JP4975406B2 - High-strength galvannealed steel sheet and method for producing the same - Google Patents

High-strength galvannealed steel sheet and method for producing the same Download PDF

Info

Publication number
JP4975406B2
JP4975406B2 JP2006271050A JP2006271050A JP4975406B2 JP 4975406 B2 JP4975406 B2 JP 4975406B2 JP 2006271050 A JP2006271050 A JP 2006271050A JP 2006271050 A JP2006271050 A JP 2006271050A JP 4975406 B2 JP4975406 B2 JP 4975406B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
treatment
austenite
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006271050A
Other languages
Japanese (ja)
Other versions
JP2007070732A (en
Inventor
和夫 匹田
一 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006271050A priority Critical patent/JP4975406B2/en
Publication of JP2007070732A publication Critical patent/JP2007070732A/en
Application granted granted Critical
Publication of JP4975406B2 publication Critical patent/JP4975406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車、建築、電気機器等に用いられる部材として有用な高張力合金化溶融亜鉛めっき鋼板、およびその製造方法に関する。   The present invention relates to a high-tensile alloyed hot-dip galvanized steel sheet useful as a member used in automobiles, buildings, electrical equipment, and the like, and a method for producing the same.

近年、自動車においては、環境への影響の観点から燃費の向上が望まれており、そのために車体の軽量化が進んでいる。また、車体を軽量化しても安全性を維持できるように、車体を構成する様々な部材において、従来から用いられてきた鋼板より強度が高い鋼板(高張力鋼板)への需要が高まっている。しかしながら、強度が高くなると延性の低下および形状凍結性の低下が起こりやすいため、強度が高く、かつ形状凍結性および延性の良好な鋼板が必要とされている。   2. Description of the Related Art In recent years, automobiles have been desired to improve fuel efficiency from the viewpoint of impact on the environment, and for this reason, the weight of the vehicle body has been reduced. Further, in order to maintain safety even if the vehicle body is lightened, demands for steel plates (high-tensile steel plates) having higher strength than those conventionally used in various members constituting the vehicle body are increasing. However, when the strength is increased, the ductility and shape freezing properties are liable to decrease. Therefore, a steel plate having high strength and good shape freezing properties and ductility is required.

強度と延性のバランスを向上させるために、鋼へのSiの添加が非常に有効であることが知られている。さらに、フェライト生成元素のSiまたはAlとオーステナイト生成元素のMnを多量に含有し、残留オーステナイトの歪み誘起変態による大きな伸び(TRIP効果)を利用した高延性の高張力鋼板(以下、「残留オーステナイト型高張力鋼板」または単に「残留オーステナイト型鋼板」という)等の開発がなされている。   In order to improve the balance between strength and ductility, it is known that the addition of Si to steel is very effective. Furthermore, high ductility high-tensile steel sheet (hereinafter referred to as “residual austenite type”) that contains a large amount of ferrite-forming element Si or Al and austenite-forming element Mn and that uses large elongation (TRIP effect) due to strain-induced transformation of retained austenite. Developments such as “high-tensile steel plate” or simply “residual austenitic steel plate” have been made.

しかしながら、この残留オーステナイト型高張力鋼板は降伏比(YR)が高く、成形後の弾性回復による形状変化が大きいため、形状凍結性の観点からは十分の性能を有しているとはいえない。   However, this retained austenitic high-strength steel sheet has a high yield ratio (YR) and has a large shape change due to elastic recovery after forming, so it cannot be said that it has sufficient performance from the viewpoint of shape freezing property.

この残留オーステナイト型高張力鋼板を製造するためには、焼鈍処理後、350〜600℃の温度域での保持時間(以下、この温度域での保持を「低温保持」、そのときの保持時間を「低温保持時間」という)を長くしてベイナイト変態を促進させ、オーステナイトにCを濃縮させて安定化し、室温までオーステナイトを残留させることが重要である。   In order to produce this retained austenitic steel sheet, after the annealing treatment, the holding time in the temperature range of 350 to 600 ° C. (hereinafter, holding in this temperature range is referred to as “low temperature holding”, and the holding time at that time is It is important to lengthen (low temperature holding time) to promote bainite transformation, to concentrate and stabilize C in austenite, and to leave austenite to room temperature.

このとき、SiまたはAlの含有量が少ないと、べイナイト変態中にセメンタイトが析出してしまい、オーステナイト中にCが濃縮されず、安定にならない。また、低温保持時間が短い場合にもべイナイト変態が十分でなく、やはりオーステナイトが安定にならない。オーステナイトが安定化しない場合、冷却中にオーステナイトの一部がマルテンサイト変態を起こしてしまい、TRIP効果が得られにくくなり、延性が低下する。   At this time, if the content of Si or Al is small, cementite is precipitated during the bainite transformation, and C is not concentrated in the austenite and is not stable. Even when the low temperature holding time is short, the bainite transformation is not sufficient, and austenite is not stabilized. If austenite is not stabilized, a part of austenite undergoes martensitic transformation during cooling, making it difficult to obtain the TRIP effect and reducing ductility.

また、強度が同じでも、YRが低いフェライトとマルテンサイトの複合組織を持つDual Phase鋼(以下、「DP鋼」という)の鋼板の開発も進んでいる。この鋼板は、残留オーステナイト型鋼板と比較して、形状凍結性においては優れているが、延性については残留オーステナイト型鋼板より低くなっている。なお、この鋼板においても、一般的に、延性確保のためにSiが添加されることが多い。   Further, development of a steel plate of dual phase steel (hereinafter referred to as “DP steel”) having a composite structure of ferrite and martensite having a low YR even though the strength is the same is also in progress. This steel sheet is superior in shape freezing property to the retained austenitic steel sheet, but has a lower ductility than the retained austenitic steel sheet. In this steel sheet as well, generally, Si is often added to ensure ductility.

一方、耐食性および外観の向上という観点から、自動車用部材としてめっき材の適用が進んでおり、現在では、多くの部材に溶融亜鉛めっき鋼板が用いられている。しかし、既設の溶融亜鉛めっき設備では、低温保持ライン長が短いものが多い。このため、母材鋼板がSi含有量の多い残留オーステナイト型鋼板の場合には、還元焼鈍処理後、溶融亜鉛めっきを施す前の低温保持時間を長くしなければならず、既存の設備では、ライン速度が低下し、生産性が著しく低下する。   On the other hand, from the viewpoint of improving corrosion resistance and appearance, plating materials have been applied as automobile members, and hot dip galvanized steel sheets are currently used for many members. However, many existing hot-dip galvanizing facilities have a short low-temperature holding line length. For this reason, when the base steel sheet is a retained austenite steel sheet with a high Si content, the low temperature holding time before the hot dip galvanization must be extended after the reduction annealing treatment. Speed is reduced and productivity is significantly reduced.

さらに、低温保持時間を長くすると、還元性雰囲気下であっても、鋼板表面にSiの酸化物が濃化するため、めっき濡れ性およびめっき密着性が低下する。以上のことから、Siを添加した鋼を母材鋼板として用いる場合は、生産性の低下およびめっき密着性の劣化が懸念される。   Further, if the low temperature holding time is increased, even in a reducing atmosphere, the oxide of Si is concentrated on the surface of the steel sheet, so that the plating wettability and the plating adhesion are deteriorated. From the above, when using steel to which Si is added as the base steel plate, there is a concern about a decrease in productivity and a deterioration in plating adhesion.

前記Siを多量に含有した残留オーステナイト型鋼板およびその製造方法は、例えば、特許文献1〜特許文献5で開示されている。しかし、そのような鋼板を得るためには、前述したように、低温保持時間を長くとることが必要であり、生産性が著しく低下するだけでなく、形状凍結性、めっき濡れ性およびめっき密着性にも問題がある。   The retained austenitic steel sheet containing a large amount of Si and a method for producing the same are disclosed in, for example, Patent Documents 1 to 5. However, in order to obtain such a steel sheet, as described above, it is necessary to take a long low temperature holding time, not only the productivity is remarkably lowered, but also the shape freezing property, plating wettability and plating adhesion. There is also a problem.

特許文献6では、SiおよびAlの含有量の少ないめっき密着性に優れた溶融亜鉛めっき鋼板とその製造方法が開示されており、その鋼板組織はベイナイトとフェライト、またはベイナイトとフェライトとマルテンサイトである。また、特許文献7では、Si含有量は少ないが、Alを0.07〜0.7%含有する鋼板およびその製造方法が開示されており、その鋼板組織はフェライトと、残留オーステナイトを含むマルテンサイトである。そのような鋼板は、形状凍結性とめっき密着性には優れるものの、延性が十分ではない。   Patent Document 6 discloses a hot-dip galvanized steel sheet having a low Si and Al content and excellent plating adhesion, and a manufacturing method thereof. The steel sheet structure is bainite and ferrite, or bainite, ferrite, and martensite. . Further, Patent Document 7 discloses a steel plate containing a small amount of Si but containing 0.07 to 0.7% of Al and a method for producing the same, and the steel plate structure is martensite containing ferrite and retained austenite. It is. Such a steel plate is excellent in shape freezing property and plating adhesion, but is not sufficiently ductile.

特許文献8には、Si含有量が少なく、Al含有量が多い残留オーステナイト型の鋼板が開示されているが、前述の通り、残留オーステナイト型鋼板は形状凍結性が悪いだけでなく、成分および製造条件(特に、低温保持時間と最終冷却条件)により特性が大きく変わるため好ましくない。   Patent Document 8 discloses a retained austenitic steel sheet having a low Si content and a high Al content. As described above, the retained austenitic steel sheet has not only poor shape freezing properties, but also components and production. This is not preferable because the characteristics vary greatly depending on conditions (particularly, low temperature holding time and final cooling conditions).

前記の残留オーステナイト型鋼とDP鋼の問題点を整理すると、以下のようになる。
〔残留オーステナイト型鋼〕
(イ)降伏比(YR)が高いため、形状凍結性が悪い。
(ロ)製造するに際し、オーステナイトを安定化させ、室温までオーステナイトを残留させるために低温保持時間を長時間とする必要があるので、めっき密着性と生産性が悪い。一方、残留オーステナイトのTRIP効果により延性が良好となる。これに対し、低温保持時間を短時間とすると、マルテンサイトが一部混在するようになり、TRIP効果が発現しにくくなって延性が低下する。
〔DP鋼〕
(イ)降伏比が低く、形状凍結性は優れるが、残留オーステナイト型鋼に比べて延性が劣る。
The problems of the retained austenitic steel and DP steel are summarized as follows.
[Residual austenitic steel]
(A) Since the yield ratio (YR) is high, the shape freezing property is poor.
(B) In manufacturing, it is necessary to make the low temperature holding time long in order to stabilize austenite and leave austenite to room temperature, so that the plating adhesion and productivity are poor. On the other hand, ductility is improved by the TRIP effect of retained austenite. On the other hand, when the low temperature holding time is set to a short time, a part of martensite is mixed, and the TRIP effect is hardly exhibited and the ductility is lowered.
[DP steel]
(A) The yield ratio is low and the shape freezing property is excellent, but the ductility is inferior to the retained austenitic steel.

以上述べたように、Si添加量が少なく、製造条件で低温保持時間が短くても、優れた形状凍結性とめっき密着性を有し、かつ、延性の優れた高張力溶融亜鉛めっき鋼板は実用化されていないのが現状であり、高張力鋼板の適用を推進する上で、これらの課題の解決が求められている。   As mentioned above, high-tensile hot-dip galvanized steel sheets with excellent shape freezing properties and plating adhesion and excellent ductility are practical even if the amount of Si added is small and the low-temperature holding time is short under manufacturing conditions. The current situation is that they have not been realized, and in order to promote the application of high-tensile steel sheets, there is a need to solve these problems.

特開平05−70886号公報Japanese Patent Laid-Open No. 05-70886 特開平06−145788号公報Japanese Patent Laid-Open No. 06-145788 特開平11−131145号公報Japanese Patent Laid-Open No. 11-131145 特開2001−140022号公報Japanese Patent Laid-Open No. 2001-140022 特開2001−303229号公報JP 2001-303229 A 特開平05−125485号公報JP 05-125485 A 特開2000−345288号公報JP 2000-345288 A 特開平05−247586号公報JP 05-247586 A

本発明はこのような状況に鑑みなされたもので、その目的は、形状凍結性、めっき密着性および延性に優れた、引張強さが450MPa以上の高張力合金化溶融亜鉛めっき鋼板、およびその製造方法を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is a high-tensile alloyed hot-dip galvanized steel sheet excellent in shape freezing property, plating adhesion and ductility and having a tensile strength of 450 MPa or more, and production thereof. It is to provide a method.

本発明者らは、上記問題点を解決するため、成分および焼鈍条件が鋼板の材質に及ぼす影響を詳細に調査した結果、以下の知見を得た。
(a)母材鋼板は、焼鈍処理後の低温保持時間が短くマルテンサイトが生成する場合には、残留オーステナイトが存在していても、TRIP効果を示しにくい。
In order to solve the above-mentioned problems, the present inventors have investigated in detail the influence of the components and annealing conditions on the material of the steel sheet, and as a result, have obtained the following knowledge.
(A) The base steel sheet is less likely to exhibit the TRIP effect even when residual austenite is present when martensite is generated after a low temperature retention time after annealing.

しかし、低温短時間保持中にベイナイト変態させ、さらに、SiとAlによるオーステナイトへのCの濃縮度とMn含有量とをバランスさせることにより、オーステナイトの安定度を調整し、オーステナイトの残留を抑制してCを多く含むマルテンサイト(以下、「高Cマルテンサイト」という)の生成を促進させることにより、フェライト+マルテンサイト組織鋼(DP鋼)よりも良好な延性を確保することができる。   However, bainite transformation is performed during low-temperature short-time holding, and furthermore, the stability of austenite is adjusted by balancing the concentration of C in austenite with Si and Al and the Mn content, thereby suppressing austenite residue. By promoting the formation of martensite containing a large amount of C (hereinafter referred to as “high C martensite”), it is possible to ensure better ductility than ferrite + martensitic steel (DP steel).

しかも、降伏比(YR)を低く抑えることができるので、形状凍結性も良好である。理想的な金属組織はフェライト+ベイナイト+高Cマルテンサイトである。この時、残留オーステナイトは少ない方がよい。
(b)高Cマルテンサイトの生成には、低温保持温度と低温保持時間、および、合金化処理後の冷却速度が重要である。
(c)Alは、Siと同様に酸化されやすい元素であるが、SiよりもAlの方がAc3変態点を上昇させるので、同じ焼鈍温度と焼鈍時間でもオーステナイトヘのC濃縮が進みやすい。そのため、焼鈍処理後の低温保持時間を短くすることができ、酸化物の生成を抑制することが可能となるので、めっき密着性の低下を回避することができる。Siを添加した場合は、低温保持を長時間行わねばならず、酸化物生成によるめっき密着性の劣化が起こる。
(d)形状凍結性および延性に優れるという母材特性と、めっき密着性とを同時に満たすためには、Alを積極的に添加するのがよい。
(e)前処理としてNiを鋼板表面に付着させると、めっき密着性は向上する。
Moreover, since the yield ratio (YR) can be kept low, the shape freezing property is also good. The ideal metal structure is ferrite + bainite + high C martensite. At this time, it is preferable that the retained austenite is small.
(B) For the production of high C martensite, the low temperature holding temperature and the low temperature holding time, and the cooling rate after the alloying treatment are important.
(C) Al is an element that is easily oxidized like Si, but Al raises the Ac 3 transformation point more than Si, so that C enrichment to austenite tends to proceed even at the same annealing temperature and annealing time. Therefore, the low-temperature holding time after the annealing treatment can be shortened and the generation of oxide can be suppressed, so that a decrease in plating adhesion can be avoided. When Si is added, it must be kept at a low temperature for a long time, resulting in deterioration of plating adhesion due to oxide formation.
(D) In order to satisfy the base material property of being excellent in shape freezing property and ductility and the plating adhesion simultaneously, it is preferable to positively add Al.
(E) When Ni is adhered to the steel sheet surface as a pretreatment, the plating adhesion is improved.

本発明は、上記知見に基づいて完成されたもので、その要旨は、下記(1)の高張力合金化溶融亜鉛めっき鋼板、および(2)のその鋼板の製造方法にある。
(1)質量%で、C:0.10〜0.30%、Si:0.2%以下、Mn:1.0〜3.0%およびAl:0.5〜2.0%を含有し、かつ、Si、AlおよびMnが下記(1)式を満足し、残部はFeおよび不純物からなり、不純物中のPが0.1%以下、Sが0.1%以下、Nが0.020%以下であり、さらに体積%でマルテンサイトを3〜50%含有する鋼板(母材鋼板)の上に、質量%で、Fe:7〜15%を含有する亜鉛合金めっき層を備える高張力合金化溶融亜鉛めっき鋼板。
The present invention has been completed based on the above findings, and the gist thereof is the following (1) high-tensile galvannealed steel sheet and (2) a method for producing the steel sheet.
(1) By mass%, C: 0.10 to 0.30%, Si: 0.2% or less, Mn: 1.0 to 3.0% and Al: 0.5 to 2.0% In addition, Si, Al and Mn satisfy the following formula (1), the balance is made of Fe and impurities, P in the impurities is 0.1% or less, S is 0.1% or less, and N is 0.020. % High-strength alloy comprising a zinc alloy plating layer containing Fe: 7 to 15% by mass on a steel plate (base material steel plate) containing 3 to 50% martensite by volume% Hot-dip galvanized steel sheet.

なお、(1)式におけるSi(%)、Al(%)およびMn(%)は、それぞれ前記母材鋼板のSi、AlおよびMnの含有量(質量%)を表す。   Si (%), Al (%), and Mn (%) in the formula (1) represent the contents (mass%) of Si, Al, and Mn in the base steel sheet, respectively.

2≦Si(%)+Al(%)+Mn(%)≦4 ・・・(1)
前記(1)に記載の母材鋼板は、さらに、質量%で、Ni:2.0%未満、Co:2.0%未満およびCu:1.0%未満(これらを「第1群の成分」という)のうちの何れか1種以上、Ti:0.1%未満、Nb:0.1%未満およびV:0.2%未満(これらを「第2群の成分」という)のうちの何れか1種以上、および、Mo:1.0%未満、Cr:1.0%未満およびB:0.01%未満(これらを「第3群の成分」という)のうちの何れか1種以上、の三つのグループの何れか一以上のグループに属する元素を含むものであってもよい。
2 ≦ Si (%) + Al (%) + Mn (%) ≦ 4 (1)
The base steel sheet described in (1) is further, in mass%, Ni: less than 2.0%, Co: less than 2.0% and Cu: less than 1.0% (these are “group 1 components”). 1) or more, Ti: less than 0.1%, Nb: less than 0.1% and V: less than 0.2% (these are referred to as “second group components”) Any one or more of Mo: less than 1.0%, Cr: less than 1.0% and B: less than 0.01% (these are referred to as “group 3 components”) An element belonging to any one or more of the above three groups may be included.

特に、前記(1)に記載の鋼板は、さらに上記第3群の成分のうちの何れか1種以上を含有した母材鋼板の上に、質量%で、Fe:7〜15%を含有する亜鉛合金めっき層を備える高張力合金化溶融亜鉛めっき鋼板とすることができる
(2)前記(1)に記載の化学組成を有する鋼板に、下記(A)〜(F)の処理を順次施す前記(1)に記載の高張力合金化溶融亜鉛めっき鋼板の製造方法。
(A)700〜900℃の二相共存温度域で30〜600秒焼鈍する処理
(B)3〜200℃/秒の冷却速度で350〜550℃の温度域まで冷却する処理
(C)前記温度域で10〜90秒間保持する処理
(D)溶融亜鉛めっき浴に浸漬する処理
(E)470〜600℃の温度域に5〜180秒間保持する処理
(F)4℃/秒以上の冷却速度で250℃以下まで冷却する処理
前記(A)の処理の前に、鋼板表面にNiを付着させる処理を施せば、めっき密着性が向上する。
In particular, the steel sheet according to (1) further includes Fe: 7 to 15% in mass% on the base steel sheet containing any one or more of the components of the third group. It can be set as the high tension alloying hot-dip galvanized steel plate provided with a zinc alloy plating layer.
(2) The method for producing a high-tensile galvannealed steel sheet according to (1), wherein the steel sheet having the chemical composition according to (1) is sequentially subjected to the following treatments (A) to (F).
(A) Treatment for annealing for 30 to 600 seconds in a two-phase coexistence temperature range of 700 to 900 ° C. (B) Treatment for cooling to a temperature range of 350 to 550 ° C. at a cooling rate of 3 to 200 ° C./second (C) The temperature Treatment for 10 to 90 seconds in region (D) Treatment for immersion in hot dip galvanizing bath (E) Treatment for 5 to 180 seconds in temperature range of 470 to 600 ° C. (F) Cooling rate of 4 ° C./second or more Treatment for cooling to 250 ° C. or lower If the treatment for adhering Ni to the steel sheet surface is performed before the treatment (A), the plating adhesion is improved.

本発明の高張力合金化溶融亜鉛めっき鋼板は、形状凍結性、めっき密着性および延性に優れるとともに、高い強度を有する鋼板であり、自動車、建築、電気機器等に用いられる部材として好適である。この合金化溶融亜鉛めっき鋼板は、本発明の方法により容易に製造することができる。
The high-tensile alloyed hot-dip galvanized steel sheet of the present invention is a steel sheet having excellent shape freezing property, plating adhesion and ductility and high strength, and is suitable as a member used in automobiles, architecture, electrical equipment and the like. This alloyed hot-dip galvanized steel sheet can be easily produced by the method of the present invention.

以下、本発明の高張力合金化溶融亜鉛めっき鋼板(上記(1)の発明)およびその製造方法(上記(2)の発明)について詳細に説明する。なお、母材鋼板の化学成分含有量の「%」、めっき皮膜中のFe含有量の「%」およびめっき浴中のAl濃度の「%」は、いずれも「質量%」を意味する。   Hereinafter, the high-tensile galvannealed steel sheet of the present invention (the invention of (1) above) and the manufacturing method thereof (the invention of (2) above) will be described in detail. Note that “%” of the chemical component content of the base steel sheet, “%” of the Fe content in the plating film, and “%” of the Al concentration in the plating bath all mean “mass%”.

本発明の高張力合金化溶融亜鉛めっき鋼板において、母材鋼板の化学組成を上記のように規定するのは以下の理由による。   In the high-tensile galvannealed steel sheet according to the present invention, the chemical composition of the base steel sheet is defined as described above for the following reason.

C:0.10〜0.30%
本発明の高張力合金化溶融亜鉛めっき鋼板の母材鋼板においては、Cを多く含むマルテンサイトを生成させることによって延性を高め、強度と延性のバランスをDP鋼よりも向上させる。そのため、Cは必須の元素である。Cの含有量は目標とする鋼板強度に応じて適宜定めればよいが、本発明が狙いとする450MPa以上の引張強さを達成し、かつ、DP鋼より延性を向上させるためには、0.10%以上含有させることが必要である。C含有量の上限は、良好なスポット溶接性を確保するために、0.30%とする。
C: 0.10 to 0.30%
In the base steel sheet of the high-tensile galvannealed steel sheet of the present invention, ductility is enhanced by generating martensite containing a large amount of C, and the balance between strength and ductility is improved as compared with DP steel. Therefore, C is an essential element. The content of C may be appropriately determined according to the target steel plate strength. To achieve the tensile strength of 450 MPa or more targeted by the present invention and to improve the ductility as compared with DP steel, the content of C is 0. It is necessary to contain 10% or more. The upper limit of the C content is 0.30% in order to ensure good spot weldability.

Si:0.2%以下
Siは、セメンタイトに固溶せず、セメンタイトの析出を抑制する。上述したように、低温保持中にセメンタイトが生成しにくいベイナイト変態を促進させ、オーステナイト中にCを濃縮させてオーステナイトの安定度を調整するために重要な元素である。しかし、Si含有量が増加すると低温保持を長時間行わねばならず、めっき密着性が低下するので、その含有量は0.2%以下とする。Si含有量の下限は、Si単独では規定せず、後述するように、AlおよびMnを含めた合計の含有量で規定する。
Si: 0.2% or less Si does not dissolve in cementite and suppresses precipitation of cementite. As described above, it is an important element for adjusting the stability of austenite by accelerating bainite transformation in which cementite is difficult to form during holding at a low temperature and concentrating C in austenite. However, if the Si content is increased, the low temperature must be maintained for a long time, and the plating adhesion is lowered. Therefore, the content is set to 0.2% or less. The lower limit of the Si content is not defined by Si alone, but is defined by the total content including Al and Mn, as will be described later.

Mn:1.0〜3.0%
Mnは、鋼板の強度を高めるだけでなく、オーステナイト生成元素で、オーステナイトの安定度に直接作用する重要な元素である。また、高温からの冷却中におけるパーライトの生成を抑制する効果も有している。これらの効果を得るためには、少なくとも1.0%含有させることが必要であり、その範囲内で、狙いとする母材鋼板の引張強さに応じてMn含有量を適宜調整すればよい。Mn含有量の上限は、コストおよび転炉での溶製の観点から3.0%とする。
Mn: 1.0-3.0%
Mn not only increases the strength of the steel sheet, but is an austenite-generating element and is an important element that directly affects the stability of austenite. It also has the effect of suppressing the formation of pearlite during cooling from high temperatures. In order to obtain these effects, it is necessary to contain at least 1.0%, and within that range, the Mn content may be appropriately adjusted according to the tensile strength of the target base steel sheet. The upper limit of the Mn content is 3.0% from the viewpoint of cost and melting in a converter.

Al:0.5〜2.0%
Alは、脱酸材としても用いられると同時に、Siと同じように、低温保持中にセメンタイトが生成しにくいベイナイト変態を促進させ、オーステナイト中にCを濃縮させてオーステナイトの安定度を調整するために重要な元素である。低温保持時間を短くできるため、Siを含有させる場合に比べ、めっきの密着性を高めることができることから、本発明ではAlを積極的に利用する。
Al: 0.5 to 2.0%
Al is also used as a deoxidizing material, and at the same time, like Si, promotes bainite transformation in which cementite is difficult to form during low temperature holding, and concentrates C in austenite to adjust the stability of austenite. It is an important element. Since the low-temperature holding time can be shortened, the adhesion of the plating can be improved as compared with the case of containing Si, and therefore Al is actively used in the present invention.

最終的に高Cのマルテンサイトを得るためには、Alを0.5%以上含有させる必要がある。ただし、過剰の添加はめっきの密着性および溶接性を悪化させるので、上限は、2.0%とする。   In order to finally obtain high-C martensite, it is necessary to contain 0.5% or more of Al. However, excessive addition deteriorates the adhesion and weldability of the plating, so the upper limit is made 2.0%.

2≦Si(%)+Al(%)+Mn(%)≦4(上記(1)式)
SiとAlによるオーステナイトへのCの濃縮度とMn含有量とをバランスさせることにより、オーステナイトの安定度を調整し、オーステナイトの残留を抑制して高Cのマルテンサイトの生成を促進することができる。
2 ≦ Si (%) + Al (%) + Mn (%) ≦ 4 (formula (1) above)
By balancing the concentration of C in austenite with Si and Al and the Mn content, the stability of austenite can be adjusted, the austenite residue can be suppressed, and the formation of high C martensite can be promoted. .

Si(%)+Al(%)+Mn(%)の値が2を下回る場合には、オーステナイトの安定度が低くなり、焼鈍処理時の高温からの冷却中および低温保持中にオーステナイトからパーライトが生成するか、またはオーステナイトがフェライトとセメンタイトに分解し、所望の組織が得られない。   When the value of Si (%) + Al (%) + Mn (%) is less than 2, the stability of austenite becomes low, and pearlite is generated from austenite during cooling from a high temperature during annealing and during holding at a low temperature. Or, austenite decomposes into ferrite and cementite, and a desired structure cannot be obtained.

一方、Si(%)+Al(%)+Mn(%)の値が4を上回る場合には、オーステナイトの安定度が高くなりすぎて、オーステナイトが残留し、マルテンサイト量が減少して所望量(体積%で、3〜50%)が得られなくなるため、延性が低下するだけでなく、YR(降伏比)が高くなって形状凍結性が劣化する。したがって、Si、AlおよびMnの含有量は、2≦Si(%)+Al(%)+Mn(%)≦4の関係を満たすように調整することが必要である。望ましくは、2.5≦Si(%)+Al(%)+Mn(%)≦3.5の関係を満たすように調整することである。   On the other hand, when the value of Si (%) + Al (%) + Mn (%) exceeds 4, the stability of austenite becomes too high, austenite remains, the amount of martensite decreases, and the desired amount (volume) 3% to 50%) cannot be obtained, so that not only ductility is lowered, but also YR (yield ratio) is increased and shape freezing property is deteriorated. Therefore, it is necessary to adjust the contents of Si, Al, and Mn so as to satisfy the relationship of 2 ≦ Si (%) + Al (%) + Mn (%) ≦ 4. Desirably, adjustment is made so as to satisfy the relationship of 2.5 ≦ Si (%) + Al (%) + Mn (%) ≦ 3.5.

本発明の高張力合金化溶融亜鉛めっき鋼板の母材鋼板は、上述した成分以外、残部がFeと不純物からなるものである。不純物としては、P、SおよびNの上限を抑えることが必要である。   The base steel sheet of the high-tensile galvannealed steel sheet of the present invention is composed of Fe and impurities in the balance other than the components described above. As impurities, it is necessary to suppress the upper limit of P, S and N.

P:0.1%以下
Pは、不純物として鋼中に不可避的に含まれる元素であって、できるだけ低い方が望ましい。特に、0.1%を超えて含まれると鋼板の延性劣化が顕著になることから、P含有量は0.1%以下とする。
P: 0.1% or less P is an element inevitably contained in steel as an impurity, and is preferably as low as possible. In particular, if the content exceeds 0.1%, ductility deterioration of the steel sheet becomes remarkable, so the P content is set to 0.1% or less.

S:0.1%以下
Sも不純物として綱中に不可避的に含有される元素であって、やはり低い方が望ましい。特に、0.1%を超えて含まれると、MnSの析出が顕著になり、鋼板の延性が阻害されるのみならず、オーステナイトの安定化元素として添加されるMnがMnSとして消費されるので、S含有量は0.1%以下とする。
S: 0.1% or less S is an element unavoidably contained in the steel as an impurity, and the lower one is desirable. In particular, if it exceeds 0.1%, precipitation of MnS becomes prominent, and not only the ductility of the steel sheet is inhibited, but also Mn added as an austenite stabilizing element is consumed as MnS. The S content is 0.1% or less.

N:0.020%以下
Nも不純物として綱中に不可避的に含有される元素であり、その含有量は低い方が望ましい。N含有量が0.020%を超えると、AlNとして消費されるAlの量が多く、Alの効果が減殺されるばかりでなく、AlNによる延性の劣化が顕著になるので、N含有量の上限は0.020%とする。
N: 0.020% or less N is an element that is unavoidably contained in the rope as an impurity, and its content is preferably low. If the N content exceeds 0.020%, the amount of Al consumed as AlN is large, not only the effect of Al is diminished, but also the ductility deterioration due to AlN becomes significant, so the upper limit of the N content Is 0.020%.

上記(1)の高張力合金化溶融亜鉛めっき鋼板の母材鋼板は、さらに、前記第1群の成分(Ni:2.0%未満、Co:2.0%未満およびCu:1.0%未満)のうちの何れか1種以上、前記第2群の成分(Ti:0.1%未満、Nb:0.1%未満およびV:0.2%未満)のうちの何れか1種以上、および、前記第3群の成分(Mo:1.0%未満、Cr:1.0%未満およびB:0.01%未満)のうちの何れか1種以上、の三つのグループの何れか一以上のグループに属する元素を含むものであってもよい。これらの成分の作用効果と含有量の適正範囲は下記のとおりである。   The base steel plate of the high-tensile alloyed hot-dip galvanized steel plate (1) further includes the components of the first group (Ni: less than 2.0%, Co: less than 2.0% and Cu: 1.0% Any one or more of the components of the second group (Ti: less than 0.1%, Nb: less than 0.1% and V: less than 0.2%). And any one of the three groups of the third group (Mo: less than 1.0%, Cr: less than 1.0% and B: less than 0.01%) It may contain an element belonging to one or more groups. Appropriate ranges for the effects and contents of these components are as follows.

Ni:2.0%未満、Co:2.0%未満およびCu:1.0%未満
Ni、CoおよびCuは、Mnと同じように、オーステナイト生成元素であると同時に、鋼板の強度を向上させる元素である。また、いずれもFeよりも酸化されにくいので、鋼板表面に濃化し、SiやAlの酸化によるめっき密着性の低下を防止する効果を有するので、必要に応じて添加してもよい。
Ni: Less than 2.0%, Co: Less than 2.0% and Cu: Less than 1.0% Ni, Co and Cu are austenite-generating elements and, at the same time, improve the strength of the steel sheet, like Mn. It is an element. Moreover, since all are less oxidized than Fe, it has the effect of concentrating on the steel plate surface and preventing the deterioration of the plating adhesion due to oxidation of Si or Al, so it may be added as necessary.

これらを添加する場合には、過剰の添加はコストの上昇を招くので、Ni、Coについては、含有量は、それぞれ2.0%未満とする。Cuについては、熱間割れの防止の観点から、1.0%未満とする。含有量の下限は特に定めないが、添加による顕著な効果を得るためには、Ni、CoおよびCuの何れについても0.1%以上含有させるのが望ましい。   When these are added, excessive addition leads to an increase in cost, so the contents of Ni and Co are each less than 2.0%. Cu is made less than 1.0% from the viewpoint of preventing hot cracking. The lower limit of the content is not particularly defined, but in order to obtain a remarkable effect due to the addition, it is desirable to contain at least 0.1% of Ni, Co and Cu.

Ti:0.1%未満、Nb:0.1%未満およびV:0.2%未満
Ti、NbおよびVは、鋼板の強度を向上させるだけでなく、亜鉛めっきの合金化処理を行う場合には、合金化速度を向上させる有効な元素であり、必要に応じて添加してもよい。添加する場合、過剰の添加は延性の劣化をもたらすだけでなく、降伏比(YR)も上昇させ、形状凍結性を劣化させるので、Ti、Nbについては、その含有量は、それぞれ0.1%未満とする。Vについては、Ti、Nbと比較して添加の効果が小さいので、その含有量は0.2%未満とする。含有量の下限は特に定めないが、添加による顕著な効果を得るためには、Ti、Nbについては、それぞれ0.005%以上、Vについては0.01%以上含有させるのが望ましい。
Ti: less than 0.1%, Nb: less than 0.1% and V: less than 0.2% Ti, Nb, and V not only improve the strength of the steel sheet, but also when galvanizing alloying treatment is performed Is an effective element for improving the alloying speed, and may be added as necessary. When added, excessive addition not only causes deterioration of ductility, but also increases the yield ratio (YR) and degrades the shape freezeability, so the content of Ti and Nb is 0.1% each. Less than. About V, since the effect of addition is small compared with Ti and Nb, the content is made less than 0.2%. The lower limit of the content is not particularly defined, but in order to obtain a remarkable effect by addition, it is desirable to contain Ti and Nb in an amount of 0.005% or more and V in an amount of 0.01% or more, respectively.

Mo:1.0%未満、Cr:1.0%未満およびB:0.01%未満
Mo、CrおよびBは、焼鈍処理時の高温からの冷却中におけるパーライトの生成を抑制し、マルテンサイトの生成を促進する有効な元素であり、必要に応じて添加してもよい。添加する場合には、MoおよびCrについては1.0%以上、Bについては0.01%以上添加してもその効果が飽和するだけでなく、コスト高になるので、その含有量は、MoおよびCrについてはそれぞれ1.0%未満、Bについては0.01%未満とする。
Mo: less than 1.0%, Cr: less than 1.0% and B: less than 0.01% Mo, Cr and B suppress the formation of pearlite during cooling from a high temperature during the annealing treatment. It is an effective element that promotes formation, and may be added as necessary. In the case of adding Mo and Cr, 1.0% or more is added, and if B is added 0.01% or more, the effect is not only saturated but also the cost is increased. And Cr are each less than 1.0%, and B is less than 0.01%.

これらの含有量の下限は特に定めないが、添加による顕著な効果を得るためには、Mo、Crについては、それぞれ0.1%以上含有させ、Bについては0.0005%以上含有させるのが望ましい。   Although the lower limit of these contents is not particularly defined, in order to obtain a remarkable effect by addition, Mo and Cr are each contained in an amount of 0.1% or more, and B is contained in an amount of 0.0005% or more. desirable.

本発明の高張力合金化溶融亜鉛めっき鋼板の母材鋼板は、さらに、体積%でマルテンサイトを3〜50%含有するものとする。形状凍結性と延性の双方を同時に満足するためには、高Cマルテンサイトが母材中に存在することが重要であり、そのためには、体積%でマルテンサイトが3%以上含まれることが必要である。しかし、含有量が50%を超えると、強度が高くなりすぎ、延性が劣化するばかりか、高Cマルテンサイトが少なくなる。マルテンサイトの望ましい含有量は、5〜35%である。   The base steel sheet of the high-tensile galvannealed steel sheet of the present invention further contains 3 to 50% martensite by volume%. In order to satisfy both shape freezing property and ductility at the same time, it is important that high C martensite is present in the base material, and for that purpose, it is necessary to contain 3% or more of martensite by volume%. It is. However, if the content exceeds 50%, the strength becomes too high, ductility deteriorates, and high C martensite decreases. A desirable content of martensite is 5 to 35%.

なお、ここでいうマルテンサイトの含有量(存在量)は、4%ピクリン酸エチルアルコール溶液と、1%ピロ亜硫酸ナトリウム水溶液とによるレペラ法により着色エッチングを行い、光学顕微鏡観察によって体積率を測定することにより求めた値である。   The martensite content (abundance) mentioned here is measured by volume etching by observation with an optical microscope by performing color etching with a 4% picric acid ethyl alcohol solution and a 1% aqueous sodium pyrosulfite aqueous solution. It is the value calculated | required by this.

本発明の高張力合金化溶融亜鉛めっき鋼板は、上記の鋼板の上に7〜15%のFeを含有する亜鉛合金めっき層を備える鋼板である。めっき層中のFeの含有量を前記の範囲に規定するのは、Fe含有量が15%を超えるとめっき密着性や加工性の確保が困難になり、また、7%に満たない場合は良好なスポット溶接性が確保できなくなるからである。   The high-tensile galvannealed steel sheet of the present invention is a steel sheet provided with a zinc alloy plating layer containing 7 to 15% Fe on the above steel sheet. The content of Fe in the plating layer is regulated within the above range. When the Fe content exceeds 15%, it becomes difficult to ensure plating adhesion and workability, and when the content is less than 7%, it is good. This is because it is impossible to ensure a good spot weldability.

次に、本発明の高張力合金化溶融亜鉛めっき鋼板の製造方法(上記(2)の発明)について説明する。   Next, a method for producing the high-tensile galvannealed steel sheet of the present invention (the invention of (2) above) will be described.

まず、母材鋼板としては、上記の化学組成を有する冷間圧延鋼板(冷延鋼板)を用いる。この鋼板を得るための熱間圧延、冷間圧延は公知の方法で行えばよいが、母材の粒径が大きくなりすぎたり、小さくなりすぎると母材鋼板としての所望の特性が得られないので、熱間圧延工程における巻取り温度は700℃以下、冷延率は40〜80%の範囲内にするのが望ましい。   First, as a base material steel plate, a cold-rolled steel plate (cold rolled steel plate) having the above chemical composition is used. Hot rolling and cold rolling for obtaining this steel plate may be performed by a known method, but if the particle size of the base material becomes too large or too small, desired properties as the base material steel plate cannot be obtained. Therefore, it is desirable that the coiling temperature in the hot rolling process is 700 ° C. or lower and the cold rolling rate is in the range of 40 to 80%.

この母材鋼板に、その表面を溶融めっきに適する状態にするために、アルカリ水溶液での洗浄や、ナイロンブラシ等での表面研削等、公知の方法で前処理を施す。   In order to make the surface of the base steel plate suitable for hot dipping, a pretreatment is performed by a known method such as washing with an alkaline aqueous solution or surface grinding with a nylon brush or the like.

この前処理時において、鋼板表面にNiを付着させる処理を施せば、めっき密着性が著しく向上する。この場合、鋼板表面へのNiの付着量は、経済性の観点から、1g/m2以下とするのが望ましい。 If a treatment for adhering Ni to the steel sheet surface is performed at the time of this pretreatment, the plating adhesion is remarkably improved. In this case, the adhesion amount of Ni to the steel sheet surface is desirably 1 g / m 2 or less from the viewpoint of economy.

続いて、母材鋼板を700〜900℃の二相(フェライト相+オーステナイト相)共存温度域に加熱して、30〜600秒間焼鈍する(上記(A)の処理)。この焼鈍処理は、通常、還元性雰囲気中で行う。   Subsequently, the base steel sheet is heated to a temperature range in which two phases (ferrite phase + austenite phase) coexist at 700 to 900 ° C. and annealed for 30 to 600 seconds (the treatment (A) above). This annealing treatment is usually performed in a reducing atmosphere.

還元性雰囲気としては、水素を5〜30体積%含有し、残部が窒素からなり、露点が−60〜0℃の範囲にあるガス雰囲気が好適である。なお、材料特性を向上させるために、冷間圧延後に、連続焼鈍ラインまたはバッチ式焼鈍により予備焼鈍を施してもよい。   As the reducing atmosphere, a gas atmosphere containing 5 to 30% by volume of hydrogen, the balance being nitrogen, and a dew point in the range of −60 to 0 ° C. is preferable. In addition, in order to improve a material characteristic, you may perform a pre-annealing by a continuous annealing line or batch type annealing after cold rolling.

前記の焼鈍処理において、焼鈍温度が700℃未満であったり、焼鈍時間が30秒未満であったりすると、再結晶が起こりにくく、かつセメンタイトが固溶しないため、鋼板の特性が劣化する。   In the annealing treatment, if the annealing temperature is less than 700 ° C. or the annealing time is less than 30 seconds, recrystallization hardly occurs and cementite does not dissolve, so the properties of the steel sheet deteriorate.

一方、焼鈍温度が900℃を超えると、結晶粒が粗大化するだけでなく、焼鈍中のオーステナイトの体積率が増大し、最終的に生成するマルテンサイト中のC含有量が低くなるだけでなく、炉温の上昇による製造コストの増大が避けられない。また、焼鈍時間が600秒を超える場合には、結晶粒が粗大化するほか、ライン速度が低下し、生産性が低下するので、好ましくない。   On the other hand, when the annealing temperature exceeds 900 ° C., not only the crystal grains become coarse, but also the volume fraction of austenite during annealing increases, and not only the C content in the martensite to be finally produced decreases. In addition, an increase in manufacturing cost due to an increase in furnace temperature is inevitable. In addition, if the annealing time exceeds 600 seconds, the crystal grains become coarse, the line speed decreases, and the productivity decreases, which is not preferable.

焼鈍処理後の母材鋼板を、めっき浴温近傍の350〜550℃の温度域(すなわち、低温保持温度域)まで3〜200℃/秒の冷却速度で冷却し(上記(B)の処理)、その温度域で10〜90秒間保持(低温保持)する(上記(C)の処理)。   The base steel sheet after the annealing treatment is cooled at a cooling rate of 3 to 200 ° C./second to a temperature range of 350 to 550 ° C. (that is, a low temperature holding temperature range) near the plating bath temperature (the treatment of (B) above). , Hold for 10 to 90 seconds (low temperature hold) in that temperature range (process (C) above).

焼鈍処理後の冷却速度が3℃/秒より低い場合には、冷却中にオーステナイトからパーライトまたはセメンタイトが生成し、所望の金属組織が得られない。冷却速度が200℃/秒より速い場合には、冷却速度の制御が困難になり、均一な組織が得られない。   When the cooling rate after the annealing treatment is lower than 3 ° C./second, pearlite or cementite is generated from austenite during cooling, and a desired metal structure cannot be obtained. When the cooling rate is faster than 200 ° C./second, it becomes difficult to control the cooling rate, and a uniform structure cannot be obtained.

低温保持温度が350℃未満では、焼鈍後の冷却中に低Cのマルテンサイトが生成し、低温保持温度が550℃より高い場合には、ベイナイト変態が起こらず、オーステナイトがパーライトに変態するため、所望の材料特性が得られない。   When the low temperature holding temperature is less than 350 ° C., low C martensite is generated during cooling after annealing, and when the low temperature holding temperature is higher than 550 ° C., bainite transformation does not occur and austenite is transformed into pearlite. Desired material properties cannot be obtained.

低温保持時間が10秒未満の場合には、ベイナイト変態が起こらず、オーステナイトへのCの濃縮が進まないため、低Cのマルテンサイトとなり、延性が低下する。低温保持時間が90秒を超える場合には、先に述べたように、生産性が低下するだけでなく、酸化物の生成によるめっき密着性の劣化を招くほか、本発明の理想組織である高Cマルテンサイトの生成が抑制されて、延性の低下と形状凍結性不良を招く。   When the low temperature holding time is less than 10 seconds, the bainite transformation does not occur and the concentration of C into austenite does not proceed, so that it becomes low C martensite and ductility decreases. When the low temperature holding time exceeds 90 seconds, as described above, not only the productivity is lowered, but also the plating adhesion due to the generation of oxide is deteriorated, and the high structure which is an ideal structure of the present invention. The formation of C martensite is suppressed, leading to a reduction in ductility and poor shape freezeability.

前記所定の低温保持を行った後の母材鋼板を溶融亜鉛めっき浴に浸漬する処理を行って、鋼板表面に亜鉛めっき層を形成させる(上記(D)の処理)。   The base steel plate after the predetermined low-temperature holding is performed is immersed in a hot dip galvanizing bath to form a galvanized layer on the surface of the steel plate (processing (D) above).

めっき浴温度は、めっき付着量の調整を容易にするために430℃以上とし、Znの蒸発を避けてめっき浴の維持を容易にするために550℃以下とする。めっき浴から引き上げた後のめっき付着量の調整は、気体絞り法等、通常用いられている方法により行えばよい。   The plating bath temperature is set to 430 ° C. or more for easy adjustment of the plating adhesion amount, and 550 ° C. or less for avoiding evaporation of Zn and facilitating maintenance of the plating bath. The adjustment of the plating adhesion amount after lifting from the plating bath may be performed by a commonly used method such as a gas drawing method.

その後、470〜600℃の温度域に5〜180秒間保持する合金化処理を行った後(上記(E)の処理)、250℃以下の温度に4℃/秒以上の冷却速度で冷却する(上記(F)の処理)。   Then, after performing the alloying process hold | maintained for 5 to 180 second in the temperature range of 470-600 degreeC (process of said (E)), it cools to the temperature of 250 degrees C or less with the cooling rate of 4 degrees C / second or more ( Process (F) above).

合金化処理温度が470℃未満では、合金化が起こらず、600℃を超えると、オーステナイトがセメンタイトとフェライトに分解して特性が劣化する。   When the alloying treatment temperature is less than 470 ° C., alloying does not occur. When the alloying treatment temperature exceeds 600 ° C., austenite is decomposed into cementite and ferrite and the characteristics are deteriorated.

合金化処理時間が5秒未満では、合金化が起こらず、めっき密着性が劣化する。一方、合金化処理時間が180秒を超えると、オーステナイトがセメンタイトとフェライトに分解して特性が劣化するだけでなく、前記の低温保持時間が規定範囲を超えた場合と同様、ライン速度が低下し、生産性が低下する。   If the alloying treatment time is less than 5 seconds, alloying does not occur and plating adhesion deteriorates. On the other hand, if the alloying treatment time exceeds 180 seconds, not only austenite decomposes into cementite and ferrite and the characteristics deteriorate, but also the line speed decreases as in the case where the low temperature holding time exceeds the specified range. , Productivity decreases.

合金化処理後の冷却速度が4℃/秒未満では、冷却中にマルテンサイトが生成しにくく、ベイナイトまたはフェライトとセメンタイトが生成する。そのため、合金化処理後の冷却速度は4℃/秒以上とする。この冷却は、窒素および工業用ガス(空気)を用いて行う。さらに通常のミスト冷却を行ってもよい。   When the cooling rate after alloying is less than 4 ° C./second, martensite is hardly generated during cooling, and bainite or ferrite and cementite are generated. Therefore, the cooling rate after the alloying treatment is set to 4 ° C./second or more. This cooling is performed using nitrogen and industrial gas (air). Furthermore, normal mist cooling may be performed.

上記本発明の高張力合金化溶融亜鉛めっき鋼板は、高い強度を有し、形状凍結性および延性が良好で、めっき密着性にも優れているので、家電製品、建材、自動車車体用などの素材として好適である。特に、建築分野で鋼板を塗装して使用する場合等において、本発明の高張力合金化溶融亜鉛めっき鋼板は優れた性能および経済性を発揮することができる。   The high-tensile alloyed hot-dip galvanized steel sheet of the present invention has high strength, good shape freezing and ductility, and excellent plating adhesion, so that it is a material for home appliances, building materials, automobile bodies, etc. It is suitable as. In particular, when the steel sheet is coated and used in the construction field, the high-tensile galvannealed steel sheet of the present invention can exhibit excellent performance and economy.

表1に示す鋼種を真空溶解炉で溶製し、鍛造を施した鋳塊(厚さ:20mm)を仕上げ温度850℃で板厚4.0mmまで熱間圧延した。その後、650℃で30分間保持し、20℃/hの冷却速度で室温まで炉冷した。この熱延鋼板を酸洗し、冷間圧延を施して板厚1.2mmの溶融亜鉛めっき用冷延鋼板を得た。   The steel types shown in Table 1 were melted in a vacuum melting furnace, and a forged ingot (thickness: 20 mm) was hot-rolled to a plate thickness of 4.0 mm at a finishing temperature of 850 ° C. Then, it hold | maintained at 650 degreeC for 30 minutes, and furnace-cooled to room temperature with the cooling rate of 20 degreeC / h. The hot-rolled steel sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet for hot dip galvanizing with a thickness of 1.2 mm.

Figure 0004975406
Figure 0004975406

この冷延鋼板を母材鋼板として、これに縦型溶融めっきシミュレータを用いて、めっき付着量が60mg/m2になるように溶融亜鉛めっきを施し、その後、ソルトバスを用いて合金化処理を施し、種々の合金化溶融亜鉛めっき鋼板を作製した。 This cold-rolled steel sheet is used as a base steel sheet, and this is hot-dip galvanized using a vertical hot-dip plating simulator so that the coating amount is 60 mg / m 2 , and then alloyed using a salt bath. And various alloyed hot-dip galvanized steel sheets were prepared.

溶融亜鉛めっきの各工程における条件を表2に示す。表2において、「還元焼鈍処理」の欄の冷却速度(すなわち、還元焼鈍処理後の冷却速度)を「冷却速度CR1」と、「合金化処理」の欄の冷却速度を「冷却速度CR2」と記す。   Table 2 shows the conditions in each step of hot dip galvanizing. In Table 2, the cooling rate (that is, the cooling rate after the reduction annealing treatment) in the “reduction annealing treatment” column is “cooling rate CR1”, and the cooling rate in the “alloying treatment” column is “cooling rate CR2”. I write.

Figure 0004975406
Figure 0004975406

これらの合金化溶融亜鉛めっき鋼板について、マルテンサイトの体積率を求め、引張試験を行って、引張強さ(TS)、伸び(El)を測定し、また、形状凍結性およびめっき密着性を調査した。マルテンサイトの体積率は、先に述べた方法により求めた。   About these alloyed hot-dip galvanized steel sheets, the volume fraction of martensite is obtained, tensile tests are performed, tensile strength (TS) and elongation (El) are measured, and shape freezeability and plating adhesion are investigated. did. The volume ratio of martensite was determined by the method described above.

形状凍結性の調査では、下記の試験条件でハット型成形試験を行い、パンチ肩部のスプリングバック量(角度)を測定した。
〔試験条件〕
サンプルサイズ:幅50mm×長さ250mm
パンチ肩部半径:10mm
ダイス肩部半径:10mm
パンチ幅 :50mm
成形高さ :60mm
成形速度 :60mm/min
めっき密着性の調査は、前記の形状凍結性の調査後のサンプルのダイス肩部外側でテープ剥離試験を行い、剥離したテープをルーペにより観察し、下記の判断基準で評価した。
◎印:めっき剥離が認められず、極めて良好
○印:若干のめっき剥離が認められるが、めっき密着性に問題なく、良好
×印:多量の剥離が認められ、不良
調査結果を表3に示す。なお、表2に示した溶融亜鉛めっき条件のうちの変化させた条件(還元焼鈍温度および冷却速度CR1、低温保持温度および時間、合金化処理後の冷却速度CR2)も、表3に併せて示した。
In the investigation of the shape freezing property, a hat mold test was performed under the following test conditions, and the spring back amount (angle) of the punch shoulder was measured.
〔Test conditions〕
Sample size: width 50mm x length 250mm
Punch shoulder radius: 10mm
Die shoulder radius: 10mm
Punch width: 50mm
Molding height: 60mm
Molding speed: 60 mm / min
The plating adhesion was examined by performing a tape peeling test on the outside of the die shoulder portion of the sample after the above-described shape freezing investigation, observing the peeled tape with a magnifying glass, and evaluating the following criteria.
◎ mark: Plating peeling is not observed, very good ○ mark: Slight plating peeling is observed, but there is no problem in plating adhesion, good X mark: a large amount of peeling is observed, and the defect investigation results are shown in Table 3 . In addition, changed conditions (reduction annealing temperature and cooling rate CR1, low temperature holding temperature and time, cooling rate CR2 after alloying treatment) among the hot dip galvanizing conditions shown in Table 2 are also shown in Table 3. It was.

Figure 0004975406
Figure 0004975406

表3に示したように、本発明の合金化溶融亜鉛めっき鋼板は、強度が高く、延性も良好で、強度・延性バランスの指標としての「TS(引張強さ)×El(伸び)」が高い値を示している。本発明の合金化溶融亜鉛めっき鋼板は、形状凍結性も良好で、めっき密着性にも優れている。また、めっき前処理で鋼板表面にNiを付着させた本発明例のNo.4および14では、めっき密着性の向上が認められた。   As shown in Table 3, the galvannealed steel sheet of the present invention has high strength, good ductility, and “TS (tensile strength) × El (elongation)” as an index of strength / ductility balance. It shows a high value. The alloyed hot-dip galvanized steel sheet of the present invention has good shape freezing properties and excellent plating adhesion. Moreover, No. of the example of this invention which made Ni adhere to the steel plate surface by plating pretreatment. In 4 and 14, an improvement in plating adhesion was observed.

これに対し、母材鋼板のSi含有量を本発明の規定(0.2%以下)を超えて0.63%、1.00%とした比較例のNo.22、23では、引張特性は優れているが、Siの酸化物が鋼板表面に濃化しているため、めっき密着性が不良であった。   On the other hand, No. of the comparative example which made Si content of base-material steel plate 0.63% and 1.00% exceeding the prescription | regulation (0.2% or less) of this invention. In Nos. 22 and 23, the tensile properties were excellent, but the plating adhesion was poor because the oxide of Si was concentrated on the steel sheet surface.

焼鈍温度を本発明の規定(700〜900℃)より低い650℃とした比較例のNo.9では、再結晶および変態が起こらず、引張特性が劣化しただけでなく、形状凍結性も悪かった。   No. of the comparative example which made annealing temperature 650 degreeC lower than prescription | regulation (700-900 degreeC) of this invention. In No. 9, recrystallization and transformation did not occur, the tensile properties were deteriorated, and the shape freezing property was also poor.

焼鈍処理後の冷却速度CR1を本発明の規定(3〜200℃/s)より低い1℃/sとした比較例のNo.6、および低温保持温度を本発明の規定(350〜550℃)より高い650℃とした比較例のNo.2では、冷却中または低温保持中にパーライト変態が起こり、引張特性が劣化した。   In Comparative Example No. 1, the cooling rate CR1 after the annealing treatment was set to 1 ° C./s, which was lower than the regulation (3-200 ° C./s) of the present invention. No. 6 and Comparative Example No. 1 in which the low-temperature holding temperature was set to 650 ° C. higher than the provision of the present invention (350-550 ° C.). In No. 2, pearlite transformation occurred during cooling or holding at low temperature, and tensile properties deteriorated.

低温保持時間を本発明の規定(10〜90秒)より短い1秒とした比較例のNo.12では、低温保持中のベイナイト変態がほとんど起こらず、オーステナイトのほとんどがマルテンサイト変態を起こし、引張特性が劣化した。   In Comparative Example No. 1 in which the low-temperature holding time was 1 second shorter than the regulation of the present invention (10 to 90 seconds). In No. 12, bainite transformation hardly occurred during holding at low temperature, and most of the austenite caused martensitic transformation, and the tensile properties deteriorated.

合金化処理後の冷却速度CR2を本発明の規定(4℃/s以上)より低い1℃/sとした比較例のNo.15では、冷却中にオーステナイトがフェライトとセメンタイトに分解し、マルテンサイトが生成せず、引張特性が劣化した。   In the comparative example, the cooling rate CR2 after the alloying treatment was set to 1 ° C./s lower than the regulation of the present invention (4 ° C./s or more). In No. 15, austenite decomposed into ferrite and cementite during cooling, martensite was not generated, and tensile properties deteriorated.

本発明の高張力合金化溶融亜鉛めっき鋼板は、形状凍結性、めっき密着性および延性に優れるとともに、引張強さが450MPa以上の高い強度を有する鋼板であり、自動車、建築、電気機器等に用いられる部材として好適である。この合金化溶融亜鉛めっき鋼板は、本発明の方法により容易に製造することができる。これにより、自動車用等として最適なめっき鋼板およびその製造方法として、広く利用することができる。
The high-tensile alloyed hot-dip galvanized steel sheet of the present invention is a steel sheet having excellent shape freezing property, plating adhesion and ductility, and a high strength with a tensile strength of 450 MPa or more, and is used for automobiles, architecture, electrical equipment, etc. It is suitable as a member to be used. This alloyed hot-dip galvanized steel sheet can be easily produced by the method of the present invention. Thereby, it can utilize widely as an optimal plated steel plate for automobiles etc., and its manufacturing method.

Claims (4)

質量%で、C:0.10〜0.30%、Si:0.2%以下、Mn:1.0〜3.0%およびAl:0.5〜2.0%を含有し、かつ、Si、AlおよびMnが下記(1)式を満足し、残部はFeおよび不純物からなり、不純物中のPが0.1%以下、Sが0.1%以下、Nが0.020%以下であり、さらに体積%でマルテンサイトを3〜50%含有する鋼板の上に、質量%で、Fe:7〜15%を含有する亜鉛合金めっき層を備えることを特徴とする高張力合金化溶融亜鉛めっき鋼板。
2≦Si(%)+Al(%)+Mn(%)≦4 ・・・(1)
Containing, by mass%, C: 0.10 to 0.30%, Si: 0.2% or less, Mn: 1.0 to 3.0% and Al: 0.5 to 2.0%, and Si, Al, and Mn satisfy the following formula (1), the balance is Fe and impurities, P in the impurities is 0.1% or less, S is 0.1% or less, and N is 0.020% or less. Further, a high-strength alloyed molten zinc comprising a zinc alloy plating layer containing Fe: 7 to 15% by mass% on a steel sheet containing 3 to 50% martensite by volume% Plated steel sheet.
2 ≦ Si (%) + Al (%) + Mn (%) ≦ 4 (1)
請求項1に記載の成分に加えて、さらに、質量%で、Mo:1.0%未満、Cr:1.0%未満およびB:0.01%未満のうちの何れか1種以上を含有し、かつ、Si、AlおよびMnが下記(1)式を満足し、残部はFeおよび不純物からなり、不純物中のPが0.1%以下、Sが0.1%以下、Nが0.020%以下であり、さらに体積%でマルテンサイトを5〜50%含有する鋼板の上に、質量%で、Fe:7〜15%を含有する亜鉛合金めっき層を備えることを特徴とする高張力合金化溶融亜鉛めっき鋼板。
2≦Si(%)+Al(%)+Mn(%)≦4 ・・・(1)
In addition to the component according to claim 1, the composition further contains at least one of Mo: less than 1.0%, Cr: less than 1.0%, and B: less than 0.01% by mass%. In addition, Si, Al and Mn satisfy the following formula (1), the balance is composed of Fe and impurities, P in the impurities is 0.1% or less, S is 0.1% or less, and N is 0.00. A high tension characterized by comprising a zinc alloy plating layer containing Fe: 7-15% in mass% on a steel sheet containing -20% or less and further containing 5-50% martensite in volume%. Alloyed hot-dip galvanized steel sheet.
2 ≦ Si (%) + Al (%) + Mn (%) ≦ 4 (1)
請求項1または2に記載の化学組成を有する鋼板に、下記(A)〜(F)の処理を順次施すことを特徴とする請求項1または2に記載の高張力合金化溶融亜鉛めっき鋼板の製造方法。
(A)700〜900℃の二相共存温度域で30〜600秒間焼鈍する処理
(B)3〜200℃/秒の冷却速度で350〜550℃の温度域まで冷却する処理
(C)前記温度域で10〜90秒間保持する処理
(D)溶融亜鉛めっき浴に浸漬する処理
(E)470〜600℃の温度域に5〜180秒間保持する処理
(F)4℃/秒以上の冷却速度で250℃以下まで冷却する処理
The steel sheet having the chemical composition according to claim 1 or 2 is subjected to the following treatments (A) to (F) in sequence: The high-tensile galvannealed steel sheet according to claim 1 or 2 Production method.
(A) Treatment for annealing in a two-phase coexistence temperature range of 700 to 900 ° C. for 30 to 600 seconds (B) Treatment for cooling to a temperature range of 350 to 550 ° C. at a cooling rate of 3 to 200 ° C./second (C) The temperature Treatment for 10 to 90 seconds in region (D) Treatment for immersion in hot dip galvanizing bath (E) Treatment for 5 to 180 seconds in temperature range of 470 to 600 ° C. (F) Cooling rate of 4 ° C./second or more Cooling to 250 ° C or lower
前記(A)の処理の前に、鋼板表面にNiを付着させることを特徴とする請求項3に記載の高張力合金化溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-tensile galvannealed steel sheet according to claim 3, wherein Ni is adhered to the surface of the steel sheet before the treatment (A).
JP2006271050A 2006-10-02 2006-10-02 High-strength galvannealed steel sheet and method for producing the same Expired - Fee Related JP4975406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271050A JP4975406B2 (en) 2006-10-02 2006-10-02 High-strength galvannealed steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271050A JP4975406B2 (en) 2006-10-02 2006-10-02 High-strength galvannealed steel sheet and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002278521A Division JP4000974B2 (en) 2002-09-25 2002-09-25 High tensile alloyed hot dip galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007070732A JP2007070732A (en) 2007-03-22
JP4975406B2 true JP4975406B2 (en) 2012-07-11

Family

ID=37932439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271050A Expired - Fee Related JP4975406B2 (en) 2006-10-02 2006-10-02 High-strength galvannealed steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4975406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552859B2 (en) * 2009-03-31 2014-07-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552862B2 (en) * 2009-03-31 2014-07-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US9068255B2 (en) 2009-12-29 2015-06-30 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517169B2 (en) * 1990-10-09 1996-07-24 新日本製鐵株式会社 Method for producing hot dip galvanized steel sheet
JP4179486B2 (en) * 1998-05-13 2008-11-12 住友金属工業株式会社 Steel sheet having fine grain structure and method for producing the same
JP2001140022A (en) * 1999-08-27 2001-05-22 Nippon Steel Corp Method of manufacturing high strength galvanized steel sheet excellent in press-formability
JP3738645B2 (en) * 2000-03-17 2006-01-25 住友金属工業株式会社 High-tensile cold-rolled steel sheet with excellent electroplating adhesion and ductility and method for producing the same
JP2001355041A (en) * 2000-06-13 2001-12-25 Kobe Steel Ltd Transformation-induced plastic plated steel sheet excellent in ductility and adhesion for plating and its production method
JP2002080951A (en) * 2000-09-07 2002-03-22 Kobe Steel Ltd Method for producing galvannealed steel sheet
JP4331915B2 (en) * 2001-07-12 2009-09-16 新日本製鐵株式会社 High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same

Also Published As

Publication number Publication date
JP2007070732A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP5532188B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
KR101622063B1 (en) High-strength cold-rolled steel sheet and process for manufacturing same
KR101485236B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP5780171B2 (en) High-strength cold-rolled steel sheet with excellent bendability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and manufacturing method thereof
JP5129154B2 (en) A high manganese hot-dip steel sheet having excellent corrosion resistance and a method for producing the same.
JP5370104B2 (en) Manufacturing method of high strength steel plate having high tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and high strength cold-rolled steel plate, manufacturing method of high strength galvanized steel plate
TWI422688B (en) High strength steel sheet having superior ductility and method for manufacturing the same
JP6503584B2 (en) Method of manufacturing hot rolled steel sheet, method of manufacturing cold rolled full hard steel sheet, and method of manufacturing heat treated sheet
JP5487916B2 (en) High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
TW201323625A (en) High-strength steel sheet having excellent workability and method for manufacturing the same
KR101899688B1 (en) High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
WO2020148944A1 (en) Method for manufacturing hot-dip galvanized steel sheet
CN116694886A (en) Method for manufacturing thin steel sheet and method for manufacturing plated steel sheet
KR101647223B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
CN109642280B (en) High-strength steel sheet and method for producing same
JP4000974B2 (en) High tensile alloyed hot dip galvanized steel sheet and method for producing the same
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
JP4940813B2 (en) Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
JP2002309358A (en) Galvannealed steel sheet with excellent workability
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them
KR20160077594A (en) High manganese steel sheet having excellent hot dip aluminium coatability, and method for manufacturing the same
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4975406B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP4150277B2 (en) High strength galvannealed steel sheet excellent in press formability and method for producing the same
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100722

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100813

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees