き込み、CaOなどの酸化物系介在物を生成するため、本発明では不純物元素としてその含有をできるだけ抑制することが好ましく、上限を0.0005%、好ましくは0.0003%とする。
【0017】
O:0.0007%以下
O(酸素)は比較的大きな酸化物系介在物を形成しやすいので、本発明ではCaの低減と相まってできるだけ含有量を抑制することが望ましく、その上限を0.0007%、好ましくは0.0006%とする。
【0018】
本発明の鋼板は、上記成分を含み、残部Fe及び不可避的不純物からなるが、必要に応じてさらにTi、あるいはさらにMo,Cr,Niの1種以上を含有することができる。
【0019】
Ti:0.005〜0.10%
Tiは炭化物、窒化物等の析出物を形成し鋼を強化するとともに、結晶粒を微細にして降伏強度を高めるのに有効である。かかる作用を得るためには0.005%以上は必要であるが、0.10%を越えるとその効果が飽和するようになるので、これを上限とする。
【0020】
Mo:0.05〜0.3%
Moは鋼の焼き入れ性を高め、高強度化に有効な低温変態生成物の生成を促進する作用を有する。0.05%未満ではかかる作用が過少であり、一方0.3%を越えると効果が飽和する上にコスト高となるため、その上限を0.3%とする。
【0021】
Cr:0.1〜0.5%
CrはMoと同様、鋼の焼き入れ性を高め、高強度化に有効な低温変態生成物の生成を促進する。0.1%未満ではかかる作用が過少であり、一方0.5%を越えると効果が飽和するようになるので、その下限を0.1%、上限を0.5%とする。
【0022】
Ni:0.1〜0.5%
NiもMo、Crと同様、低温変態生成物の生成を促進する。0.1%未満ではかかる作用が過少であり、一方0.5%を越えると効果が飽和するようになり、またコスト高を招来するので、その下限を0.1%、上限を0.5%とする。
【0023】
本発明の鋼板の組織は、フェライト相と低温変態生成相とで形成される。低温生成相は、べイナイト、マルテンサイトあるいはこれらの混合相によって構成される。これらの組織の割合は、引張強さが780MPa級以上となるように適宜設定される。上記複合組織の下、本発明の鋼板は組織中の所定サイズの介在物が制限された点に特徴がある。
【0024】
本発明者は、780MPa級以上の超高強度鋼板に強度の曲げ加工を施し、曲げ部に発生した割れの破面を観察したところ、所定サイズの介在物の間をクラックが連結し、このクラックがさらに進展して大きな割れが発生することを見出した。さらに、クラックの連結に関与する介在物のサイズ、介在物の密度を調査したところ、大きさが5μm以上の介在物が25個/mm2以下、好ましくは20個/mm2 以下であれば介在物間がクラックによって連結されにくく、曲げ加工の際に割れが生じ難いことが知見された。そして、割れの原因になっている介在物は、ほとんど酸化物系の介在物であることもEPMAによって確かめられた。前記介在物の大きさは、鋼板の断面組織をSEM(走査型電子顕微鏡)で観察し、介在物の面積と同面積の円(相当円)の直径によって表したものである。
なお、本発明の鋼板は、上記のように780MPa級以上の強度を有するように低温変態生成相の種類、量が適宜設定されるが、介在物サイズ、量を上記のように規定することで、同じ組織であっても曲げ加工性を飛躍的に向上させることができる。
【0025】
上記のとおり、曲げ加工によって生じる割れの原因は酸化物系介在物であることに鑑み、本発明の超高強度冷延鋼板を製造するに際しては鋼の溶解において、アルミニュームによって脱酸したキルド鋼を転炉より出鋼し、取鍋にてLF法にて脱硫した後、さらに真空脱ガスを行う。真空脱ガスには種々の方法を適用することができるが、RH法が比較的簡便に実施することができるので好適である。なお、従来、この種の鋼の精錬においては、基本的に真空脱ガス工程を適用しないのが通常である。
【0026】
溶解後の鋼片は、常法に従って、1100〜1250℃程度に加熱され、仕上温度Ar3 点以上で熱間圧延を終了し、500〜700℃程度で巻き取り後、酸洗し、好ましくは30〜80%程度の圧下率にて冷間圧延され、2mm以下の薄板に加工された後、フェライト+オーステナイト共存温度にて焼鈍処理が施される。焼鈍後、好ましくは10℃/s以上の冷却速度にて低温変態生成相を生成させる。冷却方法は、水焼き入れ、水冷ロール冷却、気水冷却、ガスジェット冷却等の適宜の方法を採ることができる。水焼き入れした場合、冷却の途中、もしくは一旦室温まで冷却後、200〜500℃の温度範囲にて30秒から5分程度保持する過時効処理を施し、過飽和に固溶したフェライト中の炭素を析出させて、延性を改善することが好ましい。
【0027】
なお、優れた曲げ加工性を有する超高強度鋼板として、例えば、特開平5−105959号公報、特開平10−280090号公報、特開平9−302440号公報に開示されているように、低温変態生成相をベイナイト主体で構成したり、表面ミクロクラックの抑制のためにN量を抑制し、Tiを必須添加するなどの方策が採られるが、本発明は複合組織中に存在する介在物、特に酸化物系介在物の大きさと個数を制御することによって優れた曲げ加工性を達成したものであり、既存の技術とはその本質を異にするものである。
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
【0028】
【実施例】
アルミニューム(1kg/ton)によって脱酸したキルド鋼を溶解炉から取鍋に出鋼し、表1の試料No. 1,2,5,6,9〜14についてはホタル石を主材とし、Caを含まない還元性フラックスを用いてLF法によって脱硫し、さらにRH法による真空脱ガスを施して脱酸を促進して低Ca、低Oの鋼を溶製した。RH法の実施に際して、溶鋼の還流時間は1チャージ(240ton )当たり約9分とした。他の試料については前記Caを含まない還元性フラックスあるいはCaを含む還元性フラックスにより脱硫したが、いずれも真空脱ガスは行わなかった。
【0029】
【表1】

Figure 0003845554
【0030】
溶製された鋼の鋼片を加熱温度1200℃程度に加熱し、仕上温度を900℃程度として熱間圧延を終了し、巻取温度550〜600℃にて巻き取り、板厚3.2mmの熱延鋼板を得た。さらに、この熱延鋼板を酸洗し、板厚1.4mmとなるように冷間圧延を施し、その後連続焼鈍により850℃にて再結晶焼鈍した後、室温まで急冷し、さらに350℃まで再加熱し、同温度にて50〜120秒保持して過時効処理を行い、フェライトおよびマルテンサイトからなる複合組織の薄鋼板を得た。
【0031】
得られた各試料鋼板より組織観察片を採取し、その板厚断面中央部をSEMにて観察(倍率1000)し、面積20mm2 当たりに存在する介在物のサイズと個数との関係を調べ、5μm 以上の介在物の個数を求めた。介在物のサイズは介在物の面積と同面積を有する円の直径で表した。介在物の面積は画像解析ソフトによって求められた。前記調査によって得られたサイズと個数との関係の一部(試料No. 1〜4)を表2および図1に示す。なお、EPMAにより介在物はほとんど酸化物系介在物であることが確認された。
【0032】
【表2】
Figure 0003845554
【0033】
また、試料鋼板より引張試験片を採取し、機械的性質を調べた。また、穴拡げ試験片を採取し、伸びフランジ性を調べた。伸びフランジ性は、穴拡げ試験を行い、得られた限界穴拡げ率λ(%)によって評価された。穴拡げ試験は、鋼板に打抜き加工を施し、得られた打抜き穴(直径Do=10mmφ)に頂角60°の円錐ポンチを差し込んで、穴を押し拡げ、穴の周りに生じた割れが板厚を貫通したときの穴の直径Dfを測定するものであり、下記式により限界穴拡げ率λ(%)が求められる。
λ(%)={(Df−Do)/Do}×100
【0034】
また、試料鋼板より曲げ試験片を採取し、開き角度が60°の断面V字形の凹部を有するダイと、その凹部に係合するV形凸部を有するパンチを備えた成形型を用いてV曲げ試験を行った。この際、曲げ部に割れが発生する限界のパンチ先端部の曲げ半径(限界曲げ半径という。)を0.5mm単位で求めた。これらの結果を表3に併せて示す。
【0035】
【表3】
Figure 0003845554
【0036】
表3より、発明例(No. 1,2,5,6,9〜14)は、780MPa級以上の高強度を有し、しかもV曲げ試験における曲げ限界半径が0.5mm以下であり、優れた曲げ成形性を具備していることが分かる。
これに対して、RH法による真空脱ガスを行わなかった比較例(No. 3,4,7,8)は、780MPa級以上の高強度を有しているものの、含有酸素量が多くなり、これに伴って5μm 以上の大きな介在物量が増大して曲げ成形性が劣化し、伸びフランジ性も低下した。
【0037】
【発明の効果】
本発明の超高強度冷延鋼板によれば、フェライトおよび低温変態生成相からなる複合組織において、曲げ加工の際に曲げ部の割れ発生の要因となる5μm 以上の酸化物系介在物の個数を25個/mm2 以下に制限したので、780MPa級以上の高強度ながら、優れた曲げ加工性を備え、従来に比して厳しい曲げ成形に適用することができ、自動車用はもとより、家電および建築など厳しい曲げ加工が必要とされる分野に好適に使用される。
【図面の簡単な説明】
【図1】実施例にかかる試料鋼板の一部における介在物のサイズと個数との関係を示す分布図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to an ultra-high-strength cold-rolled steel sheet having excellent bending workability and having a tensile strength of 780 MPa class or higher.
[0002]
[Prior art]
High strength cold-rolled steel sheets with excellent workability are used as steel sheets for automobiles against the background of increasing demands for weight reduction for improving safety and fuel efficiency of automobiles. As such a cold-rolled steel slope, with the spread of hot-controlled rolling technology and continuous annealing technology, the strength and ductility balance that coexists the ferrite phase and the hard low-temperature transformation generation phase such as martensite and bainite. Have been widely used.
[0003]
In recent years, the demand for higher strength has become more severe, and ultra-high-strength cold-rolled steel sheets having a tensile strength of 780 MPa or higher have come to be used. Such ultra-high-strength steel sheets are often required to have extremely high bending workability, although press formability for obtaining complicated shapes such as drawing and stretch forming is not required. In particular, ultra-high-strength cold-rolled steel sheets have recently been applied to members having a bending portion with a small bending radius, such as a slide rail for seats, and more severe bending workability is required than before. There is a tendency.
[0004]
[Problems to be solved by the invention]
Regarding the improvement of the bending workability of the ultra-high strength steel sheet, for example, as described in JP-A-62-153333 and JP-A-63-293121, the hardness of the low temperature transformation generation phase is reduced. Thus, the hardness difference from the ferrite phase is reduced, thereby improving the bending workability. However, satisfactory results have not been obtained for the severe bending work required in recent years.
[0005]
This invention is made | formed in view of this request | requirement, and it aims at providing the ultra-high-strength cold-rolled steel plate which has the outstanding bending workability, being provided with the high intensity | strength more than 780 MPa class.
[0006]
[Means for Solving the Problems]
The present inventor performed bending processing with a small bending radius using an ultra-high strength cold-rolled steel sheet, and as a result of closely observing the crack occurrence state and the fracture surface of the bent portion, inclusions of a specific size on the fracture surface In particular, the present inventors have found that the number of oxide inclusions significantly affects the occurrence of cracks, thereby completing the present invention.
[0007]
That is, the ultra-high strength cold-rolled steel sheet according to the present invention has a chemical composition of mass%,
C: 0.08 to 0.20%, Si: 0.1 to 1.5%, Mn: 1.5 to 2.5%, P: 0.02% or less, S: 0.002% or less, Al : 0.02-0.06%, N: 0.0005% or less, Ca: 0.0005% or less, O: 0.0007% or less, or Ti: 0.005-0.10%, Mo : 0.05 to 0.3%, Cr: 0.1 to 0.5%, Ni: 0.1 to 0.5%, or one or more of them, and the remainder from Fe and inevitable impurities Thus, when the structure is composed of a ferrite phase and a low-temperature transformation generation phase, and the size of oxide inclusions in the structure is expressed by the diameter of a circle corresponding to the area, there are 25 inclusions having a diameter of 5 μm or more. / mm 2 or less, and the tensile strength is 780 MPa or more. In the chemical component, P, S, N, Ca and O are impurities.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the ultra-high strength cold-rolled steel sheet according to the present invention will be described in detail. First, the reasons for limiting the chemical components will be described. Hereinafter, the unit is mass%.
[0009]
C: 0.08 to 0.20%
C is necessary for producing a low temperature transformation product phase by rapid cooling after heating, and in order to obtain a sufficient amount of the low temperature transformation product phase to ensure a strength of 780 MPa or more, at least 0.08% is required. It is necessary to add. However, if the addition amount exceeds 0.20%, the ductility is lowered and the spot weldability is deteriorated, so the upper limit of the addition amount is set to 0.20%.
[0010]
Si: 0.1 to 1.5%
Si has an effect of strengthening steel and improving ductility. If it is less than 0.1%, such an action is too small. On the other hand, if it exceeds 1.5%, the generation of Si scale becomes remarkable during hot rolling, and the surface properties of the steel sheet are deteriorated. Therefore, the lower limit is 0.1% and the upper limit is 1.5%.
[0011]
Mn: 1.5 to 2.5%
Mn enhances the hardenability of the austenite phase, has an effect of facilitating the formation of a low-temperature transformation formation phase, particularly a low-temperature transformation formation phase mainly composed of martensite, and strengthening ferrite and increasing ductility in the cooling process. If the amount is less than 1.5%, the effect is too small. On the other hand, even if added over 2.5%, the above effect is saturated, and the workability deteriorates due to segregation. And
[0012]
P: 0.02% or less P has an effect of strengthening steel, but ductility is reduced by embrittlement, so the upper limit is made 0.02%.
[0013]
S: 0.002% or less Since S generates sulfide-based inclusions and deteriorates workability and weldability, it is preferably as low as possible and is limited to 0.002% or less.
[0014]
Al: 0.02 to 0.06%
Al is added for the purpose of deoxidation, but if it is less than 0.02%, its action is too small to reduce the oxygen content in the steel. On the other hand, even if added over 0.06%, the effect is saturated, so the upper limit is made 0.06%.
[0015]
N: 0.0005% or less N is generally contained in steel as an inevitable impurity, but if its content increases, bending workability deteriorates, so the upper limit is made 0.0005%.
[0016]
Ca: Although 0.0005% or less Ca has the effect of spheroidizing the shape of inclusions, inclusion of oxygen in the steelmaking stage, to produce an oxide inclusions such as CaO, the content as an impurity element in the present invention Is preferably suppressed as much as possible, and the upper limit is made 0.0005%, preferably 0.0003%.
[0017]
O: 0.0007% or less O (oxygen) tends to form relatively large oxide inclusions, and therefore, in the present invention, it is desirable to suppress the content as much as possible in combination with the reduction of Ca. %, Preferably 0.0006%.
[0018]
The steel sheet of the present invention contains the above components and consists of the remainder Fe and unavoidable impurities, but may further contain one or more of Ti, or Mo, Cr, and Ni as necessary.
[0019]
Ti: 0.005-0.10%
Ti is effective for strengthening steel by forming precipitates such as carbides and nitrides, and for making the crystal grains fine and increasing the yield strength. In order to obtain such an action, 0.005% or more is necessary, but if it exceeds 0.10%, the effect becomes saturated, so this is the upper limit.
[0020]
Mo: 0.05-0.3%
Mo enhances the hardenability of the steel and has an effect of promoting the production of a low-temperature transformation product effective for increasing the strength. If it is less than 0.05%, such an action is too small. On the other hand, if it exceeds 0.3%, the effect is saturated and the cost is high, so the upper limit is made 0.3%.
[0021]
Cr: 0.1 to 0.5%
Cr, like Mo, enhances the hardenability of steel and promotes the production of low-temperature transformation products effective for increasing the strength. If it is less than 0.1%, such an action is insufficient, while if it exceeds 0.5%, the effect becomes saturated. Therefore, the lower limit is set to 0.1% and the upper limit is set to 0.5%.
[0022]
Ni: 0.1 to 0.5%
Ni, like Mo and Cr, promotes the formation of low-temperature transformation products. If it is less than 0.1%, such an action is insufficient. On the other hand, if it exceeds 0.5%, the effect becomes saturated and the cost is increased, so the lower limit is 0.1% and the upper limit is 0.5. %.
[0023]
The structure of the steel sheet of the present invention is formed of a ferrite phase and a low temperature transformation generation phase. The low temperature generation phase is composed of bainite, martensite, or a mixed phase thereof. The ratio of these structures is appropriately set so that the tensile strength is 780 MPa or higher. Under the above composite structure, the steel sheet of the present invention is characterized in that inclusions of a predetermined size in the structure are limited.
[0024]
The present inventor performed a strong bending process on a super-high strength steel plate of 780 MPa class or higher and observed the fracture surface of the crack generated in the bent portion. It has been found that further progress and large cracks occur. Further, when the size of inclusions involved in the crack connection and the density of inclusions were investigated, the number of inclusions with a size of 5 μm or more was 25 / mm 2 or less, preferably 20 / mm 2 or less. It was found that the objects are not easily connected by cracks, and that cracks do not easily occur during bending. It was also confirmed by EPMA that the inclusions causing the cracks were mostly oxide inclusions. The size of the inclusions is represented by the diameter of a circle (equivalent circle) having the same area as the inclusions by observing the cross-sectional structure of the steel sheet with a scanning electron microscope (SEM).
In the steel sheet of the present invention, the kind and amount of the low-temperature transformation generation phase are appropriately set so as to have a strength of 780 MPa class or more as described above, but by defining the inclusion size and amount as described above. Even in the same structure, the bending workability can be dramatically improved.
[0025]
As described above, in view of the cause of cracks caused by bending work due to oxide inclusions, killed steel that has been deoxidized by aluminum in the melting of the steel when producing the ultra-high strength cold-rolled steel sheet of the present invention Is removed from the converter, desulfurized by the LF method in a ladle, and further vacuum degassed. Various methods can be applied to the vacuum degassing, but the RH method is preferable because it can be carried out relatively easily. Conventionally, in the refining of this type of steel, it is usual not to apply the vacuum degassing process basically.
[0026]
The steel slab after melting is heated to about 1100 to 1250 ° C. according to a conventional method, finishes hot rolling at a finishing temperature Ar of 3 points or higher, wound up at about 500 to 700 ° C., pickled, preferably After cold rolling at a rolling reduction of about 30 to 80% and processing into a thin plate of 2 mm or less, an annealing treatment is performed at a ferrite + austenite coexisting temperature. After annealing, a low-temperature transformation generation phase is preferably generated at a cooling rate of 10 ° C./s or more. As a cooling method, an appropriate method such as water quenching, water cooling roll cooling, air-water cooling, gas jet cooling, or the like can be adopted. In the case of water quenching, during cooling or once cooled to room temperature, it is subjected to an overaging treatment that is maintained for about 30 seconds to 5 minutes in a temperature range of 200 to 500 ° C. It is preferable to improve the ductility by precipitation.
[0027]
As ultra-high-strength steel sheets having excellent bending workability, for example, as disclosed in JP-A-5-105959, JP-A-10-280090, JP-A-9-302440, low temperature transformation Although the formation phase is mainly composed of bainite, and measures such as suppressing the amount of N to suppress surface microcracks and adding Ti as essential, the present invention is an inclusion present in the composite structure, particularly By controlling the size and number of oxide inclusions, excellent bending workability is achieved, which is different from the existing technology.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.
[0028]
【Example】
The killed steel deoxidized with aluminum (1 kg / ton) is discharged from the melting furnace to the ladle. Samples Nos. 1, 2, 5, 6, 9 to 14 in Table 1 are mainly made of fluorite. Desulfurization was performed by the LF method using a reducing flux containing no Ca, and vacuum degassing was further performed by the RH method to promote deoxidation, thereby melting low Ca and low O steel. In carrying out the RH method, the reflux time of the molten steel was about 9 minutes per charge (240 tons). Other samples were desulfurized with the reducing flux not containing Ca or the reducing flux containing Ca, but none was vacuum degassed.
[0029]
[Table 1]
Figure 0003845554
[0030]
The molten steel slab is heated to a heating temperature of about 1200 ° C., the finishing temperature is set to about 900 ° C., the hot rolling is finished, the coil is wound at a winding temperature of 550 to 600 ° C., and the plate thickness is 3.2 mm. A hot rolled steel sheet was obtained. Further, the hot-rolled steel sheet is pickled, cold-rolled to a thickness of 1.4 mm, then recrystallized and annealed at 850 ° C. by continuous annealing, rapidly cooled to room temperature, and then re-heated to 350 ° C. The mixture was heated and held at the same temperature for 50 to 120 seconds to perform an overaging treatment to obtain a thin steel plate having a composite structure composed of ferrite and martensite.
[0031]
A structure observation piece was collected from each sample steel plate obtained, and the central portion of the plate thickness section was observed with an SEM (magnification 1000), and the relationship between the size and number of inclusions existing per 20 mm 2 area was examined. The number of inclusions of 5 μm or more was determined. The size of the inclusion was represented by the diameter of a circle having the same area as the inclusion. The area of inclusions was determined by image analysis software. Table 2 and FIG. 1 show a part of the relationship between the size and the number obtained by the investigation (sample Nos. 1 to 4). It was confirmed by EPMA that the inclusions were mostly oxide inclusions.
[0032]
[Table 2]
Figure 0003845554
[0033]
In addition, tensile test specimens were collected from the sample steel plates and examined for mechanical properties. Moreover, the hole expansion test piece was extract | collected and the stretch flangeability was investigated. Stretch flangeability was evaluated by a hole expansion test, and the critical hole expansion ratio λ (%) obtained. In the hole expansion test, a steel sheet is punched, and a conical punch with an apex angle of 60 ° is inserted into the obtained punched hole (diameter Do = 10 mmφ), the hole is expanded, and cracks generated around the hole are thickened. The diameter Df of the hole when penetrating through is measured, and the critical hole expansion ratio λ (%) is obtained by the following formula.
λ (%) = {(Df−Do) / Do} × 100
[0034]
Further, a bending test piece is taken from the sample steel plate, and a die having a die having a V-shaped concave portion with an opening angle of 60 ° and a punch having a V-shaped convex portion engaged with the concave portion is used. A bending test was performed. At this time, the bending radius (referred to as the limiting bending radius) at the tip end of the punch where cracking occurs in the bending portion was determined in units of 0.5 mm. These results are also shown in Table 3.
[0035]
[Table 3]
Figure 0003845554
[0036]
From Table 3, the invention examples (No. 1, 2, 5, 6, 9 to 14) have high strength of 780 MPa class or more, and the bending limit radius in the V bending test is 0.5 mm or less, which is excellent. It can be seen that the film has bend formability.
On the other hand, although the comparative example (No. 3, 4, 7, 8) which did not perform vacuum degassing by the RH method has a high strength of 780 MPa class or higher, the oxygen content increases. Along with this, a large amount of inclusions of 5 μm or more increased, the bend formability deteriorated, and the stretch flangeability also deteriorated.
[0037]
【The invention's effect】
According to the ultra-high-strength cold-rolled steel sheet of the present invention, the number of oxide inclusions of 5 μm or more that cause cracks in the bending portion during bending in a composite structure composed of ferrite and a low-temperature transformation generation phase. Since it is limited to 25 pieces / mm 2 or less, it has high bending strength of 780 MPa or more and has excellent bending workability, and can be applied to bending forming that is stricter than conventional products. It is suitably used in fields where severe bending is required.
[Brief description of the drawings]
FIG. 1 is a distribution diagram showing the relationship between the size and number of inclusions in a part of a sample steel plate according to an example.

Claims (3)

化学成分がmass%で、
C :0.08〜0.20%、
Si:0.1〜1.5%、
Mn:1.5〜2.5%、
Al:0.02〜0.06%、
及び不純物として、
P :0.02%以下、
S :0.002%以下、
N :0.0005%以下、
Ca:0.0005%以下、
O :0.0007%以下
を含有し、残部Fe及び不可避的不純物からなり、組織がフェライト相と低温変態生成相とで構成され、組織中の酸化物系介在物の大きさをその面積に相当する円の直径で表したとき、直径5μm 以上の介在物が25個/mm2以下であり、引張強さが780MPa級以上であることを特徴とする曲げ加工性に優れた超高強度冷延鋼板。
Chemical composition is mass%,
C: 0.08 to 0.20%
Si: 0.1 to 1.5%,
Mn: 1.5 to 2.5%
Al: 0.02 to 0.06%,
And as impurities
P: 0.02% or less,
S: 0.002% or less,
N: 0.0005% or less,
Ca: 0.0005% or less,
O 2: Containing 0.0007% or less, the balance being Fe and inevitable impurities, the structure is composed of a ferrite phase and a low-temperature transformation generation phase, and the size of oxide inclusions in the structure corresponds to the area When expressed in terms of the diameter of a circle, the number of inclusions with a diameter of 5 μm or more is 25 / mm 2 or less, and the tensile strength is 780 MPa class or more. steel sheet.
化学組成としてさらに、Ti:0.005〜0.10%を含有する請求項1に記載した超高強度冷延鋼板。  The ultra-high strength cold-rolled steel sheet according to claim 1, further comprising Ti: 0.005 to 0.10% as a chemical composition. 化学組成としてさらに、
Mo:0.05〜0.3%、
Cr:0.1〜0.5%、
Ni:0.1〜0.5%
の1種または2種以上を含有する請求項1または2に記載した超高強度冷延鋼板。
As a chemical composition,
Mo: 0.05-0.3%
Cr: 0.1 to 0.5%,
Ni: 0.1 to 0.5%
The ultra-high-strength cold-rolled steel sheet according to claim 1 or 2, containing one or more of the following.
JP2001171969A 2001-06-07 2001-06-07 Super high strength cold-rolled steel sheet with excellent bending workability Expired - Lifetime JP3845554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171969A JP3845554B2 (en) 2001-06-07 2001-06-07 Super high strength cold-rolled steel sheet with excellent bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171969A JP3845554B2 (en) 2001-06-07 2001-06-07 Super high strength cold-rolled steel sheet with excellent bending workability

Publications (2)

Publication Number Publication Date
JP2002363694A JP2002363694A (en) 2002-12-18
JP3845554B2 true JP3845554B2 (en) 2006-11-15

Family

ID=19013659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171969A Expired - Lifetime JP3845554B2 (en) 2001-06-07 2001-06-07 Super high strength cold-rolled steel sheet with excellent bending workability

Country Status (1)

Country Link
JP (1) JP3845554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290317A (en) * 2012-02-27 2013-09-11 株式会社神户制钢所 Super-strength cold-roll steel sheet with excellent bending machining property and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180075B1 (en) 2007-08-01 2017-05-03 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheet excellent in bendability and fatigue strength
JP5407168B2 (en) * 2008-04-10 2014-02-05 新日鐵住金株式会社 Method for producing high-strength steel sheet and method for producing high-strength electrogalvanized steel sheet
JP4431185B2 (en) 2008-06-13 2010-03-10 新日本製鐵株式会社 High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP5342911B2 (en) * 2009-03-31 2013-11-13 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bending workability
JP5342912B2 (en) * 2009-03-31 2013-11-13 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bending workability
JP5466576B2 (en) * 2010-05-24 2014-04-09 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bending workability
WO2012115181A1 (en) 2011-02-24 2012-08-30 新日本製鐵株式会社 High-strength steel sheet exhibiting superior stretch-flange formability and bendability, and method of preparing ingot steel
JP5849667B2 (en) * 2011-12-08 2016-02-03 Jfeスチール株式会社 Melting method of low calcium steel
WO2015198582A1 (en) * 2014-06-23 2015-12-30 Jfeスチール株式会社 High-strength steel sheet
US10941471B2 (en) 2015-12-28 2021-03-09 Jfe Steel Corporation High-strength steel sheet, high-strength galvanized steel sheet, method for manufacturing high-strength steel sheet, and method for manufacturing high-strength galvanized steel sheet
CN107619993B (en) * 2016-07-13 2019-12-17 上海梅山钢铁股份有限公司 Cold-rolled martensite steel plate with yield strength of 750MPa and manufacturing method thereof
CN108265227B (en) * 2018-05-02 2020-03-20 山东泰山轧钢有限公司 High-precision ultrathin cold-rolled steel strip for electronic components and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290317A (en) * 2012-02-27 2013-09-11 株式会社神户制钢所 Super-strength cold-roll steel sheet with excellent bending machining property and manufacturing method thereof
CN108456832A (en) * 2012-02-27 2018-08-28 株式会社神户制钢所 The super high tensile cold-rolled steel plate and its manufacturing method of has excellent bending properties

Also Published As

Publication number Publication date
JP2002363694A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP4927236B1 (en) Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
DK2924140T3 (en) Process for producing a flat high-strength steel product
JP3504560B2 (en) High-strength hot-rolled steel sheet with good shape-freezing properties and excellent formability
JP5176885B2 (en) Steel material and manufacturing method thereof
JP5370016B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP6879378B2 (en) Hot-rolled steel sheet and its manufacturing method
CN109536846A (en) Yield strength 700MPa grade high ductility hot rolled steel plate and its manufacturing method
JP3845554B2 (en) Super high strength cold-rolled steel sheet with excellent bending workability
JP2007107099A (en) Cold-rolled sheet steel excellent in workability, its production method and hot-dip galvanized steel sheet obtained using the steel sheet as base material
JP7277837B2 (en) hot stamped body
KR20170118939A (en) High strength/high toughness steel sheet and method for producing same
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5353578B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
CN108456832B (en) Ultra-high strength cold rolled steel sheet having excellent bending workability and method for manufacturing same
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
WO2015198582A1 (en) High-strength steel sheet
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
CN114318140A (en) Pipeline steel with excellent acid resistance and manufacturing method thereof
JP2007138210A (en) Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3845554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

EXPY Cancellation because of completion of term