WO2015198582A1 - High-strength steel sheet - Google Patents

High-strength steel sheet Download PDF

Info

Publication number
WO2015198582A1
WO2015198582A1 PCT/JP2015/003114 JP2015003114W WO2015198582A1 WO 2015198582 A1 WO2015198582 A1 WO 2015198582A1 JP 2015003114 W JP2015003114 W JP 2015003114W WO 2015198582 A1 WO2015198582 A1 WO 2015198582A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
phase
steel
strength
Prior art date
Application number
PCT/JP2015/003114
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 浩平
義彦 小野
村井 剛
櫻井 理孝
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016529072A priority Critical patent/JP6048623B2/en
Publication of WO2015198582A1 publication Critical patent/WO2015198582A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a high-strength steel plate having a tensile strength of 780 MPa or more, and particularly to a high-strength steel plate excellent in bending workability suitable for manufacturing machine structural parts such as automobile structural members and reinforcing members.
  • the chemical component is mass%, C: 0.08 to 0.20%, Si: 0.1 to 1.5%, Mn: 1.5 to 2.5%, P: 0.02% or less, S: 0.002% or less, Al: 0.02 to 0.06%, N: 0.0005% or less, Ca: 0.0005% or less, O: 0.0007% or less
  • the balance is composed of Fe and inevitable impurities, and the structure is composed of a ferrite phase and a low-temperature transformation generation phase.
  • the size of inclusions in the structure is expressed by the diameter of a circle corresponding to the area, the diameter is 5 ⁇ m or more.
  • An ultrahigh strength cold-rolled steel sheet excellent in bending workability is proposed, characterized by having 25 inclusions / mm 2 or less and a tensile strength of 780 MPa or more.
  • the cause of cracks caused by bending is oxide inclusions
  • Ca is 0.0005% or less for forming oxide inclusions
  • 0 for easily forming relatively large inclusions is 0. It is disclosed that excellent bending workability is obtained by reducing N to 0.0005% or less to a very low level while reducing the bending workability to an extremely low level of .0007% or less.
  • a steel layer has a soft layer with a ferrite volume fraction of 90% or more and a thickness of 10 to 100 ⁇ m on the surface layer of the steel sheet, the central structure has a tempered martensite volume ratio of 30% or more, and the remainder is a ferrite phase.
  • An ultra-high strength cold-rolled steel sheet having excellent bendability and stretch flangeability is disclosed.
  • Patent Document 3 discloses a high-strength cold-rolled steel sheet in which the metal structure and the amount of inclusions are limited for the purpose of improving stretch flangeability.
  • a tempered martensite having a hardness of 380 Hv or less includes an area ratio of 50% or more (including 100%), and the balance has a structure made of ferrite, and is present in the tempered martensite.
  • the number of cementite particles having a diameter of 0.1 ⁇ m or more is 2.3 or less per 1 ⁇ m 2 of the tempered martensite, and the inclusion having an aspect ratio of 2.0 or more present in the entire structure is 200 or less per 1 mm 2.
  • a high-strength cold-rolled steel sheet excellent in certain stretch flangeability has been proposed.
  • Patent Document 4 the total of one or two of Ce or La is 0.001 to 0.04%, and (Ce + La) / acid-soluble Al ⁇ 0.1 on a mass basis.
  • a high-strength steel sheet having a chemical component having (Ce + La) / S of 0.4 to 50 and excellent in stretch flangeability and fatigue characteristics has been proposed.
  • MnS, TiS, and (Mn, Ti) S are deposited on fine and hard Ce oxide, La oxide, cerium oxysulfide, and lanthanum oxysulfide generated by deoxidation by addition of Ce and La.
  • Patent Document 1 requires a great deal of time and cost in the steel making process in order to reduce Ca, N, and O to the ranges described above.
  • Patent Document 2 since the surface layer of the steel sheet is made soft, there is a problem that the fatigue characteristics that are significantly affected by the surface layer hardness are remarkably deteriorated.
  • Patent Document 3 is to improve the stretch flangeability by controlling the form of MnS inclusions, etc., but has suggestions regarding the control of oxide inclusions that greatly affect bending workability. Not give.
  • Patent Document 4 is not necessarily effective for improving the bending workability to be improved by the present invention. Further, since the addition of special elements such as Ce and La is necessary, the manufacturing cost is remarkably increased.
  • the present invention has been made as a result of earnest research in view of such circumstances, and has a tensile strength of 780 MPa or more, suitable for the production of automobile structural members, reinforcing members, and all other mechanical structural members, and has bending workability.
  • An object is to provide a high-strength steel sheet excellent in resistance at a low cost.
  • the present inventors have studied the factors governing the bending workability of high-strength steel sheets. As a result, it was found that the starting point of cracking during processing was an oxide inclusion having a particle major axis of 2 ⁇ m or more existing within 100 ⁇ m from the steel sheet surface. In order to ensure excellent bending workability, it is effective to reduce the number of inclusions to 100 or less per 100 mm 2, and to progress of micro cracks generated during bending, It was clarified that the chemical composition (component composition) of the steel sheet and the metal structure of the steel sheet determined by the heat treatment are affected.
  • the gist of the present invention is as follows.
  • a high-strength steel sheet having a tensile strength of 780 MPa or more and excellent in bending workability, which is optimal for the manufacture of machine structural members such as automobile structural members and reinforcing members, at low cost. Very useful.
  • C 0.05 to 0.18% C is an important element for strengthening the martensite of the quenched structure. If the C content is less than 0.05%, the effect of increasing the strength is insufficient. For this reason, the amount of C is made into 0.05% or more. Preferably, the amount of C is 0.10% or more. On the other hand, if the amount of C exceeds 0.18%, the strength becomes too high and the bending workability is remarkably deteriorated. Further, since the welded portion is broken in the cross tension test in spot welding, the joint strength is significantly reduced. For this reason, the amount of C is made into 0.18% or less. Preferably, the amount of C is 0.15% or less.
  • Si 0.8 to 3.0% Si is effective for increasing the ductility of the high strength composite steel sheet. If the Si amount is less than 0.8%, the effect is not sufficient. When the Si content is less than 0.8%, the bending workability improving effect by controlling the composition of oxide inclusions, which is a feature of the present invention, is not recognized. For this reason, the amount of Si shall be 0.8% or more. Preferably, the amount of Si is 1.2% or more. On the other hand, when the amount of Si exceeds 3.0%, a large amount of Si oxide is formed on the surface of the steel sheet in the hot rolling process, and surface defects are generated. For this reason, the amount of Si shall be 3.0% or less. From the viewpoint of chemical conversion properties, the Si content is preferably 2.3% or less.
  • Mn 1.5 to 3.0% Mn is an important element for suppressing the formation of ferrite during cooling to the quenching start temperature in continuous annealing. If the amount of Mn is less than 1.5%, the effect of suppressing such ferrite formation is not sufficient. For this reason, the amount of Mn is 1.5% or more. On the other hand, if the amount of Mn exceeds 3.0%, so-called slab cracking occurs in which the steel piece (slab) is cracked in the continuous casting process, so the amount of Mn is set to 3.0% or less. In order to improve the production stability in the continuous annealing process, the Mn content is preferably 1.8% or more, and preferably 2.5% or less.
  • P 0.02% or less
  • P is an impurity in the steel of the present invention, and is desirably removed by a steel making process as much as possible in order to deteriorate spot weldability.
  • the amount of P needs to be 0.02% or less.
  • the amount of P is 0.01% or less.
  • S 0.01% or less S is an impurity in the steel of the present invention, and is desirably removed in the steelmaking process as much as possible in order to deteriorate spot weldability and bending workability.
  • the amount of S exceeds 0.01%, the spot weldability deteriorates significantly, so the amount of S needs to be 0.01% or less.
  • the amount of S is 0.002% or less.
  • Sol. Al 0.01 to 0.1% Al is added to deoxidize and precipitate N as AlN. Sol. If the amount of Al is less than 0.01%, the effect of deoxidation / denitrification is not sufficient. For this reason, Sol. The amount of Al is 0.01% or more. Preferably, Sol. The amount of Al is 0.03% or more. On the other hand, Sol. If the amount of Al exceeds 0.1%, the effect of adding Al becomes saturated and uneconomical. For this reason, Sol. The Al content is 0.1% or less. Preferably, Sol. The amount of Al is 0.06% or less.
  • Sol. Al is acid-soluble aluminum.
  • the amount of Al is the amount of Al excluding Al existing as an oxide out of the total amount of Al in steel.
  • N 0.0015 to 0.0050%
  • N is an impurity contained in the crude steel, and the N content needs to be 0.0050% or less in order to deteriorate the formability of the steel sheet.
  • the N content is 0.0035% or less.
  • the N content is made less than 0.0015%, the refining cost increases significantly.
  • the N amount is set to 0.0015% or more.
  • the N amount is 0.0025% or more.
  • O is a metal oxide or the like produced during refining that remains as inclusions in the steel.
  • the amount of O exceeds 0.0020%, bending workability is remarkably deteriorated. For this reason, the amount of O is made 0.0020% or less.
  • the amount of O is 0.0015% or less.
  • the amount of O is set to 0.0008% or more.
  • the steel of the present invention may further contain the following chemical components depending on the purpose.
  • One or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, B: 0.0001 to 0.0030% Cr, Mo, and B are continuously annealed.
  • one or more of these elements can be contained. Since such effects can be obtained at 0.01% or more, 0.01% or more, and 0.0001% or more, the Cr amount is 0.01% or more, the Mo amount is 0.01% or more, B The amount is 0.0001% or more.
  • the Cr amount is 0.1% or more
  • the Mo amount is 0.05% or more
  • the B amount is 0.0003% or more.
  • Cr, Mo, and B exceed 1.0%, 0.5%, and 0.0030%, respectively, ductility deteriorates.
  • the Cr content is 1.0% or less, the Mo content is 0.5% or less, and the B content is 0.0030% or less.
  • the Cr content is 0.7% or less, the Mo content is 0.3% or less, and the B content is 0.0020% or less.
  • Ti, Nb, V, and Zr have the effect of improving stretch flangeability by forming carbides and nitrides in steel in the casting and hot rolling processes and suppressing the coarsening of the crystal grain size.
  • one or more of these elements can be contained. Such an effect can be acquired by making the content of any additive element 0.001% or more. Therefore, the Ti amount is 0.001% or more, the Nb amount is 0.001% or more, the V amount is 0.001% or more, and the Zr amount is 0.001% or more.
  • the Ti amount is 0.1% or less
  • the Nb amount is 0.1% or less
  • the V amount is 0.1% or less
  • the Zr amount is 0.1% or less.
  • One or more of Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Sn: 0.001 to 0.01% Cu, Ni, and Sn increase the corrosion resistance of the steel sheet. There is an effect, and in order to obtain such an effect, one or more of these elements can be contained. Since such effects can be obtained at 0.01% or more, 0.01% or more, or 0.001% or more, respectively, the Cu content is 0.01% or more, the Ni content is 0.01% or more, Sn The amount is 0.001% or more. On the other hand, if Cu, Ni, and Sn exceed 0.5%, 0.5%, and 0.01%, surface defects are generated due to embrittlement during casting and hot rolling. Therefore, the Cu content is 0.5% or less, the Ni content is 0.5% or less, and the Sn content is 0.01% or less.
  • components other than the above are Fe and inevitable impurities.
  • the number of oxide inclusions having a particle length of 2 ⁇ m or more in a steel sheet within 100 ⁇ m from the surface of the steel sheet is 100 or less per 100 mm 2.
  • the alumina content is: The number ratio of those having a composition of 50% by mass or more, silica content: 20% by mass or less, and calcia content: 40% by mass or less is 80% or more.
  • Oxide inclusions present on the center side of the plate thickness from the surface of the steel sheet from 100 ⁇ m or oxide inclusions having a particle length of less than 2 ⁇ m have little influence on the bending workability, and therefore need not be controlled in the present invention. . For this reason, the oxide inclusions within 100 ⁇ m from the steel sheet surface and having a particle major axis of 2 ⁇ m or more are limited as follows.
  • the number of oxide inclusions within 100 ⁇ m from the steel plate surface and the particle major axis is 2 ⁇ m or more exceeds 100 per 100 mm 2 , the bending workability is remarkably deteriorated. For this reason, the number of inclusions is 100 or less per 100 mm 2 .
  • the size of inclusions is evaluated by a cross section including the rolling direction.
  • the evaluation position may be an arbitrary cross section within 100 ⁇ m from the steel sheet surface. However, in the case of non-uniform distribution in the plate thickness direction, the evaluation is made at the depth with the largest number of distributions.
  • the evaluation area should just be 100 mm ⁇ 2 > or more.
  • alumina is inevitably contained as a deoxidation product, but alumina alone has a small effect on bending workability.
  • the oxide content in the oxide inclusions is less than 50% by mass, the oxide has a low melting point, and the oxide inclusions tend to extend during rolling and become a crack starting point during bending. For this reason, the alumina content rate in an oxide inclusion is 50 mass% or more.
  • silica and calcia coexist with alumina, the oxide has a low melting point, and oxide inclusions extend during rolling and become a starting point of cracking during bending, which deteriorates the bending workability of the steel sheet. .
  • the silica content is 20% by mass or less and the calcia content is 40% by mass or less.
  • the average composition of oxides in steel in molten steel is mass%, alumina content: 60% or more, silica content: 10% or less, and calcia content: 20%. (The average composition in the molten steel, the average composition of the intermediate product (for example, slab), and the average composition in the high-strength steel sheet are almost the same).
  • the number ratio of oxide inclusions satisfying the above composition is 80% or more. That is, the number ratio of oxide inclusions having a composition of alumina content: 50% by mass or more, silica content: 20% by mass or less, and calcia content: 40% by mass or less is 80%. That's it. That is, in the technique of the present invention, the melting point of the oxide inclusions can be increased to 1600 ° C.
  • the composition of the oxide inclusions as described above.
  • Such high-temperature oxide inclusions do not have extensibility in the hot rolling process in the steel sheet manufacturing process, and therefore the number ratio of oxide inclusions characterized in the present invention is controlled by the above composition control. It can be within the scope of the invention, and further, the bending workability intended by the present invention can be improved. In order to further improve the bending workability, the number ratio is preferably 90% or more. Adjustment of the oxide composition is achieved by adjusting the slag composition of the converter or secondary refining process.
  • the Ca concentration in the molten steel tends to be close to within the oxide composition range of the present invention. is there. That is, when the oxide composition is out of the range of the present invention, it tends to be adjusted within the oxide composition range of the present invention by reducing the Ca concentration.
  • the average composition of the oxide in steel can be quantitatively determined by cutting out a sample from the slab and using an extraction residue analysis method (for example, Kuraho et al .: Iron and Steel, Vol. 82 (1996), 1017).
  • the upper limit of the alumina content is not particularly limited, but 95% or less is preferable from the viewpoint of melting cost, and the lower limit of the silica content is not particularly limited, but 3% or more is preferable from the viewpoint of melting cost, Although a minimum is not specifically limited, 5% or more is preferable from the point of melting cost.
  • the steel sheet of the present invention needs to have a substantially two-phase structure of ferrite and martensite.
  • the definition of the metal structure in the present invention will be described.
  • Martensite volume ratio 20-65%
  • the volume ratio of the martensite phase is set to 65% or less.
  • the volume ratio of the martensite phase is 60% or less, more preferably 50% or less.
  • the martensite phase includes a tempered martensite phase that has been tempered.
  • the metal structure of the steel sheet of the present invention is preferably substantially a two-phase structure of ferrite and martensite. That is, it is preferable that the remainder other than the martensite phase is substantially the ferrite phase. For this reason, the volume fraction of the ferrite phase is preferably 40% or more, and preferably 80% or less. By making the remainder other than the above-described martensite phase substantially a ferrite phase, it is possible to industrially facilitate the control of the structure ratio and stabilize the mechanical characteristics.
  • the present invention preferably has a substantially two-phase structure of ferrite and martensite. It is preferable that a phase containing iron other than these two phases as a main constituent element, that is, a bainite phase and an austenite phase are not included in the metal structure. Because there is, it may be included.
  • the austenite phase is transformed into hard martensite at the time of bending and becomes the starting point of bending cracking.
  • the bainite phase is more preferably 3% or less.
  • a compound phase containing Fe that is, a cementite phase, etc. may be contained in the ferrite phase, the martensite phase, and their interfaces.
  • a compound phase derived from an additive element such as AlN or MnS or an impurity element is substantially harmless within the chemical component range of the present invention, and may be included in the metal structure.
  • the volume fraction of the bainite phase is less than 5% and the volume fraction of the austenite phase is less than 5%, and the bainite phase and the austenite phase are included, except for the martensite phase and the ferrite phase.
  • the total volume fraction of the metal structure is 10% or less, the influence is small. In this case, it can be said that the metal structure is substantially a two-phase structure of ferrite and martensite. Therefore, the bainite phase is less than 5% (including 0%), the austenite phase is less than 5% (including 0%), and the total volume ratio of the metal structure other than the martensite phase and the ferrite phase is 10% or less (including 0%). ) Is preferable. More preferably, the total volume ratio of the metal structure other than the martensite phase and the ferrite phase is 5% or less.
  • the steel sheet of the present invention has the above-described component composition, and the average composition of oxides in steel is, in mass%, alumina content: 60% or more, silica content: 10% or less, calcia content: 20% or less.
  • the molten steel adjusted to be a steel slab the steel slab is hot-rolled, cold-rolled at a rolling rate of 60% or more to form a cold-rolled sheet, and then the cold-rolled sheet is heated to 750 to 870 ° C. Hold for 10 sec or more in the temperature range, then cool to a quenching start temperature of 550 to 750 ° C., cool from the quenching start temperature to an quenching stop temperature of 300 ° C. or less at an average cooling rate of more than 100 ° C./sec, and then 150 It is preferable to manufacture by holding at ⁇ 450 ° C. for 100 to 1000 seconds.
  • preferable production conditions will be described.
  • the molten steel in which the composition of steel and the average composition of oxides in steel are adjusted as described above is used as a steel slab such as a slab, and the steel slab is subjected to hot rolling.
  • the molten steel is preferably made into a steel piece by continuous casting. What is necessary is just to perform a hot rolling according to a conventional method.
  • the steel slab once lowered in temperature is heated to a predetermined temperature before hot rolling.
  • the heating temperature before the hot rolling is preferably set to 1190 ° C. or lower in order to suppress the extension due to high-temperature deformation of the oxide inclusions to make it harmless and further improve the bending workability.
  • the heating temperature of the steel slab before hot rolling is preferably 1100 ° C. or higher.
  • the steel slab obtained as described above is hot-rolled, cooled and wound up according to a conventional method to obtain a hot-rolled sheet.
  • the winding temperature is preferably 550 ° C. or lower. This is to reduce the distribution of solid solution elements such as Mn during cooling after the hot rolling is completed, thereby reducing the unevenness of the structure.
  • the coiling temperature is less than 450 ° C., it is difficult to control the temperature by water cooling in the cooling after hot rolling, which is normally performed, and the material variation including bending workability increases. For this reason, it is preferable that winding temperature shall be 450 degreeC or more.
  • cold rolling with a rolling rate of 60% or more is performed to obtain a cold rolled sheet.
  • the oxide inclusions in the hot-rolled sheet can be discontinuously divided by cold working, and can be made harmless to bending workability.
  • the cold rolling reduction rate is preferably 60% or more. From the viewpoint of bending workability, the higher the cold rolling rate, the better. On the other hand, when the rolling rate of cold rolling is increased, the productivity is remarkably lowered. Therefore, the rolling rate is preferably 80% or less.
  • the obtained cold-rolled sheet is heated to 750 to 870 ° C., held in this temperature range for 10 seconds or more, then cooled to a quenching start temperature of 550 to 750 ° C., and an average cooling rate from the quenching start temperature: Cooling is performed to a quenching stop temperature of 300 ° C. or less at a temperature exceeding 100 ° C./sec, and then heat treatment is performed at 150 to 450 ° C. for 100 to 1000 sec. This heat treatment is preferably continuous annealing performed by a continuous annealing furnace. This heat treatment condition will be described in detail below.
  • the heating / holding temperature range is 750 to 870 ° C.
  • the held temperature is also referred to as a soaking temperature.
  • the heating / soaking temperature is set to 750 ° C. or higher.
  • the heating / soaking temperature is 800 ° C. or higher.
  • the heating / soaking temperature is set to 870 ° C. or less.
  • the heating / soaking temperature is 840 ° C. or lower.
  • the holding time in this temperature range is 10 sec or more.
  • the holding time is also referred to as a soaking time. If the soaking time is less than 10 seconds, austenite is not sufficiently generated, and it is difficult to obtain sufficient strength.
  • the soaking time is 30 sec or more. In order not to impair the productivity, the soaking time is preferably set to 1200 sec or less.
  • the rapid cooling start temperature is set to 550 ° C. or higher.
  • the rapid cooling start temperature is 600 ° C. or higher.
  • the rapid cooling start temperature is set to 750 ° C. or lower.
  • the quench start temperature is 720 ° C. or lower.
  • Cooling from the rapid cooling start temperature to an average cooling rate of more than 100 ° C / sec and cooling to a quenching stop temperature of 300 ° C or less The quenching is insufficient when the cooling rate from the rapid cooling start temperature to the rapid cooling stop temperature is 100 ° C / sec or less. And the strength tends to be insufficient. For this reason, the cooling rate from the rapid cooling start temperature to the rapid cooling stop temperature is over 100 ° C./sec. In order to stabilize the product material, the cooling rate is preferably 500 ° C./sec or more. On the other hand, when the quenching stop temperature exceeds 300 ° C., a bainite phase is generated or austenite remains, and stretch flangeability is deteriorated. For this reason, the rapid cooling stop temperature is set to 300 ° C. or lower. In order to stabilize the product material, the quenching stop temperature is preferably 100 ° C. or lower.
  • the holding temperature after the rapid cooling stop is set to 450 ° C. or less. Further, if the holding time at 150 to 450 ° C. performed after such a rapid cooling stop is less than 100 sec, the above-described effect that martensite is tempered and bending workability is not sufficiently obtained cannot be obtained. Therefore, the holding time at 150 to 450 ° C. is set to 100 sec or more. On the other hand, when the holding time exceeds 1000 sec, the strength is significantly reduced, and it becomes difficult to obtain a tensile strength of 780 MPa or more. Therefore, the holding time at 150 to 450 ° C. is set to 1000 sec or less.
  • temper rolling is preferably performed in the range of 0.1 to 0.7% in order to eliminate yield elongation.
  • the steel sheet of the present invention may be subjected to electroplating or hot dip galvanizing on the surface of the steel sheet, or a solid lubricant may be applied.
  • cold rolling was performed to obtain a sheet thickness of 1.0 mm (cold rolling rate: 61.5%), and further heat treatment was performed simulating continuous annealing.
  • the heat treatment simulating this continuous annealing it was heated at 780 to 830 ° C. at a heating rate of 20 ° C./sec and held for 300 sec.
  • the cooling rate (average cooling rate) at this time was 2000 ° C./sec.
  • the oxide inclusions are investigated and evaluated as shown below, and the metal structure (structure fraction), tensile properties, bending workability, and chemical conversion properties are evaluated. Investigated and evaluated.
  • the ratio of the number corresponding to the composition to the total number of inclusion particles having a particle long diameter of 2 ⁇ m or more ((composition corresponding number) / (total number of inclusion particles having a particle long diameter of 2 ⁇ m or more)) obtained by the above observation was obtained and the composition was determined. Applicable ratio.
  • the amount of retained austenite phase was determined by X-ray diffraction using Mo K ⁇ rays. That is, using a test piece having a surface near a thickness of 1/4 of the steel sheet as a measurement surface, the peaks of the (211) surface and the (220) surface of the austenite phase and the (200) surface and (220) surface of the ferrite phase The volume fraction of the retained austenite phase was calculated from the strength and used as the volume fraction value. Next, the difference between the volume fraction of the retained austenite phase and the volume fraction of the retained austenite phase was determined as the volume fraction of martensite from the volume fraction of the structure regarded as the martensite phase or the retained austenite phase.
  • JIS No. 5 test piece JISZ2201 was sampled with the direction perpendicular to the rolling direction as the longitudinal direction and subjected to a tensile test according to JISZ2241, yield strength (YS), tensile strength (TS), total elongation (El). Asked.
  • Chemical conversion property Chemical conversion treatment was performed by the following method using a chemical conversion treatment liquid (Palbond L3080 (registered trademark)) manufactured by Nihon Parkerizing. After degreasing with a degreasing liquid Fine Cleaner (registered trademark) manufactured by Nihon Parkerizing Co., Ltd., washing with water, and then adjusting the surface for 30 seconds with surface conditioning liquid preparen Z (registered trademark) manufactured by Nihon Parkerizing Co. After immersing in a liquid (Palbond L3080) for 120 seconds, it was washed with water and dried with warm air. The chemical conversion film thus obtained was randomly observed with a scanning electron microscope (SEM) at a magnification of 500 times, and the scale area ratio of the chemical conversion film was measured by image processing. A scale area ratio of 5% or less was regarded as acceptable ( ⁇ ), and the chemical conversion treatment property was considered good. In addition, a scale area ratio of more than 5% was determined to be rejected (x).
  • a chemical conversion treatment liquid Palbond L3080 (
  • Table 2 shows the evaluation results.
  • the examples of the present invention have a tensile strength TS ⁇ 780 MPa, TS ⁇ E1 ⁇ 15000 MPa ⁇ %, and a limit bending radius R / t ⁇ 1.5, which is excellent in mechanical properties and bending workability. Excellent. Moreover, chemical conversion property was also favorable.
  • the comparative example is inferior in any of the characteristics.
  • the steel plate symbol 1C has a C amount that is too low, and a tensile strength of 780 MPa or more is not obtained.
  • Steel plate symbol 1D is inferior in TS ⁇ El and limit bending radius because the amount of C is too high.
  • the steel plate symbol 1E Since the steel plate symbol 1E has a high ratio of the composition of oxide inclusions outside the range of the present invention, the bending workability deteriorated. Since the steel sheet symbol 1F has an excessively large amount of O, the number of oxide inclusions is larger than the range of the present invention, and the bending workability deteriorates. Since the steel sheet symbol 1H has an excessively low Si content, TS ⁇ El decreased, and accordingly, the bending workability deteriorated. Since the steel plate symbol 1I has too much Si, the bendability deteriorated and the chemical conversion property deteriorated.
  • the steel plate symbols 1K, 1N, 1O, and 1S have low ratios in which the composition of oxide inclusions falls within the scope of the present invention, bending workability was deteriorated in all cases. Since the steel sheet symbol 1L has an Mn amount that is too low, a tensile strength of 780 MPa or more is not obtained. Since the steel plate symbol 1M has an excessively high Mn content, TS ⁇ El decreased, and accordingly, the bending workability deteriorated.
  • Steel sheets were manufactured using steel slabs (steel pieces) whose chemical components are shown in Table 1.
  • the average composition of the oxide in the slab was determined by an extraction residue analysis method (Kurabo et al .: Iron and Steel, Vol. 82 (1996), 1017).
  • AlN was solution-treated at 1200 ° C.
  • Extraction of oxide inclusions (oxides in steel in the slab) was performed by a bromine-methanol method to obtain Al, Si, Ca and composite oxides, and the composition ratio of each oxide was calculated.
  • Table 3 shows the steel number of the steel used in Example 2 and the average composition of oxides in the slab.
  • the slabs shown in Table 3 were hot-rolled, cold-rolled, and continuously annealed under the conditions shown in the same table, and further subjected to temper rolling of 0.1 to 0.5% to obtain a cold sheet having a thickness of 1.0 mm. A rolled steel sheet was obtained. The soaking time was 120 to 480 sec.
  • the cold-rolled steel sheet produced in this way was evaluated by investigating oxide inclusions in the same manner as in Example 1, and the metal structure (structure fraction), tensile properties, bending workability, and chemical conversion treatment properties. was also investigated and evaluated in the same manner as in Example 1. The results are shown in Table 4.
  • the steel sheets of the examples of the present invention have a tensile strength TS ⁇ 780 MPa, TS ⁇ E1 ⁇ 15000 MPa ⁇ %, limit bending radius: R / t ⁇ 1.5, and tensile properties. Excellent bending workability. Moreover, chemical conversion processability is also pass and it is excellent also in chemical conversion processability.
  • the steel plate of the comparative example is inferior in either characteristic.
  • steel plate symbols 2A, 2C, and 2F have a low volume ratio of the martensite phase, do not satisfy the metal structure defined in the present invention, and do not have a tensile strength of 780 MPa or more.
  • Steel plate symbol 2D has a high volume ratio of martensite, does not satisfy the metal structure defined in the present invention, TS ⁇ E1 decreases, and bending workability deteriorates accordingly.
  • the composition inclusion ratio of oxide inclusions is out of the scope of the present invention, and the composition ratio of oxide inclusions in the product falls within the scope of the present invention, so the bending workability deteriorates. did.

Abstract

Provided is a low-cost high-strength steel sheet that has excellent bendability, with a tensile strength of at least 780 MPa, and that is well-suited for the manufacture of structural members for machines such as automobiles. The high-strength steel sheet has a specific component composition. Oxide inclusions present in the high-strength steel sheet within 100 µm of the surface and having a particle major axis with a length of at least 2 µm satisfy specific conditions. The metallographic structure of the high-strength steel sheet, by volume ratio, is 20–65% of a martensite phase, 40–80% of a ferrite phase, less than 5% (including 0%) of a bainite phase, and less than 5% (including 0%) of an austenite phase. The total volume ratio of metallographic structures other than the martensite phase and the ferrite phase is 10% or less (including 0%). The tensile strength of the high-strength steel sheet is at least 780 MPa. Here, "particle major axis" refers to the major axis of particles evaluated in a cross-section containing the rolling direction of the high-strength steel sheet.

Description

高強度鋼板High strength steel plate
 本発明は、引張強さが780MPa以上の高強度鋼板に関し、特に自動車構造部材、補強部材等、機械構造部品を製造するために好適な、曲げ加工性に優れた高強度鋼板に関する。 The present invention relates to a high-strength steel plate having a tensile strength of 780 MPa or more, and particularly to a high-strength steel plate excellent in bending workability suitable for manufacturing machine structural parts such as automobile structural members and reinforcing members.
 近年、自動車部品においては、軽量化による燃費向上および乗員の保護という特性が要求されている。これら特性への要求を満足させるため、自動車部品に用いられる鋼板には、高強度化が求められている。一方、高強度鋼板は軟質鋼板と比較して加工性が劣るため、プレス成形など成形加工が困難である。特に引張強さが780MPa級以上の鋼板では、曲げ加工モード主体のフォーム成形で加工されることが多いため、成形性の中でも、曲げ加工性が重視される。 In recent years, automobile parts have been required to have characteristics of improving fuel efficiency and protecting passengers by reducing weight. In order to satisfy the requirements for these properties, steel sheets used for automobile parts are required to have high strength. On the other hand, a high-strength steel plate is inferior in workability as compared with a soft steel plate, so that it is difficult to form such as press forming. In particular, a steel sheet having a tensile strength of 780 MPa or more is often processed by foam forming mainly in a bending process mode, and therefore bending workability is important among formability.
 そのため、高強度鋼板の曲げ加工性の改善手段については、従来、種々の検討が行われてきた。例えば、特許文献1には、化学成分がmass%で、C:0.08~0.20%、Si:0.1~1.5%、Mn:1.5~2.5%、P:0.02%以下、S:0.002%以下、Al:0.02~0.06%、N :0.0005%以下、Ca:0.0005%以下、O:0.0007%以下を含有し、残部Fe及び不可避的不純物からなり、組織がフェライト相と低温変態生成相とで構成され、組織中の介在物の大きさをその面積に相当する円の直径で表したとき、直径5μm以上の介在物が25個/mm以下であり、引張強さが780MPa級以上であることを特徴とする曲げ加工性に優れた超高強度冷延鋼板が提案されている。特許文献1には、曲げ加工によって生じる割れの原因が酸化物系介在物であり、酸化物系介在物を形成するCaを0.0005%以下、比較的大きな介在物を形成しやすいOを0.0007%以下といった極めて低いレベルまで低減するとともに、曲げ加工性を劣化させるNを0.0005%以下と極めて低いレベルまで低減して、優れた曲げ加工性を得ることが開示されている。 For this reason, various studies have been made on means for improving the bending workability of high-strength steel sheets. For example, in Patent Document 1, the chemical component is mass%, C: 0.08 to 0.20%, Si: 0.1 to 1.5%, Mn: 1.5 to 2.5%, P: 0.02% or less, S: 0.002% or less, Al: 0.02 to 0.06%, N: 0.0005% or less, Ca: 0.0005% or less, O: 0.0007% or less And the balance is composed of Fe and inevitable impurities, and the structure is composed of a ferrite phase and a low-temperature transformation generation phase. When the size of inclusions in the structure is expressed by the diameter of a circle corresponding to the area, the diameter is 5 μm or more. An ultrahigh strength cold-rolled steel sheet excellent in bending workability is proposed, characterized by having 25 inclusions / mm 2 or less and a tensile strength of 780 MPa or more. In Patent Document 1, the cause of cracks caused by bending is oxide inclusions, Ca is 0.0005% or less for forming oxide inclusions, and 0 for easily forming relatively large inclusions is 0. It is disclosed that excellent bending workability is obtained by reducing N to 0.0005% or less to a very low level while reducing the bending workability to an extremely low level of .0007% or less.
 特許文献2には、鋼板表層にフェライト体積率が90%以上で厚さが10~100μmの軟質層を有し、中心部の組織は焼戻しマルテンサイト体積率が30%以上で残部はフェライト相である曲げ性および伸びフランジ性に優れる超高強度冷延鋼板が開示されている。 In Patent Document 2, a steel layer has a soft layer with a ferrite volume fraction of 90% or more and a thickness of 10 to 100 μm on the surface layer of the steel sheet, the central structure has a tempered martensite volume ratio of 30% or more, and the remainder is a ferrite phase. An ultra-high strength cold-rolled steel sheet having excellent bendability and stretch flangeability is disclosed.
 また、介在物の量や形状を制御して、鋼板の材料特性を改善する技術としては、例えば特許文献3や4の技術がある。 Further, as techniques for improving the material properties of the steel sheet by controlling the amount and shape of inclusions, for example, there are techniques disclosed in Patent Documents 3 and 4.
 特許文献3には、伸びフランジ性の向上を目的として、金属組織ならびに介在物量を制限した高強度冷延鋼板が開示されている。特許文献3では、硬さ380Hv以下の焼戻しマルテンサイトが面積率で50%以上(100%を含む)を含み、残部がフェライトからなる組織を有し、該焼戻しマルテンサイト中に存在する、円相当直径0.1μm以上のセメンタイト粒子が、該焼戻しマルテンサイト1μm当たり2.3個以下であり、全組織中に存在する、アスペクト比2.0以上の介在物が、1mm当たり200個以下である伸びフランジ性に優れた高強度冷延鋼板が提案されている。 Patent Document 3 discloses a high-strength cold-rolled steel sheet in which the metal structure and the amount of inclusions are limited for the purpose of improving stretch flangeability. In Patent Document 3, a tempered martensite having a hardness of 380 Hv or less includes an area ratio of 50% or more (including 100%), and the balance has a structure made of ferrite, and is present in the tempered martensite. The number of cementite particles having a diameter of 0.1 μm or more is 2.3 or less per 1 μm 2 of the tempered martensite, and the inclusion having an aspect ratio of 2.0 or more present in the entire structure is 200 or less per 1 mm 2. A high-strength cold-rolled steel sheet excellent in certain stretch flangeability has been proposed.
 また、特許文献4には、CeもしくはLaの1種または2種の合計が0.001~0.04%であり、さらに、質量ベースで、(Ce+La)/酸可溶Al≧0.1、かつ、(Ce+La)/Sが0.4~50である化学成分を有する、伸びフランジ性と疲労特性に優れた高強度鋼板が提案されている。特許文献4では、Ce、Laの添加による脱酸により生成した微細で硬質なCe酸化物、La酸化物、セリュウムオキシサルファイド、ランタンオキシサルファイド上にMnS、TiS、(Mn,Ti)Sが析出し、圧延時にもこの析出したMnS、TiS、(Mn,Ti)Sの変形が起こり難いため、鋼板中には延伸した粗大なMnSが著しく減少し、繰り返し変形時や穴拡げ加工時において、これらのMnS系介在物が割れ発生の起点や亀裂伝播の経路となり難くなることが開示されている。また、特許文献4には、酸可溶Al濃度に応じたCe、La濃度とすることにより、Al脱酸で生成したAl系介在物について、添加したCe、Laが還元分解して微細な介在物を形成し、アルミナ系酸化物がクラスター化して粗大とならないことが開示されている。 In Patent Document 4, the total of one or two of Ce or La is 0.001 to 0.04%, and (Ce + La) / acid-soluble Al ≧ 0.1 on a mass basis. In addition, a high-strength steel sheet having a chemical component having (Ce + La) / S of 0.4 to 50 and excellent in stretch flangeability and fatigue characteristics has been proposed. In Patent Document 4, MnS, TiS, and (Mn, Ti) S are deposited on fine and hard Ce oxide, La oxide, cerium oxysulfide, and lanthanum oxysulfide generated by deoxidation by addition of Ce and La. However, since the deformation of the deposited MnS, TiS, (Mn, Ti) S is difficult to occur during rolling, the stretched coarse MnS is remarkably reduced in the steel sheet. It is disclosed that the MnS-based inclusions are difficult to become crack initiation points and crack propagation paths. Further, in Patent Document 4, Ce and La added to the Al 2 O 3 inclusions generated by Al deoxidation are reduced and decomposed by reducing the Ce and La concentrations according to the acid-soluble Al concentration. It is disclosed that fine inclusions are formed and the alumina-based oxide does not cluster and become coarse.
特開2002-363694号公報JP 2002-363694 A 特開2005-273002号公報JP 2005-273002 A 特開2009-215571号公報JP 2009-215571 A 特開2009-299137号公報JP 2009-299137 A
 しかしながら、特許文献1に記載される技術では、Ca、N、Oを上記したような範囲に低減するために、製鋼工程において多大な時間とコストを要する。また、特許文献2に記載される技術では、鋼板の表層を軟質とするため、表層硬度の影響が顕著である疲労特性が著しく劣化するという問題がある。 However, the technique described in Patent Document 1 requires a great deal of time and cost in the steel making process in order to reduce Ca, N, and O to the ranges described above. Moreover, in the technique described in Patent Document 2, since the surface layer of the steel sheet is made soft, there is a problem that the fatigue characteristics that are significantly affected by the surface layer hardness are remarkably deteriorated.
 また、特許文献3に記載される技術は、MnS介在物等の形態を制御して伸びフランジ性を改善するものであるが、曲げ加工性に大きく影響する酸化物系介在物の制御に関する示唆を与えるものではない。また、特許文献4に記載される技術は、本発明で改善しようとする曲げ加工性向上に必ずしも有効でない。また、Ce、Laといった特殊元素の添加が必要であるため、製造コストが著しく上昇する。 In addition, the technique described in Patent Document 3 is to improve the stretch flangeability by controlling the form of MnS inclusions, etc., but has suggestions regarding the control of oxide inclusions that greatly affect bending workability. Not give. Moreover, the technique described in Patent Document 4 is not necessarily effective for improving the bending workability to be improved by the present invention. Further, since the addition of special elements such as Ce and La is necessary, the manufacturing cost is remarkably increased.
 本発明は、かかる状況を鑑み、鋭意研究した結果なされたものであって、自動車構造部材、補強部材、その他あらゆる機械構造部材の製造に好適な、引張強さが780MPa以上であり、曲げ加工性に優れた高強度鋼板を低コストで提供することを目的とする。 The present invention has been made as a result of earnest research in view of such circumstances, and has a tensile strength of 780 MPa or more, suitable for the production of automobile structural members, reinforcing members, and all other mechanical structural members, and has bending workability. An object is to provide a high-strength steel sheet excellent in resistance at a low cost.
 本発明者らは、高強度鋼板の曲げ加工性支配因子について研究した。その結果、加工時の割れの起点は鋼板表面から100μm以内に存在する粒子長径が2μm以上の酸化物系介在物であることを見出した。そして、優れた曲げ加工性を確保するには、当該介在物数を100mm当たり100個以下とすることが有効であること、また、曲げ加工の際に発生する微小割れの進展には、鋼の化学成分(成分組成)ならびに熱処理によって決定される鋼板の金属組織が影響することを明らかとした。 The present inventors have studied the factors governing the bending workability of high-strength steel sheets. As a result, it was found that the starting point of cracking during processing was an oxide inclusion having a particle major axis of 2 μm or more existing within 100 μm from the steel sheet surface. In order to ensure excellent bending workability, it is effective to reduce the number of inclusions to 100 or less per 100 mm 2, and to progress of micro cracks generated during bending, It was clarified that the chemical composition (component composition) of the steel sheet and the metal structure of the steel sheet determined by the heat treatment are affected.
 ここで、割れ起点となる酸化物系介在物を精錬工程で除去、低減させることは有効であるが、大幅な製造コスト上昇を招く。このため、酸化物系介在物を除去するのではなく、曲げ加工性に対して無害化することを検討した。その結果、酸化物系介在物の組成を適正に制御することにより、介在物ならびにその生成原因となる不純物元素を過度に低減することなく、曲げ加工性を向上できることを明らかとした。また、引張強さを780MPa以上とし、曲げ加工性に優れた高強度鋼板とする上での、鋼板の化学成分、金属組織についても適正範囲を明らかとし、本発明を完成させた。 Here, it is effective to remove and reduce the oxide inclusions that are the starting point of cracking in the refining process, but this leads to a significant increase in manufacturing cost. For this reason, it was considered that the oxide inclusions were not removed but made harmless to the bending workability. As a result, it has been clarified that by appropriately controlling the composition of oxide inclusions, bending workability can be improved without excessively reducing the inclusions and the impurity elements that cause the inclusions. In addition, the present inventors have completed the present invention by clarifying the appropriate ranges for the chemical composition and metal structure of the steel sheet to obtain a high-strength steel sheet having a tensile strength of 780 MPa or more and excellent bending workability.
 すなわち、本発明の要旨は、以下のとおりである。 That is, the gist of the present invention is as follows.
 [1]質量%で、C:0.05~0.18%、Si:0.8~3.0%、Mn:1.5~3.0%、P:0.02%以下、S:0.01%以下、Sol.Al:0.01~0.1%、N:0.0015~0.0050%、O:0.0008~0.0020%を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、表面から100μm以内の鋼板中における粒子長径2μm以上の酸化物系介在物が100mm当たり100個以下であり、該酸化物系介在物の全個数のうち、アルミナ含有率:50質量%以上であり、シリカ含有率:20質量%以下であり、カルシア含有率:40質量%以下である組成を有するものの個数比率が80%以上であり、かつ、金属組織が、体積率で、マルテンサイト相:20~65%、フェライト相:40~80%を有し、ベイナイト相:5%未満(0%含む)、オーステナイト相:5%未満(0%含む)であり、マルテンサイト相およびフェライト相以外の金属組織の体積率の合計が10%以下(0%含む)であることを特徴とする引張強さが780MPa以上の曲げ加工性に優れた高強度鋼板;ここで、粒子長径は、鋼板の圧延方向を含む断面で評価する粒子長径である。 [1] By mass%, C: 0.05 to 0.18%, Si: 0.8 to 3.0%, Mn: 1.5 to 3.0%, P: 0.02% or less, S: 0.01% or less, Sol. Al: 0.01 to 0.1%, N: 0.0015 to 0.0050%, O: 0.0008 to 0.0020%, with the balance being composed of iron and inevitable impurities , oxide inclusions or more particle diameter 2μm in the steel sheet within 100μm from the surface is not more than 100 per 100 mm 2, of the total number of oxide-based inclusions, alumina content: 50 wt% or more Yes, silica content: 20% by mass or less, calcia content: 40% by mass or less of the number ratio of the composition is 80% or more, and the metal structure is in volume ratio, martensite phase: 20 to 65%, ferrite phase: 40 to 80%, bainite phase: less than 5% (including 0%), austenite phase: less than 5% (including 0%), less than martensite phase and ferrite phase A high-strength steel sheet having a tensile strength of 780 MPa or more and excellent bending workability, wherein the total volume ratio of the metal structures is 10% or less (including 0%); It is a particle major axis evaluated by a cross section including a rolling direction.
 [2]さらに、質量%で、Cr:0.01~1.0%、Mo:0.01~0.5%、B:0.0001~0.0030%の1種または2種以上を含有することを特徴とする前記[1]に記載の引張強さが780MPa以上の曲げ加工性に優れた高強度鋼板。 [2] Further, by mass%, one or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, B: 0.0001 to 0.0030% are contained. A high-strength steel sheet excellent in bending workability having a tensile strength of 780 MPa or more as described in [1] above.
 [3]さらに、質量%で、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%、Zr:0.001~0.1%の1種または2種以上を含有することを特徴とする前記[1]または[2]に記載の引張強さが780MPa以上の曲げ加工性に優れた高強度鋼板。 [3] Further, by mass%, Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1%, V: 0.001 to 0.1%, Zr: 0.001 to 0.00. 1% of 1 type or 2 types or more, The high-strength steel plate excellent in bending workability whose tensile strength as described in said [1] or [2] is 780 Mpa or more.
 [4]さらに、質量%で、Cu:0.01~0.5%、Ni:0.01~0.5%、Sn:0.001~0.01%の1種または2種以上を含有することを特徴とする前記[1]~[3]のいずれかに記載の引張強さが780MPa以上の曲げ加工性に優れた高強度鋼板。 [4] Further, by mass%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Sn: 0.001 to 0.01%, or one or more of them are contained. A high-strength steel sheet excellent in bending workability, wherein the tensile strength according to any one of [1] to [3] is 780 MPa or more.
 本発明によれば、自動車構造部材、補強部材等の機械構造部材の製造に最適な、引張強さが780MPa以上であり、曲げ加工性に優れた高強度鋼板を低コストで提供でき、産業上極めて有益である。 According to the present invention, it is possible to provide a high-strength steel sheet having a tensile strength of 780 MPa or more and excellent in bending workability, which is optimal for the manufacture of machine structural members such as automobile structural members and reinforcing members, at low cost. Very useful.
 まず、本発明における成分組成(化学成分)の限定理由について説明する。なお、各元素の含有量の単位は何れも質量%であるが、以下、特に断らない限り、単に%で示す。 First, the reasons for limiting the component composition (chemical component) in the present invention will be described. In addition, although the unit of content of each element is mass%, hereinafter, unless otherwise specified, it is simply represented by%.
 C:0.05~0.18%
 Cは焼き入れ組織のマルテンサイトを強化するために重要な元素である。C量が0.05%未満では強度上昇の効果が不十分となる。このため、C量は0.05%以上とする。好ましくは、C量は0.10%以上である。一方、C量が0.18%を超えると強度が高くなりすぎて、曲げ加工性が著しく劣化する。また、スポット溶接における十字引張試験において溶接部破断するため、接合強度が著しく低下する。このため、C量は0.18%以下とする。好ましくは、C量は0.15%以下である。
C: 0.05 to 0.18%
C is an important element for strengthening the martensite of the quenched structure. If the C content is less than 0.05%, the effect of increasing the strength is insufficient. For this reason, the amount of C is made into 0.05% or more. Preferably, the amount of C is 0.10% or more. On the other hand, if the amount of C exceeds 0.18%, the strength becomes too high and the bending workability is remarkably deteriorated. Further, since the welded portion is broken in the cross tension test in spot welding, the joint strength is significantly reduced. For this reason, the amount of C is made into 0.18% or less. Preferably, the amount of C is 0.15% or less.
 Si:0.8~3.0%
 Siは、高強度複合組織鋼板の延性を高めるために有効である。Si量が0.8%未満ではその効果が十分でない。また、Si量が0.8%未満では、本発明の特徴である酸化物系介在物の組成制御による曲げ加工性改善効果が認められない。このため、Si量は0.8%以上とする。好ましくは、Si量は1.2%以上である。一方、Si量が3.0%を超えると、熱間圧延工程で鋼板表面にSi酸化物を多量に形成し、表面欠陥を発生させる。このため、Si量は3.0%以下とする。なお、化成処理性の観点からは、Si量は2.3%以下とすることが好ましい。
Si: 0.8 to 3.0%
Si is effective for increasing the ductility of the high strength composite steel sheet. If the Si amount is less than 0.8%, the effect is not sufficient. When the Si content is less than 0.8%, the bending workability improving effect by controlling the composition of oxide inclusions, which is a feature of the present invention, is not recognized. For this reason, the amount of Si shall be 0.8% or more. Preferably, the amount of Si is 1.2% or more. On the other hand, when the amount of Si exceeds 3.0%, a large amount of Si oxide is formed on the surface of the steel sheet in the hot rolling process, and surface defects are generated. For this reason, the amount of Si shall be 3.0% or less. From the viewpoint of chemical conversion properties, the Si content is preferably 2.3% or less.
 Mn:1.5~3.0%
 Mnは、連続焼鈍において、急冷開始温度までの冷却の際に、フェライト生成を抑制するために重要な元素である。Mn量が1.5%未満では、このようなフェライト生成を抑制する効果が十分でない。このため、Mn量は1.5%以上とする。一方、Mn量が3.0%を超えると、連続鋳造工程で鋼片(スラブ)が割れる、いわゆるスラブ割れが発生するため、Mn量は3.0%以下とする。なお、連続焼鈍工程における製造安定性を向上するためには、Mn量は、1.8%以上とすることが好ましく、2.5%以下とすることが好ましい。
Mn: 1.5 to 3.0%
Mn is an important element for suppressing the formation of ferrite during cooling to the quenching start temperature in continuous annealing. If the amount of Mn is less than 1.5%, the effect of suppressing such ferrite formation is not sufficient. For this reason, the amount of Mn is 1.5% or more. On the other hand, if the amount of Mn exceeds 3.0%, so-called slab cracking occurs in which the steel piece (slab) is cracked in the continuous casting process, so the amount of Mn is set to 3.0% or less. In order to improve the production stability in the continuous annealing process, the Mn content is preferably 1.8% or more, and preferably 2.5% or less.
 P:0.02%以下
 Pは本発明鋼中では不純物であり、スポット溶接性を劣化させるためにできるだけ製鋼工程で除去することが望ましい。ここで、P量が0.02%を超えるとスポット溶接性の劣化が顕著となる。このため、P量は0.02%以下とする必要がある。好ましくは、P量は0.01%以下である。
P: 0.02% or less P is an impurity in the steel of the present invention, and is desirably removed by a steel making process as much as possible in order to deteriorate spot weldability. Here, when the P content exceeds 0.02%, the deterioration of spot weldability becomes remarkable. For this reason, the amount of P needs to be 0.02% or less. Preferably, the amount of P is 0.01% or less.
 S:0.01%以下
 Sは本発明鋼中では不純物であり、スポット溶接性、および曲げ加工性を劣化させるためにできるだけ製鋼工程で除去することが望ましい。ここで、S量が0.01%を超えるとスポット溶接性の劣化が顕著となるため、S量は0.01%以下とする必要がある。好ましくは、S量は0.002%以下である。
S: 0.01% or less S is an impurity in the steel of the present invention, and is desirably removed in the steelmaking process as much as possible in order to deteriorate spot weldability and bending workability. Here, when the amount of S exceeds 0.01%, the spot weldability deteriorates significantly, so the amount of S needs to be 0.01% or less. Preferably, the amount of S is 0.002% or less.
 Sol.Al:0.01~0.1%
 Alは脱酸およびNをAlNとして析出させるために添加される。Sol.Al量が0.01%未満では脱酸・脱窒の効果が十分でない。このため、Sol.Al量は0.01%以上とする。好ましくは、Sol.Al量は0.03%以上である。一方、Sol.Al量が0.1%を超えると、Al添加の効果が飽和し不経済となる。このため、Sol.Al量は0.1%以下とする。好ましくは、Sol.Al量は0.06%以下である。
Sol. Al: 0.01 to 0.1%
Al is added to deoxidize and precipitate N as AlN. Sol. If the amount of Al is less than 0.01%, the effect of deoxidation / denitrification is not sufficient. For this reason, Sol. The amount of Al is 0.01% or more. Preferably, Sol. The amount of Al is 0.03% or more. On the other hand, Sol. If the amount of Al exceeds 0.1%, the effect of adding Al becomes saturated and uneconomical. For this reason, Sol. The Al content is 0.1% or less. Preferably, Sol. The amount of Al is 0.06% or less.
 なお、ここで、Sol.Alは酸可溶性アルミニウムであり、Sol.Al量は鋼中全Al量のうち、酸化物として存在するAlを除いたAl量である。 Here, Sol. Al is acid-soluble aluminum. The amount of Al is the amount of Al excluding Al existing as an oxide out of the total amount of Al in steel.
 N:0.0015~0.0050%
 Nは粗鋼中に含有される不純物であり、鋼板の成形性を劣化させるため、N量は0.0050%以下とする必要がある。好ましくは、N量は0.0035%以下である。一方、N量を0.0015%未満にしようとすると、精錬コストが著しく上昇する。また、N量が0.0015%以上であれば、鋼板の成形性に及ぼすNの悪影響は小さく、実質的に無害となる。このため、N量は0.0015%以上とする。好ましくは、N量は0.0025%以上である。
N: 0.0015 to 0.0050%
N is an impurity contained in the crude steel, and the N content needs to be 0.0050% or less in order to deteriorate the formability of the steel sheet. Preferably, the N content is 0.0035% or less. On the other hand, if the N content is made less than 0.0015%, the refining cost increases significantly. Further, if the N content is 0.0015% or more, the adverse effect of N on the formability of the steel sheet is small and substantially harmless. For this reason, the N amount is set to 0.0015% or more. Preferably, the N amount is 0.0025% or more.
 O:0.0008~0.0020%
 Oは精錬時に生成した金属酸化物などが鋼中の介在物として残留するものである。O量が0.0020%を超えると、曲げ加工性が著しく低下する。このため、O量は0.0020%以下とする。好ましくは、O量は0.0015%以下である。一方、O量を0.0008%未満にしようとすると、精錬コストが著しく上昇する。本発明においては、後述するように、酸化物系介在物の組成を適正に制御することで、曲げ加工性を改善することができる。よって、精錬コストの上昇を抑制するため、O量を0.0008%以上とする。
O: 0.0008 to 0.0020%
O is a metal oxide or the like produced during refining that remains as inclusions in the steel. When the amount of O exceeds 0.0020%, bending workability is remarkably deteriorated. For this reason, the amount of O is made 0.0020% or less. Preferably, the amount of O is 0.0015% or less. On the other hand, if the amount of O is to be less than 0.0008%, the refining cost increases significantly. In the present invention, as will be described later, bending workability can be improved by appropriately controlling the composition of oxide inclusions. Therefore, in order to suppress an increase in refining costs, the O amount is set to 0.0008% or more.
 また、本発明の鋼では、上記の化学成分に加えて、目的に応じて、さらに下記の化学成分を含有することができる。 In addition to the chemical components described above, the steel of the present invention may further contain the following chemical components depending on the purpose.
 Cr:0.01~1.0%、Mo:0.01~0.5%、B:0.0001~0.0030%の1種または2種以上
 Cr、Mo、Bは、連続焼鈍工程での製造安定化のために有効な元素であり、このような効果を得るため、これらの元素の1種または2種以上を含有させることができる。それぞれ、0.01%以上、0.01%以上、0.0001%以上でこのような効果を得ることができるため、Cr量は0.01%以上、Mo量は0.01%以上、B量は0.0001%以上とする。好ましくは、Cr量は0.1%以上、Mo量は0.05%以上、B量は0.0003%以上である。一方、Cr、Mo、Bは、それぞれ、1.0%、0.5%、0.0030%を超えると延性を劣化させる。このため、Cr量は1.0%以下、Mo量は0.5%以下、B量は0.0030%以下とする。好ましくは、Cr量は0.7%以下、Mo量は0.3%以下、B量は0.0020%以下である。
One or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, B: 0.0001 to 0.0030% Cr, Mo, and B are continuously annealed. In order to obtain such an effect, one or more of these elements can be contained. Since such effects can be obtained at 0.01% or more, 0.01% or more, and 0.0001% or more, the Cr amount is 0.01% or more, the Mo amount is 0.01% or more, B The amount is 0.0001% or more. Preferably, the Cr amount is 0.1% or more, the Mo amount is 0.05% or more, and the B amount is 0.0003% or more. On the other hand, when Cr, Mo, and B exceed 1.0%, 0.5%, and 0.0030%, respectively, ductility deteriorates. For this reason, the Cr content is 1.0% or less, the Mo content is 0.5% or less, and the B content is 0.0030% or less. Preferably, the Cr content is 0.7% or less, the Mo content is 0.3% or less, and the B content is 0.0020% or less.
 Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%、Zr:0.001~0.1%の1種または2種以上
 Ti、Nb、V、Zrは、鋳造、熱延工程で鋼中に炭化物、窒化物を形成し、結晶粒径の粗大化を抑制することで、伸びフランジ性を向上させる効果があり、このような効果を得るため、これらの元素の1種または2種以上を含有させることができる。いずれの添加元素も、その含有量を0.001%以上とすることで、このような効果を得ることができる。このため、Ti量は0.001%以上、Nb量は0.001%以上、V量は0.001%以上、Zr量は0.001%以上とする。一方、それぞれ、その含有量が0.1%を超えると、過度な析出強化によって延性が劣化する。このため、Ti量は0.1%以下、Nb量は0.1%以下、V量は0.1%以下、Zr量は0.1%以下とする。
One or more of Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1%, V: 0.001 to 0.1%, Zr: 0.001 to 0.1% Ti, Nb, V, and Zr have the effect of improving stretch flangeability by forming carbides and nitrides in steel in the casting and hot rolling processes and suppressing the coarsening of the crystal grain size. In order to obtain an advantageous effect, one or more of these elements can be contained. Such an effect can be acquired by making the content of any additive element 0.001% or more. Therefore, the Ti amount is 0.001% or more, the Nb amount is 0.001% or more, the V amount is 0.001% or more, and the Zr amount is 0.001% or more. On the other hand, if the content exceeds 0.1%, ductility deteriorates due to excessive precipitation strengthening. Therefore, the Ti amount is 0.1% or less, the Nb amount is 0.1% or less, the V amount is 0.1% or less, and the Zr amount is 0.1% or less.
 Cu:0.01~0.5%、Ni:0.01~0.5%、Sn:0.001~0.01%の1種または2種以上
 Cu、Ni、Snは鋼板の耐食性を高める効果があり、このような効果を得るため、これらの元素の1種または2種以上を含有させることができる。それぞれ、0.01%以上、0.01%以上、0.001%以上でこのような効果を得ることができるため、Cu量は0.01%以上、Ni量は0.01%以上、Sn量は0.001%以上とする。一方、Cu、Ni、Snは、それぞれ、0.5%、0.5%、0.01%を超えると鋳造および熱間圧延時の脆化により表面欠陥が発生する。このため、Cu量は0.5%以下、Ni量は0.5%以下、Sn量は0.01%以下とする。
One or more of Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Sn: 0.001 to 0.01% Cu, Ni, and Sn increase the corrosion resistance of the steel sheet. There is an effect, and in order to obtain such an effect, one or more of these elements can be contained. Since such effects can be obtained at 0.01% or more, 0.01% or more, or 0.001% or more, respectively, the Cu content is 0.01% or more, the Ni content is 0.01% or more, Sn The amount is 0.001% or more. On the other hand, if Cu, Ni, and Sn exceed 0.5%, 0.5%, and 0.01%, surface defects are generated due to embrittlement during casting and hot rolling. Therefore, the Cu content is 0.5% or less, the Ni content is 0.5% or less, and the Sn content is 0.01% or less.
 なお、本発明の鋼板において、上記以外の成分はFeおよび不可避的不純物である。 In addition, in the steel plate of this invention, components other than the above are Fe and inevitable impurities.
 次に、酸化物系介在物に関する限定理由について、説明する。
本発明では、鋼板の表面から100μm以内の鋼板中における粒子長径2μm以上の酸化物系介在物が100mm当たり100個以下であり、該酸化物系介在物の全個数のうち、アルミナ含有率:50質量%以上であり、シリカ含有率:20質量%以下であり、カルシア含有率:40質量%以下である組成を有するものの個数比率が80%以上である。
Next, the reason for limitation regarding oxide inclusions will be described.
In the present invention, the number of oxide inclusions having a particle length of 2 μm or more in a steel sheet within 100 μm from the surface of the steel sheet is 100 or less per 100 mm 2. Of the total number of oxide inclusions, the alumina content is: The number ratio of those having a composition of 50% by mass or more, silica content: 20% by mass or less, and calcia content: 40% by mass or less is 80% or more.
 酸化物系介在物の形態、組成を上記範囲に制御することは本発明の目的とする曲げ加工性向上のための、最も重要な要件である。鋼板表面から100μmより板厚中心側に存在する酸化物系介在物、または粒子長径が2μm未満の酸化物系介在物は曲げ加工性に対して影響が小さいので本発明では特に制御する必要はない。このため、鋼板表面から100μm以内でかつ粒子長径2μm以上の酸化物系介在物について、以下のように限定する。 Controlling the form and composition of oxide inclusions within the above ranges is the most important requirement for improving the bending workability of the present invention. Oxide inclusions present on the center side of the plate thickness from the surface of the steel sheet from 100 μm or oxide inclusions having a particle length of less than 2 μm have little influence on the bending workability, and therefore need not be controlled in the present invention. . For this reason, the oxide inclusions within 100 μm from the steel sheet surface and having a particle major axis of 2 μm or more are limited as follows.
 鋼板表面から100μm以内でかつ粒子長径2μm以上の酸化物系介在物が100mm当たり100個を超えると曲げ加工性が著しく劣化する。このため、当該介在物の個数は100mm当たり100個以下とする。なお、酸化物系介在物は圧延により伸展するので、本発明においては、介在物の大きさは圧延方向を含む断面で評価する。また、粒子長径2μm以上の酸化物系介在物の鋼板表面から深さ方向100μm以内の分布は、通常ほぼ均一であるので、評価位置は鋼板表面から100μm以内の任意断面で行ってよい。ただし、板厚方向に不均一に分布する場合は、最も分布個数が多い深さで評価するものとする。また、評価面積は100mm以上であればよい。 When the number of oxide inclusions within 100 μm from the steel plate surface and the particle major axis is 2 μm or more exceeds 100 per 100 mm 2 , the bending workability is remarkably deteriorated. For this reason, the number of inclusions is 100 or less per 100 mm 2 . In addition, since oxide inclusions are extended by rolling, in the present invention, the size of inclusions is evaluated by a cross section including the rolling direction. In addition, since the distribution of oxide inclusions having a particle major axis of 2 μm or more within a depth direction of 100 μm from the steel sheet surface is generally uniform, the evaluation position may be an arbitrary cross section within 100 μm from the steel sheet surface. However, in the case of non-uniform distribution in the plate thickness direction, the evaluation is made at the depth with the largest number of distributions. Moreover, the evaluation area should just be 100 mm < 2 > or more.
 酸化物系介在物中にアルミナは脱酸生成物として不可避的に含まれるが、アルミナ単体では曲げ加工性への影響が小さい。一方、酸化物系介在物中のアルミナ含有率が50質量%未満になると、酸化物が低融点化し、酸化物系介在物が圧延加工時に伸展して、曲げ加工時の割れ起点となり易くなる。このため、酸化物系介在物中のアルミナ含有率は50質量%以上とする。シリカ、カルシアはアルミナと共存することにより、酸化物が低融点化し、酸化物系介在物が圧延加工時に伸展して、曲げ加工時の割れ起点となり易くなるため、鋼板の曲げ加工性を劣化させる。それぞれ質量%で、20%、40%を超えると曲げ加工性の劣化が著しくなるため、シリカ含有率は20質量%以下、カルシア含有率は40質量%以下とする。なお、より好ましい介在物組成としては、溶鋼中の鋼中酸化物の平均組成が、質量%で、アルミナ含有率:60%以上、かつシリカ含有率:10%以下、かつカルシア含有率:20%以下である(溶鋼中の平均組成、中間生成物(例えば、スラブ)の平均組成、高強度鋼板中の平均組成はほぼ一致する。)。この時、上記したように、評価する鋼板の表面から100μm以内の鋼板中における粒子長径2μm以上の酸化物系介在物の全個数のうち、個数比率で80%以上が上記組成の範囲を満たしていれば、良好な曲げ加工性が得られる。このため、上記組成を満たす酸化物系介在物の個数比率を80%以上とする。すなわち、アルミナ含有率:50質量%以上であり、かつシリカ含有率:20質量%以下であり、かつカルシア含有率:40質量%以下である組成を有する酸化物系介在物の個数比率を80%以上とする。すなわち、本発明の技術は、前記したように酸化物系介在物の組成を制御することにより、酸化物系介在物の融点を1600℃以上の高温とすることができる。このような高温の酸化物系介在物は、鋼板の製造工程における、熱間圧延工程で伸展性がないため、上記組成制御により、本発明で特徴とする酸化物系介在物の個数比率を本発明範囲内とすることができ、更には、本発明で意図する曲げ加工性を向上することができる。さらに曲げ加工性を向上させるためには、該個数比率を90%以上とすることが好ましい。酸化物組成の調整は、転炉または二次精錬プロセスのスラグ組成を調整することにより達成される。すなわち、前記のスラグ組成は高塩基度スラグとし、酸化物組成が本発明範囲外の場合には、溶鋼中のCa濃度を低減することにより、本発明の酸化物組成範囲内に近づけられる傾向にある。つまり、酸化物組成が本発明範囲外の場合には上記Ca濃度を低減すれば本発明の酸化物組成範囲内に調整できる傾向にある。また、鋼中酸化物の平均組成は、スラブからサンプルを切り出し、抽出残渣分析法(例えば、蔵保ら:鉄と鋼、Vol.82(1996)、1017)によって定量的に求めることができる。なお、アルミナ含有率の上限は特に限定されないが95%以下が溶製コストの点から好ましく、シリカ含有率の下限は特に限定されないが3%以上が溶製コストの点から好ましく、カルシア含有率の下限は特に限定されないが5%以上が溶製コストの点から好ましい。 In the oxide inclusions, alumina is inevitably contained as a deoxidation product, but alumina alone has a small effect on bending workability. On the other hand, when the alumina content in the oxide inclusions is less than 50% by mass, the oxide has a low melting point, and the oxide inclusions tend to extend during rolling and become a crack starting point during bending. For this reason, the alumina content rate in an oxide inclusion is 50 mass% or more. When silica and calcia coexist with alumina, the oxide has a low melting point, and oxide inclusions extend during rolling and become a starting point of cracking during bending, which deteriorates the bending workability of the steel sheet. . When the content is 20% by mass and exceeds 20% and 40%, respectively, the bending workability is significantly deteriorated. Therefore, the silica content is 20% by mass or less and the calcia content is 40% by mass or less. In addition, as a more preferable inclusion composition, the average composition of oxides in steel in molten steel is mass%, alumina content: 60% or more, silica content: 10% or less, and calcia content: 20%. (The average composition in the molten steel, the average composition of the intermediate product (for example, slab), and the average composition in the high-strength steel sheet are almost the same). At this time, as described above, 80% or more of the total number of oxide inclusions having a particle major diameter of 2 μm or more in the steel plate within 100 μm from the surface of the steel plate to be evaluated satisfies the above composition range. If so, good bending workability can be obtained. For this reason, the number ratio of oxide inclusions satisfying the above composition is 80% or more. That is, the number ratio of oxide inclusions having a composition of alumina content: 50% by mass or more, silica content: 20% by mass or less, and calcia content: 40% by mass or less is 80%. That's it. That is, in the technique of the present invention, the melting point of the oxide inclusions can be increased to 1600 ° C. or higher by controlling the composition of the oxide inclusions as described above. Such high-temperature oxide inclusions do not have extensibility in the hot rolling process in the steel sheet manufacturing process, and therefore the number ratio of oxide inclusions characterized in the present invention is controlled by the above composition control. It can be within the scope of the invention, and further, the bending workability intended by the present invention can be improved. In order to further improve the bending workability, the number ratio is preferably 90% or more. Adjustment of the oxide composition is achieved by adjusting the slag composition of the converter or secondary refining process. That is, when the slag composition is a high basicity slag and the oxide composition is outside the range of the present invention, the Ca concentration in the molten steel tends to be close to within the oxide composition range of the present invention. is there. That is, when the oxide composition is out of the range of the present invention, it tends to be adjusted within the oxide composition range of the present invention by reducing the Ca concentration. Moreover, the average composition of the oxide in steel can be quantitatively determined by cutting out a sample from the slab and using an extraction residue analysis method (for example, Kuraho et al .: Iron and Steel, Vol. 82 (1996), 1017). The upper limit of the alumina content is not particularly limited, but 95% or less is preferable from the viewpoint of melting cost, and the lower limit of the silica content is not particularly limited, but 3% or more is preferable from the viewpoint of melting cost, Although a minimum is not specifically limited, 5% or more is preferable from the point of melting cost.
 次に金属組織の限定理由について説明する。 Next, the reason for limiting the metal structure will be explained.
 本発明の鋼板は、実質的にフェライトとマルテンサイトの2相組織であることが必要である。以下、本発明における金属組織の規定について、説明する。 The steel sheet of the present invention needs to have a substantially two-phase structure of ferrite and martensite. Hereinafter, the definition of the metal structure in the present invention will be described.
 マルテンサイト相の体積率:20~65%
 マルテンサイト相の体積率を20%以上とすることで、引張強さで780MPa以上の強度を安定して確保することが容易となる。より好ましくは、マルテンサイト相の体積率は30%以上である。一方。マルテンサイト相の体積率が65%を超えると、曲げ加工性が著しく低下する場合があり、曲げ加工性を安定して確保するためには、マルテンサイト相の体積率は65%以下とする。好ましくは、マルテンサイト相の体積率は60%以下であり、より好ましくは50%以下である。なお、本発明において、マルテンサイト相とは、焼き戻し処理を行った焼き戻しマルテンサイト相を含むものとする。
Martensite volume ratio: 20-65%
By setting the volume ratio of the martensite phase to 20% or more, it becomes easy to stably secure a strength of 780 MPa or more in terms of tensile strength. More preferably, the volume ratio of the martensite phase is 30% or more. on the other hand. When the volume ratio of the martensite phase exceeds 65%, the bending workability may be remarkably lowered. In order to ensure the bending workability stably, the volume ratio of the martensite phase is set to 65% or less. Preferably, the volume ratio of the martensite phase is 60% or less, more preferably 50% or less. In the present invention, the martensite phase includes a tempered martensite phase that has been tempered.
 フェライト相の体積率:40~80%
 上記したように、本発明の鋼板の金属組織は、実質的にフェライトとマルテンサイトの2相組織とすることが好ましい。すなわち、上記したマルテンサイト相以外の残部は、実質的にフェライト相とすることが好ましい。このため、フェライト相の体積率は40%以上とすることが好ましく、80%以下とすることが好ましい。上記したマルテンサイト相以外の残部を、実質的にフェライト相とすることにより、工業的に組織比率の制御を容易とし、機械的特性を安定化させることができる。
Ferrite phase volume fraction: 40-80%
As described above, the metal structure of the steel sheet of the present invention is preferably substantially a two-phase structure of ferrite and martensite. That is, it is preferable that the remainder other than the martensite phase is substantially the ferrite phase. For this reason, the volume fraction of the ferrite phase is preferably 40% or more, and preferably 80% or less. By making the remainder other than the above-described martensite phase substantially a ferrite phase, it is possible to industrially facilitate the control of the structure ratio and stabilize the mechanical characteristics.
 ベイナイト相:5%未満(0%含む)、オーステナイト相:5%未満(0%含む)であり、マルテンサイト相およびフェライト相以外の金属組織の体積率の合計が10%以下(0%含む)
 上記したように、本発明は実質的にフェライトとマルテンサイトの2相組織であることが好ましい。これら2相以外の鉄を主構成元素とする相、つまり、ベイナイト相、オーステナイト相は金属組織中に含まれないことが好ましいが、それぞれ体積率で5%未満であれば、実質的に無害であるので、含まれてもよい。特にオーステナイト相は曲げ加工時に硬いマルテンサイトに変態し、曲げ割れの起点となるので、3%以下であることがさらに好ましい。ベイナイト相については、3%以下であることが、より好ましい。また、Feを含有する化合物相、すなわちセメンタイト相などはフェライト相中、マルテンサイト相中およびそれらの界面に含まれてもよい。また、AlN、MnSなど添加元素、不純物元素に起因する化合物相は、本発明の化学成分範囲であれば、実質的に無害であるので、金属組織中に含まれてもよい。
Bainitic phase: less than 5% (including 0%), austenite phase: less than 5% (including 0%), and the total volume fraction of the metal structure other than martensite phase and ferrite phase is 10% or less (including 0%)
As described above, the present invention preferably has a substantially two-phase structure of ferrite and martensite. It is preferable that a phase containing iron other than these two phases as a main constituent element, that is, a bainite phase and an austenite phase are not included in the metal structure. Because there is, it may be included. In particular, the austenite phase is transformed into hard martensite at the time of bending and becomes the starting point of bending cracking. The bainite phase is more preferably 3% or less. Further, a compound phase containing Fe, that is, a cementite phase, etc. may be contained in the ferrite phase, the martensite phase, and their interfaces. Further, a compound phase derived from an additive element such as AlN or MnS or an impurity element is substantially harmless within the chemical component range of the present invention, and may be included in the metal structure.
 本発明において、上記したように、ベイナイト相の体積率を5%未満、オーステナイト相の体積率を5%未満とした上で、これらベイナイト相およびオーステナイト相を含む、マルテンサイト相およびフェライト相以外の金属組織の体積率の合計が10%以下であれば、その影響は小さい。この場合、金属組織が実質的にフェライトとマルテンサイトの2相組織であるといえる。よって、ベイナイト相:5%未満(0%含む)、オーステナイト相:5%未満(0%含む)とし、マルテンサイト相およびフェライト相以外の金属組織の合計の体積率を10%以下(0%含む)とすることが好ましい。より好ましくは、マルテンサイト相とフェライト相以外の金属組織の合計の体積率は5%以下である。 In the present invention, as described above, the volume fraction of the bainite phase is less than 5% and the volume fraction of the austenite phase is less than 5%, and the bainite phase and the austenite phase are included, except for the martensite phase and the ferrite phase. If the total volume fraction of the metal structure is 10% or less, the influence is small. In this case, it can be said that the metal structure is substantially a two-phase structure of ferrite and martensite. Therefore, the bainite phase is less than 5% (including 0%), the austenite phase is less than 5% (including 0%), and the total volume ratio of the metal structure other than the martensite phase and the ferrite phase is 10% or less (including 0%). ) Is preferable. More preferably, the total volume ratio of the metal structure other than the martensite phase and the ferrite phase is 5% or less.
 次に本発明の鋼板の好ましい製造方法について説明する。 Next, a preferred method for producing the steel plate of the present invention will be described.
 本発明の鋼板は、上記の成分組成を有し、鋼中酸化物の平均組成を、質量%で、アルミナ含有率:60%以上、シリカ含有率:10%以下、カルシア含有率:20%以下に調整した溶鋼を鋼片とし、該鋼片を熱間圧延し、圧延率:60%以上で冷間圧延して冷延板とし、次いで該冷延板を750~870℃に加熱し、この温度範囲で10sec以上保持し、次いで550~750℃の急冷開始温度まで冷却し、該急冷開始温度から平均冷却速度:100℃/sec超として、300℃以下の急冷停止温度まで冷却し、次いで150~450℃に100~1000sec保持することにより、製造することが好ましい。以下、好ましい製造条件を説明する。 The steel sheet of the present invention has the above-described component composition, and the average composition of oxides in steel is, in mass%, alumina content: 60% or more, silica content: 10% or less, calcia content: 20% or less. The molten steel adjusted to be a steel slab, the steel slab is hot-rolled, cold-rolled at a rolling rate of 60% or more to form a cold-rolled sheet, and then the cold-rolled sheet is heated to 750 to 870 ° C. Hold for 10 sec or more in the temperature range, then cool to a quenching start temperature of 550 to 750 ° C., cool from the quenching start temperature to an quenching stop temperature of 300 ° C. or less at an average cooling rate of more than 100 ° C./sec, and then 150 It is preferable to manufacture by holding at ˜450 ° C. for 100 to 1000 seconds. Hereinafter, preferable production conditions will be described.
 鋼の成分組成、鋼中酸化物の平均組成を上記したように調整した溶鋼をスラブ等の鋼片とし、該鋼片を熱間圧延に供する。溶鋼は、連続鋳造により、鋼片とすることが好ましい。熱間圧延は、常法に従い行えばよい。なお、通常、一旦温度が下がった鋼片は、熱間圧延前に所定の温度に加熱される。この熱間圧延前の加熱温度は、酸化物系介在物の高温変形による伸展を抑制して、無害化し、曲げ加工性をさらに向上させるため、1190℃以下とすることが好ましい。一方、加熱温度が低くなりすぎると、圧延荷重が上昇して、生産能率が低下するため、熱間圧延前の鋼片の加熱温度は1100℃以上とすることが好ましい。 The molten steel in which the composition of steel and the average composition of oxides in steel are adjusted as described above is used as a steel slab such as a slab, and the steel slab is subjected to hot rolling. The molten steel is preferably made into a steel piece by continuous casting. What is necessary is just to perform a hot rolling according to a conventional method. Usually, the steel slab once lowered in temperature is heated to a predetermined temperature before hot rolling. The heating temperature before the hot rolling is preferably set to 1190 ° C. or lower in order to suppress the extension due to high-temperature deformation of the oxide inclusions to make it harmless and further improve the bending workability. On the other hand, if the heating temperature becomes too low, the rolling load increases and the production efficiency decreases, so the heating temperature of the steel slab before hot rolling is preferably 1100 ° C. or higher.
 また、上記のようにして得た鋼片は、常法に従って、熱間圧延後、冷却して巻取り、熱延板とされる。この際、巻取り温度は550℃以下とすることが好ましい。これは、熱間圧延が終了した後の冷却中のMnなどの固溶元素の分配を軽減して、組織の不均一を軽減するためである。一方、巻取り温度が450℃未満になると、通常行われているような、熱間圧延後の冷却において、水冷による温度制御が困難となり、曲げ加工性を含めた材質ばらつきが大きくなる。このため、巻取り温度は450℃以上とすることが好ましい。 Further, the steel slab obtained as described above is hot-rolled, cooled and wound up according to a conventional method to obtain a hot-rolled sheet. At this time, the winding temperature is preferably 550 ° C. or lower. This is to reduce the distribution of solid solution elements such as Mn during cooling after the hot rolling is completed, thereby reducing the unevenness of the structure. On the other hand, when the coiling temperature is less than 450 ° C., it is difficult to control the temperature by water cooling in the cooling after hot rolling, which is normally performed, and the material variation including bending workability increases. For this reason, it is preferable that winding temperature shall be 450 degreeC or more.
 次に、圧延率60%以上の冷間圧延を行い、冷延板とする。圧延率を60%以上とする冷間圧延を行うことによって、冷間加工により熱延板中の酸化物系介在物を不連続に分断して、曲げ加工性に対して無害化することができる。本発明の特徴である酸化物系介在物の形態、組成を得るために、冷間圧延の圧延率を60%以上とすることが好ましい。曲げ加工性の観点からは冷間圧延率は高いほどよい。一方、冷間圧延の圧延率が高くなると、生産性が著しく低下するため、該圧延率は80%以下とすることが好ましい。 Next, cold rolling with a rolling rate of 60% or more is performed to obtain a cold rolled sheet. By performing cold rolling with a rolling rate of 60% or more, the oxide inclusions in the hot-rolled sheet can be discontinuously divided by cold working, and can be made harmless to bending workability. . In order to obtain the form and composition of the oxide inclusions, which is a feature of the present invention, the cold rolling reduction rate is preferably 60% or more. From the viewpoint of bending workability, the higher the cold rolling rate, the better. On the other hand, when the rolling rate of cold rolling is increased, the productivity is remarkably lowered. Therefore, the rolling rate is preferably 80% or less.
 次に、得られた冷延板は、750~870℃に加熱し、この温度範囲で10sec以上保持し、次いで550~750℃の急冷開始温度まで冷却し、該急冷開始温度から平均冷却速度:100℃/sec超として、300℃以下の急冷停止温度まで冷却し、次いで150~450℃に100~1000sec保持する熱処理を施す。この熱処理は、連続焼鈍炉によって行う連続焼鈍とすることが好ましい。この熱処理条件について、以下に詳細に説明する。 Next, the obtained cold-rolled sheet is heated to 750 to 870 ° C., held in this temperature range for 10 seconds or more, then cooled to a quenching start temperature of 550 to 750 ° C., and an average cooling rate from the quenching start temperature: Cooling is performed to a quenching stop temperature of 300 ° C. or less at a temperature exceeding 100 ° C./sec, and then heat treatment is performed at 150 to 450 ° C. for 100 to 1000 sec. This heat treatment is preferably continuous annealing performed by a continuous annealing furnace. This heat treatment condition will be described in detail below.
 750~870℃に加熱し、この温度範囲で10sec以上保持
 上記のようにして得た冷延板を、750~870℃に加熱し、この温度範囲で保持する。すなわち、加熱・保持温度範囲を750~870℃とする。なお、以下、該保持する温度は均熱温度ともいう。加熱・均熱温度が750℃未満では、十分なオーステナイトが生成せず、780MPa以上の引張強度を得ることが困難である。よって、加熱・均熱温度は750℃以上とする。好ましくは、該加熱・均熱温度は800℃以上である。一方、この加熱・均熱温度が870℃を超えると、鋼組織がオーステナイト単相化し、組織が粗大化するため伸びおよび伸びフランジ性が劣化する。よって、加熱・均熱温度は870℃以下とする。好ましくは、該加熱・均熱温度は840℃以下である。また、この温度範囲での保持時間は10sec以上とする。なお、以下、該保持時間を均熱時間ともいう。該均熱時間が10sec未満ではオーステナイトが十分生成せず、十分な強度を得ることが困難である。好ましくは、該均熱時間は、30sec以上である。なお、生産性を損なわないようにするため、該均熱時間は1200sec以下とすることが好ましい。
Heat to 750 to 870 ° C. and hold for 10 seconds or more in this temperature range The cold-rolled sheet obtained as described above is heated to 750 to 870 ° C. and held in this temperature range. That is, the heating / holding temperature range is 750 to 870 ° C. Hereinafter, the held temperature is also referred to as a soaking temperature. When the heating / soaking temperature is less than 750 ° C., sufficient austenite is not generated, and it is difficult to obtain a tensile strength of 780 MPa or more. Therefore, the heating / soaking temperature is set to 750 ° C. or higher. Preferably, the heating / soaking temperature is 800 ° C. or higher. On the other hand, when the heating / soaking temperature exceeds 870 ° C., the steel structure becomes austenite single phase and the structure becomes coarse, so that elongation and stretch flangeability deteriorate. Therefore, the heating / soaking temperature is set to 870 ° C. or less. Preferably, the heating / soaking temperature is 840 ° C. or lower. In addition, the holding time in this temperature range is 10 sec or more. Hereinafter, the holding time is also referred to as a soaking time. If the soaking time is less than 10 seconds, austenite is not sufficiently generated, and it is difficult to obtain sufficient strength. Preferably, the soaking time is 30 sec or more. In order not to impair the productivity, the soaking time is preferably set to 1200 sec or less.
 550~750℃の急冷開始温度まで冷却
 上記した加熱・均熱後は、急冷開始温度である550~750℃まで冷却する。この過程では、フェライトを適量生成して、延性を向上させるとともに強度の調整を行う。このため、該急冷開始までの冷却は、徐冷とすることが好ましい。この過程での冷却速度を20℃/sec以下とすることで、製品の材質の安定性がより向上する。このため、該冷却速度は20℃/sec以下とすることが好ましい。また、この冷却の終了温度、すなわち、この冷却に引き続いて行う急冷の開始温度が550℃未満では、フェライト体積率が高くなりすぎて強度が不足しやすい。このため、急冷開始温度は550℃以上とする。好ましくは、急冷開始温度は600℃以上である。一方、急冷開始温度が750℃を超えると、延性が劣化するばかりか、鋼板の平坦性が劣化する可能性がある。このため、急冷開始温度は750℃以下とする。好ましくは、急冷開始温度は720℃以下である。
Cooling to a quenching start temperature of 550 to 750 ° C. After the heating and soaking described above, it is cooled to a quenching start temperature of 550 to 750 ° C. In this process, an appropriate amount of ferrite is generated to improve ductility and adjust strength. For this reason, it is preferable that the cooling to the start of the rapid cooling is slow cooling. By setting the cooling rate in this process to 20 ° C./sec or less, the stability of the product material is further improved. For this reason, it is preferable that this cooling rate shall be 20 degrees C / sec or less. In addition, if the cooling end temperature, that is, the start temperature of the rapid cooling that follows the cooling is less than 550 ° C., the ferrite volume fraction becomes too high and the strength tends to be insufficient. For this reason, the rapid cooling start temperature is set to 550 ° C. or higher. Preferably, the rapid cooling start temperature is 600 ° C. or higher. On the other hand, when the rapid cooling start temperature exceeds 750 ° C., not only the ductility deteriorates but also the flatness of the steel sheet may deteriorate. For this reason, the rapid cooling start temperature is set to 750 ° C. or lower. Preferably, the quench start temperature is 720 ° C. or lower.
 急冷開始温度から平均冷却速度:100℃/sec超として、300℃以下の急冷停止温度まで冷却
 上記した急冷開始温度から急冷停止温度までの冷却速度が、100℃/sec以下では焼き入れが不十分となり、強度が不足しやすい。このため、急冷開始温度から急冷停止温度までの冷却速度は100℃/sec超とする。なお、製品材質安定化のためには、該冷却速度は、500℃/sec以上とすることが好ましい。また、急冷停止温度が300℃を超えるとベイナイト相が生成、またはオーステナイトが残留し、伸びフランジ性を劣化させる。このため、急冷停止温度は300℃以下とする。なお、製品材質を安定化させるためには、該急冷停止温度は100℃以下とすることが好ましい。
Cooling from the rapid cooling start temperature to an average cooling rate of more than 100 ° C / sec and cooling to a quenching stop temperature of 300 ° C or less The quenching is insufficient when the cooling rate from the rapid cooling start temperature to the rapid cooling stop temperature is 100 ° C / sec or less. And the strength tends to be insufficient. For this reason, the cooling rate from the rapid cooling start temperature to the rapid cooling stop temperature is over 100 ° C./sec. In order to stabilize the product material, the cooling rate is preferably 500 ° C./sec or more. On the other hand, when the quenching stop temperature exceeds 300 ° C., a bainite phase is generated or austenite remains, and stretch flangeability is deteriorated. For this reason, the rapid cooling stop temperature is set to 300 ° C. or lower. In order to stabilize the product material, the quenching stop temperature is preferably 100 ° C. or lower.
 150~450℃に100~1000sec保持
 上記したように急冷停止温度まで急冷し、次いでそのまま、または再加熱後、150~450℃で100~1000sec保持する。このように150~450℃での保持を行うことにより、先の急冷で生成したマルテンサイトが焼き戻しされ、曲げ加工性が向上する。急冷停止後の保持温度が150℃未満ではこのような効果が十分に得られない。よって、急冷停止後の保持温度は150℃以上とする。また、該保持温度が450℃を超えると、強度低下が顕著となり、780MPa以上の引張強さを得ることが困難となる。よって、急冷停止後の保持温度は450℃以下とする。また、このような急冷停止後に行う150~450℃での保持時間が100sec未満では、上記したような、マルテンサイトが焼き戻され、曲げ加工性が向上するという効果が十分に得られない。よって、150~450℃での保持時間は100sec以上とする。一方該保持時間が1000secを超えると、強度低下が顕著となり、780MPa以上の引張強さを得ることが困難となる。よって、150~450℃での保持時間は1000sec以下とする。
Hold at 150 to 450 ° C. for 100 to 1000 sec. Rapidly cool to the quenching stop temperature as described above, and then hold as it is or after reheating at 150 to 450 ° C. for 100 to 1000 sec. By holding at 150 to 450 ° C. in this way, the martensite generated by the previous rapid cooling is tempered and bending workability is improved. If the holding temperature after the rapid cooling stop is less than 150 ° C., such an effect cannot be sufficiently obtained. Therefore, the holding temperature after the rapid cooling stop is set to 150 ° C. or higher. On the other hand, when the holding temperature exceeds 450 ° C., the strength is significantly reduced, and it becomes difficult to obtain a tensile strength of 780 MPa or more. Therefore, the holding temperature after the rapid cooling stop is set to 450 ° C. or less. Further, if the holding time at 150 to 450 ° C. performed after such a rapid cooling stop is less than 100 sec, the above-described effect that martensite is tempered and bending workability is not sufficiently obtained cannot be obtained. Therefore, the holding time at 150 to 450 ° C. is set to 100 sec or more. On the other hand, when the holding time exceeds 1000 sec, the strength is significantly reduced, and it becomes difficult to obtain a tensile strength of 780 MPa or more. Therefore, the holding time at 150 to 450 ° C. is set to 1000 sec or less.
 なお、さらに調質圧延を施すことが好ましい。調質圧延は、降伏伸びをなくすため、伸張率で0.1~0.7%の範囲で行うことが好ましい。また、本発明鋼板は鋼板表面に電気めっきや溶融亜鉛めっきを施してもよく、また、固形潤滑材などを塗布してもよい。 In addition, it is preferable to further perform temper rolling. The temper rolling is preferably performed in the range of 0.1 to 0.7% in order to eliminate yield elongation. The steel sheet of the present invention may be subjected to electroplating or hot dip galvanizing on the surface of the steel sheet, or a solid lubricant may be applied.
 表1に示す鋼成分を有する鋼塊を溶解、鋳造した。なお、溶鋼中の鋼中酸化物の平均組成は、質量%で、アルミナ含有率:75~85%、シリカ含有率:3~7%、カルシア含有率:10~20%であった。この鋼塊(鋼片)を1180℃に加熱し、板厚2.6mmまで熱間圧延した。熱間圧延における最終パス出側温度(熱間圧延の終了温度)は約860℃であった。熱間圧延後、20℃/secで冷却後、540℃での巻き取りを模擬し、540℃の炉中で1時間保持後、炉冷し、熱延板とした。次いで、冷間圧延を行い、板厚1.0mm(冷間圧延率:61.5%)とし、さらに連続焼鈍を模擬した熱処理を実施した。この連続焼鈍を模擬した熱処理では、加熱速度:20℃/secで、780~830℃に加熱し、300sec保持した。次いで、10℃/secで600~700℃の急冷開始温度まで冷却し、引き続き、水温20℃の噴流水中で、水温まで急冷した。すなわち、急冷停止温度は水温(20℃)とした。このときの冷却速度(平均冷却速度)は2000℃/secであった。次に200~300℃に再加熱して、200~300℃で300~600sec保持する焼き戻し処理を行い、冷却後、0.2%の調質圧延を行った。 Steel ingots having steel components shown in Table 1 were melted and cast. The average composition of oxides in the steel in the molten steel was mass%, and the alumina content was 75 to 85%, the silica content was 3 to 7%, and the calcia content was 10 to 20%. This steel ingot (steel piece) was heated to 1180 ° C. and hot-rolled to a thickness of 2.6 mm. The final pass outlet temperature in hot rolling (end temperature of hot rolling) was about 860 ° C. After hot rolling, cooling at 20 ° C./sec, simulating winding at 540 ° C., holding in a furnace at 540 ° C. for 1 hour, furnace cooling to obtain a hot rolled sheet. Next, cold rolling was performed to obtain a sheet thickness of 1.0 mm (cold rolling rate: 61.5%), and further heat treatment was performed simulating continuous annealing. In the heat treatment simulating this continuous annealing, it was heated at 780 to 830 ° C. at a heating rate of 20 ° C./sec and held for 300 sec. Subsequently, it was cooled to a quenching start temperature of 600 to 700 ° C. at 10 ° C./sec, and then rapidly cooled to a water temperature in jet water having a water temperature of 20 ° C. That is, the quenching stop temperature was the water temperature (20 ° C.). The cooling rate (average cooling rate) at this time was 2000 ° C./sec. Next, it was reheated to 200 to 300 ° C., tempered by holding at 200 to 300 ° C. for 300 to 600 seconds, and after cooling, 0.2% temper rolling was performed.
 以上のようにして得られた冷延鋼板について、以下に示すように酸化物系介在物を調査して評価するとともに、金属組織(組織分率)、引張特性、曲げ加工性、化成処理性について調査し、評価した。 About the cold-rolled steel sheet obtained as described above, the oxide inclusions are investigated and evaluated as shown below, and the metal structure (structure fraction), tensile properties, bending workability, and chemical conversion properties are evaluated. Investigated and evaluated.
 鋼板中の酸化物系介在物の評価
 鋼板表面から深さ50μmの板面と平行な面を10mm×10mmの範囲で観察し、粒子長径2μm以上の介在物粒子の個数を調査した。なお、板面と平行な面は、圧延方向を含む断面である。また、粒子長径2μm以上の介在物粒子に対しては、すべてSEM-EDX分析を行い、組成を定量分析し、アルミナ含有率:50質量%以上であるとともに、シリカ含有率:20質量%以下であり、カルシア含有率:40質量%以下である組成を有する介在物粒子数(組成該当個数)を求めた。また、上記観察により得た、粒子長径2μm以上の介在物粒子の全個数に対する組成該当個数の比率((組成該当個数)/(粒子長径2μm以上の介在物粒子の全個数))を求め、組成該当比率とした。
Evaluation of Oxide Inclusions in Steel Sheet A surface parallel to a 50 μm deep plate surface from the steel sheet surface was observed in a range of 10 mm × 10 mm, and the number of inclusion particles having a particle major axis of 2 μm or more was investigated. The plane parallel to the plate surface is a cross section including the rolling direction. In addition, for inclusion particles having a particle length of 2 μm or more, all are subjected to SEM-EDX analysis, and the composition is quantitatively analyzed. The alumina content is 50% by mass or more and the silica content is 20% by mass or less. Yes, calcia content: The number of inclusion particles having a composition of 40% by mass or less (the number corresponding to the composition) was determined. Further, the ratio of the number corresponding to the composition to the total number of inclusion particles having a particle long diameter of 2 μm or more ((composition corresponding number) / (total number of inclusion particles having a particle long diameter of 2 μm or more)) obtained by the above observation was obtained and the composition was determined. Applicable ratio.
 金属組織(組織分率)
 圧延方向断面で、板厚の1/2位置の面を走査型電子顕微鏡(SEM)で観察することにより調査した。観察はN=5(観察視野5箇所)で実施し、倍率:2000倍の断面組織写真を用い、画像解析により、任意に設定した50μm×50μm四方の正方形領域内に存在する各相の占有面積を求め、これを平均することにより、各相の体積分率とした。ここで、フェライト相およびパーライト相以外で、比較的平滑な表面を有し粒状、針状および塊状な形状として島状に観察された組織をマルテンサイト相または残留オーステナイト相とみなして判定し、その他残部が観察された場合はこの残部をベイナイト相とした。次に、残留オーステナイト相の量を、MoのKα線を用いてX線回折法により求めた。すなわち、鋼板の板厚1/4付近の面を測定面とする試験片を使用し、オーステナイト相の(211)面および(220)面とフェライト相の(200)面および(220)面のピーク強度から残留オーステナイト相の体積率を算出し、体積分率の値とした。次いで、前記したマルテンサイト相または残留オーステナイト相とみなした組織の体積分率から残留オーステナイト相の体積分率の差分をマルテンサイトの体積分率と判断した。
Metal structure (structure fraction)
The cross section in the rolling direction was examined by observing a surface at a half position of the plate thickness with a scanning electron microscope (SEM). Observation is carried out at N = 5 (5 observation fields), and the area occupied by each phase existing in a 50 μm × 50 μm square area arbitrarily set by image analysis using a cross-sectional structure photograph of magnification 2000 times. Was obtained and averaged to obtain the volume fraction of each phase. Here, other than the ferrite phase and the pearlite phase, a structure that has a relatively smooth surface and is observed in an island shape as a granular, acicular, and massive shape is determined as a martensite phase or a retained austenite phase, and other. When the remainder was observed, this remainder was made into the bainite phase. Next, the amount of retained austenite phase was determined by X-ray diffraction using Mo Kα rays. That is, using a test piece having a surface near a thickness of 1/4 of the steel sheet as a measurement surface, the peaks of the (211) surface and the (220) surface of the austenite phase and the (200) surface and (220) surface of the ferrite phase The volume fraction of the retained austenite phase was calculated from the strength and used as the volume fraction value. Next, the difference between the volume fraction of the retained austenite phase and the volume fraction of the retained austenite phase was determined as the volume fraction of martensite from the volume fraction of the structure regarded as the martensite phase or the retained austenite phase.
 引張特性
 JIS5号試験片(JISZ2201)を圧延方向と直角方向を長手として採取し、JISZ2241に準拠して引張試験を行い、降伏強度(YS)、引張強さ(TS)、全伸び(El)を求めた。
Tensile properties JIS No. 5 test piece (JISZ2201) was sampled with the direction perpendicular to the rolling direction as the longitudinal direction and subjected to a tensile test according to JISZ2241, yield strength (YS), tensile strength (TS), total elongation (El). Asked.
 曲げ加工性
 コイル幅方向を長手とするJIS3号試験片を用い、JISZ2248に準拠した曲げ試験Vブロック法(押金具の先端角:90°、先端半径R:0.5mmから0.5mmピッチで変更)により限界曲げ半径(R)を求め、板厚(t)で除した値であるR/tを指標とした。
Bending workability Using a JIS No. 3 test piece with the coil width direction as the longitudinal direction, the bending test V block method according to JISZ2248 (the tip angle of the metal fitting: 90 °, the tip radius R: changed from 0.5 mm to 0.5 mm pitch) ) To obtain the limit bending radius (R), and R / t, which is a value divided by the plate thickness (t), was used as an index.
 化成処理性
 日本パーカライジング社製の化成処理液(パルボンドL3080(登録商標))を用い、下記方法で化成処理を施した。日本パーカライジング社製の脱脂液ファインクリーナ(登録商標)で脱脂したのち、水洗し、次に日本パーカライジング社製の表面調整液プレパレンZ(登録商標)で30秒表面調整を行い、43℃の化成処理液(パルボンドL3080)に120秒浸漬した後、水洗し、温風で乾燥した。このようにして得た化成皮膜を走査型電子顕微鏡(SEM)で、倍率500倍で無作為に5視野を観察し、化成皮膜のスケ面積率を画像処理により測定した。スケ面積率5%以下を合格(○)とし、化成処理性が良好であるとした。また、スケ面積率5%超を不合格(×)とした。
Chemical conversion property Chemical conversion treatment was performed by the following method using a chemical conversion treatment liquid (Palbond L3080 (registered trademark)) manufactured by Nihon Parkerizing. After degreasing with a degreasing liquid Fine Cleaner (registered trademark) manufactured by Nihon Parkerizing Co., Ltd., washing with water, and then adjusting the surface for 30 seconds with surface conditioning liquid preparen Z (registered trademark) manufactured by Nihon Parkerizing Co. After immersing in a liquid (Palbond L3080) for 120 seconds, it was washed with water and dried with warm air. The chemical conversion film thus obtained was randomly observed with a scanning electron microscope (SEM) at a magnification of 500 times, and the scale area ratio of the chemical conversion film was measured by image processing. A scale area ratio of 5% or less was regarded as acceptable (◯), and the chemical conversion treatment property was considered good. In addition, a scale area ratio of more than 5% was determined to be rejected (x).
 表2に評価結果を示す。本結果より明らかなように、本発明例のものは引張強さTS≧780MPa、TS×El≧15000MPa・%、限界曲げ半径R/t≦1.5であり、機械的特性、曲げ加工性に優れる。また、化成処理性も良好であった。一方、比較例のものはいずれかの特性が劣る。例えば、鋼板記号1CはC量が低すぎ、780MPa以上の引張強さが得られていない。鋼板記号1DはC量が高すぎるため、TS×Elおよび限界曲げ半径に劣る。鋼板記号1Eは酸化物系介在物の組成が本発明の範囲を外れる比率が高いため、曲げ加工性が劣化した。鋼板記号1FはO量が高すぎるため、酸化物系介在物個数が本発明範囲に対して多く、曲げ加工性が劣化した。鋼板記号1HはSi量が低すぎるため、TS×Elが低下し、それに伴い曲げ加工性も劣化した。鋼板記号1IはSi量が多すぎるため、曲げ性が劣化するとともに、化成処理性が劣化した。鋼板記号1K、1N、1O、1Sは酸化物系介在物の組成が本発明範囲に該当する比率が低いため、いずれも曲げ加工性が劣化した。鋼板記号1LはMn量が低すぎるため、780MPa以上の引張強さが得られていない。鋼板記号1MはMn量が高すぎるため、TS×Elが低下し、それに伴い曲げ加工性も劣化した。 Table 2 shows the evaluation results. As is apparent from the results, the examples of the present invention have a tensile strength TS ≧ 780 MPa, TS × E1 ≧ 15000 MPa ·%, and a limit bending radius R / t ≦ 1.5, which is excellent in mechanical properties and bending workability. Excellent. Moreover, chemical conversion property was also favorable. On the other hand, the comparative example is inferior in any of the characteristics. For example, the steel plate symbol 1C has a C amount that is too low, and a tensile strength of 780 MPa or more is not obtained. Steel plate symbol 1D is inferior in TS × El and limit bending radius because the amount of C is too high. Since the steel plate symbol 1E has a high ratio of the composition of oxide inclusions outside the range of the present invention, the bending workability deteriorated. Since the steel sheet symbol 1F has an excessively large amount of O, the number of oxide inclusions is larger than the range of the present invention, and the bending workability deteriorates. Since the steel sheet symbol 1H has an excessively low Si content, TS × El decreased, and accordingly, the bending workability deteriorated. Since the steel plate symbol 1I has too much Si, the bendability deteriorated and the chemical conversion property deteriorated. Since the steel plate symbols 1K, 1N, 1O, and 1S have low ratios in which the composition of oxide inclusions falls within the scope of the present invention, bending workability was deteriorated in all cases. Since the steel sheet symbol 1L has an Mn amount that is too low, a tensile strength of 780 MPa or more is not obtained. Since the steel plate symbol 1M has an excessively high Mn content, TS × El decreased, and accordingly, the bending workability deteriorated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に化学成分を示す鋼のスラブ(鋼片)を用いて、鋼板の製造を行った。スラブ中の酸化物の平均組成は、抽出残渣分析法(蔵保ら:鉄と鋼,Vol.82(1996)、1017)により求めた。ここでAlNは1200℃で溶体化処理を行った。酸化物系介在物(スラブ中の鋼中酸化物)の抽出は臭素-メタノール法で行い、Al、Si、Caおよび複合系酸化物を得て、各酸化物の組成比を算出した。 Steel sheets were manufactured using steel slabs (steel pieces) whose chemical components are shown in Table 1. The average composition of the oxide in the slab was determined by an extraction residue analysis method (Kurabo et al .: Iron and Steel, Vol. 82 (1996), 1017). Here, AlN was solution-treated at 1200 ° C. Extraction of oxide inclusions (oxides in steel in the slab) was performed by a bromine-methanol method to obtain Al, Si, Ca and composite oxides, and the composition ratio of each oxide was calculated.
 表3に、実施例2で用いた鋼の鋼番号、スラブ中の酸化物の平均組成を示す。これら表3に示すスラブを、同表に示す条件で熱間圧延、冷間圧延、連続焼鈍を行い、さらに0.1~0.5%の調質圧延を行い、板厚1.0mmの冷延鋼板を得た。なお、均熱時間は120~480secとした。このように製造した冷延鋼板を、実施例1と同様の方法で酸化物系介在物を調査して評価するとともに、金属組織(組織分率)、引張特性、曲げ加工性、化成処理性についても実施例1と同様に調査し、評価した。結果を表4に示す。 Table 3 shows the steel number of the steel used in Example 2 and the average composition of oxides in the slab. The slabs shown in Table 3 were hot-rolled, cold-rolled, and continuously annealed under the conditions shown in the same table, and further subjected to temper rolling of 0.1 to 0.5% to obtain a cold sheet having a thickness of 1.0 mm. A rolled steel sheet was obtained. The soaking time was 120 to 480 sec. The cold-rolled steel sheet produced in this way was evaluated by investigating oxide inclusions in the same manner as in Example 1, and the metal structure (structure fraction), tensile properties, bending workability, and chemical conversion treatment properties. Was also investigated and evaluated in the same manner as in Example 1. The results are shown in Table 4.
 表4に示した結果より明らかなように、本発明例の鋼板は、引張強さTS≧780MPa、TS×El≧15000MPa・%、限界曲げ半径:R/t≦1.5であり、引張特性、曲げ加工性に優れる。また、化成処理性も合格であり、化成処理性にも優れる。 As is apparent from the results shown in Table 4, the steel sheets of the examples of the present invention have a tensile strength TS ≧ 780 MPa, TS × E1 ≧ 15000 MPa ·%, limit bending radius: R / t ≦ 1.5, and tensile properties. Excellent bending workability. Moreover, chemical conversion processability is also pass and it is excellent also in chemical conversion processability.
 一方、比較例の鋼板はいずれかの特性が劣る。例えば、鋼板記号2A、2C、2Fは、マルテンサイト相の体積率が低く、本発明で規定する金属組織を満足せず、780MPa以上の引張強さが得られていない。鋼板記号2Dはマルテンサイトの体積率が高く、本発明で規定する金属組織を満足せず、TS×Elが低下し、それに伴い曲げ加工性も劣化した。鋼板記号2Jは酸化物系介在物の組成該当比率が本発明の範囲外となっており、製品における酸化物系介在物の組成が本発明範囲に該当する比率が低いため、曲げ加工性が劣化した。 On the other hand, the steel plate of the comparative example is inferior in either characteristic. For example, steel plate symbols 2A, 2C, and 2F have a low volume ratio of the martensite phase, do not satisfy the metal structure defined in the present invention, and do not have a tensile strength of 780 MPa or more. Steel plate symbol 2D has a high volume ratio of martensite, does not satisfy the metal structure defined in the present invention, TS × E1 decreases, and bending workability deteriorates accordingly. In steel plate symbol 2J, the composition inclusion ratio of oxide inclusions is out of the scope of the present invention, and the composition ratio of oxide inclusions in the product falls within the scope of the present invention, so the bending workability deteriorates. did.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (4)

  1.  質量%で、C:0.05~0.18%、Si:0.8~3.0%、Mn:1.5~3.0%、P:0.02%以下、S:0.01%以下、Sol.Al:0.01~0.1%、N:0.0015~0.0050%、O:0.0008~0.0020%を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、表面から100μm以内の鋼板中における粒子長径2μm以上の酸化物系介在物が100mm当たり100個以下であり、該酸化物系介在物の全個数のうち、アルミナ含有率:50質量%以上であり、シリカ含有率:20質量%以下であり、カルシア含有率:40質量%以下である組成を有するものの個数比率が80%以上であり、かつ、金属組織が、体積率で、マルテンサイト相:20~65%、フェライト相:40~80%を有し、ベイナイト相:5%未満(0%含む)、オーステナイト相:5%未満(0%含む)であり、マルテンサイト相およびフェライト相以外の金属組織の体積率の合計が10%以下(0%含む)であり、引張強さが780MPa以上である高強度鋼板;ここで、粒子長径は、鋼板の圧延方向を含む断面で評価する粒子長径である。 By mass%, C: 0.05 to 0.18%, Si: 0.8 to 3.0%, Mn: 1.5 to 3.0%, P: 0.02% or less, S: 0.01 % Or less, Sol. Al: 0.01 to 0.1%, N: 0.0015 to 0.0050%, O: 0.0008 to 0.0020%, with the balance being composed of iron and inevitable impurities The number of oxide inclusions having a particle length of 2 μm or more in a steel sheet within 100 μm from the surface is 100 or less per 100 mm 2. Of the total number of oxide inclusions, the alumina content is 50% by mass or more. Yes, silica content: 20% by mass or less, calcia content: 40% by mass or less of the number ratio of the composition is 80% or more, and the metal structure is in volume ratio, martensite phase: 20 to 65%, ferrite phase: 40 to 80%, bainite phase: less than 5% (including 0%), austenite phase: less than 5% (including 0%), less than martensite phase and ferrite phase A high-strength steel plate having a total volume ratio of 10% or less (including 0%) and a tensile strength of 780 MPa or more; where the particle major axis is a particle evaluated by a cross section including the rolling direction of the steel plate The major axis.
  2.  さらに、質量%で、Cr:0.01~1.0%、Mo:0.01~0.5%、B:0.0001~0.0030%の1種または2種以上を含有することを特徴とする請求項1に記載の高強度鋼板。 Further, it contains one or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, and B: 0.0001 to 0.0030% by mass%. The high-strength steel sheet according to claim 1, wherein the steel sheet has high strength.
  3.  さらに、質量%で、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%、Zr:0.001~0.1%の1種または2種以上を含有することを特徴とする請求項1または2に記載の高強度鋼板。 Further, by mass%, Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1%, V: 0.001 to 0.1%, Zr: 0.001 to 0.1% The high-strength steel sheet according to claim 1 or 2, comprising one or more kinds.
  4.  さらに、質量%で、Cu:0.01~0.5%、Ni:0.01~0.5%、Sn:0.001~0.01%の1種または2種以上を含有することを特徴とする請求項1~3のいずれか1項に記載の高強度鋼板。 Furthermore, it contains one or more of Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Sn: 0.001 to 0.01% by mass%. The high-strength steel sheet according to any one of claims 1 to 3, characterized in that:
PCT/JP2015/003114 2014-06-23 2015-06-22 High-strength steel sheet WO2015198582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529072A JP6048623B2 (en) 2014-06-23 2015-06-22 High strength steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-127889 2014-06-23
JP2014127889 2014-06-23

Publications (1)

Publication Number Publication Date
WO2015198582A1 true WO2015198582A1 (en) 2015-12-30

Family

ID=54937690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003114 WO2015198582A1 (en) 2014-06-23 2015-06-22 High-strength steel sheet

Country Status (2)

Country Link
JP (1) JP6048623B2 (en)
WO (1) WO2015198582A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115748A1 (en) * 2015-12-28 2017-07-06 Jfeスチール株式会社 High-strength steel sheet, high-strength galvanized steel sheet, and method for manufacturing same
WO2018061526A1 (en) * 2016-09-29 2018-04-05 Jfeスチール株式会社 Method of manufacturing laser welded joint, laser welded joint, and automotive frame component
CN107058864B (en) * 2017-01-10 2019-07-02 北京特冶工贸有限责任公司 Railroad carriage wheel
WO2019130713A1 (en) 2017-12-27 2019-07-04 Jfeスチール株式会社 High strength steel sheet and method for producing same
JP7469670B2 (en) 2020-10-26 2024-04-17 日本製鉄株式会社 Manufacturing method and manufacturing device for iron core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363694A (en) * 2001-06-07 2002-12-18 Kobe Steel Ltd Superhigh strength cold rolled steel sheet having excellent bending workability
JP2003119546A (en) * 2001-10-15 2003-04-23 Nippon Steel Corp Steel for thin sheet with little defect due to inclusion
JP2006188755A (en) * 2004-12-09 2006-07-20 Kobe Steel Ltd Steel sheet with adequate ductility and method for manufacturing steel ingot for obtaining the steel sheet
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363694A (en) * 2001-06-07 2002-12-18 Kobe Steel Ltd Superhigh strength cold rolled steel sheet having excellent bending workability
JP2003119546A (en) * 2001-10-15 2003-04-23 Nippon Steel Corp Steel for thin sheet with little defect due to inclusion
JP2006188755A (en) * 2004-12-09 2006-07-20 Kobe Steel Ltd Steel sheet with adequate ductility and method for manufacturing steel ingot for obtaining the steel sheet
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115748A1 (en) * 2015-12-28 2017-07-06 Jfeスチール株式会社 High-strength steel sheet, high-strength galvanized steel sheet, and method for manufacturing same
US10941471B2 (en) 2015-12-28 2021-03-09 Jfe Steel Corporation High-strength steel sheet, high-strength galvanized steel sheet, method for manufacturing high-strength steel sheet, and method for manufacturing high-strength galvanized steel sheet
KR20200133391A (en) * 2016-09-29 2020-11-27 제이에프이 스틸 가부시키가이샤 Laser welded joint and auto-motive frame component
KR102412797B1 (en) * 2016-09-29 2022-06-23 제이에프이 스틸 가부시키가이샤 Laser welded joint and auto-motive frame component
CN109641321A (en) * 2016-09-29 2019-04-16 杰富意钢铁株式会社 Manufacturing method, laser weld joint and the automobile skeleton part of laser weld joint
CN112743228B (en) * 2016-09-29 2022-11-01 杰富意钢铁株式会社 Laser welded joint and automobile frame part
KR20190029688A (en) * 2016-09-29 2019-03-20 제이에프이 스틸 가부시키가이샤 Manufacturing method of laser welding seam, laser welding seam and skeleton parts for automobile
CN112743228A (en) * 2016-09-29 2021-05-04 杰富意钢铁株式会社 Laser welded joint and automobile frame part
JPWO2018061526A1 (en) * 2016-09-29 2018-09-27 Jfeスチール株式会社 Laser welded joint manufacturing method, laser welded joint, and automotive framework parts
KR102184912B1 (en) * 2016-09-29 2020-12-01 제이에프이 스틸 가부시키가이샤 Manufacturing method of laser welding joint, laser welding joint and skeleton parts for automobiles
WO2018061526A1 (en) * 2016-09-29 2018-04-05 Jfeスチール株式会社 Method of manufacturing laser welded joint, laser welded joint, and automotive frame component
CN107058864B (en) * 2017-01-10 2019-07-02 北京特冶工贸有限责任公司 Railroad carriage wheel
KR20200093002A (en) 2017-12-27 2020-08-04 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
WO2019130713A1 (en) 2017-12-27 2019-07-04 Jfeスチール株式会社 High strength steel sheet and method for producing same
US11492677B2 (en) 2017-12-27 2022-11-08 Jfe Steel Corporation High-strength steel sheet and method for producing the same
JP7469670B2 (en) 2020-10-26 2024-04-17 日本製鉄株式会社 Manufacturing method and manufacturing device for iron core

Also Published As

Publication number Publication date
JP6048623B2 (en) 2016-12-21
JPWO2015198582A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5862651B2 (en) High-strength hot-dip galvanized steel sheet excellent in impact resistance and bending workability and manufacturing method thereof
JP6354909B2 (en) High-strength steel sheet, high-strength galvanized steel sheet, and production methods thereof
JP6409917B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP6008039B2 (en) High-strength hot-rolled steel sheet with a maximum tensile strength of 980 MPa or more with excellent bake hardenability and low-temperature toughness
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4924730B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability, weldability and fatigue characteristics and method for producing the same
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
WO2006107066A1 (en) Hot-rolled steel sheet, method for production thereof and molded article formed from hot-rolled steel sheet
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP6703606B2 (en) Ultra high strength steel sheet excellent in chemical conversion treatment property and bending workability and method for producing the same
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
KR20150028366A (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
CN111684091B (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing these
WO2012033210A1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
JP6048623B2 (en) High strength steel sheet
KR102119017B1 (en) High strength cold rolled thin steel sheet and method for manufacturing the same
WO2017154401A1 (en) High-strength steel plate and method for manufacturing same
CN107208207B (en) High-strength steel sheet and method for producing same
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
WO2016157257A1 (en) High-strength steel sheet and production method therefor
CN108456832B (en) Ultra-high strength cold rolled steel sheet having excellent bending workability and method for manufacturing same
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811210

Country of ref document: EP

Kind code of ref document: A1