JP2812770B2 - Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance - Google Patents

Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance

Info

Publication number
JP2812770B2
JP2812770B2 JP2674890A JP2674890A JP2812770B2 JP 2812770 B2 JP2812770 B2 JP 2812770B2 JP 2674890 A JP2674890 A JP 2674890A JP 2674890 A JP2674890 A JP 2674890A JP 2812770 B2 JP2812770 B2 JP 2812770B2
Authority
JP
Japan
Prior art keywords
less
powdering resistance
hot
steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2674890A
Other languages
Japanese (ja)
Other versions
JPH03232927A (en
Inventor
薫 川崎
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12201916&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2812770(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2674890A priority Critical patent/JP2812770B2/en
Publication of JPH03232927A publication Critical patent/JPH03232927A/en
Application granted granted Critical
Publication of JP2812770B2 publication Critical patent/JP2812770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 近年、自動車の内・外板用鋼板として、まず必要とさ
れるプレス成形性には、車体デザインの多様化とプラス
チック材料の自動車部品への台頭により、ますます厳し
い形状への加工特性、とくに深絞り性の高いことが要求
されている。こうした特性を満足させるには極低炭素
鋼、いわゆるIF鋼での対応が余儀なくされる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) In recent years, the press formability required as a steel sheet for the inner and outer plates of automobiles is firstly diversified in body design and the use of plastic materials for automobile parts. With the rise, processing characteristics for increasingly severe shapes, especially high deep drawability, are required. In order to satisfy these characteristics, it is necessary to use ultra-low carbon steel, so-called IF steel.

一方、自動車メーカーにおけるスポット溶接時のチッ
プの耐久性向上及び車体防錆向上のため、溶融亜鉛めっ
き後めっき層を合金化した鋼板の要求が高まっている。
さらに、こうした鋼板の中で外板として使用されるもの
については、プレス成形後の形状維持及び耐デント性も
要求される。
On the other hand, there is a growing demand from automobile manufacturers for a steel sheet in which a plated layer is alloyed after hot-dip galvanizing in order to improve the durability of a chip during spot welding and the rust prevention of a vehicle body.
Furthermore, among such steel plates, those used as outer plates are required to maintain shape after press forming and to have dent resistance.

本発明はこうした要求に応えるため、上記特性が必要
とされる部位に使用して好適な、焼付硬化性及び耐パウ
ダリング性、さらには二次加工性に優れた深絞り用合金
化溶融亜鉛めっき冷延鋼板の製造方法に関するものであ
る。
In order to meet such demands, the present invention is suitable for use in parts where the above properties are required, and is suitable for use in deep-drawing alloyed hot-dip galvanizing with excellent bake hardenability and powdering resistance, and excellent secondary workability. The present invention relates to a method for manufacturing a cold-rolled steel sheet.

(従来の技術) 耐食性を向上させることを目的とした鋼板として、従
来から合金化溶融亜鉛めっき鋼板がある。一方、深絞り
性を確保するためには、Ti,Nb等を添加した極低炭素鋼
での適用が必須となっているのが現状であるが、とくに
Ti添加極低炭素鋼では粒界が洗浄なため、溶融亜鉛めっ
き後合金化処理すると、粒界での合金化がはやく進み、
耐パウダリング性が悪いということが問題であった。
(Prior Art) As a steel sheet aimed at improving corrosion resistance, there has been an alloyed hot-dip galvanized steel sheet. On the other hand, in order to ensure deep drawability, it is currently essential to apply it to ultra-low carbon steels added with Ti, Nb, etc.
In the case of Ti-added ultra-low carbon steel, the grain boundaries are not clean.
The problem is that the powdering resistance is poor.

こうした問題点を解決すべく検討され、極低炭素鋼で
の合金化溶融亜鉛めっき鋼板の製造方法としては、これ
までに(1)特開昭61−276961号公報及び(2)特開昭
61−276962号公報がある。いずれも表面の合金化亜鉛め
っき層中の鉄濃度を15〜35wt%と高めて耐パウダリング
性を確保しようとするものである。そのために合金化処
理温度を700〜850℃とし、通常行なわれる合金化処理温
度に比べ非常に高い温度での処理を行なっている。
In order to solve these problems, a method for producing an alloyed hot-dip galvanized steel sheet using ultra-low carbon steel has been described so far (1) Japanese Patent Application Laid-Open No. 61-276961 and (2) Japanese Patent Application Laid-Open
No. 61-276962. In each case, the iron concentration in the alloyed galvanized layer on the surface is increased to 15 to 35 wt% to secure powdering resistance. Therefore, the alloying treatment temperature is set to 700 to 850 ° C., and the treatment is performed at a temperature much higher than the usual alloying treatment temperature.

しかし、実際にこの処理を工業的に行なう場合には、
高温処理に伴なう通板速度の低下による生産性の低下、
ロールをはじめとする設備への負担の増加、ロールへの
付着及び合金化処理後の急冷により板の形状が不良とな
ること等が懸念される。また、(2)では焼付硬化性を
付与するためにS及びN量を規制し、実質的には5kgf/m
m2以上のBHが付与されているものの、時効性に対する考
慮がなされていない。
However, when this process is actually performed industrially,
Decrease in productivity due to decrease in threading speed due to high temperature processing,
There is a concern that the load on equipment such as rolls may be increased, and the shape of the plate may be deteriorated due to adhesion to rolls and rapid cooling after alloying treatment. In addition, in (2), the amounts of S and N are regulated in order to impart bake hardenability, and substantially 5 kgf / m
Although m 2 or more BH has been granted, considered against aging properties is not performed.

(発明が解決しようとする課題) このようにTi添加極低炭素鋼に溶融亜鉛めっきで合金
化し、焼付硬化性及び耐パウダリング性に優れた鋼板を
製造する方法はすでに開示されているが、従来の合金化
処理温度を大幅に高めるものであった。したがって、通
常行なわれる合金化処理温度で、Ti添加極低炭素鋼を合
金化し、耐パウダリング性を向上させたものではなく、
また、さらに時効性を考慮しながらBH性も付与したもの
でもない。
(Problems to be Solved by the Invention) As described above, a method of alloying Ti-added ultra-low carbon steel by hot dip galvanizing and manufacturing a steel sheet excellent in bake hardenability and powdering resistance has already been disclosed. The conventional alloying treatment temperature was greatly increased. Therefore, it does not alloy Ti-added ultra-low carbon steel at the usual alloying treatment temperature to improve powdering resistance.
Further, neither BH property is imparted while further considering the aging effect.

つまり、通常の溶融亜鉛めっきにおける合金化処理を
施すことで、焼付硬化性及び耐パウダリング性に優れ、
また、Bの添加なしでも二次加工性に優れ、さらには時
効性にも優れた深絞り用合金化溶融亜鉛めっき冷延鋼板
の製造方法を確立することが、本発明の目的である。
In other words, by performing alloying treatment in normal hot-dip galvanizing, it is excellent in bake hardenability and powdering resistance,
Further, it is an object of the present invention to establish a method for producing a deep drawn alloyed hot-dip galvanized cold-rolled steel sheet which is excellent in secondary workability even without the addition of B, and is also excellent in aging.

(課題を解決するための手段) 本発明者らは、上記の実情に鑑み鋭意検討した結果、
Tiを添加した極低炭素鋼を用い、S量と再結晶焼鈍及び
合金化処理後の冷却速度を制限することで時効性を考慮
しながら焼付硬化性と二次加工性を付与し、亜鉛めっき
後通常の合金化処理温度で合金化され、めっき層の剥離
が生じることのないいわゆるパウダリング性に優れた深
絞り用合金化溶融亜鉛めっき冷延鋼板の製造方法を見い
出したものである。
(Means for Solving the Problems) The present inventors have conducted intensive studies in view of the above-described circumstances,
By using an ultra-low carbon steel with Ti added, by limiting the amount of S and the cooling rate after recrystallization annealing and alloying treatment, baking hardenability and secondary workability are given while considering aging, zinc plating The present invention has found a method for producing a hot-dip galvannealed cold-rolled steel sheet for deep drawing, which is alloyed at a normal alloying treatment temperature and has excellent so-called powdering properties without peeling of a plating layer.

第1図に本発明の確立に至った実験結果を示す。 FIG. 1 shows the experimental results that led to the establishment of the present invention.

本実験では、C及びN量を0.005wt%以下とし、Ti量
を0.04wt%含む鋼にSを種々の水準変化させた鋼を真空
溶解で溶製した。それらの鋼についてAr3点以上の仕上
温度で熱延後700℃で捲取った。これを酸洗・冷延後、8
50℃で再結晶焼鈍してから80℃/sで400℃まで冷却後、
溶融亜鉛めっき処理を施し、続いて550℃まで加熱し、
合金化処理を行なった後、70℃/sで室温まで冷却し、1
%の調質圧延を施し、焼付硬化量(BH)及び耐パウダリ
ング性を調査した。
In this experiment, steels in which the contents of C and N were set to 0.005 wt% or less and the contents of Ti were set to 0.04 wt% and S was changed at various levels were melted by vacuum melting. These steels were rolled at 700 ° C. after hot rolling at a finishing temperature of 3 or more Ar. After pickling and cold rolling this, 8
After recrystallization annealing at 50 ° C and cooling to 400 ° C at 80 ° C / s,
Subject to hot-dip galvanizing, then heated to 550 ° C,
After alloying, cool to room temperature at 70 ° C / s,
%, And the bake hardening (BH) and powdering resistance were investigated.

なお、耐パウダリング性については180゜曲げ加工を
実施し、曲げ加工部にセロテープを接着した後、これを
はがしてテープに付着した剥離めっき層の有無で評価し
た。
The powdering resistance was evaluated by performing a 180 ° bending process, attaching a cellophane tape to the bent portion, peeling the cellophane tape, and removing the peeling plating layer adhered to the tape.

すなわち、S量によりBH量及び耐パウダリング性が変
化することを見い出したのである。こうした現象が生じ
る原因については明確ではないが、Ti4C2S2の析出が関
与し、TiC析出量あるいは固溶限が変化するためと考え
られる。つまり、焼鈍後のTiCの再溶解による固溶Cを
利用することでBH及び耐パウダリング性を付与すること
ができる。
That is, it has been found that the BH amount and the powdering resistance change depending on the S amount. Although the cause of such a phenomenon is not clear, it is considered that the precipitation of Ti 4 C 2 S 2 is involved and the TiC precipitation amount or solid solubility limit changes. That is, BH and powdering resistance can be imparted by utilizing solid solution C obtained by re-dissolving TiC after annealing.

本発明は、Ti添加極低炭素鋼において、S量と再結晶
焼鈍及び合金化処理後の冷却速度を適切にとることで焼
付硬化性、二次加工性及び耐パウダリング性を付与する
ものである。
The present invention imparts bake hardenability, secondary workability, and powdering resistance to a Ti-added ultra-low carbon steel by appropriately setting the S content and the cooling rate after recrystallization annealing and alloying treatment. is there.

即ち本発明の要旨は、C;0.005wt%以下、Si;1.0wt%
以下、Mn;1.0wt%以下、P;0.1wt%以下、S;0.002wt%以
下、Al;0.01〜0.1wt%、N;0.005wt%以下を含むほか、T
iを(1)式で示される有効Ti量(Ti)で 以上、Ti量で0.1wt%以下を含有し、残部はFe及び不可
避的不純物元素からなる鋼を、連続鋳造にてスラブとし
た後、再加熱あるいは鋳造後直ちにAr3点以上の温度で
仕上熱延を終了して捲取り、酸洗後通常の方法で冷間圧
延を行ない、800℃以上Ac3点以下の温度域で1秒以上の
再結晶焼鈍を施した後、50℃/s以上の冷却速度で冷却
し、次いで溶融亜鉛めっき、さらに合金化処理を行なっ
てから10℃/s以上の冷却速度で冷却することを特徴とす
る焼付硬化性及び耐パウダリング性に優れた深絞り用合
金化溶融亜鉛めっき鋼板の製造方法である。
That is, the gist of the present invention is as follows: C: 0.005 wt% or less, Si: 1.0 wt%
Below, Mn; 1.0 wt% or less, P; 0.1 wt% or less, S; 0.002 wt% or less, Al; 0.01 to 0.1 wt%, N; 0.005 wt% or less,
i is the effective Ti amount (Ti * ) expressed by equation (1) Above, containing less 0.1 wt% in Ti content, the balance finishing a steel consisting of Fe and unavoidable impurity elements, after the slab at the continuous casting, reheating or immediately Ar 3 point or more temperature after casting heat After finishing the rolling, winding, cold rolling is performed by a usual method after pickling, and after recrystallization annealing for 1 second or more in a temperature range of 800 ° C. or more and 3 points of Ac or less, 50 ° C./s or more A deep drawing alloy with excellent bake hardenability and powdering resistance, characterized in that it is cooled at a cooling rate, then hot-dip galvanized, and then alloyed, and then cooled at a cooling rate of 10 ° C / s or more. This is a method for producing a galvannealed steel sheet.

以下に、本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically.

まず、化学成分の限定理由について説明する。 First, the reasons for limiting the chemical components will be described.

Cは、本発明における焼付硬化性及び耐パウダリング
性付与に対して重要な役割を果たす元素である。常温に
おける成形性、すなわち低YP、高El及び高値を確保し
かつ、非時効とするにはその添加量は低い方が良い。そ
のため上限を0.005wt%とする。
C is an element that plays an important role in imparting baking hardenability and powdering resistance in the present invention. To ensure moldability at room temperature, that is, low YP, high El and high value, and to make it non-aging, it is better that the amount of addition is low. Therefore, the upper limit is made 0.005 wt%.

Siは、鋼を高強度化する場合に添加されるが、角の添
加は鋼を硬質化させるとともに溶接性を劣化させる。ま
た、鋼の表面性状を良好とするためにはその添加量は少
ない方が良く、とくに本発明では溶融亜鉛めっきにおけ
るめっき層被膜の密着性を確保するため、上限を1.0wt
%とする。
Si is added to increase the strength of steel, but the addition of corners hardens the steel and deteriorates weldability. Further, in order to improve the surface properties of steel, it is better that the addition amount is small. In particular, in the present invention, the upper limit is set to 1.0 wt.
%.

Mnも鋼の高強度化に有効に寄与するが、過度の添加は
鋼を硬質化するため1.0wt%を上限として添加する。
Mn also contributes effectively to increasing the strength of steel, but excessive addition is added with an upper limit of 1.0 wt% to harden the steel.

Pは、Si,Mnに比べ固溶強化能の大きな元素であると
ともに、添加による延性、深絞り性の劣化が少ない元素
であるため、成形性を確保しつつ強度を上昇させるのに
重要な元素である。本発明においても高強度化を目的と
する場合には添加されるが、過度の添加は鋼の硬質化に
つながり、成形性を劣化させるばかりでなく、溶融亜鉛
めっきにおけるめっき層被膜の密着性が悪くなり、ま
た、Pの粒界偏析による二次加工性の劣化を招くため、
上限を0.1wt%とする。
P is an element that has a large solid solution strengthening ability compared to Si and Mn, and is an element that is less likely to deteriorate in ductility and deep drawability due to its addition. It is. In the present invention, it is added for the purpose of increasing the strength, but excessive addition leads to hardening of the steel, not only deteriorating the formability, but also the adhesion of the plating layer coating in hot-dip galvanizing. To deteriorate the secondary workability due to grain boundary segregation of P,
The upper limit is 0.1 wt%.

Sは、本発明において最も重要な役割を果たす元素で
ある。Sは第1図に示したように、焼付硬化量及び耐パ
ウダリング性を付与するために0.002wt%以下とする。
S is an element that plays the most important role in the present invention. As shown in FIG. 1, S is set to 0.002 wt% or less in order to impart a bake hardening amount and powdering resistance.

Alは、鋼の脱酸のために必要であり、Tiの歩留を向上
させるため、0.01wt%以上必要である。一方、過剰の添
加はコストアップとなるとともに、鋼中に介在物を残す
ことになるため、上限は0.1wt%とする。
Al is necessary for deoxidation of steel, and 0.01 wt% or more is required for improving the yield of Ti. On the other hand, excessive addition increases the cost and leaves inclusions in the steel, so the upper limit is 0.1 wt%.

Nは、熱延段階までにTiで固定されるため、多量のTi
Nが形成されると加工性の劣化を招くため、上限を0.005
wt%とする。
N is fixed by Ti by the hot rolling stage, so a large amount of Ti
Since the formation of N causes deterioration in workability, the upper limit is 0.005.
wt%.

Tiは、C,N及びSを固定し、時効性を確保するのに十
分な添加量が必要である。SはTiとCとともにTi4C2S2
として析出するため、有効Ti量を(1)式で示したもの
とすれば、下限はCをTiCとして析出させる量であり、
すなわち有効Ti量で 以上の添加が必要である。しかし、過剰の添加は、P添
加量の高い場合はTiPの析出により値の劣化を招くと
同時に、固溶Tiが増えることはさらにElも化させるため
上限をTi量で0.1wt%とする。
Ti needs to be added in a sufficient amount to fix C, N and S and to ensure aging. S is Ti 4 C 2 S 2 with Ti and C
Assuming that the effective Ti amount is expressed by equation (1), the lower limit is the amount of C to be precipitated as TiC,
In other words, the effective Ti amount The above addition is necessary. However, excessive addition of P causes a deterioration in the value due to precipitation of TiP when the amount of P added is high, and at the same time increases the amount of solid-solution Ti, which further changes El.

Bについては、二次加工性向上のために添加される
が、本発明の場合、とくに規制されるものではない。し
かし、Pを添加して鋼の強度を高める場合、Pが粒界に
偏析するため粒界が脆化し、二次加工性の劣化を招くこ
とがある。その場合には二次加工性を確保するためにB
を添加する。0.0001wt%未満ではその効果がなく、また
過剰の添加は鋼を硬質化し、加工性が劣化するとともに
二次加工性改善効果が飽和するため、上限を0.003wt%
とする。
B is added to improve the secondary workability, but is not particularly restricted in the present invention. However, when P is added to increase the strength of the steel, P segregates at the grain boundaries, so that the grain boundaries are embrittled and the secondary workability may be deteriorated. In that case, to ensure secondary workability, B
Is added. If the content is less than 0.0001 wt%, the effect is not obtained, and excessive addition hardens the steel, deteriorates workability and saturates the effect of improving secondary workability, so the upper limit is 0.003 wt%.
And

次に本発明に従う製造方法について説明する。 Next, a manufacturing method according to the present invention will be described.

再結晶焼鈍を含む溶融亜鉛めっき前処理工程及び合金
化処理工程以外はとくに規制されるものではなく、上述
した化学成分を有する鋼は、通常の連続鋳造にてスラブ
として得られるが、薄スラブ連鋳法にて製造されたもの
でもかまわない。さらに通常の熱間圧延、酸洗及び冷間
圧延によって冷延板とする。
There is no particular restriction except for the hot-dip galvanizing pretreatment step including recrystallization annealing and the alloying treatment step.Steel having the above-mentioned chemical components can be obtained as slab by ordinary continuous casting, It may be manufactured by a casting method. Further, a cold-rolled sheet is formed by ordinary hot rolling, pickling and cold rolling.

溶融亜鉛めっき処理を施す前に必要な再結晶焼鈍は、
延性及び深絞り性を確保するため、再結晶や粒成長を十
分に行なわせると同時に、焼付硬化性及び耐パウダリン
グ性を付与するため、TiCを再溶解させる目的で800℃以
上の温度域で1秒以上保持するものとする。しかし、Ac
3点を越える温度では変態に伴なう集合組織の劣化によ
る値の低下や結晶粒の粗大化による肌荒れの原因とな
るため好ましくない。
The recrystallization annealing required before applying the hot-dip galvanizing process,
In order to ensure ductility and deep drawability, sufficient recrystallization and grain growth are performed, and at the same time, at temperatures over 800 ° C for the purpose of re-dissolving TiC to impart bake hardenability and powdering resistance. It shall be held for 1 second or more. But Ac
A temperature exceeding 3 points is not preferred because it causes a decrease in the value due to the deterioration of the texture accompanying the transformation and a rough surface due to the coarsening of the crystal grains.

再結晶焼鈍後、溶融亜鉛めっき処理を施すまでの冷却
は固溶Cを粒界にも十分残留させる程度の冷却速度が必
要である。すなわち、50℃/s以下の冷却速度ではCが再
析出し、溶融亜鉛めっき後合金化処理を施しても耐パウ
ダリング性が悪い。
After the recrystallization annealing, the cooling rate until the hot dip galvanizing treatment is performed needs a cooling rate enough to allow the solid solution C to sufficiently remain at the grain boundaries. That is, at a cooling rate of 50 ° C./s or less, C is reprecipitated, and even if an alloying treatment is performed after hot-dip galvanizing, the powdering resistance is poor.

さらに合金化処理後室温までの冷却は、焼付硬化量を
確保するため10℃/s以上の冷却速度が必要である。10℃
/s未満の冷却速度では再結晶焼鈍で再溶解したTiCが再
び施出し、焼付硬化量が小さくなり好ましくない。な
お、溶融亜鉛めっき処理前に連続焼鈍あるいは箱焼鈍に
おいて再結晶を終了させておいてもさしつかえない。
Further, cooling to room temperature after the alloying treatment requires a cooling rate of 10 ° C./s or more in order to secure the bake hardening amount. 10 ℃
If the cooling rate is less than / s, the TiC re-dissolved by the recrystallization annealing is applied again, and the bake hardening amount is undesirably reduced. The recrystallization may be terminated in continuous annealing or box annealing before hot-dip galvanizing.

(実 施 例) 実施例 1 C;0.0027wt%、Si;0.15wt%、Mn;0.11wt%、P;0.008w
t%、S;0.0015wt%、Al;0.032wt%、N;0.0020wt%、B;
0.0005wt%、Ti;0.03wt%、残部Fe及び不可避的不純物
からなる鋼を点炉出鋼し、連続鋳造でスラブにした。熱
延は1100℃で加熱後仕上温度を930℃とし、700℃で捲取
った。酸洗後80%の圧下率で冷間圧延を施し、第1表に
示すような条件で再結晶及び冷却を行ない、溶融亜鉛め
っき(450℃)及び合金化処理(550℃)後、1%の調質
圧延を行なった。
(Examples) Example 1 C; 0.0027 wt%, Si; 0.15 wt%, Mn; 0.11 wt%, P; 0.008 w
t%, S; 0.0015 wt%, Al; 0.032 wt%, N; 0.0020 wt%, B;
A steel containing 0.0005 wt%, Ti; 0.03 wt%, balance Fe and unavoidable impurities was spot-fired and slab-formed by continuous casting. After hot rolling at 1100 ° C, the finishing temperature was set to 930 ° C and winding was performed at 700 ° C. After pickling, cold rolling is performed at a rolling reduction of 80%, recrystallization and cooling are performed under the conditions shown in Table 1, and after hot-dip galvanizing (450 ° C) and alloying (550 ° C), 1% Temper rolling.

その後材質評価としてJIS Z 2201,5号試験片に加工
し、同2241記載の試験方法にしたがって引張試験を行な
った。
Thereafter, as a material evaluation, the test piece was processed into a JIS Z 2201, No. 5 test piece, and a tensile test was performed in accordance with the test method described in 2421.

焼付硬化量(BH)については、2%の予歪を与えて17
0℃で20分の保定を行なったときの処理前後での降伏点
応力の上昇量を表わした。
For the bake hardening (BH), a 2% pre-strain was applied.
The amount of increase in yield point stress before and after treatment when holding at 0 ° C. for 20 minutes is shown.

また、時効性について100℃で60分の保定後引張試験
を行ない、降伏点伸びの程度で評価した。一方、パウダ
リング性については前述したように180゜曲げ加工を実
施し、曲げ加工部にセロテープを接着した後、これをは
がしてテープに付着した剥離めっき層の有無で評価し
た。第2表に結果をまとめて示す。
Further, the aging property was evaluated by the degree of elongation at the yield point after performing a tensile test after holding at 100 ° C. for 60 minutes. On the other hand, the powdering property was evaluated by performing a 180 ° bending process as described above, attaching a cellophane tape to the bent portion, peeling the cellophane tape, and removing the peeling plating layer adhered to the tape. Table 2 summarizes the results.

溶融亜鉛めっき及び合金化処理前の再結晶条件及び冷
却速度、さらに合金化処理後の冷却速度が本発明の範囲
に従ったNo.4,6及び8では3kgf/mm2のBHを有しかつ耐パ
ウダリング性も良く、しかも時効性についても問題ない
材質が得られる。
Recrystallization conditions and cooling speed before galvanizing and alloying treatment, further and have No.4,6 and 8, 3 kgf / mm 2 BH in accordance with the scope of the present invention is the cooling rate after the alloying treatment A material having good powdering resistance and having no problem with aging can be obtained.

No.1は再結晶させるための温度が低く、若干硬質気味
であると同時に、TiCの再溶解が不十分でBHが無く、ま
た、耐パウダリング性が悪くめっき層の剥離が認められ
る。再結晶後溶融亜鉛めっき浴までの冷却速度(冷却速
度I)が低くはずれたNo.2,5及び7は再溶解したTiCが
冷却中に析出し、合金化処理前に固溶Cを粒界に十分に
残すことができないため、合金化処理が不十分となりめ
っき層の剥離を生じている。また、BH量もほとんどな
い。また、合金化処理後の冷却速度(冷却速度II)が低
くはずれたNo.3は、冷却速度Iが十分に速くてもやはり
合金化処理後の冷却途中にTiCが析出し固溶Cが減少す
るため、めっき層の剥離は生じないもののBH量が少な
い。No.9は再結晶させるための温度がAc3点を超えたた
め、結晶粒が粗大化するとともに集合組織が劣化し、引
張試験後に肌荒れが生じ、値が低い値を示している。
No. 1 has a low temperature for recrystallization and is slightly hard. At the same time, the re-dissolution of TiC is insufficient and there is no BH. Further, the powdering resistance is poor and the plating layer is peeled off. Nos. 2, 5, and 7 in which the cooling rate (cooling rate I) to the hot-dip galvanizing bath after recrystallization was low, re-dissolved TiC was precipitated during cooling, and solid solution C was bound before the alloying treatment. Therefore, the alloying treatment is insufficient and the plating layer is peeled off. Also, there is almost no BH amount. In the case of No. 3 where the cooling rate (cooling rate II) after the alloying treatment was low, even if the cooling rate I was sufficiently high, TiC was precipitated during the cooling after the alloying treatment and solid solution C decreased. Therefore, although the plating layer does not peel off, the amount of BH is small. In No. 9, since the temperature for recrystallization exceeded the Ac 3 point, the crystal grains became coarse and the texture deteriorated, and the surface became rough after the tensile test, indicating a low value.

実施例 2 第3表に示した化学成分の鋼を転炉出鋼し、連続鋳造
した後、通常の熱延及び冷延を施し、再結晶及び冷却は
本発明の範囲で一定の条件とし、溶融亜鉛めっき(450
℃)及び合金化処理(550℃)をした。すなわち、熱延
は1150℃で加熱した後930℃で仕上圧延を終了し、650℃
で捲取った。酸洗後80%の冷間圧延を施し、溶融亜鉛め
っき前の再結晶焼鈍は850℃で10sとし、100℃/sで冷却
した。また、合金化処理後は80℃/sで室温まで冷却し
た。合金化処理後1%の調質圧延をし、実施例1と同じ
方法で材質評価を行なうとともに二次加工性の評価も行
なった。
Example 2 A steel having the chemical composition shown in Table 3 was output from a converter and continuously cast, then subjected to ordinary hot rolling and cold rolling, and recrystallization and cooling were performed under certain conditions within the scope of the present invention. Hot dip galvanizing (450
℃) and alloying treatment (550 ℃). That is, hot rolling is finished at 930 ° C. after heating at 1150 ° C., and 650 ° C.
Was wound up. After pickling, 80% cold rolling was performed, and recrystallization annealing before hot-dip galvanizing was performed at 850 ° C. for 10 s and cooled at 100 ° C./s. After the alloying treatment, it was cooled to room temperature at 80 ° C./s. After the alloying treatment, 1% temper rolling was performed, and the material was evaluated by the same method as in Example 1 and the secondary workability was also evaluated.

二次加工性については、第2図に示すように、試料を
100φに打ち抜き、絞り比2.0で円筒に絞ったカップ1を
−50℃のエタノール2中に浸し、テーパーポンチ3にの
せて荷重Pを与えて、押し拡げ脆性破壊の有無で判定
し、○:脆性破壊割れなし、×:脆性破壊割れありとし
た。
As for the secondary workability, as shown in FIG.
A cup 1 punched out to 100φ and squeezed into a cylinder at a draw ratio of 2.0 is immersed in ethanol 2 at −50 ° C., placed on a tapered punch 3 and given a load P, and is judged by the presence or absence of brittle fracture by spreading. No fracture, ×: brittle fracture.

第4表に結果をまとめて示す。 Table 4 summarizes the results.

本発明の範囲に従ったA,B,C,D及びE鋼は3kgf/mm2
度のBHを有しかつ、二次加工性及び耐パウダリング性も
良好であり、時効性については問題ない材質が得られ
る。
A in accordance with the scope of the present invention, B, C, D and E steel and has a 3 kgf / mm 2 approximately BH, it is also good secondary workability and powdering resistance, no problem for aging property The material is obtained.

C及びN量が高くはずれ、その結果有効Ti量(Ti
も本発明の範囲からはずれてしまったF鋼は、BH量が5k
gf/mm2と高く、剥離めっき層もなく耐パウダリング性も
良好であるが、固溶C量が多く残存するため時効性に劣
る。G鋼はSi量が高くはずれたため、溶融亜鉛めっきで
の密着性が悪く、めっき層の剥離が生じた。また、硬質
となり値が低い。Mn量が高くはずれたH鋼は硬質化し
El及び値が低い。I鋼は、S量が本発明の範囲から高
くはずれたもので、耐パウダリング性が悪いと同時に、
BH量が無く二次加工性も悪い。J鋼では、有効Ti量(Ti
)が本発明の範囲から低くはずれたため固溶C量が多
く残存し、BH量は高く、耐パウダリング性も良好である
が、時効性に劣る。
The C and N contents deviate from high, resulting in effective Ti amount (Ti * )
The steel F, which has deviated from the scope of the present invention, has a BH amount of 5k.
It is as high as gf / mm 2 , has no peeling plating layer, and has good powdering resistance, but is inferior in aging because a large amount of dissolved C remains. G steel had a high Si content and thus had poor adhesion in hot-dip galvanization, and peeling of the plating layer occurred. Moreover, it becomes hard and the value is low. H steel with high Mn content is hardened
El and value are low. Steel I has a high S content deviating from the range of the present invention and has poor powdering resistance,
There is no BH amount and the secondary workability is poor. For steel J, the effective Ti amount (Ti
* ) Is out of the range of the present invention, so that a large amount of dissolved C remains, the BH amount is high, and the powdering resistance is good, but the aging property is poor.

(発明の効果) 本発明は自動車の内・外板用として使用される鋼板に
対し、優れた深絞り性を維持しながら、成形後の塗装焼
付により強度を高めることができ、あわせて耐パウダリ
ング性、二次加工性及び時効性にも優れた合金化溶融亜
鉛めっき鋼板の製造方法を明らかにしたものである。こ
の発明により、プレス成形後の鋼板の高強度化が可能と
なると同時に、自動車メーカーにおけるスポット溶接時
のチップの耐久性向上及び車体防錆の向上が可能とな
る。
(Effects of the Invention) The present invention can enhance the strength of a steel sheet used for an inner / outer panel of an automobile by baking after painting, while maintaining excellent deep drawability, and at the same time, powder resistance. The present invention clarifies a method for producing an alloyed hot-dip galvanized steel sheet having excellent ringing properties, secondary workability, and aging properties. According to the present invention, it is possible to increase the strength of the steel sheet after press forming, and at the same time, it is possible to improve the durability of the chip and the rust prevention of the vehicle body at the time of spot welding in an automobile manufacturer.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、S添加量の本発明範囲を示す図表、第2図
は、本発明で用いた二次加工性を調査するための試験方
法の説明図である。
FIG. 1 is a chart showing the range of the present invention in the amount of S added, and FIG. 2 is an explanatory diagram of a test method for investigating secondary workability used in the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 2/28 C23C 2/28 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C23C 2/28 C23C 2/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.005wt%以下、 Si:1.0wt%以下、 Mn:1.0wt%以下、 P :0.1wt%以下、 S :0.002wt%以下、 Al:0.01〜0.1wt%、 N :0.005wt%以下 を含むほか、 Tiを(1)式で示される有効Ti量(Ti)で 以上、 Ti量で0.1wt%以下 を含有し、残部はFe及び不可避的不純物元素からなる鋼
を、連続鋳造にてスラブとした後、再加熱あるいは鋳造
後直ちにAr3点以上の温度で仕上熱延を終了して捲取
り、酸洗後通常の方法で冷間圧延を行ない、800℃以上A
c3点以下の温度域で1秒以上の再結晶焼鈍を施した後、
50℃/s以上の冷却速度で冷却し、次いで溶融亜鉛めっ
き、さらに合金化処理を行なってから10℃/s以上の冷却
速度で冷却することを特徴とする焼付硬化性及び耐パウ
ダリング性に優れた深絞り用合金化溶融亜鉛めっき鋼板
の製造方法。
C: 0.005 wt% or less, Si: 1.0 wt% or less, Mn: 1.0 wt% or less, P: 0.1 wt% or less, S: 0.002 wt% or less, Al: 0.01 to 0.1 wt%, N: 0.005wt% or less, and Ti as the effective Ti amount (Ti * ) shown in equation (1) As described above, steel containing 0.1% by weight or less of Ti and the balance consisting of Fe and an unavoidable impurity element is made into a slab by continuous casting, and then heated again at a temperature of 3 or more points of Ar immediately after reheating or casting. Finish rolling, take up, cold-roll in the usual way after pickling, 800 ℃ or more A
c After performing recrystallization annealing for 1 second or more in a temperature range of 3 points or less,
Cooling at a cooling rate of 50 ° C / s or more, then hot-dip galvanizing, further alloying, and then cooling at a cooling rate of 10 ° C / s or more. An excellent method for producing galvannealed steel sheets for deep drawing.
JP2674890A 1990-02-06 1990-02-06 Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance Expired - Lifetime JP2812770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2674890A JP2812770B2 (en) 1990-02-06 1990-02-06 Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2674890A JP2812770B2 (en) 1990-02-06 1990-02-06 Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance

Publications (2)

Publication Number Publication Date
JPH03232927A JPH03232927A (en) 1991-10-16
JP2812770B2 true JP2812770B2 (en) 1998-10-22

Family

ID=12201916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2674890A Expired - Lifetime JP2812770B2 (en) 1990-02-06 1990-02-06 Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance

Country Status (1)

Country Link
JP (1) JP2812770B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550849B2 (en) * 1992-03-09 1996-11-06 株式会社神戸製鋼所 Method for producing high strength galvannealed steel sheet with excellent deep drawability, plating adhesion and corrosion resistance after painting
JP2660640B2 (en) * 1992-07-09 1997-10-08 新日本製鐵株式会社 Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JP3318385B2 (en) * 1993-03-04 2002-08-26 川崎製鉄株式会社 Alloyed hot-dip galvanized steel sheet with excellent press workability and plating resistance
US5897967A (en) * 1996-08-01 1999-04-27 Sumitomo Metal Industries, Ltd. Galvannealed steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH03232927A (en) 1991-10-16

Similar Documents

Publication Publication Date Title
CN113348259A (en) High-strength hot-dip galvanized steel sheet and method for producing same
WO2004061137A1 (en) Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
US5500290A (en) Surface treated steel sheet
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP2812770B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JP3016636B2 (en) High strength cold rolled steel sheet with good formability
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JP2660640B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JP2530945B2 (en) Method for producing alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JP2812769B2 (en) Manufacturing method of alloyed hot-dip galvanized cold rolled steel sheet for ultra deep drawing with excellent powdering resistance
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JP4301013B2 (en) Cold-rolled steel sheet with excellent dent resistance
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2514298B2 (en) Method for producing galvannealed steel sheet with excellent press formability
JP3106782B2 (en) Method for producing high-strength cold-rolled steel sheet and surface-treated steel sheet excellent in bake hardenability and deep drawability
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JP2808014B2 (en) Manufacturing method of good workability cold rolled steel sheet with excellent bake hardenability
JP2789261B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JPS6320888B2 (en)
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP3257715B2 (en) Method for producing high-strength galvannealed steel sheet for high working with excellent plating adhesion