JP5151246B2 - High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof - Google Patents
High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof Download PDFInfo
- Publication number
- JP5151246B2 JP5151246B2 JP2007137414A JP2007137414A JP5151246B2 JP 5151246 B2 JP5151246 B2 JP 5151246B2 JP 2007137414 A JP2007137414 A JP 2007137414A JP 2007137414 A JP2007137414 A JP 2007137414A JP 5151246 B2 JP5151246 B2 JP 5151246B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- rolled
- strength
- cold
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、高強度冷延鋼板および該鋼板を原板として利用する高強度溶融亜鉛めっき鋼板に係わり、特に連続焼鈍ラインで製造される高強度冷延鋼板の深絞り性および強度−延性バランスの向上に関する。 The present invention relates to a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized steel sheet that uses the steel sheet as an original sheet, and in particular, improves the deep drawability and strength-ductility balance of a high-strength cold-rolled steel sheet manufactured on a continuous annealing line. About.
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。さらに加えて、衝突時に乗員を保護するという観点から、自動車車体の安全性向上も要求されている。このようなことから、自動車車体の軽量化および自動車車体の強化が積極的に進められている。自動車車体の軽量化と強化を同時に満足させるには、自動車車体用部品の素材を高強度化することが効果的であり、最近では高強度鋼板が自動車の車体部品用素材として積極的に使用されている。 In recent years, there has been a demand for improvement in fuel efficiency of automobiles from the viewpoint of conservation of the global environment. In addition, there is a demand for improving the safety of automobile bodies from the viewpoint of protecting passengers in the event of a collision. For this reason, the weight reduction of the automobile body and the reinforcement of the automobile body are being actively promoted. In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is effective to increase the strength of automobile body parts. Recently, high-strength steel sheets have been actively used as materials for automobile body parts. ing.
鋼板を素材とする自動車の車体用部品の多くがプレス加工により成形されているため、使用される鋼板には、優れたプレス成形性を有することが要求される。プレス成形性向上のためには、鋼板の機械的特性として、高いランクフォード値(r値)と高い延性(El)が必要である。しかし、一般に、鋼板を高強度化すると、r値および延性が低下し、プレス成形性が劣化する傾向となる。このため、プレス成形性に優れた高強度鋼板が熱望されていた。 Since many automotive body parts made of steel plates are formed by press working, the steel plates used are required to have excellent press formability. In order to improve press formability, high rankford value (r value) and high ductility (El) are necessary as mechanical properties of the steel sheet. However, generally, when the strength of a steel plate is increased, the r value and ductility are lowered, and the press formability tends to deteriorate. For this reason, a high strength steel plate excellent in press formability has been eagerly desired.
このような要望に対し、プレス成形性の良好な高強度鋼板として、フェライトとマルテンサイトの複合組織からなる複合組織鋼板(Dual Phase鋼板:DP鋼板)が開発されている。これらのなかで、連続焼鈍を施した後に、ガスジェット冷却を行って製造されたDP鋼板は、高延性と高焼付け硬化性とを合わせ有するが、しかし、r値が低く、深絞り性に劣るという問題があった。 In response to such a demand, a composite structure steel plate (Dual Phase steel plate: DP steel plate) composed of a composite structure of ferrite and martensite has been developed as a high-strength steel plate having good press formability. Among these, DP steel plates manufactured by performing gas jet cooling after continuous annealing have both high ductility and high bake hardenability, but have a low r value and poor deep drawability. There was a problem.
このような問題に対し、例えば特許文献1には、深絞り性の優れた高強度冷延鋼板の製造法が記載されている。特許文献1に記載された技術では、重量%で、C:0.05〜0.15%、Si:1.50%以下、Mn:0.30〜1.50%を含み、Al、Nを適正量含む鋼をAr3変態点以上の仕上温度と600℃以下の巻取温度で熱間圧延し、冷間圧延を施して冷延板とし、該冷延板に、再結晶温度〜Ac3変態点の範囲の温度で箱焼鈍を施し、ついで調質圧延した後、連続式焼鈍プロセスで、700〜800℃に加熱均熱した後、該温度から焼入れおよび200〜500℃の焼戻しを行う。これにより、フェライトと焼戻マルテンサイトからなる複合組織が得られ、高い強度と、r値が高く優れた絞り性とを兼ね備えた冷延鋼板となるとしている。しかし、特許文献1に記載された技術では、連続焼鈍時に焼入れ焼戻処理を施すため、降伏応力が高く、また降伏比が高くなる。この高降伏応力を有する鋼板は、プレス成形に適さず、かつプレス成形部品の形状凍結性が劣るという問題がある。 For example, Patent Document 1 discloses a method for manufacturing a high-strength cold-rolled steel sheet having excellent deep drawability. In the technique described in Patent Document 1, the steel containing, by weight%, C: 0.05 to 0.15%, Si: 1.50% or less, Mn: 0.30 to 1.50%, and proper amounts of Al and N is not less than the Ar 3 transformation point. Hot rolled at a finishing temperature of 600 ° C. and a coiling temperature of 600 ° C. or less, subjected to cold rolling to form a cold rolled sheet, and the cold rolled sheet is subjected to box annealing at a temperature in the range of the recrystallization temperature to the Ac 3 transformation point. After applying, then temper-rolling, heating and soaking at 700 to 800 ° C. in a continuous annealing process, quenching and tempering at 200 to 500 ° C. are performed from this temperature. As a result, a composite structure composed of ferrite and tempered martensite is obtained, and a cold rolled steel sheet having both high strength and high r value and excellent drawability is obtained. However, in the technique described in Patent Document 1, since the quenching and tempering treatment is performed during the continuous annealing, the yield stress is high and the yield ratio is high. The steel sheet having high yield stress is not suitable for press forming and has a problem that the shape freezing property of the press-formed part is inferior.
このような問題に対し、例えば特許文献2には、重量%で、C:0.20%以下、Mn:0.8〜2.5%を含み、Si、Al、N、Pを適正量含有する鋼を、熱間圧延および冷間圧延したのち、650〜800℃の温度範囲で箱焼鈍し冷却後、連続焼鈍炉の加熱帯の温度を600℃以上として加熱し冷却する絞り性ならびに形状性に優れた高張力冷延鋼板の製造方法が記載されている。特許文献2に記載された技術では、箱焼鈍を(α+γ)二相温度域で行い、均熱時にC、Mnをγ相に濃化させる。このC、Mnが濃化した相は、その後の連続焼鈍の加熱時に優先的にγ相化し、ガスジェットによる冷却程度の冷却速度でも容易にマルテンサイト化し、フェライトとマルテンサイトの複合組織が得られ、降伏応力が低い鋼板となるとしている。しかし、特許文献2に記載された技術では、C、Mnを濃化させるため、(α+γ)二相温度域という比較的高温で長時間の箱焼鈍を必要とする。そのため、箱焼鈍時に鋼板間の密着が多発したり、テンパーカラーが発生したり、炉体インナーカバーの寿命が低下するなど、製造工程上、多くの問題が残されていた。 For such a problem, for example, Patent Document 2 discloses a steel containing, by weight, C: 0.20% or less, Mn: 0.8 to 2.5%, and containing Si, Al, N, and P in appropriate amounts. After rolling and cold rolling, box annealing in the temperature range of 650-800 ° C and cooling, and then heating and cooling the heating zone of the continuous annealing furnace at 600 ° C or higher, high-tensile cooling with excellent drawability and shape A method for producing a rolled steel sheet is described. In the technique described in Patent Document 2, box annealing is performed in the (α + γ) two-phase temperature range, and C and Mn are concentrated in the γ phase during soaking. The C and Mn-enriched phase preferentially becomes a γ phase during the subsequent heating in continuous annealing, and easily martensite even at a cooling rate of the degree of cooling by gas jet, and a composite structure of ferrite and martensite is obtained. The steel sheet has a low yield stress. However, in the technique described in Patent Document 2, in order to concentrate C and Mn, a box annealing at a relatively high temperature of (α + γ) two-phase temperature range is required for a long time. For this reason, many problems remain in the manufacturing process, such as frequent adhesion between steel plates during box annealing, occurrence of temper color, and a decrease in the life of the furnace body inner cover.
このように、上記した従来の技術では、高いr値、低い降伏応力を有する高強度冷延鋼板を工業的に安定して製造することが困難であった。
また、特許文献3には、複合組織型高張力冷延鋼板の製造方法が記載されている。特許文献3に記載された技術では、C:0.003〜0.03%、Si:0.2〜1%、Mn:0.3〜1.5%、Ti:0.02〜0.2%を含み、適正量のAlと、(Si+2Mn)を1〜3%、(有効Ti)/(C+N)を0.4〜0.8に調整して含む鋼を、熱間圧延、冷間圧延したのち、Ac1変態点以上900℃以下の温度に30s〜10min加熱し、30℃/s以上の冷却速度で冷却する連続焼鈍を施す。これにより、フェライトと第二相がマルテンサイトおよび/またはベイナイトからなる複合組織が得られ、1.5以上のr値と、50%以下の降伏比を有し、引張強さ−伸びバランスに優れた高張力鋼板となるとしている。しかしながら、特許文献3に記載された技術では、連続焼鈍で30℃/s以上の冷却速度で安定して冷却するために、水焼入れ設備の設置を必要とし製造設備上問題を残しており、しかも水焼入れした冷延鋼板は、表面処理性の問題が顕在化し、材質上でも問題が残されている。
As described above, in the above-described conventional technique, it is difficult to industrially stably manufacture a high-strength cold-rolled steel sheet having a high r value and a low yield stress.
Patent Document 3 describes a method for producing a composite structure type high-tensile cold-rolled steel sheet. In the technique described in Patent Document 3, C: 0.003 to 0.03%, Si: 0.2 to 1%, Mn: 0.3 to 1.5%, Ti: 0.02 to 0.2%, an appropriate amount of Al, and (Si + 2Mn) Hot-rolled and cold-rolled steel containing 1 to 3% (effective Ti) / (C + N) adjusted to 0.4 to 0.8, and then heated to a temperature not lower than the Ac 1 transformation point and not higher than 900 ° C. for 30 s to 10 minutes Then, continuous annealing for cooling at a cooling rate of 30 ° C./s or more is performed. As a result, a composite structure in which the ferrite and the second phase are composed of martensite and / or bainite is obtained, has an r value of 1.5 or more and a yield ratio of 50% or less, and has a high tensile strength-elongation balance. It is supposed to be a tensile steel plate. However, in the technique described in Patent Document 3, in order to stably cool at a cooling rate of 30 ° C./s or more by continuous annealing, it is necessary to install a water quenching facility, and there remains a problem in manufacturing equipment. The water-quenched cold-rolled steel sheet has a surface treatment problem and remains a problem on the material.
また、特許文献4には、C:0.05〜0.2%、Si:0.01〜0.3%、Mn:0.1〜2%、Al:0.01〜2%を含み、Al、Siを(Si+(28/27)Al)が0.3%以上となるように含む組成を有し、組織が、残留γを1〜15体積%含み、残部が主にフェライト、ベイナイトからなる複合組織である、深絞り性に優れた薄鋼板が記載されている。特許文献4に記載された技術では、熱間圧延の仕上圧延終了温度をAr3変態点〜(Ar3変態点+100℃)とし、巻取り温度を350〜450℃とすることにより、上記した組織が得られ、380〜540MPa級の強度と、38%以上の伸びと、17000MPa%以上の強度−延性バランスを有する加工用薄鋼板となるとしている。特許文献4に記載された技術で製造された冷延鋼板は、残留オーステナイトのTRIP現象で高い延性と優れた深絞り性(LDR:限界絞り比)を示す。
しかし、特許文献4に記載された技術で製造された冷延鋼板は、深絞り性の指標因子であるr値が低く、そのため、従来の高r値材に匹敵するような優れた深絞り性が得られないという問題があった。このように、TRIP現象を利用した冷延鋼板のr値は、依然として低く、r値向上の有効な方法が見出されていないというのが実状である。
本発明は、上記した従来技術の問題を有利に解決し、深絞り性と強度−延性バランスに優れた高強度冷延鋼板およびその製造方法を提供することを目的とする。また、本発明は、深絞り性と強度−延性バランスに優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供することをも目的とする。
However, the cold-rolled steel sheet manufactured by the technique described in Patent Document 4 has a low r value, which is an index factor for deep drawability, and therefore has excellent deep drawability comparable to conventional high r-value materials. There was a problem that could not be obtained. As described above, the r value of the cold-rolled steel sheet using the TRIP phenomenon is still low, and the actual situation is that no effective method for improving the r value has been found.
An object of the present invention is to advantageously solve the above-described problems of the prior art and provide a high-strength cold-rolled steel sheet excellent in deep drawability and strength-ductility balance and a method for producing the same. Another object of the present invention is to provide a high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and a method for producing the same.
本発明者らは、上記した目的を達成するため、冷延鋼板のr値に及ぼす組織の影響について、とくに炭化物の形態に着目して鋭意研究を重ねた。その結果、熱間圧延後の熱延板焼鈍で、炭化物を粗大な球状炭化物としたのち、冷間圧延−再結晶焼鈍を施すことにより、{111}再結晶集合組織を容易に発達させることができ、高r値を有する冷延鋼板とすることができることを新規に見出した。 In order to achieve the above-described object, the present inventors have made extensive studies on the influence of the structure on the r value of a cold-rolled steel sheet, particularly focusing on the form of carbide. As a result, it is possible to easily develop a {111} recrystallized texture by performing cold rolling-recrystallization annealing after making the carbide into coarse spherical carbide by hot rolled sheet annealing after hot rolling. It was newly found that a cold rolled steel sheet having a high r value can be obtained.
というのは、熱延板焼鈍で炭化物を安定な粗大球状炭化物とすることにより、炭化物の溶解が遅れ、再結晶焼鈍前に、固溶Cを極力低減することができ、{111}再結晶集合組織が発達しやすくなり高r値を確保しやすくなるとともに、引き続き高温域の(α+γ)二相温度域まで加熱することにより、粗大球状炭化物が溶解して、γ(オーステナイト)中にCが濃化し、さらにその後の冷却−オーステンパー処理過程でさらにCが濃化し残留オーステナイトとなり、フェライト+ベイナイト+残留オーステナイトの複合組織が得られると考えられる。これにより、高r値を有する残留オーステナイト型冷延鋼板が容易に製造できる。 The reason is that by making the carbide into a stable coarse spherical carbide by hot-rolled sheet annealing, the dissolution of the carbide is delayed, so that the solid solution C can be reduced as much as possible before recrystallization annealing, and {111} recrystallized aggregate The structure is easy to develop and it is easy to secure a high r value, and by subsequently heating to a high temperature (α + γ) two-phase temperature range, the coarse spherical carbide dissolves and C is concentrated in γ (austenite). In the subsequent cooling-austempering process, C is further concentrated to form retained austenite, and a composite structure of ferrite + bainite + residual austenite can be obtained. Thereby, a retained austenitic cold-rolled steel sheet having a high r value can be easily produced.
また、本発明者らは、熱間圧延後、急速冷却、低温巻取りとする熱延工程を施すことにより、熱延板組織を、体積率:80%以上のベイナイトとマルテンサイトを主体とする組織とすることができ、これにより、従来のフェライトを主体とする熱延板組織を有する場合に比べ、高い伸びを確保することができ、強度−延性バランスを向上させることができることを見出した。というのは、熱延板の組織をベイナイトとマルテンサイトを主体とする組織とすることにより、その後の熱延板焼鈍時に炭化物の分散が均一微細となり、かつ、さらに再結晶焼鈍時の昇温速度を適正範囲に調整することにより、再結晶焼鈍後に、第二相を微細に分散させることができるためであると考えられる。 In addition, the present inventors perform hot rolling after hot rolling to perform rapid rolling and low temperature winding, so that the hot rolled sheet structure is mainly composed of bainite and martensite having a volume ratio of 80% or more. It has been found that a structure can be obtained, and as a result, a high elongation can be ensured and a balance between strength and ductility can be improved as compared with a conventional hot rolled sheet structure mainly composed of ferrite. This is because the structure of the hot-rolled sheet is mainly composed of bainite and martensite, so that the carbide dispersion becomes uniform and fine during subsequent hot-rolled sheet annealing, and the rate of temperature increase during recrystallization annealing. It is thought that this is because the second phase can be finely dispersed after recrystallization annealing by adjusting the value to within an appropriate range.
従来は、再結晶焼鈍前の固溶Cを減少させるため、炭化物形成元素として、主としてTiおよびNbを含有させていた。しかし、本発明者らは、かかる炭化物形成元素を含有することなく、熱延板焼鈍時に炭化物を粗大球状炭化物とすれば、かかる炭化物形成元素を含有した場合と同様な効果が得られることを見出した。またさらに、粗大球状炭化物は、高温に加熱すれば容易に溶解するため、(α+γ)二相温度域に加熱することにより、十分な量の固溶Cが得られ、その後の過程で多量の残留オーステナイトの生成が容易となることを見出した。 Conventionally, in order to reduce the solid solution C before recrystallization annealing, Ti and Nb were mainly contained as carbide forming elements. However, the present inventors have found that if the carbide is a coarse spherical carbide during hot-rolled sheet annealing without containing such a carbide-forming element, the same effect as that obtained when such a carbide-forming element is contained can be obtained. It was. Furthermore, since the coarse spherical carbide is easily dissolved when heated to a high temperature, a sufficient amount of solid solution C can be obtained by heating to the (α + γ) two-phase temperature range, and a large amount of residual carbon remains in the subsequent process. It has been found that austenite formation is facilitated.
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.05〜0.2%、Si:0.1〜2.0%、Mn:0.5〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.5〜1.5%、N:0.02%以下を含み、かつSi、Alを合計で0.5〜2.5%の範囲に調整して含み、残部Feおよび不可避的不純物からなる組成と、主相であるフェライトと第二相とからなる複合組織とを有し、前記フェライトを体積率で70%以上、前記第二相が、少なくとも全組織に対する体積率で3%以上の残留オーステナイトを含み、該第二相の平均結晶粒径が3μm以下であり、r値が1.1以上でかつ引張強さTSと伸びElの積(強度−延性バランス)TS×ELが22000MPa・%以上であることを特徴とする、深絞り性と強度−延性バランスに優れた高強度冷延鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.05 to 0.2%, Si: 0.1 to 2.0%, Mn: 0.5 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al: 0.5 to 1.5%, N: 0.02 And a composition comprising the balance Fe and unavoidable impurities, and a composite structure comprising the main phase ferrite and the second phase. The ferrite has a volume ratio of 70% or more, the second phase contains at least 3% or more of retained austenite by volume ratio with respect to the entire structure , and the average crystal grain size of the second phase is 3 μm or less. Excellent in deep drawability and strength-ductility balance, characterized by r value of 1.1 or more and product of tensile strength TS and elongation El (strength-ductility balance) TS × EL is 22000 MPa ·% or more High strength cold rolled steel sheet.
(2)(1)において、前記組成に加えてさらに、質量%で、次A〜D群
A群:Cr、Mo、Niのうちの1種または2種以上を合計で0.05〜2.0%、
B群:B:0.005%以下、
C群:Ti、Nb、Vのうちの1種または2種以上を合計で0.01〜0.2%、
D群:Ca、REMのうちの1種または2種を合計で0.01%以下
のうちの1群または2群以上を含有する組成とすることを特徴とする高強度冷延鋼板。
(3)(1)または(2)に記載の高強度冷延鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を形成してなる深絞り性と強度−延性バランスに優れた高強度溶融亜鉛めっき鋼板。
(4)質量%で、C:0.05〜0.2%、Si:0.1〜2.0%、Mn:0.5〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.5〜1.5%、N:0.02%以下を含み、かつSi、Alを合計で0.5〜2.5%の範囲に調整して含み、残部Feおよび不可避的不純物からなる組成を有し、かつベイナイトとマルテンサイトの合計が体積率で80%以上となるベイナイトとマルテンサイトを主体とする組織を有する熱延コイルに、該熱延コイルを再加熱し、550℃〜Ac1変態点の温度範囲に1h以上保持するバッチ焼鈍を施し熱延焼鈍板とするバッチ熱延板焼鈍工程と、該熱延焼鈍板に圧下率:30%以上の冷間圧延を施し冷延板とする冷延工程と、該冷延板にAc1変態点〜(Ac1変態点+50℃)の平均昇温速度を5℃/s以上としてAc1変態点〜Ac3変態点の範囲の焼鈍温度まで加熱し、5s以上保持する連続再結晶焼鈍と、該連続再結晶焼鈍後、5℃/s以上の平均冷却速度で350〜500℃の範囲のオーステンパー処理温度まで冷却し、該オーステンパー処理温度に10〜600s保持するオーステンパー処理とを施し、ついで室温まで冷却し冷延焼鈍板とする再結晶焼鈍工程と、を順次施すことを特徴とする深絞り性と強度−延性バランスに優れた高強度冷延鋼板の製造方法。
(5)(4)において、前記熱延コイルが、前記組成を有する鋼スラブに熱間圧延工程と、酸洗工程を施して製造された熱延コイルであって、前記熱間圧延工程を、前記鋼スラブを加熱し、仕上圧延終了温度をAr3変態点以上とする熱間圧延を行い、ついで100℃/s以上の平均冷却速度で冷却し、巻取り温度:300〜550℃で巻取る工程とすることを特徴とする深絞り性と強度−延性バランスに優れた高強度冷延鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、次A〜D群
A群:Cr、Mo、Niのうちの1種または2種以上を合計で0.05〜2.0%、
B群:B:0.005%以下、
C群:Ti、Nb、Vのうちの1種または2種以上を合計で0.01〜0.2%、
D群:Ca、REMのうちの1種または2種を合計で0.01%以下
のうちの1群または2群以上を含有する組成とすることを特徴とする高強度冷延鋼板の製造方法。
(7)質量%で、C:0.05〜0.2%、Si:0.1〜2.0%、Mn:0.5〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.5〜1.5%、N:0.02%以下を含み、かつSi、Alを合計で0.5〜2.5%の範囲に調整して含み、残部Feおよび不可避的不純物からなる組成を有し、かつベイナイトとマルテンサイトの合計が体積率で80%以上となるベイナイトとマルテンサイトを主体とする組織を有する熱延コイルに、該熱延コイルを再加熱し、550℃〜Ac1変態点の温度範囲に1h以上保持するバッチ焼鈍を施し熱延焼鈍板とするバッチ熱延板焼鈍工程と、該熱延焼鈍板に圧下率:30%以上の冷間圧延を施し冷延板とする冷延工程と、該冷延板にAc1変態点〜(Ac1変態点+50℃)の平均昇温速度を5℃/s以上としてAc1変態点〜Ac3変態点の範囲の焼鈍温度まで加熱し、5s以上保持する連続再結晶焼鈍と、該連続再結晶焼鈍後、5℃/s以上の平均冷却速度で350〜500℃の範囲のオーステンパー処理温度まで冷却し、該オーステンパー処理温度に10〜600s保持するオーステンパー処理とを施し冷延焼鈍板とする再結晶焼鈍工程と、前記オーステンパー処理温度から所定の温度まで冷却または所定の温度に加熱したのち、該冷延焼鈍板を溶融亜鉛めっき浴に浸漬し表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理を施す溶融亜鉛めっき処理工程と、を順次施すことを特徴とする深絞り性と強度−延性バランスに優れた高強度溶融亜鉛めっき鋼板の製造方法。
(8)(7)において、前記溶融亜鉛めっき処理後にさらに、450〜600℃の範囲の温度で5〜60s間保持し、前記溶融亜鉛めっき層を合金化する合金化処理を施すことを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
(9)(7)または(8)において、前記熱延コイルが、前記組成を有する鋼スラブに熱間圧延工程と、酸洗工程を施して製造された熱延コイルであって、前記熱間圧延工程を、前記鋼スラブを加熱し、仕上圧延終了温度をAr3変態点以上とする熱間圧延を行い、ついで100℃/s以上の平均冷却速度で冷却し、巻取り温度:300〜550℃で巻取る工程とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
(10)(7)ないし(9)のいずれかにおいて、前記組成に加えてさらに、質量%で、次A〜D群
A群:Cr、Mo、Niのうちの1種または2種以上を合計で0.05〜2.0%、
B群:B:0.005%以下、
C群:Ti、Nb、Vのうちの1種または2種以上を合計で0.01〜0.2%、
D群:Ca、REMのうちの1種または2種を合計で0.01%以下
のうちの1群または2群以上を含有する組成とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
(2) In (1), in addition to the above composition, in addition to mass%, the following groups A to D: Group A: Cr, Mo, Ni or more of 0.05 to 2.0% in total,
Group B: B: 0.005% or less,
Group C: one or more of Ti, Nb and V in a total of 0.01 to 0.2%,
Group D: A high-strength cold-rolled steel sheet characterized in that one or two of Ca and REM have a composition containing one or more of 0.01% or less in total.
(3) Highly excellent in deep drawability and strength-ductility balance formed by forming a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the high-strength cold-rolled steel sheet according to (1) or (2) Strength hot dip galvanized steel sheet.
(4) By mass%, C: 0.05 to 0.2%, Si: 0.1 to 2.0%, Mn: 0.5 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al: 0.5 to 1.5%, N: 0.02 %, And Si and Al are adjusted in the range of 0.5 to 2.5% in total, the composition is composed of the balance Fe and inevitable impurities, and the total of bainite and martensite is 80% by volume. The hot-rolled coil having a structure mainly composed of bainite and martensite is subjected to batch annealing in which the hot-rolled coil is reheated and maintained in the temperature range of 550 ° C to Ac 1 transformation point for 1 hour or longer. A batch hot-rolled sheet annealing step for forming a sheet, a cold-rolling step for subjecting the hot-rolled annealed sheet to a cold rolling at a reduction ratio of 30% or more to form a cold-rolled sheet, and an Ac 1 transformation point on the cold-rolled sheet to ( heating the average heating rate of Ac 1 transformation point + 50 ° C.) until the annealing temperature in the range of Ac 1 transformation point to Ac 3 transformation point as 5 ° C. / s or more, holding more 5s continuous Crystal annealing and austempering after cooling to the austempering temperature in the range of 350 to 500 ° C at an average cooling rate of 5 ° C / s or more and holding at the austempering temperature for 10 to 600s after the continuous recrystallization annealing And a recrystallization annealing step of cooling to room temperature to form a cold-rolled annealed sheet, and a method for producing a high-strength cold-rolled steel sheet excellent in deep drawability and strength-ductility balance.
(5) In (4), the hot rolled coil is a hot rolled coil manufactured by subjecting a steel slab having the composition to a hot rolling step and a pickling step, and the hot rolling step, the steel slab was heated and finish rolling end temperature subjected to hot rolling to Ar 3 transformation point or higher, then cooled at an average cooling rate of more than 100 ° C. / s, coiling temperature: 300 to 550 coiled at ° C. A process for producing a high-strength cold-rolled steel sheet excellent in deep drawability and strength-ductility balance, characterized in that it is a step to take.
(6) In (4) or (5), in addition to the above-mentioned composition, the following A to D groups A group: one or more of Cr, Mo, Ni are added in a total of 0.05 to 2.0%
Group B: B: 0.005% or less,
Group C: one or more of Ti, Nb and V in a total of 0.01 to 0.2%,
Group D: A method for producing a high-strength cold-rolled steel sheet, characterized in that one or two of Ca and REM have a composition containing one or more of 0.01% or less in total.
(7) By mass%, C: 0.05 to 0.2%, Si: 0.1 to 2.0%, Mn: 0.5 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al: 0.5 to 1.5%, N: 0.02 %, And Si and Al are adjusted in the range of 0.5 to 2.5% in total, the composition is composed of the balance Fe and inevitable impurities, and the total of bainite and martensite is 80% by volume. The hot-rolled coil having a structure mainly composed of bainite and martensite is subjected to batch annealing in which the hot-rolled coil is reheated and maintained in the temperature range of 550 ° C to Ac 1 transformation point for 1 hour or longer. A batch hot-rolled sheet annealing step for forming a sheet, a cold-rolling step for subjecting the hot-rolled annealed sheet to a cold rolling at a reduction ratio of 30% or more to form a cold-rolled sheet, and an Ac 1 transformation point on the cold-rolled sheet heating the average heating rate of Ac 1 transformation point + 50 ° C.) until the annealing temperature in the range of Ac 1 transformation point to Ac 3 transformation point as 5 ° C. / s or more, holding more 5s continuous Crystal annealing and austempering after cooling to the austempering temperature in the range of 350 to 500 ° C at an average cooling rate of 5 ° C / s or more and holding at the austempering temperature for 10 to 600s after the continuous recrystallization annealing And a recrystallization annealing step to form a cold-rolled annealed plate, and after cooling from the austempering temperature to a predetermined temperature or heating to a predetermined temperature, the cold-rolled annealed plate is immersed in a hot dip galvanizing bath on the surface A method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance, characterized by sequentially performing a hot-dip galvanizing treatment step for forming a hot-dip galvanized layer.
(8) In (7), after the hot dip galvanizing treatment, it is further held at a temperature in the range of 450 to 600 ° C. for 5 to 60 seconds, and an alloying treatment for alloying the hot dip galvanized layer is performed. A method for producing a high-strength hot-dip galvanized steel sheet.
(9) In (7) or (8), the hot rolled coil is a hot rolled coil manufactured by subjecting a steel slab having the composition to a hot rolling step and a pickling step, the rolling process, heating the steel slab, the finish rolling temperature subjected to hot rolling to Ar 3 transformation point or higher, then cooled at 100 ° C. / s or more average cooling rate, coiling temperature: 300 A method for producing a high-strength hot-dip galvanized steel sheet, characterized by being a step of winding at 550 ° C.
(10) In any one of (7) to (9), in addition to the above composition, the following A to D group A group: one or more of Cr, Mo, Ni are added in total in mass%. At 0.05-2.0%,
Group B: B: 0.005% or less,
Group C: one or more of Ti, Nb and V in a total of 0.01 to 0.2%,
Group D: A method for producing a high-strength hot-dip galvanized steel sheet, characterized in that one or two of Ca and REM have a composition containing one or more of 0.01% or less in total.
本発明によれば、優れた深絞り性と優れた強度−延性バランスを有する高強度冷延鋼板または高強度溶融亜鉛めっき鋼板を、安定して製造することが可能となり、産業上格段の効果を奏する。また、本発明になる高強度冷延鋼板は、プレス成形が容易で自動車部品用として好適であり、しかも自動車車体の軽量化に十分に寄与できるという効果もある。 According to the present invention, it becomes possible to stably produce a high-strength cold-rolled steel sheet or a high-strength hot-dip galvanized steel sheet having excellent deep drawability and an excellent strength-ductility balance, which has a remarkable industrial effect. Play. Moreover, the high-strength cold-rolled steel sheet according to the present invention is easy to press-mold and suitable for automobile parts, and also has an effect that it can sufficiently contribute to weight reduction of the automobile body.
本発明の高強度冷延鋼板は、引張強さTSが590MPa以上の高強度を有し、深絞り性に優れ、かつ強度−延性バランスに優れた冷延鋼板である。なお、「深絞り性に優れた」とは、r値(ランクフォード値)が1.1以上を有する場合をいい、また、「強度−延性バランスに優れた」とは、引張強さTSと伸びElの積TS×Elが22000MPa・%以上である場合をいう。なお、ここでいう「伸びEl」は、圧延方向に垂直な方向(C方向)を引張方向としたJIS 5号試験片(GL:50mm)を用いてJIS Z 2241の規定に準拠して引張試験を実施し、得られた値を用いる。また、ここでいう「r値」は、C方向を引張方向としたJIS 5号試験片(GL:50mm)を用いて、JIS Z 2254の規定に準拠して、付加歪量を10%とする引張試験を実施して得られた値をいう。TS×Elは、主として残留γ量と相関があり、r値は、結晶方位により決まり、{111}方位が多く発達するほど高い値となる。 The high-strength cold-rolled steel sheet of the present invention is a cold-rolled steel sheet having a high tensile strength TS of 590 MPa or more, excellent deep drawability, and excellent strength-ductility balance. “Excellent deep drawability” means that the r value (Rankford value) is 1.1 or more, and “excellent strength-ductility balance” means tensile strength TS and elongation El. Product TS × El is 22000MPa ·% or more. “Elongation El” here refers to a tensile test in accordance with the provisions of JIS Z 2241 using a JIS No. 5 test piece (GL: 50 mm) with the direction perpendicular to the rolling direction (C direction) as the tensile direction. And use the values obtained. The “r value” here is JIS No. 5 test piece (GL: 50 mm) with the C direction as the tensile direction, and the added strain amount is 10% in accordance with the provisions of JIS Z 2254. The value obtained by carrying out a tensile test. TS × El is mainly correlated with the amount of residual γ, and the r value is determined by the crystal orientation, and becomes higher as more {111} orientations are developed.
まず、本発明高強度冷延鋼板の組成限定理由について説明する。なお、質量%は単に%と記す。
C:0.05〜0.2%
Cは、鋼板の強度を増加し、さらにフェライトと残留オーステナイトの複合組織の形成を促進する元素であり、本発明では所望の複合組織を形成する観点から、0.05%以上の含有を必要とする。一方、0.2%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り性を低下させる。このため、本発明では、Cは0.05〜0.2%の範囲に限定した。なお、好ましくは0.07〜0.16%である。
First, the reasons for limiting the composition of the high-strength cold-rolled steel sheet of the present invention will be described. The mass% is simply written as%.
C: 0.05-0.2%
C is an element that increases the strength of the steel sheet and further promotes the formation of a composite structure of ferrite and retained austenite. In the present invention, the content of 0.05% or more is required from the viewpoint of forming a desired composite structure. On the other hand, the content exceeding 0.2% inhibits the development of {111} recrystallized texture and lowers the deep drawability. For this reason, in this invention, C was limited to 0.05 to 0.2% of range. In addition, Preferably it is 0.07 to 0.16%.
Si:0.1〜2.0%
Siは、鋼板の強度を増加し、さらにフェライトと残留オーステナイトの複合組織の形成を促進する元素であり、本発明では所望の複合組織を形成する観点から0.1%以上の含有を必要とする。一方、2.0%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り性を低下させるとともに、表面性状を悪化させる。このため、本発明では、Siは0.1〜2.0%の範囲に限定した。なお、好ましくは0.5〜1.6%である。
Si: 0.1-2.0%
Si is an element that increases the strength of the steel sheet and further promotes the formation of a composite structure of ferrite and retained austenite. In the present invention, the content of 0.1% or more is required from the viewpoint of forming a desired composite structure. On the other hand, the content exceeding 2.0% inhibits the development of {111} recrystallized texture, lowers the deep drawability and deteriorates the surface properties. For this reason, in this invention, Si was limited to 0.1 to 2.0% of range. In addition, Preferably it is 0.5 to 1.6%.
Mn:0.5〜3.0%
Mnは、鋼板の強度を増加し、さらにフェライトと残留オーステナイトの複合組織の形成を促進する元素であり、本発明では所望の複合組織を形成する観点から0.5%以上の含有を必要とする。一方、3.0%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り性を低下させるとともに、溶接性を低下させる。このため、本発明では、Mnは0.5〜3.0%の範囲に限定した。なお、好ましくは0.8〜2.5%である。
Mn: 0.5-3.0%
Mn is an element that increases the strength of the steel sheet and further promotes the formation of a composite structure of ferrite and retained austenite. In the present invention, the content of 0.5% or more is required from the viewpoint of forming a desired composite structure. On the other hand, if the content exceeds 3.0%, the development of {111} recrystallization texture is inhibited, deep drawability is lowered, and weldability is lowered. For this reason, in this invention, Mn was limited to 0.5 to 3.0% of range. In addition, Preferably it is 0.8 to 2.5%.
P:0.10%以下
Pは、鋼を強化する作用を有する元素であり、所望の強度に応じて必要量含有することができるが、過剰に含有するとプレス成形性が低下する。このため、Pは0.10%以下に限定した。なお、より優れたプレス成形性が要求される場合には、0.08%以下に限定することが好ましい。
P: 0.10% or less P is an element having an effect of strengthening steel, and can be contained in a necessary amount according to a desired strength, but if it is contained excessively, press formability is lowered. For this reason, P was limited to 0.10% or less. When more excellent press formability is required, it is preferably limited to 0.08% or less.
S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の低下をもたらす元素であり、本発明では、できるだけ低減するのが好ましいが、0.02%以下程度に低減するとさほど悪影響を及ぼさなくなる。このため、本発明ではSは0.02%を上限とした。なお、より優れた伸びフランジ成形性を要求される場合には、Sは0.01%以下とすることが好ましく、より好ましくは0.005%以下である。
S: 0.02% or less S is an element which exists as an inclusion in a steel sheet and causes a decrease in ductility and formability of the steel sheet, particularly stretch flange formability. In the present invention, S is preferably reduced as much as possible. If it is reduced to about% or less, the adverse effect will not be so much. For this reason, in the present invention, the upper limit of S is 0.02%. When more excellent stretch flange formability is required, S is preferably 0.01% or less, and more preferably 0.005% or less.
Al:0.5〜1.5%
Alは、鋼の脱酸剤として作用し、鋼の清浄度を向上させるとともに、Siと同様に、フェライトと残留オーステナイトの複合組織の形成を促進する元素である。本発明では、脱酸という観点から0.005%以上の含有を必要とするが、1.5%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り性を低下させる。本発明では、Alは0.5〜1.5%の範囲に限定した。なお、好ましくは0.5〜1.0%である。
Al: 0.5 to 1.5%
Al is an element that acts as a deoxidizer for steel, improves the cleanliness of the steel, and promotes the formation of a composite structure of ferrite and retained austenite, similar to Si. In the present invention, a content of 0.005% or more is required from the viewpoint of deoxidation, but a content exceeding 1.5% inhibits the development of {111} recrystallized texture and reduces deep drawability . In the present invention, Al is limited to the range of 0.5 to 1.5%. In addition, Preferably it is 0.5 to 1.0%.
なお、本発明では、SiおよびAlは、上記した含有範囲内でかつSi含有量とAl含有量の合計 Si+Alが0.5〜2.5%の範囲内となるように調整して含有する。
Si+Al :0.5〜2.5%
本発明では、所望の複合組織を形成するという観点から、SiとAlを、 SiとAlの含有量の合計Si+Alが0.5%以上となるように調整して含有する。一方、Si+Alが2.5%を超えると、{111}再結晶集合組織の発達を阻害し、深絞り性を低下させる。このため、本発明では、Si+Al を0.5〜2.5%の範囲に限定した。なお、好ましくは1.0〜2.0%である。
In the present invention, Si and Al are contained so as to be within the above-described content range and the total Si + Al content within the range of 0.5 to 2.5% within the Si content and the Al content.
Si + Al: 0.5-2.5%
In the present invention, from the viewpoint of forming a desired composite structure, Si and Al are contained so that the total Si + Al content of Si and Al is adjusted to 0.5% or more. On the other hand, when Si + Al exceeds 2.5%, the development of {111} recrystallization texture is inhibited, and the deep drawability is lowered. For this reason, in this invention, Si + Al was limited to 0.5 to 2.5% of range. In addition, Preferably it is 1.0 to 2.0%.
なお、本発明では、Al脱酸以外の溶製方法を排除するものではなく、たとえばTi脱酸やSi脱酸を行ってもよいことは言うまでもない。
N:0.02%以下
Nは、固溶強化や歪時効硬化で鋼板の強度を増加させる元素であるが、0.02%を超えて含有すると、鋼板中に窒化物が増加し、鋼板の深絞り性が顕著に低下する。このため、本発明では、Nは0.02%以下に限定した。なお、よりプレス成形性の向上が要求される場合には0.01%以下とすることが好ましい。
In the present invention, a melting method other than Al deoxidation is not excluded, and it goes without saying that, for example, Ti deoxidation or Si deoxidation may be performed.
N: 0.02% or less N is an element that increases the strength of the steel sheet by solid solution strengthening or strain age hardening, but if it exceeds 0.02%, nitride increases in the steel sheet and the deep drawability of the steel sheet increases. Remarkably reduced. For this reason, in the present invention, N is limited to 0.02% or less. In addition, when the improvement of press formability is requested | required more, it is preferable to set it as 0.01% or less.
上記した成分が基本の成分であるが、基本の組成に加えてさらに、必要に応じて、次に示すA群〜D群のうちの1群または2群以上を含有することができる。
A群:Cr、Mo、Niのうちの1種または2種以上を合計で、0.05〜2.0%
A群のCr、Mo、Niはいずれも、鋼の焼入性を向上し、残留オーステナイト相の生成を促進する作用を有する元素であり、必要に応じて選択して含有できる。このような作用は、Cr、Mo、Niのうちの1種または2種以上の合計で、0.05%以上の含有で顕著に認められる。一方、合計で2.0%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り性を低下させる。このため、Cr、Mo、Niのうちの1種または2種以上を合計で、0.05〜2.0%の範囲に限定するのが好ましい。より好ましくは、合計で0.05〜1.0%である。
Although the above-mentioned component is a basic component, in addition to the basic composition, it can further contain one group or two or more groups among the following groups A to D as required.
Group A: 0.05 to 2.0% of one or more of Cr, Mo and Ni in total
All of group A Cr, Mo, and Ni are elements that have the effect of improving the hardenability of the steel and promoting the formation of the retained austenite phase, and can be selected and contained as necessary. Such an effect is remarkably observed when the total content of one or more of Cr, Mo, and Ni is 0.05% or more. On the other hand, if the total content exceeds 2.0%, the development of {111} recrystallized texture is inhibited and the deep drawability is lowered. For this reason, it is preferable to limit one or more of Cr, Mo, and Ni to a range of 0.05 to 2.0% in total. More preferably, it is 0.05 to 1.0% in total.
B群:B:0.005%以下
B群のBは、鋼の焼入性を向上する作用を有する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上の含有で顕著に認められる。一方、0.005%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り性を低下させる。このため、Bは0.005%以下に限定するのが好ましい。なお、より好ましくは0.001〜0.003%である。
Group B: B: 0.005% or less B in Group B is an element having an effect of improving the hardenability of steel, and can be contained as necessary. Such an effect is noticeable when the content is 0.0005% or more. On the other hand, the content exceeding 0.005% inhibits the development of {111} recrystallized texture and lowers the deep drawability. For this reason, B is preferably limited to 0.005% or less. In addition, More preferably, it is 0.001 to 0.003%.
C群:Ti,Nb,Vのうちの1種または2種以上を合計で、0.01〜0.2%
C群のTi、Nb、Vはいずれも、鋼中で炭窒化物を形成し、析出強化により鋼板を高強度化する作用を有するとともに、結晶粒を微細化する作用も有する元素であり、必要に応じて選択して含有できる。このような作用は、Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01%以上の含有で顕著に認められる。一方、合計で0.2%を超えて含有すると{111}再結晶集合組織の発達を阻害し、深絞り性を低下させる。このため、Ti、Nb、Vのうちの1種または2種以上を合計で、0.01〜0.2%の範囲に限定するのが好ましい。
Group C: 0.01 to 0.2% of one or more of Ti, Nb and V in total
C, Ti, Nb, and V are all elements that have the effect of forming carbonitrides in steel and increasing the strength of steel sheets by precipitation strengthening, and also have the effect of refining crystal grains. Can be selected according to the content. Such an effect is remarkably recognized when the total content of one or more selected from Ti, Nb, and V is 0.01% or more. On the other hand, if it contains more than 0.2% in total, the development of {111} recrystallized texture is inhibited and deep drawability is lowered. For this reason, it is preferable to limit one or more of Ti, Nb, and V to a range of 0.01 to 0.2% in total.
D群:Ca、REMのうちの1種または2種を合計で、0.01%以下
D群のCa、REMはいずれも、硫化物系介在物の形態を制御する作用を有し、鋼板の伸びフランジ性を向上させる元素である。このような効果を得るには、Ca、REMのうちの1種または2種を合計で、0.0005%以上含有することが望ましいが、合計で0.01%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Ca、REMのうちの1種または2種は、合計で0.01%以下に限定するのが好ましい。なお、より好ましい範囲は0.001〜0.005%である。
Group D: Total of one or two of Ca and REM, 0.01% or less D group Ca and REM both have the effect of controlling the form of sulfide inclusions, and have a steel sheet stretch flange. It is an element that improves the properties. In order to obtain such an effect, it is desirable to contain one or two of Ca and REM in total in an amount of 0.0005% or more, but even if the content exceeds 0.01% in total, the effect is saturated, The effect commensurate with the content cannot be expected. Therefore, one or two of Ca and REM are preferably limited to 0.01% or less in total. A more preferable range is 0.001 to 0.005%.
次に本発明高強度冷延鋼板の組織について説明する。
本発明の鋼板は、上記した組成を有し、主相である体積率で70%以上のフェライトと第二相とからなる複合組織を有する。そして、第二相は、少なくとも体積率で3%以上の残留オーステナイトを含み、平均結晶粒径が3μm以下の相とする。
フェライト:体積率で70%以上
ここでいうフェライトは、鉄炭化物を含まない軟質な相で、高い変形能を有し、鋼板の延性を向上させる作用を有する相である。本発明の鋼板では、このようなフェライトを主相として、体積率で70%以上含有する。フェライト量が70%未満では、顕著な延性の向上が期待できない。このため、フェライト量は体積率で70%以上に限定した。なお、好ましくは75%以上である。
Next, the structure of the high-strength cold-rolled steel sheet of the present invention will be described.
The steel sheet of the present invention has the above-described composition, and has a composite structure composed of ferrite and a second phase of 70% or more by volume as the main phase. The second phase includes at least 3% or more of retained austenite by volume ratio, and has an average crystal grain size of 3 μm or less.
Ferrite: 70% or more in volume ratio Ferrite here is a soft phase that does not contain iron carbide, has a high deformability, and has a function of improving the ductility of the steel sheet. The steel sheet of the present invention contains such a ferrite as a main phase and contains 70% or more by volume. If the ferrite content is less than 70%, a significant improvement in ductility cannot be expected. For this reason, the ferrite content is limited to 70% or more by volume ratio. In addition, Preferably it is 75% or more.
残留オーステナイト:全組織に対する体積率で3%以上
本発明の鋼板では、第二相は、少なくとも残留オーステナイトを含む。第二相を構成する相のうちの一つである残留オーステナイトは、加工時にマルテンサイトに歪誘起変態し、局所的に加えられた加工歪を広く分散させ、鋼板の延性を向上させる作用を有する。このような効果を得るために、本発明では、体積率で3%以上の残留オーステナイトを含むことを必要とする。残留オーステナイト量が3%未満では、顕著な延性の向上が期待できない。このため、本発明では、残留オーステナイト量は体積率で3%以上に限定した。なお、好ましくは体積率で5%以上である。また残留オーステナイト量は多いほどよいが、実際的には20%以下である。
Residual austenite: 3% or more by volume ratio with respect to the entire structure In the steel sheet of the present invention, the second phase contains at least residual austenite. Residual austenite, one of the phases constituting the second phase, has a function of strain-induced transformation into martensite during processing, widely disperses locally applied processing strain, and improves the ductility of the steel sheet. . In order to obtain such an effect, the present invention needs to contain 3% or more of retained austenite by volume. If the amount of retained austenite is less than 3%, a significant improvement in ductility cannot be expected. For this reason, in the present invention, the amount of retained austenite is limited to 3% or more by volume ratio. The volume ratio is preferably 5% or more. Further, the higher the amount of retained austenite, the better, but in practice it is 20% or less.
なお、残留オーステナイト以外の第二相として、ベイナイト、マルテンサイトを含んでもよい。
ベイナイトは、微細鉄炭化物を含んだ硬質相であり、組織強化によって鋼板の強度を増加させる作用を有する。本発明では、このようなベイナイトの量を限定する必要はないが、延性の向上からは、体積率で20%以下とすることが好ましい。また、30%以下のマルテンサイトを含有してもよい。マルテンサイトは、硬質相であり、組織強化によって鋼板の強度を増加させる作用を有する。このようなマルテンサイトの量はとくに限定する必要はないが、延性の向上からは、体積率で20%以下(0%を含む)とすることが好ましい。
In addition, bainite and martensite may be included as the second phase other than retained austenite.
Bainite is a hard phase containing fine iron carbide and has the effect of increasing the strength of the steel sheet by strengthening the structure. In the present invention, it is not necessary to limit the amount of such bainite, but in order to improve ductility, the volume ratio is preferably 20% or less. Moreover, you may contain 30% or less of martensite. Martensite is a hard phase and has the effect of increasing the strength of the steel sheet by strengthening the structure. The amount of martensite is not particularly limited, but is preferably 20% or less (including 0%) in terms of volume ratio in order to improve ductility.
第2相の平均結晶粒径:3μm以下
第2相が微細に分散することは、伸び(延性)の向上に有利に働く。このような効果は平均結晶粒径が3μm以下の場合に顕著となる。このため、本発明の冷延鋼板では第二相の平均結晶粒径を3μm以下に限定した。なお、好ましくは2μm以下である。
なお、本発明では、上記した高強度冷延鋼板の表面に、所望厚さの溶融亜鉛めっき層または合金化溶融亜鉛めっき層を形成して、深絞り性と強度−延性バランスに優れた高強度溶融亜鉛めっき鋼板とすることもできる。
Average crystal grain size of the second phase: 3 μm or less The fine dispersion of the second phase works to improve the elongation (ductility). Such an effect becomes significant when the average crystal grain size is 3 μm or less. For this reason, in the cold rolled steel sheet of the present invention, the average crystal grain size of the second phase is limited to 3 μm or less. The thickness is preferably 2 μm or less.
In the present invention, a hot-dip galvanized layer or an alloyed hot-dip galvanized layer having a desired thickness is formed on the surface of the above-described high-strength cold-rolled steel sheet, thereby providing high strength excellent in deep drawability and strength-ductility balance. It can also be a hot dip galvanized steel sheet.
つぎに、本発明の高強度冷延鋼板の製造方法について説明する。
本発明では、上記した組成を有し、かつベイナイトとマルテンサイトの合計が体積率で80%以上となるベイナイトとマルテンサイトを主体とする組織を有する熱延コイルを出発素材とする。
出発素材の熱延コイルの組織を、ベイナイトおよびマルテンサイト主体の組織とすることにより、熱延板焼鈍後の炭化物が均一に分散し、また再結晶焼鈍後の残留オーステナイトが均一微細に分散し、鋼板の高延性化に有効に寄与する。このような効果は、ベイナイトとマルテンサイトの組織分率の合計が、体積率で80%以上で顕著となる。このため、熱延コイルの組織を、ベイナイトとマルテンサイトの合計が体積率で80%以上であるベイナイトおよびマルテンサイト主体の組織に限定した。なお、好ましくはベイナイトとマルテンサイトの組織分率の合計が体積率で90%以上である。
Below, the manufacturing method of the high intensity | strength cold-rolled steel plate of this invention is demonstrated.
In the present invention, a hot rolled coil having the above-described composition and having a structure mainly composed of bainite and martensite whose total volume of bainite and martensite is 80% or more is used as a starting material.
By making the structure of the hot rolled coil of the starting material a bainite and martensite-based structure, the carbide after hot-rolled sheet annealing is uniformly dispersed, and the retained austenite after recrystallization annealing is uniformly and finely dispersed, Contributes effectively to high ductility of steel sheets. Such an effect becomes significant when the sum of the fractions of bainite and martensite is 80% or more by volume. For this reason, the structure of the hot-rolled coil was limited to a structure mainly composed of bainite and martensite in which the sum of bainite and martensite is 80% or more by volume. Preferably, the sum of the structural fractions of bainite and martensite is 90% or more by volume.
上記した組織を有する熱延コイルは、上記した組成を有する鋼スラブに熱間圧延工程と、酸洗工程を施して製造されるが、熱間圧延工程は、鋼スラブを好ましくは900℃以上の温度に加熱し、仕上圧延終了温度をAr3変態点以上とする熱間圧延を行い、ついで100℃/s以上の平均冷却速度で冷却し、巻取り温度:300〜550℃で巻取る工程とすることが好ましい。これにより、熱延板組織をベイナイトおよびマルテンサイト主体の組織とすることができるが、本発明では熱延コイルの製造方法は、上記した方法に限定されないことは言うまでもない。
The hot-rolled coil having the above-described structure is manufactured by subjecting a steel slab having the above composition to a hot rolling step and a pickling step. The hot rolling step is preferably performed at a temperature of 900 ° C. or higher. was heated to a temperature, finish rolling end temperature subjected to hot rolling to Ar 3 transformation point or higher, then cooled at an average cooling rate of more than 100 ° C. / s, coiling temperature: 300 to 550 winding take steps at ° C. It is preferable that Thereby, although the hot-rolled sheet | seat structure can be made into the structure | tissue of a bainite and a martensite main body, it cannot be overemphasized that the manufacturing method of a hot-rolled coil is not limited to an above-described method in this invention.
なお、鋼スラブの製造方法はとくに限定されないが、上記した組成の溶綱を転炉等の通常の溶製方法で溶製し、成分のマクロ偏析を防止する観点から、連続鋳造法で鋳片(スラブ)とすることが好ましい。連続鋳造法に代えて造塊−分塊圧延法、薄スラブ鋳造法等を適用しても何ら問題がない。また、鋼スラブとしたのち、いったん室温まで冷却し、その後再度加熱する方法に加え、室温に冷却することなく温片のままで加熱炉に挿入する、あるいはわずかに保熱をおこなった後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。 The manufacturing method of the steel slab is not particularly limited, but from the viewpoint of preventing the macrosegregation of the components by melting the molten steel having the above composition by a normal melting method such as a converter, a slab is obtained by a continuous casting method. (Slab) is preferable. There is no problem even if an ingot-bundling rolling method, a thin slab casting method or the like is applied instead of the continuous casting method. In addition to the method of cooling the steel slab to room temperature and then heating it again, it is inserted into the heating furnace as it is without being cooled to room temperature, or rolled immediately after a slight heat retention. Energy saving processes such as direct rolling and direct rolling can be applied without problems.
また鋼スラブの加熱温度は、900℃以上とすることが好ましい。加熱温度が900℃未満では、圧延荷重が増大し、熱間圧延時のトラブル発生の危険が増大する。一方、1300℃を超えて高温となると、酸化重量が増加し、スケールロスが増大し歩留が低下する。このため鋼スラブの加熱温度は、900℃以上1300℃以下とすることが好ましい。なお、スラブ加熱温度を低温とした場合、粗圧延後のシートバーを加熱する、いわゆるシートバーヒーターを活用することは、熱間圧延の安定操業の観点から有効な方法であることは言うまでもない。 Moreover, it is preferable that the heating temperature of steel slab shall be 900 degreeC or more. If the heating temperature is less than 900 ° C., the rolling load increases and the risk of trouble occurring during hot rolling increases. On the other hand, when the temperature exceeds 1300 ° C., the oxidation weight increases, the scale loss increases, and the yield decreases. For this reason, it is preferable that the heating temperature of steel slab shall be 900 degreeC or more and 1300 degrees C or less. Needless to say, utilizing a so-called sheet bar heater that heats the sheet bar after rough rolling when the slab heating temperature is low is an effective method from the viewpoint of stable operation of hot rolling.
鋼スラブは、好ましくは上記した加熱温度に加熱され、ついで熱間圧延を施され熱延板とされる。熱間圧延は、仕上圧延終了温度をAr3変態点以上とする圧延とすることが好ましい。仕上圧延終了温度が、Ac3変態点未満では、圧延時にフェライトが生成し、熱延板(熱延コイル)組織をマルテンサイトとベイナイトを主体とする組織とすることが困難となる。このため、熱間圧延の仕上圧延終了温度をAr3変態点以上に限定することが好ましい。 The steel slab is preferably heated to the heating temperature described above and then hot rolled to form a hot rolled sheet. The hot rolling is preferably rolling in which the finish rolling finish temperature is equal to or higher than the Ar 3 transformation point. If the finish rolling finish temperature is less than the Ac 3 transformation point, ferrite is generated during rolling, and it becomes difficult to make the hot rolled sheet (hot rolled coil) structure mainly composed of martensite and bainite. For this reason, it is preferable to limit the finish rolling finishing temperature of hot rolling to the Ar 3 transformation point or higher.
熱間圧延終了後、熱延板は、ついで100℃/s以上の平均冷却速度で550℃以下の温度域まで急速に冷却される。平均冷却速度が100℃/s未満では、冷却時にフェライトが生成し、熱延板(熱延コイル)組織をベイナイトおよびマルテンサイト主体の組織とすることが困難となる。このため、熱間圧延後の平均冷却速度を100℃/s以上に限定することが好ましい。なお、より好ましくは200℃/s以上である。
After completion of hot rolling, hot-rolled sheet is then rapidly cooled to a temperature range of 550 ° C. or less at an average cooling rate of more than 100 ° C. / s. In less than an average cooling rate of 100 ° C. / s, ferrite is formed during cooling, the hot rolled sheet (hot rolled coil) tissue becomes difficult to tissue bainite and martensite mainly. For this reason, it is preferable to limit the average cooling rate after hot rolling to 100 ° C./s or more. More preferably, it is 200 ° C./s or more.
熱延板の巻き取りは、巻取り温度を300〜550℃の温度域の温度とする、低温巻取りとすることが好ましい。巻取り温度が、300℃未満では、鋼板形状の劣化や巻取りが困難になるなどの問題が生じる。また、巻取り温度が550℃を超えて高温となると、巻取り後にフェライトが生成し、熱延板(熱延コイル)組織をベイナイトおよびマルテンサイト主体の組織とすることが困難となる。このため、巻取り温度は300℃以上550℃以下の範囲に限定することが好ましい。 The hot-rolled sheet is preferably wound at a low temperature with a winding temperature in the temperature range of 300 to 550 ° C. When the winding temperature is less than 300 ° C., problems such as deterioration of the steel sheet shape and difficulty in winding occur. When the coiling temperature exceeds 550 ° C. and becomes high, ferrite is generated after coiling, and it becomes difficult to make the hot rolled sheet (hot rolled coil) structure mainly composed of bainite and martensite. For this reason, the winding temperature is preferably limited to a range of 300 ° C. or higher and 550 ° C. or lower.
なお、上記した熱間圧延では、熱間圧延時の圧延荷重を低減するために仕上圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の平均化、材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とすることが好ましい。また、先行するシートバーの尾端と後行するシートバーの先端を接合し、連続的に仕上圧延を行う連続圧延プロセスを適用しても何ら支障はない。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点から有効である。 In the hot rolling described above, part or all of the finish rolling may be lubricated rolling in order to reduce the rolling load during hot rolling. Performing lubrication rolling is also effective from the viewpoint of averaging the shape of the steel sheet and making the material uniform. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.10-0.25. Further, there is no problem even if a continuous rolling process is applied in which the tail end of the preceding sheet bar and the leading end of the succeeding sheet bar are joined to perform finish rolling continuously. Applying the continuous rolling process is effective from the viewpoint of the operational stability of hot rolling.
上記した組成を有する鋼スラブに、好ましくは上記した熱間圧延工程を施すことにより、容易に熱延板(熱延コイル)組織をベイナイトおよびマルテンサイト主体の組織とすることができるが、本発明では上記した熱間圧延工程に限定されないことは言うまでもない。
熱間圧延工程を経た熱延板(熱延コイル)には、ついで酸洗工程を施され、表面のスケールを除去され、出発素材となる。なお、酸洗条件は特に限定されることはなく、常用の酸洗方法がいずれも好適である。
The steel slab having the above composition is preferably subjected to the hot rolling process described above, whereby the hot rolled sheet (hot rolled coil) structure can be easily made into a structure mainly composed of bainite and martensite. It goes without saying that the present invention is not limited to the hot rolling process described above.
The hot-rolled sheet (hot-rolled coil) that has undergone the hot rolling process is then subjected to a pickling process, the surface scale is removed, and it becomes a starting material. The pickling conditions are not particularly limited, and any conventional pickling method is suitable.
出発素材である熱延コイル(熱延板)に、ついで、バッチ熱延板焼鈍工程と、冷延工程と、再結晶焼鈍工程と、を順次施し、冷延焼鈍板とする。
バッチ熱延板焼鈍工程では、熱延コイルを再加熱し、550℃〜Ac1変態点の温度範囲に1h以上保持するバッチ焼鈍を施し熱延焼鈍板とする。バッチ焼鈍は、炭化物を粗大球状炭化物とするために行う。バッチ焼鈍温度が550℃未満、あるいは保持時間が1h未満では、炭化物の球状化が十分に進行せず、一方、バッチ焼鈍温度がAc1変態点を超えて高温となると、炭化物が溶解するとともに、α→γ変態が生じて、最終的なr値の向上が期待できなくなる。このため、バッチ焼鈍の焼鈍温度は550℃〜Ac1変態点の範囲の温度とし、保持時間は1h以上に限定した。なお、保持時間の上限は特に限定する必要はないが、製造コストの観点から50h以下とすることが好ましい。
Next, a hot-rolled coil (hot-rolled sheet), which is a starting material, is successively subjected to a batch hot-rolled sheet annealing process, a cold-rolling process, and a recrystallization annealing process to obtain a cold-rolled annealed sheet.
In the batch hot-rolled sheet annealing step, the hot-rolled coil is reheated and subjected to batch annealing for 1 h or more in the temperature range of 550 ° C. to Ac 1 transformation point to obtain a hot-rolled annealed sheet. Batch annealing is performed to turn the carbide into coarse spherical carbide. When the batch annealing temperature is less than 550 ° C. or the holding time is less than 1 h, the spheroidization of the carbide does not proceed sufficiently. On the other hand, when the batch annealing temperature is higher than the Ac 1 transformation point, the carbide is dissolved, The α → γ transformation occurs, and the final improvement of the r value cannot be expected. For this reason, the annealing temperature of batch annealing was set to a temperature in the range of 550 ° C. to Ac 1 transformation point, and the holding time was limited to 1 h or more. The upper limit of the holding time is not particularly limited, but is preferably 50 h or less from the viewpoint of manufacturing cost.
また、冷延工程では、熱延焼鈍板に圧下率:30%以上の冷間圧延を施し冷延板とする。冷間圧延の圧下率が30%未満では、{111}再結晶集合組織が発達せず、優れた深絞り性を確保できなくなる。このため、冷間圧延の圧下率は30%以上に限定した。なお、好ましくは40%以上である。
また、再結晶焼鈍工程では、冷延板に、連続再結晶焼鈍と、オーステンパー処理とを施しついで室温まで冷却し冷延焼鈍板とする。連続再結晶焼鈍は、Ac1変態点〜(Ac1変態点+50℃)の平均昇温速度を5℃/s以上としてAc1変態点〜Ac3変態点の範囲の焼鈍温度まで加熱し、5s以上保持する処理とする。
In the cold rolling process, the hot-rolled annealed sheet is subjected to cold rolling with a reduction ratio of 30% or more to obtain a cold-rolled sheet. If the rolling reduction of cold rolling is less than 30%, the {111} recrystallized texture does not develop and excellent deep drawability cannot be secured. For this reason, the rolling reduction of the cold rolling is limited to 30% or more. In addition, Preferably it is 40% or more.
In the recrystallization annealing step, the cold-rolled sheet is subjected to continuous recrystallization annealing and austempering, and then cooled to room temperature to obtain a cold-rolled annealed sheet. In continuous recrystallization annealing, the average temperature increase rate from Ac 1 transformation point to (Ac 1 transformation point + 50 ° C) is set to 5 ° C / s or more, and heating is performed to an annealing temperature in the range of Ac 1 transformation point to Ac 3 transformation point. The process is held as described above.
連続再結晶焼鈍における、Ac1変態点〜(Ac1変態点+50℃)の温度域の平均昇温速度が、5℃/s未満では、逆変態により生じるオーステナイトが粗大となり、最終的に得られる残留オーステナイト(残留γ)の微細化が達成できない。このため、Ac1変態点〜(Ac1変態点+50℃)の温度域における昇温速度を5℃/s以上に限定した。なお、好ましくは
10〜50℃/sである。
In the continuous recrystallization annealing, when the average heating rate in the temperature range from the Ac 1 transformation point to (Ac 1 transformation point + 50 ° C.) is less than 5 ° C./s, the austenite generated by the reverse transformation becomes coarse and finally obtained. Refinement of retained austenite (residual γ) cannot be achieved. For this reason, the rate of temperature increase in the temperature range from the Ac 1 transformation point to (Ac 1 transformation point + 50 ° C.) was limited to 5 ° C./s or more. Preferably,
10 to 50 ° C./s.
連続再結晶焼鈍の焼鈍温度が、Ac1変態点未満では、焼鈍時にオーステナイトが生成せず、残留オーステナイトを確保できなくなる。一方、Ac3変態点を超える高温では、結晶粒が粗大化するとともに、オーステナイト単相域となり、{111}再結晶集合組織が発達せずに深絞り性が著しく劣化する。このため、連続再結晶焼鈍の焼鈍温度はAc1変態点〜Ac3変態点の範囲の温度に限定した。また、焼鈍温度における保持時間が5s未満では、炭化物の溶解やオーステナイトの生成が不十分となるため、焼鈍温度における保持時間は5s以上に限定した。なお、保持時間の上限は特に限定しないが、300s以下とすることが好ましい。 If the annealing temperature of continuous recrystallization annealing is less than the Ac 1 transformation point, austenite is not generated during annealing, and retained austenite cannot be secured. On the other hand, at a high temperature exceeding the Ac 3 transformation point, the crystal grains become coarse and become an austenite single phase region, and the {111} recrystallized texture does not develop, and the deep drawability deteriorates remarkably. For this reason, the annealing temperature of continuous recrystallization annealing was limited to a temperature in the range of Ac 1 transformation point to Ac 3 transformation point. Further, if the holding time at the annealing temperature is less than 5 s, the dissolution of carbides and the generation of austenite become insufficient, so the holding time at the annealing temperature is limited to 5 s or more. The upper limit of the holding time is not particularly limited, but is preferably 300 s or less.
また、再結晶焼鈍工程におけるオーステンパー処理は、連続再結晶焼鈍後、5℃/s以上の平均冷却速度で350〜500℃の範囲のオーステンパー処理温度まで冷却し、該オーステンパー処理温度に10〜600s間保持する処理とする。
連続再結晶焼鈍後の冷却が、平均冷却速度で5℃/s未満では、冷却中にパーライトが生成して残留γの形成が不十分となる。このため、連続再結晶焼鈍後の冷却は、平均冷却速度5℃/s以上の冷却に限定した。なお、好ましくは10℃/s以上である。
Further, the austempering treatment in the recrystallization annealing step is performed after continuous recrystallization annealing, cooling to an austempering treatment temperature in the range of 350 to 500 ° C. at an average cooling rate of 5 ° C./s or more. The processing is held for ~ 600s.
When the cooling after the continuous recrystallization annealing is less than 5 ° C./s at the average cooling rate, pearlite is generated during the cooling and the formation of the residual γ becomes insufficient. For this reason, the cooling after continuous recrystallization annealing was limited to cooling with an average cooling rate of 5 ° C./s or more. In addition, Preferably it is 10 degrees C / s or more.
また、オーステンパー処理温度が350℃未満では、ベイナイト変態が抑制されるため、一方、500℃を超える高温では炭化物が生成するため、十分な量(3体積%以上)の残留γを確保できなくなる。このため、オーステンパー処理温度は350〜500℃の範囲の温度に限定した。なお、オーステンパー処理温度における保持時間が、10s未満では、ベイナイト変態の進行が不十分であるため、一方、600sを超えて長時間となると、逆にベイナイト変態が過度に進行するため、十分な量(3体積%以上)の残留γを確保できなくなる。このため、オーステンパー処理温度における保持時間は、10〜600sの範囲に限定した。 In addition, when the austempering temperature is less than 350 ° C., bainite transformation is suppressed. On the other hand, carbide is generated at a high temperature exceeding 500 ° C., so that a sufficient amount (3% by volume or more) of residual γ cannot be secured. . For this reason, the austempering temperature was limited to a temperature in the range of 350 to 500 ° C. If the holding time at the austempering temperature is less than 10 s, the progress of bainite transformation is insufficient. On the other hand, if the holding time exceeds 600 s, the bainite transformation proceeds excessively. An amount (3% by volume or more) of residual γ cannot be secured. For this reason, the holding time at the austempering temperature was limited to a range of 10 to 600 s.
また、オーステンパー処理後の冷却は、とくに限定する必要はないが、通常のライン長の制約という観点から平均冷却速度で5℃/s以上とすることが好ましい。
上記した再結晶焼鈍工程を経た冷延焼鈍板に、溶融亜鉛めっき工程を施し、高強度溶融亜鉛めっき鋼板とすることができる。
溶融亜鉛めっき処理工程では、上記した再結晶焼鈍工程を経た冷延焼鈍板を、前記したオーステンパー処理温度から、溶融亜鉛めっき処理に適した所定の温度まで冷却または所定の温度に加熱したのち、該冷延焼鈍板を溶融亜鉛めっき浴に浸漬し表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理を施す。溶融亜鉛めっき処理の条件はとくに限定する必要はなく、冷延焼鈍板を溶融亜鉛めっき浴に浸漬し表面に、所望厚さの溶融亜鉛めっき層を形成する、通常の溶融亜鉛めっき処理条件がいずれも適用できる。なお、溶融亜鉛めっき浴に浸入するときの鋼板の板温が430℃を下まわると、鋼板に付着した亜鉛が凝固する可能性があるので、オーステンバー処理温度が430℃を下まわる場合は、溶融亜鉛めっき浴に入る前に所定の温度に加熱することが好ましい。また、溶融亜鉛めっき処理した後、必要に応じてめっき付着量調整のため、ワイピングを行っても良いことは言うまでもない。
Further, the cooling after the austempering treatment is not particularly limited, but it is preferable to set the average cooling rate to 5 ° C./s or more from the viewpoint of the restriction of the normal line length.
The cold-rolled annealed plate that has undergone the above-described recrystallization annealing step can be subjected to a hot-dip galvanizing step to obtain a high-strength hot-dip galvanized steel plate.
In the hot dip galvanizing process, the cold-rolled annealed plate that has undergone the above-described recrystallization annealing process is cooled from the above-described austempering temperature to a predetermined temperature suitable for the hot dip galvanizing process or heated to a predetermined temperature, The cold-rolled annealed plate is dipped in a hot dip galvanizing bath and subjected to hot dip galvanizing treatment to form a hot dip galvanized layer on the surface. The conditions for the hot dip galvanizing treatment are not particularly limited, and any of the normal hot dip galvanizing treatment conditions for immersing the cold-rolled annealed plate in a hot dip galvanizing bath to form a hot dip galvanized layer on the surface is possible. Is also applicable. Note that if the steel plate temperature when entering the hot dip galvanizing bath falls below 430 ° C, the zinc adhering to the steel plate may solidify. It is preferable to heat to a predetermined temperature before entering the galvanizing bath. Needless to say, after hot dip galvanizing treatment, wiping may be performed as needed to adjust the amount of plating adhered.
また本発明では、溶融亜鉛めっき処理後にさらに、450〜600℃の範囲の温度で5〜60s間保持し、溶融亜鉛めっき層を合金化する合金化処理を施してもよい。
なお、再結晶焼鈍後の冷延焼鈍板あるいは溶融亜鉛めっき処理後の溶融亜鉛めっき鋼板には、形状矯正、表面粗度などの調整のため調質圧延を施してもよい。また、本発明では、鋼板に樹脂あるいは油脂のコーティングなど、各種塗装等の表面処理を施しても何ら不都合はない。
Moreover, in this invention, you may perform the alloying process which hold | maintains for 5 to 60 s at the temperature of the range of 450-600 degreeC after the hot dip galvanization process, and alloyes a hot dip galvanization layer.
The cold-rolled annealed plate after recrystallization annealing or the hot-dip galvanized steel plate after hot-dip galvanizing treatment may be subjected to temper rolling for adjustment of shape correction, surface roughness and the like. In the present invention, there is no inconvenience even if the steel sheet is subjected to various surface treatments such as coating with resin or oil.
上記した本発明の方法によれば、TS×ELが22000MPa・%以上、r値が1.1以上の、深絞り性と強度−延性バランスに優れた高強度冷延鋼板または高強度溶融亜鉛めっき鋼板を、容易に、しかも安価に、安定して製造できる。 According to the above-described method of the present invention, a high-strength cold-rolled steel sheet or a high-strength hot-dip galvanized steel sheet having an excellent deep drawability and strength-ductility balance with TS × EL of 22000 MPa ·% or more and an r value of 1.1 or more is obtained. It can be manufactured easily, inexpensively and stably.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼スラブとした。ついで、これら鋼スラブを1150℃に加熱したのち、該鋼スラブに、仕上圧延終了温度を(Ar3変態点+20℃)とする熱間圧延を行い、ついで表2に示す条件で冷却し、表2に示す巻取り温度で巻取りを行う熱間圧延工程を施し、板厚2.6mmの熱延板(熱延コイル)とした。引き続き、これら熱延板に酸洗工程を施し出発素材とした。なお、出発素材から組織観察用試験片を採取し、研磨、腐食(3%硝酸+エタノール液腐食)して、走査型電子顕微鏡を用いて、出発素材の組織を撮像し、各出発素材の組織分率を求めた。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a steel slab by a continuous casting method. Next, after these steel slabs were heated to 1150 ° C, the steel slabs were hot-rolled at a finish rolling finish temperature of (Ar 3 transformation point + 20 ° C), then cooled under the conditions shown in Table 2, The hot rolling process which winds at the winding temperature shown in 2 was given, and it was set as the hot rolled sheet (hot rolled coil) with a plate thickness of 2.6 mm. Subsequently, these hot-rolled sheets were subjected to a pickling process to obtain starting materials. Samples for tissue observation are collected from the starting material, polished and corroded (3% nitric acid + ethanol solution corrosion), and the starting material structure is imaged using a scanning electron microscope. The fraction was determined.
これら出発素材に、表2に示す条件で、パッチ熱延板焼鈍工程、冷延工程を施し、板厚1.2mmの冷延板(冷延鋼帯)とした。ついで、これら冷延板に、連続焼鈍ライン(CAL)または連続溶融亜鉛めっきライン(CGL)にて表2に示す条件で連続再結晶焼鈍およびオーステンパー処理からなる再結晶焼鈍工程を施した。また、一部の鋼板には、さらに溶融亜鉛めっき処理工程、あるいはさらに表2に示す条件で合金化処理工程を施した。 These starting materials were subjected to a patch hot-rolled sheet annealing process and a cold-rolling process under the conditions shown in Table 2 to obtain cold-rolled sheets (cold-rolled steel strip) having a thickness of 1.2 mm. Subsequently, these cold-rolled sheets were subjected to a recrystallization annealing process comprising continuous recrystallization annealing and austempering treatment under the conditions shown in Table 2 in a continuous annealing line (CAL) or a continuous hot dip galvanizing line (CGL). Further, some steel sheets were further subjected to a galvanizing treatment step or an alloying treatment step under the conditions shown in Table 2.
なお、得られた冷延鋼板(冷延鋼帯)または溶融亜鉛めっき鋼板(溶融亜鉛めっき鋼帯)に、さらに伸び率:0.8%の調質圧延を施した。
得られた冷延鋼板(冷延鋼帯)から、組織観察用試験片を採取し、研磨、腐食(3%硝酸+エタノール液腐食)して、走査型電子顕微鏡を用いて組織を撮像し、各鋼板の組織分率、および第二相の平均粒径を求めた。第二相の平均粒径は、各第二相粒ごとの面積を求め、これら面積について算術平均値をもとめ、得られた平均値を用いて、円相当の直径に換算してその鋼板の第二相粒の平均粒径とした。
The obtained cold-rolled steel sheet (cold-rolled steel strip) or hot-dip galvanized steel sheet (hot-dip galvanized steel strip) was further subjected to temper rolling with an elongation of 0.8%.
From the obtained cold-rolled steel sheet (cold-rolled steel strip), a specimen for structure observation is collected, polished and corroded (corrosion with 3% nitric acid + ethanol solution), and the structure is imaged using a scanning electron microscope. The structural fraction of each steel sheet and the average particle size of the second phase were determined. The average particle diameter of the second phase is obtained by calculating the area for each second phase grain, obtaining an arithmetic average value for these areas, and using the obtained average value, converting it to a circle-equivalent diameter, The average particle size of the two-phase grains was used.
また、得られた冷延鋼板(冷延鋼帯)または溶融亜鉛めっき鋼板(溶融亜鉛めっき鋼帯)から、圧延方向と垂直方向(C方向)が引張方向となるようにJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張強さTS、伸びElを求めた。また、さらにJIS Z 2254の規定に準拠して、付加歪量を10%として、r値を求めた。
得られた結果を表3に示す。
In addition, from the obtained cold-rolled steel sheet (cold-rolled steel strip) or hot-dip galvanized steel sheet (hot-dip galvanized steel strip), a JIS No. 5 tensile test piece was placed so that the direction perpendicular to the rolling direction (C direction) was the tensile direction. The samples were collected and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to determine the tensile strength TS and elongation El. Further, in accordance with the JIS Z 2254 regulations, the r value was obtained with the additional strain amount being 10%.
The obtained results are shown in Table 3.
本発明例は、いずれも、高い強度−延性バランスTS×Elと、高いr値を有し、強度−延性バランスと深絞り性に優れた高強度冷延鋼板または高強度溶融亜鉛めっき鋼板となっている。一方、本発明の範囲を外れる比較例では、強度−延性バランスTS×Elおよび/またはr値が低下している。 Each of the inventive examples is a high-strength cold-rolled steel sheet or a high-strength hot-dip galvanized steel sheet that has a high strength-ductility balance TS × El and a high r value and is excellent in strength-ductility balance and deep drawability. ing. On the other hand, in the comparative example outside the scope of the present invention, the strength-ductility balance TS × El and / or r value is lowered.
Claims (10)
C:0.05〜0.2%、 Si:0.1〜2.0%、
Mn:0.5〜3.0%、 P:0.10%以下、
S:0.02%以下、 Al:0.5〜1.5%、
N:0.02%以下
を含み、かつSi、Alを合計で0.5〜2.5%の範囲に調整して含み、残部Feおよび不可避的不純物からなる組成と、主相であるフェライトと第二相とからなる複合組織とを有し、前記フェライトを体積率で70%以上、前記第二相が、少なくとも全組織に対する体積率で3%以上の残留オーステナイトを含み、該第二相の平均結晶粒径が3μm以下であり、r値が1.1以上でかつ引張強さTSと伸びElの積(強度−延性バランス)TS×Elが22000MPa・%以上であることを特徴とする、深絞り性と強度−延性バランスに優れた高強度冷延鋼板。 % By mass
C: 0.05-0.2%, Si: 0.1-2.0%,
Mn: 0.5 to 3.0%, P: 0.10% or less,
S: 0.02% or less, Al: 0.5 to 1.5%,
N: 0.02% or less, Si and Al are adjusted to a total content of 0.5 to 2.5%, the composition is composed of the remaining Fe and unavoidable impurities, the main phase is ferrite, and the second phase is included. The ferrite has a volume fraction of 70% or more, the second phase contains at least 3% of retained austenite by volume ratio with respect to the whole structure , and the average crystal grain size of the second phase is 3 μm. Deep drawability and strength-ductility balance characterized in that the r value is 1.1 or more and the product of tensile strength TS and elongation El (strength-ductility balance) TS × El is 22000 MPa ·% or more High strength cold-rolled steel sheet with excellent resistance.
記
A群:Cr、Mo、Niのうちの1種または2種以上を合計で0.05〜2.0%、
B群:B:0.005%以下、
C群:Ti、Nb、Vのうちの1種または2種以上を合計で0.01〜0.2%、
D群:Ca、REMのうちの1種または2種を合計で0.01%以下 The high-strength cold-rolled steel sheet according to claim 1, wherein the high-strength cold-rolled steel sheet according to claim 1, wherein the high-strength cold-rolled steel sheet further comprises one group or two or more groups among the following groups A to D in addition to the composition.
Group A: 0.05 to 2.0% in total of one or more of Cr, Mo and Ni,
Group B: B: 0.005% or less,
Group C: 0.01 to 0.2% in total of one or more of Ti, Nb and V,
Group D: 0.01% or less of one or two of Ca and REM in total
C:0.05〜0.2%、 Si:0.1〜2.0%、
Mn:0.5〜3.0%、 P:0.10%以下、
S:0.02%以下、 Al:0.5〜1.5%、
N:0.02%以下
を含み、かつSi、Alを合計で0.5〜2.5%の範囲に調整して含み、残部Feおよび不可避的不純物からなる組成を有し、かつベイナイトとマルテンサイトの合計が体積率で80%以上となるベイナイトとマルテンサイトを主体とする組織を有する熱延コイルに、
該熱延コイルを再加熱し、550℃〜Ac1変態点の温度範囲に1h以上保持するバッチ焼鈍を施し熱延焼鈍板とするバッチ熱延板焼鈍工程と、
該熱延焼鈍板に圧下率:30%以上の冷間圧延を施し冷延板とする冷延工程と、
該冷延板にAc1変態点〜(Ac1変態点+50℃)の平均昇温速度を5℃/s以上としてAc1変態点〜Ac3変態点の範囲の焼鈍温度まで加熱し、5s以上保持する連続再結晶焼鈍と、該連続再結晶焼鈍後、5℃/s以上の平均冷却速度で350〜500℃の範囲のオーステンパー処理温度まで冷却し、該オーステンパー処理温度に10〜600s保持するオーステンパー処理とを施し、ついで室温まで冷却し冷延焼鈍板とする再結晶焼鈍工程と、
を順次施すことを特徴とする深絞り性と強度−延性バランスに優れた高強度冷延鋼板の製造方法。 % By mass
C: 0.05-0.2%, Si: 0.1-2.0%,
Mn: 0.5 to 3.0%, P: 0.10% or less,
S: 0.02% or less, Al: 0.5 to 1.5%,
N: 0.02% or less, Si and Al are adjusted to a total content of 0.5 to 2.5%, the composition is composed of the balance Fe and unavoidable impurities, and the sum of bainite and martensite is the volume fraction. In hot rolled coils having a structure mainly composed of bainite and martensite which is 80% or more at
A batch hot-rolled sheet annealing step in which the hot-rolled coil is re-heated and subjected to batch annealing for 1 h or more in the temperature range of 550 ° C to Ac 1 transformation point,
A cold rolling step of subjecting the hot-rolled annealed sheet to a cold rolling of a rolling reduction of 30% or more to form a cold-rolled sheet;
The cold-rolled sheet is heated to an annealing temperature in the range of Ac 1 transformation point to Ac 3 transformation point at an average temperature increase rate of Ac 1 transformation point to (Ac 1 transformation point + 50 ° C.) of 5 ° C./s or more. Hold the continuous recrystallization annealing, and after the continuous recrystallization annealing, cool to an austempering treatment temperature in the range of 350 to 500 ° C at an average cooling rate of 5 ° C / s or more, and hold the austempering treatment temperature for 10 to 600 s. An austempering treatment, and then cooling to room temperature to form a cold-rolled annealing plate,
A method for producing a high-strength cold-rolled steel sheet excellent in deep drawability and strength-ductility balance.
記
A群:Cr、Mo、Niのうちの1種または2種以上を合計で0.05〜2.0%、
B群:B:0.005%以下、
C群:Ti、Nb、Vのうちの1種または2種以上を合計で0.01〜0.2%、
D群:Ca、REMのうちの1種または2種を合計で0.01%以下 The high-strength cold-rolled steel sheet according to claim 4 or 5, wherein, in addition to the composition, the composition further contains 1 group or 2 groups or more of the following groups A to D by mass%. Production method.
Group A: 0.05 to 2.0% in total of one or more of Cr, Mo and Ni,
Group B: B: 0.005% or less,
Group C: 0.01 to 0.2% in total of one or more of Ti, Nb and V,
Group D: 0.01% or less of one or two of Ca and REM in total
C:0.05〜0.2%、 Si:0.1〜2.0%、
Mn:0.5〜3.0%、 P:0.10%以下、
S:0.02%以下、 Al:0.5〜1.5%、
N:0.02%以下
を含み、かつSi、Alを合計で0.5〜2.5%の範囲に調整して含み、残部Feおよび不可避的不純物からなる組成を有し、かつベイナイトとマルテンサイトの合計が体積率で80%以上となるベイナイトとマルテンサイトを主体とする組織を有する熱延コイルに、
該熱延コイルを再加熱し、550℃〜Ac1変態点の温度範囲に1h以上保持するバッチ焼鈍を施し熱延焼鈍板とするバッチ熱延板焼鈍工程と、
該熱延焼鈍板に圧下率:30%以上の冷間圧延を施し冷延板とする冷延工程と、
該冷延板にAc1変態点〜(Ac1変態点+50℃)の平均昇温速度を5℃/s以上としてAc1変態点〜Ac3変態点の範囲の焼鈍温度まで加熱し、5s以上保持する連続再結晶焼鈍と、該連続再結晶焼鈍後、5℃/s以上の平均冷却速度で350〜500℃の範囲のオーステンパー処理温度まで冷却し、該オーステンパー処理温度に10〜600s保持するオーステンパー処理とを施し冷延焼鈍板とする再結晶焼鈍工程と、
前記オーステンパー処理温度から所定の温度まで冷却または所定の温度に加熱したのち、該冷延焼鈍板を溶融亜鉛めっき浴に浸漬し表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理を施す溶融亜鉛めっき処理工程と、
を順次施すことを特徴とする深絞り性と強度−延性バランスに優れた高強度溶融亜鉛めっき鋼板の製造方法。 % By mass
C: 0.05-0.2%, Si: 0.1-2.0%,
Mn: 0.5 to 3.0%, P: 0.10% or less,
S: 0.02% or less, Al: 0.5 to 1.5%,
N: 0.02% or less, Si and Al are adjusted to a total content of 0.5 to 2.5%, the composition is composed of the balance Fe and unavoidable impurities, and the sum of bainite and martensite is the volume fraction. In hot rolled coils having a structure mainly composed of bainite and martensite which is 80% or more at
A batch hot-rolled sheet annealing step in which the hot-rolled coil is re-heated and subjected to batch annealing for 1 h or more in the temperature range of 550 ° C to Ac 1 transformation point,
A cold rolling step of subjecting the hot-rolled annealed sheet to a cold rolling of a rolling reduction of 30% or more to form a cold-rolled sheet;
The cold-rolled sheet is heated to an annealing temperature in the range of Ac 1 transformation point to Ac 3 transformation point at an average temperature increase rate of Ac 1 transformation point to (Ac 1 transformation point + 50 ° C.) of 5 ° C./s or more. Hold the continuous recrystallization annealing, and after the continuous recrystallization annealing, cool to an austempering treatment temperature in the range of 350 to 500 ° C at an average cooling rate of 5 ° C / s or more, and hold the austempering treatment temperature for 10 to 600 s. A recrystallization annealing step to austen tempering and cold-rolled annealing plate,
Hot-dip galvanized steel that is cooled from the austempering temperature to a predetermined temperature or heated to a predetermined temperature, and is subjected to a hot-dip galvanizing process in which the cold-rolled annealed plate is immersed in a hot-dip galvanizing bath to form a hot-dip galvanized layer Plating process,
Is a method for producing a high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance.
記
A群:Cr、Mo、Niのうちの1種または2種以上を合計で0.05〜2.0%、
B群:B:0.005%以下、
C群:Ti、Nb、Vのうちの1種または2種以上を合計で0.01〜0.2%、
D群:Ca、REMのうちの1種または2種を合計で0.01%以下
The high-strength melt according to any one of claims 7 to 9, wherein in addition to the composition, the composition further contains one group or two or more groups of the following groups A to D in mass%. Manufacturing method of galvanized steel sheet.
Group A: 0.05 to 2.0% in total of one or more of Cr, Mo and Ni,
Group B: B: 0.005% or less,
Group C: 0.01 to 0.2% in total of one or more of Ti, Nb and V,
Group D: 0.01% or less of one or two of Ca and REM in total
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137414A JP5151246B2 (en) | 2007-05-24 | 2007-05-24 | High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137414A JP5151246B2 (en) | 2007-05-24 | 2007-05-24 | High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008291304A JP2008291304A (en) | 2008-12-04 |
JP5151246B2 true JP5151246B2 (en) | 2013-02-27 |
Family
ID=40166341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007137414A Expired - Fee Related JP5151246B2 (en) | 2007-05-24 | 2007-05-24 | High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5151246B2 (en) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5369663B2 (en) | 2008-01-31 | 2013-12-18 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
JP4894863B2 (en) * | 2008-02-08 | 2012-03-14 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
JP5167487B2 (en) * | 2008-02-19 | 2013-03-21 | Jfeスチール株式会社 | High strength steel plate with excellent ductility and method for producing the same |
JP5042982B2 (en) * | 2008-12-22 | 2012-10-03 | 新日本製鐵株式会社 | Manufacturing method of high-strength steel sheet with excellent thickness accuracy |
JP4737319B2 (en) * | 2009-06-17 | 2011-07-27 | Jfeスチール株式会社 | High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same |
KR100958019B1 (en) * | 2009-08-31 | 2010-05-17 | 현대하이스코 주식회사 | Dual phase steel sheet and method for manufacturing the same |
JP5786317B2 (en) * | 2010-01-22 | 2015-09-30 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet with excellent material stability and workability and method for producing the same |
JP4883216B2 (en) * | 2010-01-22 | 2012-02-22 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same |
JP5786316B2 (en) * | 2010-01-22 | 2015-09-30 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same |
JP5786318B2 (en) * | 2010-01-22 | 2015-09-30 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same |
JP5786319B2 (en) * | 2010-01-22 | 2015-09-30 | Jfeスチール株式会社 | High strength hot-dip galvanized steel sheet with excellent burr resistance and method for producing the same |
JP5327106B2 (en) | 2010-03-09 | 2013-10-30 | Jfeスチール株式会社 | Press member and manufacturing method thereof |
JP5488129B2 (en) * | 2010-03-31 | 2014-05-14 | 新日鐵住金株式会社 | Cold rolled steel sheet and method for producing the same |
JP5807368B2 (en) * | 2010-06-16 | 2015-11-10 | 新日鐵住金株式会社 | High-strength cold-rolled steel sheet having a very high uniform elongation in the direction of 45 ° with respect to the rolling direction and a method for producing the same |
BR112013009277A2 (en) * | 2010-10-18 | 2016-07-26 | Nippon Steel & Sumitomo Metal Corp | hot rolled, cold rolled and coated steel sheet having improved local and uniform ductility at a high stress rate |
KR101185340B1 (en) | 2010-10-27 | 2012-09-26 | 현대제철 주식회사 | Ultra high strength hot-rolled steel with excellent balance of strength-ductility and method of manufacturing the same |
JP5825119B2 (en) * | 2011-04-25 | 2015-12-02 | Jfeスチール株式会社 | High-strength steel sheet with excellent workability and material stability and method for producing the same |
JP5793971B2 (en) * | 2011-06-01 | 2015-10-14 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent material stability, workability, and plating appearance |
CN103597106B (en) * | 2011-06-10 | 2016-03-02 | 株式会社神户制钢所 | Hot compacting product, its manufacture method and hot compacting steel sheet |
JP5825206B2 (en) * | 2011-07-06 | 2015-12-02 | 新日鐵住金株式会社 | Cold rolled steel sheet manufacturing method |
KR101382981B1 (en) * | 2011-11-07 | 2014-04-09 | 주식회사 포스코 | Steel sheet for warm press forming, warm press formed parts and method for manufacturing thereof |
WO2013125399A1 (en) | 2012-02-22 | 2013-08-29 | 新日鐵住金株式会社 | Cold-rolled steel sheet and manufacturing method for same |
ES2673111T3 (en) * | 2012-02-22 | 2018-06-19 | Nippon Steel & Sumitomo Metal Corporation | Cold rolled steel sheet and process to manufacture it |
KR101412269B1 (en) | 2012-03-29 | 2014-06-25 | 현대제철 주식회사 | Method for manufacturing high strength cold-rolled steel sheet |
JP6310452B2 (en) * | 2012-06-05 | 2018-04-11 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | Steel, flat steel material and method for producing flat steel material |
JP5867436B2 (en) | 2013-03-28 | 2016-02-24 | Jfeスチール株式会社 | High strength galvannealed steel sheet and method for producing the same |
JP5867435B2 (en) | 2013-03-28 | 2016-02-24 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
JP5924332B2 (en) * | 2013-12-12 | 2016-05-25 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
TWI608106B (en) * | 2014-03-07 | 2017-12-11 | 新日鐵住金股份有限公司 | Medium-high carbon steel sheet and method for manufacturing thereof |
WO2016113788A1 (en) | 2015-01-15 | 2016-07-21 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and production method thereof |
JP6762868B2 (en) * | 2016-03-31 | 2020-09-30 | 株式会社神戸製鋼所 | High-strength steel sheet and its manufacturing method |
KR101828699B1 (en) | 2016-09-12 | 2018-02-12 | 현대제철 주식회사 | Cold-rolled steel sheet for car component and manufacturing method for the same |
JP6123966B1 (en) * | 2016-09-21 | 2017-05-10 | 新日鐵住金株式会社 | steel sheet |
EP3653745A4 (en) * | 2017-10-20 | 2020-07-15 | JFE Steel Corporation | High-strength steel sheet and manufacturing method thereof |
MX2020004029A (en) | 2017-10-20 | 2020-08-13 | Jfe Steel Corp | High-strength steel sheet and manufacturing method thereof. |
EP3705592A4 (en) * | 2018-01-31 | 2020-12-23 | JFE Steel Corporation | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor |
JP7337486B2 (en) * | 2018-07-20 | 2023-09-04 | 日本製鉄株式会社 | Steel material and its manufacturing method |
CN109536837B (en) * | 2018-12-10 | 2021-03-09 | 钢铁研究总院 | high-N-content ultrafine-grain 1200 MPa-grade cold-rolled dual-phase steel and production process thereof |
JP6760525B1 (en) | 2018-12-26 | 2020-09-23 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and its manufacturing method |
JP6769576B1 (en) * | 2019-01-18 | 2020-10-14 | Jfeスチール株式会社 | High-strength galvanized steel sheet and its manufacturing method |
WO2020245626A1 (en) | 2019-06-03 | 2020-12-10 | Arcelormittal | Cold rolled and coated steel sheet and a method of manufacturing thereof |
US20230203615A1 (en) * | 2020-05-11 | 2023-06-29 | Jfe Steel Corporation | Steel sheet, member, and methods for manufacturing the same |
KR102497567B1 (en) * | 2020-12-08 | 2023-02-10 | 현대제철 주식회사 | Steel sheet having high strength and high formability and method for manufacturing the same |
KR102504097B1 (en) * | 2021-06-29 | 2023-02-28 | 현대제철 주식회사 | Plated steel sheet and method of manufacturing the same |
CN115198174B (en) * | 2022-06-15 | 2023-06-13 | 首钢集团有限公司 | Martensitic steel, preparation method and application |
CN115415320B (en) * | 2022-08-31 | 2024-06-11 | 大冶特殊钢有限公司 | Rolling method of 20Cr steel |
KR20240045835A (en) * | 2022-09-30 | 2024-04-08 | 현대제철 주식회사 | Ultra high-strength steel sheet and method of manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3521851B2 (en) * | 2000-07-26 | 2004-04-26 | 住友金属工業株式会社 | Manufacturing method of high tensile high ductility galvanized steel sheet |
JP2003034825A (en) * | 2001-07-25 | 2003-02-07 | Nkk Corp | Method for manufacturing high strength cold-rolled steel sheet |
JP4059050B2 (en) * | 2001-10-05 | 2008-03-12 | Jfeスチール株式会社 | Cold rolled steel plate manufacturing base plate, high strength and high ductility cold rolled steel plate and methods for producing them |
JP4400076B2 (en) * | 2002-10-28 | 2010-01-20 | Jfeスチール株式会社 | Hot-dip galvanized steel sheet having an ultrafine grain structure and excellent ductility and method for producing the same |
JP4457681B2 (en) * | 2004-01-30 | 2010-04-28 | Jfeスチール株式会社 | High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof |
-
2007
- 2007-05-24 JP JP2007137414A patent/JP5151246B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008291304A (en) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5151246B2 (en) | High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof | |
KR101218448B1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same | |
JP6237900B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP4737319B2 (en) | High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same | |
JP6354919B1 (en) | Thin steel plate and manufacturing method thereof | |
JP5194841B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP6179461B2 (en) | Manufacturing method of high-strength steel sheet | |
JP5493986B2 (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them | |
JP5786316B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
JP4894863B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP5333298B2 (en) | Manufacturing method of high-strength steel sheet | |
JP5018935B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP5924332B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP5310919B2 (en) | Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability | |
JP4998757B2 (en) | Manufacturing method of high strength steel sheet with excellent deep drawability | |
JP4559969B2 (en) | Hot-rolled steel sheet for processing and manufacturing method thereof | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4608822B2 (en) | Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same | |
JP5141235B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP5310920B2 (en) | High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening | |
JP4010132B2 (en) | Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same | |
JP3912181B2 (en) | Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof | |
JP4826694B2 (en) | Method for improving fatigue resistance of thin steel sheet | |
JP5034296B2 (en) | Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same | |
JP2005206920A (en) | High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5151246 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |