JP3864663B2 - Manufacturing method of high strength steel sheet - Google Patents

Manufacturing method of high strength steel sheet Download PDF

Info

Publication number
JP3864663B2
JP3864663B2 JP2000060282A JP2000060282A JP3864663B2 JP 3864663 B2 JP3864663 B2 JP 3864663B2 JP 2000060282 A JP2000060282 A JP 2000060282A JP 2000060282 A JP2000060282 A JP 2000060282A JP 3864663 B2 JP3864663 B2 JP 3864663B2
Authority
JP
Japan
Prior art keywords
cooling
less
manufacturing
rolling
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000060282A
Other languages
Japanese (ja)
Other versions
JP2001247918A (en
Inventor
正 井上
透 稲積
洋一 本屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000060282A priority Critical patent/JP3864663B2/en
Priority to KR10-2001-7002607A priority patent/KR100401272B1/en
Priority to PCT/JP2000/006639 priority patent/WO2001023624A1/en
Priority to EP00962863.7A priority patent/EP1143019B1/en
Priority to US09/837,435 priority patent/US6652670B2/en
Publication of JP2001247918A publication Critical patent/JP2001247918A/en
Priority to US10/448,697 priority patent/US20030196731A1/en
Application granted granted Critical
Publication of JP3864663B2 publication Critical patent/JP3864663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、家電製品、および産業機械に用いられる薄鋼板で、特に、プレス加工における加工性(伸びフランジ性、破断伸び)及び耐衝撃特性の両者に優れたものに関する。
【0002】
【従来の技術】
熱延鋼板及び冷延鋼板は、自動車、家電製品、産業機械等に広く使用されている。これらの用途では、プレス加工により成形された部材として用いられることが多く、その形状に応じて様々な加工性が要求されている。
【0003】
近年、自動車の分野においては、軽量化のニーズが強く、高強度薄鋼板の使用比率が高くなる傾向にあるが、ハイテン材は270MPa級の軟質材と比較して加工性に劣るため、製品製造時の歩留まり(プレス加工時の割れ)、品質のバラツキが問題となり、材質面における基本特性である加工性の向上が必要とされている。
【0004】
加工性としては、例えば、340MPa級以上のハイテン材においてはバーリング加工時の伸び−フランジ性が高いことが熱延鋼板、冷延鋼板において要求される。更に、近年、自動車用途においては重要な性能の一つとして衝突安全性が要求され、耐衝撃特性に優れていること(衝突安全性の評価項目の一つとして衝突吸収エネルギーが高いこと)が要求されるようになってきている。
【0005】
ハイテン材の加工性の向上に関して、先行技術として特許第2555436号が提案されている。Ti系の析出強化鋼を用い、仕上圧延後の冷却速度を30〜150℃/s,巻取温度を250〜540℃とし、フェライト+ベイナイト組織により、50〜60K級ハイテンの伸び−フランジ性を向上させる技術が開示されている。しかし、仕上圧延後の冷却速度30〜150℃/sでは、伸び−フランジ性は抜本的に改善されたとは言い難く、また、巻取り温度が低温のため、破断伸びが低いという問題を有している。
【0006】
特公平7−56053号公報では、45〜50K鋼のフェライト+パーライト鋼を用いて、熱延仕上げ後の冷却速度を10℃/s以上(実施例では,最大95℃/s)とすることにより、熱延下地の溶融亜鉛めっき鋼板の伸び−フランジ性を向上させることを提案している。しかし、冷却速度は高々、95℃/sで、伸び−フランジ性の本質的改善は図られていない。
【0007】
特開平4−88125号公報では、フェライト+パーライト鋼を用いて、Caを0.0005〜0.0050%添加し、熱間圧延をAr3+60〜950℃の高温で仕上た後、直ちに3秒以内で冷却速度50℃/s以上、但し、好ましくは150℃/s以下で冷却し、鋼の成分に応じて冷却を停止(410〜620℃)した後、空冷を経て350〜500℃で巻取ることにより、50〜70K級ハイテンの伸び−フランジ性を向上させることを提案している。しかし、Caを微量添加するため製鋼段階でRH脱ガス工程が必要で、製鋼コストが高くなり、本技術が特徴としている熱延仕上後の冷却条件によっても伸び−フランジ性を飛躍的に向上させることはできず、また、巻取り温度が低いため、破断伸びも低い。
【0008】
【発明が解決しようとする課題】
上述したように、何れの先行技術によっても、伸び−フランジ性および、破断伸びについて、十分な特性が得られているとは言い難く、また、耐衝撃特性の向上については全く記載されていない。
【0009】
本発明は、以上の点に鑑みなされたもので、自動車、産業機械等の需要家において、製品形状に成形する際の不良が少なく、コイルからの製品採取を高歩留まりで行うことが可能で、伸び−フランジ性、破断伸びという加工性、及び耐衝撃特性に優れた引張り強さ340MPa以上の薄鋼板の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、連続鋳造スラブを再加熱後、または直接熱間圧延して製造されるハイテン材を対象に、伸び−フランジ性、破断伸び、及び耐衝撃特性を向上させるべく、鋭意検討を行った。その結果、伸び−フランジ性、破断伸びには板厚中央部などにおけるC,Mnなどが濃化したバンド組織の存在が影響を与え、また、耐衝撃特性の向上には材料の降伏強度を加工性が損なわれない範囲で高めることが有効であることを見出した。
【0011】
本発明はこれらの知見を基に更に検討を加えてなされたもので、即ち、本発明は
1. 下記の工程を備えたことを特徴とする質量%で、C:0.05〜0.14%、Si:0.5%以下、Mn:0.5〜2.5%、P:0.05%以下、S:0.01%以下、O:0.005%以下、Ca:0.0005%未満を含有し、残部Feおよび不可避的不純物からなる高強度薄鋼板の製造方法。
【0012】
(1)偏析低減処理を行なう連続鋳造によりスラブを製造する工程。
【0013】
(2)仕上圧延終了温度をAr3以上とする熱間圧延工程。
【0014】
(3)熱間圧延後、2秒以内に冷却速度100〜2000℃/sの一次冷却を開始し、600〜750℃の温度範囲まで冷却する工程。
【0015】
(4)一次冷却後、冷却速度50℃/s未満で二次冷却し、450〜650℃で巻取る工程。
【0016】
2. 下記の工程を備えたことを特徴とする質量%で、C:0.05〜0.14%、Si:0.5%以下、Mn:0.5〜2.5%、P:0.05%以下、S:0.01%以下、O:0.005%以下、Ca:0.0005%未満を含有し、残部Feおよび不可避的不純物からなる高強度薄鋼板の製造方法。
【0017】
(1)偏析低減処理を行なう連続鋳造によりスラブを製造する工程。
【0018】
(2)熱間圧延前に、該スラブを再加熱する工程。
【0019】
(3)仕上圧延終了温度をAr3以上とする熱間圧延工程。
【0020】
(4)熱間圧延後、2秒以内に冷却速度100〜2000℃/sの一次冷却を開始し、600〜750℃の温度範囲まで冷却する工程。
【0021】
(5)一次冷却後、冷却速度50℃/s未満で二次冷却し、450〜650℃で巻取る工程。
【0022】
3. 更に、下記の工程の何れかを付与したことを特徴とする1または2に記載の高強度薄鋼板の製造方法。
【0023】
(1)酸洗後、焼鈍する工程。
【0024】
(2)酸洗後、冷延し、焼鈍する工程。
【0025】
4. 鋼成分として、更にTi,Nb,V,Mo,Zr,Crの一種または二種以上を合計で0.01〜0.3%添加する添加する1乃至3の何れかに記載の高強度薄鋼板の製造方法。
【0026】
【発明の実施の形態】
本発明では、その効果を得るため、成分組成、製造条件を規定する。以下にそれらの限定理由を詳述する。
【0027】
1.成分組成

Cは鋼板の強度を確保するため添加する。0.05%未満の場合、本発明で対象とする340MPa以上の強度が得られず、0.14%を超えると加工性の劣化が著しくなるため、0.05%以上、0.14%以下とする。
【0028】
Si
Siは固溶強化元素であり、鋼板の強化のため添加するが、0.5%を超えると表面性状が劣化するため、0.5%以下とする。
【0029】
Mn
Mnは、鋼板の靭性を改善し、固溶強化により強度を向上させるため、0.5%以上添加する。2.5%を超えると加工性の劣化が顕著となるため、0.5%以上、2.5%以下とする。
【0030】

Pは、鋼板を固溶強化する作用を有するが、含有量が0.05%を超えると偏析による加工性の劣化が生じるため、0.05%以下とする。
【0031】

Sは、硫化物を生成し、0.01%を超えるとその量が増加し、加工性が劣化するため、0.01%以下とする。
【0032】

Oは、連続鋳造時のスラブ表面または、スラブ表層下における割れの発生を抑制するため、その含有量を0.005%以下に規制する。
【0033】
Ca
Caは、溶製時の脱酸にAlを用いた場合における脱酸生成物であるアルミナ酸化物を低融点のAl−Ca−O系の酸化物とする。Al−Ca−O系酸化物は熱延時に展伸し、加工性(伸び−フランジ性)を劣化させるため、本発明ではCaを不可避不純物として扱い、添加せず、その含有量を無添加の水準である0.0005%未満に規制する。
【0034】
本発明では以上を基本成分組成とするが、更に特性を向上させるため、Ti,Nb,V,Mo,Zr,Crの一種または二種以上を添加することが可能である。
【0035】
Ti,Nb,V,Mo,Zr,Cr
本発明では、強度を向上させる場合、Ti,Nb,V,Mo,Zr,Crの一種または二種以上を合計で0.01〜0.3%添加することが可能である。
【0036】
尚、本発明では、その作用効果を損なわない範囲で上述した以外の元素を含有することは差し支えなく、例えば、Cuを2%以下、Snを0.04%以下含有することが許容される。
【0037】
2.製造条件
(1)偏析低減処理を行なう連続鋳造によりスラブを製造する工程
本発明では、生産コストを低減し、高歩留まりでスラブを製造するため、連続鋳造とする。
【0038】
連続鋳造時のC,Mn等の偏析を抑制し、板厚中央部などでバンド組織が生成するのを防止し、後述する仕上圧延後の一次冷却速度の制御と合わせて、優れた加工性(伸び−フランジ性)を得るため、鋳造時、偏析低減処理を行なう。偏析低減処理として、電磁攪拌、軽圧下鋳造、スラブ等の鋳片冷却速度の増加などがあり、これらを単独または複合して適用することができる。
【0039】
(2)熱間圧延前に、該スラブを再加熱する工程。
【0040】
スラブの温度均一性を改善し、コイル幅方向の機械的性質を均一にし、加工性をより改善するため、連続鋳造後、室温まで冷却することなく再加熱し、粗圧延を開始することが望ましく、再加熱温度は1250℃以下が好ましい。
【0041】
(3)仕上圧延終了温度をAr3以上とする熱間圧延工程。
【0042】
仕上圧延機での圧延終了温度をAr3以上とし、変態後のフェライト結晶粒径及びパーライトを微細化し、伸び−フランジ性及び耐衝撃特性を向上させる。
【0043】
(4)熱間圧延後、2秒以内に冷却速度100〜2000℃/sの一次冷却を開始し、600〜750℃の温度範囲まで冷却する工程。
【0044】
熱間圧延後のランナアウトでの冷却(一次冷却)は、変態後のフェライト結晶粒径及びパーライトを微細化し、優れた加工性と高い降伏強度による耐衝撃特性を向上させるため、仕上圧延後、2秒以内、より好ましくは1秒以内に開始する。図2に一次冷却開始時間が機械的性質に及ぼす影響を示す。仕上圧延終了後、2秒以内に冷却を開始した場合、優れた加工性と高強度が得られる。
【0045】
一次冷却の冷却速度は、変態後のフェライト結晶粒径及びパーライトの微細化、板厚中央部のバンド組織の抑制により伸び−フランジ性を向上させるため、規定する。バンド組織は凝固段階でのC,Mnの濃化部に対応し、通常の100℃/s以下の冷却速度では、オーステナイトからフェライトへの変態温度が低く、他の部位と比較して最も遅く変態するため、パーライトが多く生成し、伸び−フランジ性を劣化させる。
【0046】
冷却速度を100℃/s以上とした場合、C,Mnの濃化部でもフェライト変態が容易となり、結果として元素が均質化し、バンド組織が抑制される。冷却速度は早ければ早いほど良いが、工業的実現可能性の観点より、2000℃/sを上限とする。図1にミクロ組織に及ぼす冷却速度の影響を示す。冷却速度が本発明範囲外となる比較法の場合、バンド組織が観察され、結晶粒径も本発明法によるミクロ組織と比較して、大きい。
【0047】
尚、冷却速度はフェライト結晶粒径及びパーライトの微細化の観点より、より好ましくは200℃/s以上、更に加工性を向上させる場合は400℃/s以上が好ましい。
【0048】
一次冷却の終了温度は、750℃超えの場合、フェライトの微細化が困難となり、600℃未満では、第2相が硬質な低温変態相となるため、600℃以上、750℃未満とする。
【0049】
(5)一次冷却後、冷却速度50℃/s未満で二次冷却し、450〜650℃で巻取る工程。
【0050】
一次冷却に引き続き、二次冷却を行う。二次冷却は、一次冷却停止後、直ちに開始しても、しばらく放冷後を開始しても良く、特に規定しない。二次冷却の冷却速度はオーステナイト組織を適切にパーライト変態させ、優れた加工性とするため、50℃/s以下とする。
【0051】
巻取温度は、650℃超えの場合、延性に有害な粗大なパーライトが生成し、450℃未満の場合、低温変態相を主体とする組織となり加工性が劣化するため、450℃以上、650℃以下とする。尚、より均一な機械的性質を所望する場合、冷却制御性が優れる冷却設備の併用などにより、コイル内の温度差は50℃以内とすることが望ましい。
【0052】
本発明により、熱延鋼板を製造後、酸洗ー焼鈍、または酸洗ー冷間圧延ー焼鈍しても、その効果が損なわれることはない。更に、熱延及び冷延下地の、溶融亜鉛めっき材としても本発明の効果は損なわれない。
【0053】
また、本発明において、粗圧延後、仕上圧延前、または、仕上圧延のスタンド間において、誘導加熱装置などにより、幅方向エッジ部を加熱することにより、より均一な機械的性質を得ることが可能となる。また、粗圧延後、粗圧延バーを溶接し、仕上げ圧延を連続的に行う連続熱延においても、本発明の効果が損なわれることはない。
【0054】
【実施例】
本発明の化学成分を満足する表1に示す化学成分の鋼を溶製後、表2に示す製造方法で板厚2.0mmの熱延板とした。材料No.1〜2、5〜9は熱延ままでの機械的性質を、材料No.3は、熱延後、酸洗し、冷延後溶融亜鉛メッキし、材料No.4は、熱延後、酸洗し、溶融亜鉛メッキし、機械的性質を調べた。伸び−フランジ性の評価は穴拡げ率(λ)を測定した。表2にこれらの評価結果を合わせて示す。
【0055】
本発明の化学成分と製造条件を満足する本発明例の材料No.1〜4は、製造条件の規定のいずれか一つが本発明の規定外で比較例となる材料No.5〜9と比較すると、加工性(強度−穴拡げバランス)に優れ、降伏強度も高く、耐衝撃特性に優れていることが明らかである。図3に本発明例と比較例の引張り強さと穴拡げ率を合わせて示す。本発明により、優れた特性が得られるのは明らかである。
【0056】
【表1】

Figure 0003864663
【0057】
【表2】
Figure 0003864663
【0058】
【発明の効果】
以上、本発明によれば、伸び−フランジ性や破断伸び等の加工性および降伏強度が高く耐衝撃特性に優れた340MPa級以上の高張力鋼薄鋼板が得られ、自動車等の軽量化及び衝突安全性の向上に有効であり、産業上極めて有効である。
【図面の簡単な説明】
【図1】板厚方向断面におけるミクロ組織で、(a)は比較法、(b)は本発明法によるものを示す金属組織写真。
【図2】機械的性質に及ぼす一次冷却開始時間の影響を示す図
【図3】引張強さと穴拡げ率の関係における本発明の効果を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin steel sheet used for automobiles, home appliances, and industrial machines, and particularly relates to a sheet having excellent workability (stretch flangeability, elongation at break) and impact resistance in press working.
[0002]
[Prior art]
Hot-rolled steel sheets and cold-rolled steel sheets are widely used in automobiles, home appliances, industrial machines and the like. In these applications, it is often used as a member formed by press working, and various workability is required depending on its shape.
[0003]
In recent years, in the field of automobiles, there is a strong need for weight reduction and the usage ratio of high-strength thin steel sheets tends to be high, but high-tensile materials are inferior in workability compared to soft materials of 270 MPa class, so product manufacturing Time yield (cracking during press processing) and quality variation are problems, and improvement of workability, which is a basic characteristic of the material surface, is required.
[0004]
As the workability, for example, in a high-tensile material of 340 MPa class or higher, it is required that hot-rolled steel sheets and cold-rolled steel sheets have high stretch-flange properties during burring. Furthermore, in recent years, in automobile applications, collision safety is required as one of the important performances, and it is required to have excellent impact resistance (high impact absorption energy is one of the evaluation items for collision safety). It has come to be.
[0005]
Japanese Patent No. 2555436 has been proposed as a prior art for improving the workability of high-tensile materials. Using Ti-based precipitation-strengthened steel, the cooling rate after finish rolling is 30 to 150 ° C./s, the coiling temperature is 250 to 540 ° C., and the elongation-flange property of 50-60 K class high tensile strength is achieved by the ferrite + bainite structure. Techniques for improving are disclosed. However, at a cooling rate of 30 to 150 ° C./s after finish rolling, it is difficult to say that the elongation-flangeability is drastically improved, and the elongation at break is low because the winding temperature is low. ing.
[0006]
In Japanese Examined Patent Publication No. 7-56053, 45-50K steel and pearlite steel are used, and the cooling rate after hot rolling is 10 ° C./s or more (in the example, maximum 95 ° C./s). It has been proposed to improve the stretch-flange property of hot dip galvanized steel sheets. However, the cooling rate is at most 95 ° C./s, and no substantial improvement in stretch-flangeability has been achieved.
[0007]
In JP-A-4-88125, using ferrite and pearlite steel, 0.0005 to 0.0050% of Ca is added, and hot rolling is finished at a high temperature of Ar3 +60 to 950 ° C., and then immediately within 3 seconds. Cooling is performed at a cooling rate of 50 ° C./s or more, preferably 150 ° C./s or less, and after cooling is stopped (410 to 620 ° C.) according to the steel components, winding is performed at 350 to 500 ° C. through air cooling. Has proposed improving the stretch-flange property of 50-70K class high tensile steel. However, since a small amount of Ca is added, an RH degassing step is required in the steelmaking stage, which increases the steelmaking cost, and the stretch-flange property is dramatically improved even by the cooling conditions after hot-rolling finish, which is a feature of this technology. In addition, since the coiling temperature is low, the elongation at break is also low.
[0008]
[Problems to be solved by the invention]
As described above, according to any of the prior arts, it is difficult to say that sufficient characteristics are obtained with respect to the stretch-flange property and the elongation at break, and there is no description on improvement of impact resistance.
[0009]
The present invention has been made in view of the above points, and in consumers such as automobiles and industrial machines, there are few defects when molding into a product shape, and it is possible to perform product collection from a coil with a high yield, An object of the present invention is to provide a method for producing a thin steel sheet having a tensile strength of 340 MPa or more, which is excellent in stretch-flange property, workability of elongation at break, and impact resistance.
[0010]
[Means for Solving the Problems]
The present inventors have intensively studied to improve stretch-flange property, elongation at break, and impact resistance properties for high-tensile materials manufactured by reheating a continuous cast slab or by direct hot rolling. went. As a result, the presence of a band structure enriched with C, Mn, etc. at the center of the plate thickness has an effect on elongation-flangeability and elongation at break, and the yield strength of the material is processed to improve impact resistance. It has been found that it is effective to increase it within a range where the properties are not impaired.
[0011]
The present invention has been made based on these findings and further studies. Mass% characterized by comprising the following steps: C: 0.05 to 0.14%, Si: 0.5% or less, Mn: 0.5 to 2.5%, P: 0.05 %, S: 0.01% or less, O: 0.005% or less, Ca: less than 0.0005% , and the manufacturing method of the high strength thin steel plate which consists of remainder Fe and unavoidable impurities .
[0012]
(1) The process of manufacturing a slab by continuous casting which performs a segregation reduction process.
[0013]
(2) A hot rolling process in which the finish rolling finish temperature is Ar3 or higher.
[0014]
(3) A step of starting primary cooling at a cooling rate of 100 to 2000 ° C./s within 2 seconds after hot rolling and cooling to a temperature range of 600 to 750 ° C.
[0015]
(4) A step of performing secondary cooling after primary cooling at a cooling rate of less than 50 ° C./s and winding at 450 to 650 ° C.
[0016]
2. Mass% characterized by comprising the following steps: C: 0.05 to 0.14%, Si: 0.5% or less, Mn: 0.5 to 2.5%, P: 0.05 %, S: 0.01% or less, O: 0.005% or less, Ca: less than 0.0005% , and the manufacturing method of the high strength thin steel plate which consists of remainder Fe and unavoidable impurities .
[0017]
(1) The process of manufacturing a slab by continuous casting which performs a segregation reduction process.
[0018]
(2) A step of reheating the slab before hot rolling.
[0019]
(3) A hot rolling step in which the finish rolling finish temperature is Ar3 or higher.
[0020]
(4) A step of starting primary cooling at a cooling rate of 100 to 2000 ° C./s within 2 seconds after the hot rolling and cooling to a temperature range of 600 to 750 ° C.
[0021]
(5) A step of performing secondary cooling after primary cooling at a cooling rate of less than 50 ° C./s and winding at 450 to 650 ° C.
[0022]
3. Furthermore, the manufacturing method of the high intensity | strength thin steel plate of 1 or 2 characterized by providing either of the following processes.
[0023]
(1) A step of annealing after pickling.
[0024]
(2) A step of cold rolling and annealing after pickling.
[0025]
4). The high-strength thin steel sheet according to any one of 1 to 3, to which 0.01 to 0.3% of Ti, Nb, V, Mo, Zr, or Cr is added as a steel component in a total amount of 0.01 to 0.3%. Manufacturing method.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, in order to acquire the effect, a component composition and manufacturing conditions are prescribed | regulated. The reasons for limitation will be described in detail below.
[0027]
1. Ingredient composition C
C is added to ensure the strength of the steel sheet. If it is less than 0.05%, the strength of 340 MPa or more targeted in the present invention cannot be obtained, and if it exceeds 0.14%, the workability deteriorates significantly, so 0.05% or more and 0.14% or less. And
[0028]
Si
Si is a solid solution strengthening element, and is added to strengthen the steel sheet. However, if it exceeds 0.5%, the surface properties deteriorate, so the content is made 0.5% or less.
[0029]
Mn
Mn is added in an amount of 0.5% or more in order to improve the toughness of the steel sheet and improve the strength by solid solution strengthening. If it exceeds 2.5%, the deterioration of workability becomes remarkable, so the content is made 0.5% or more and 2.5% or less.
[0030]
P
P has an effect of solid solution strengthening of the steel sheet, but if the content exceeds 0.05%, workability deterioration due to segregation occurs, so 0.05% or less.
[0031]
S
S generates sulfides, and when it exceeds 0.01%, the amount increases and the workability deteriorates, so the content is made 0.01% or less.
[0032]
O
O suppresses the generation of cracks on the surface of the slab during continuous casting or below the surface layer of the slab, so the content is restricted to 0.005% or less.
[0033]
Ca
Ca uses alumina oxide, which is a deoxidation product when Al is used for deoxidation at the time of melting, as a low melting point Al—Ca—O-based oxide. Since the Al-Ca-O-based oxide spreads during hot rolling and degrades workability (elongation-flangeability), in the present invention, Ca is treated as an inevitable impurity, and is not added, and its content is not added. The level is regulated to less than 0.0005%.
[0034]
In the present invention, the above is the basic component composition, but it is possible to add one or more of Ti, Nb, V, Mo, Zr, and Cr in order to further improve the characteristics.
[0035]
Ti, Nb, V, Mo, Zr, Cr
In the present invention, in order to improve the strength, one or more of Ti, Nb, V, Mo, Zr, and Cr can be added in a total of 0.01 to 0.3%.
[0036]
In the present invention, it is allowed to contain elements other than those described above within a range not impairing the function and effect. For example, it is allowed to contain 2% or less of Cu and 0.04% or less of Sn.
[0037]
2. Manufacturing conditions (1) Process for manufacturing slab by continuous casting for performing segregation reduction treatment In the present invention, continuous casting is performed in order to reduce the production cost and to manufacture the slab with a high yield.
[0038]
Suppresses segregation of C, Mn, etc. during continuous casting, prevents the formation of a band structure at the center of the plate thickness, etc., combined with control of the primary cooling rate after finish rolling described later, excellent workability ( In order to obtain (elongation-flangeability), segregation reduction treatment is performed during casting. Examples of the segregation reduction treatment include electromagnetic stirring, light pressure casting, and an increase in the cooling rate of a slab such as a slab. These can be applied alone or in combination.
[0039]
(2) A step of reheating the slab before hot rolling.
[0040]
In order to improve the temperature uniformity of the slab, make the mechanical properties in the coil width direction uniform, and improve the workability, it is desirable to reheat without continuous cooling and start rough rolling after continuous casting. The reheating temperature is preferably 1250 ° C. or lower.
[0041]
(3) A hot rolling step in which the finish rolling finish temperature is Ar3 or higher.
[0042]
The finishing temperature at the finish rolling mill is set to Ar3 or higher, the ferrite crystal grain size and pearlite after transformation are refined, and the elongation-flange property and impact resistance are improved.
[0043]
(4) A step of starting primary cooling at a cooling rate of 100 to 2000 ° C./s within 2 seconds after the hot rolling and cooling to a temperature range of 600 to 750 ° C.
[0044]
Cooling at the runner-out after hot rolling (primary cooling) is to refine the ferrite crystal grain size and pearlite after transformation, and to improve impact resistance characteristics due to excellent workability and high yield strength. Start within 2 seconds, more preferably within 1 second. FIG. 2 shows the influence of the primary cooling start time on the mechanical properties. When finishing cooling within 2 seconds after finishing rolling, excellent workability and high strength can be obtained.
[0045]
The cooling rate of the primary cooling is specified in order to improve the elongation-flange property by reducing the ferrite crystal grain size after transformation and pearlite refinement and suppressing the band structure at the center of the plate thickness. The band structure corresponds to the enriched part of C and Mn in the solidification stage, and at the normal cooling rate of 100 ° C./s or lower, the transformation temperature from austenite to ferrite is low and the transformation is the slowest compared with other parts. Therefore, a lot of pearlite is generated and the stretch-flange property is deteriorated.
[0046]
When the cooling rate is 100 ° C./s or more, the ferrite transformation is facilitated even in the concentrated portion of C and Mn, and as a result, the elements are homogenized and the band structure is suppressed. The faster the cooling rate, the better. However, from the viewpoint of industrial feasibility, the upper limit is set to 2000 ° C./s. FIG. 1 shows the influence of the cooling rate on the microstructure. In the comparative method in which the cooling rate is outside the range of the present invention, a band structure is observed, and the crystal grain size is also large compared to the microstructure by the method of the present invention.
[0047]
The cooling rate is more preferably 200 ° C./s or more from the viewpoint of ferrite crystal grain size and pearlite refinement, and 400 ° C./s or more is preferable for further improving workability.
[0048]
When the end temperature of the primary cooling exceeds 750 ° C., it becomes difficult to refine the ferrite. When the temperature is less than 600 ° C., the second phase becomes a hard low-temperature transformation phase.
[0049]
(5) A step of performing secondary cooling after primary cooling at a cooling rate of less than 50 ° C./s and winding at 450 to 650 ° C.
[0050]
Secondary cooling is performed following primary cooling. The secondary cooling may be started immediately after stopping the primary cooling or may be started after standing to cool for a while, and is not particularly defined. The cooling rate of the secondary cooling is set to 50 ° C./s or less in order to appropriately pearlite transform the austenite structure to obtain excellent workability.
[0051]
When the coiling temperature exceeds 650 ° C., coarse pearlite harmful to ductility is generated. When the coiling temperature is less than 450 ° C., the structure mainly consists of a low-temperature transformation phase and the workability deteriorates. The following. When more uniform mechanical properties are desired, the temperature difference in the coil is preferably within 50 ° C. by using a cooling facility with excellent cooling controllability.
[0052]
According to the present invention, even if pickling-annealing or pickling-cold rolling-annealing after manufacturing a hot-rolled steel sheet, the effect is not impaired. Furthermore, the effect of the present invention is not impaired as a hot-dip and cold-rolled base hot-dip galvanized material.
[0053]
In the present invention, more uniform mechanical properties can be obtained by heating the edge portion in the width direction with an induction heating device or the like after rough rolling, before finish rolling, or between the stands of finish rolling. It becomes. Moreover, the effect of this invention is not impaired also in the continuous hot rolling which welds a rough rolling bar and performs finish rolling continuously after rough rolling.
[0054]
【Example】
After melting the steel having the chemical composition shown in Table 1 that satisfies the chemical composition of the present invention, a hot-rolled sheet having a thickness of 2.0 mm was prepared by the production method shown in Table 2. Material No. Nos. 1-2 and 5-9 show the mechanical properties as hot rolled, with the material No. No. 3 is hot-rolled, pickled, cold-rolled and hot-dip galvanized. No. 4 was hot-rolled, pickled, hot-dip galvanized, and examined for mechanical properties. For the evaluation of stretch-flange property, the hole expansion rate (λ) was measured. Table 2 shows these evaluation results together.
[0055]
Material No. of the present invention example satisfying the chemical components and production conditions of the present invention. Nos. 1 to 4 are materials Nos. Which are comparative examples when any one of the provisions of the manufacturing conditions is outside the provisions of the present invention. Compared with 5-9, it is clear that the processability (strength-hole expansion balance) is excellent, the yield strength is high, and the impact resistance is excellent. FIG. 3 shows the tensile strength and the hole expansion ratio of the inventive example and the comparative example together. Obviously, the present invention provides excellent properties.
[0056]
[Table 1]
Figure 0003864663
[0057]
[Table 2]
Figure 0003864663
[0058]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a high-strength steel sheet of 340 MPa class or higher that has high workability such as elongation-flange property and elongation at break and high yield strength and excellent impact resistance characteristics, and it is possible to reduce the weight and collision of automobiles and the like. It is effective for improving safety and extremely effective in industry.
[Brief description of the drawings]
FIG. 1 is a microstructure in a cross section in the plate thickness direction, (a) is a metallographic photograph showing a comparative method, and (b) is a metallographic structure showing the method according to the present invention.
FIG. 2 is a diagram showing the influence of primary cooling start time on mechanical properties. FIG. 3 is a diagram showing the effect of the present invention on the relationship between tensile strength and hole expansion rate.

Claims (4)

下記の工程を備えたことを特徴とする質量%で、C:0.05〜0.14%、Si:0.5%以下、Mn:0.5〜2.5%、P:0.05%以下、S:0.01%以下、O:0.005%以下、Ca:0.0005%未満を含有し、残部Feおよび不可避的不純物からなる高強度薄鋼板の製造方法。
(1)偏析低減処理を行なう連続鋳造によりスラブを製造する工程。
(2)仕上圧延終了温度をAr3以上とする熱間圧延工程。
(3)熱間圧延後、2秒以内に冷却速度100〜2000℃/sの一次冷却を開始し、600〜750℃の温度範囲まで冷却する工程。
(4)該温度範囲まで冷却後、冷却速度50℃/s未満で二次冷却し、450〜650℃で巻取る工程。
Mass% characterized by comprising the following steps: C: 0.05 to 0.14%, Si: 0.5% or less, Mn: 0.5 to 2.5%, P: 0.05 %, S: 0.01% or less, O: 0.005% or less, Ca: less than 0.0005% , and the manufacturing method of the high strength thin steel plate which consists of remainder Fe and an unavoidable impurity .
(1) The process of manufacturing a slab by continuous casting which performs a segregation reduction process.
(2) A hot rolling process in which the finish rolling finish temperature is Ar3 or higher.
(3) A step of starting primary cooling at a cooling rate of 100 to 2000 ° C./s within 2 seconds after hot rolling and cooling to a temperature range of 600 to 750 ° C.
(4) A step of cooling to the temperature range, followed by secondary cooling at a cooling rate of less than 50 ° C./s and winding at 450 to 650 ° C.
下記の工程を備えたことを特徴とする質量%で、C:0.05〜0.14%、Si:0.5%以下、Mn:0.5〜2.5%、P:0.05%以下、S:0.01%以下、O:0.005%以下、Ca:0.0005%未満を含有し、残部Feおよび不可避的不純物からなる高強度薄鋼板の製造方法。
(1)偏析低減処理を行なう連続鋳造によりスラブを製造する工程。
(2)熱間圧延前に、該スラブを再加熱する工程。
(3)仕上圧延終了温度をAr3以上とする熱間圧延工程。
(3)熱間圧延後、2秒以内に冷却速度100〜2000℃/sの一次冷却を開始し、600〜750℃の温度範囲まで冷却する工程。
(4)該温度範囲まで冷却後、冷却速度50℃/s未満で二次冷却し、450〜650℃で巻取る工程。
Mass% characterized by comprising the following steps: C: 0.05 to 0.14%, Si: 0.5% or less, Mn: 0.5 to 2.5%, P: 0.05 %, S: 0.01% or less, O: 0.005% or less, Ca: less than 0.0005% , and the manufacturing method of the high strength thin steel plate which consists of remainder Fe and an unavoidable impurity .
(1) The process of manufacturing a slab by continuous casting which performs a segregation reduction process.
(2) A step of reheating the slab before hot rolling.
(3) A hot rolling step in which the finish rolling finish temperature is Ar3 or higher.
(3) A step of starting primary cooling at a cooling rate of 100 to 2000 ° C./s within 2 seconds after hot rolling and cooling to a temperature range of 600 to 750 ° C.
(4) A step of cooling to the temperature range, followed by secondary cooling at a cooling rate of less than 50 ° C./s and winding at 450 to 650 ° C.
更に、下記の工程の何れかを付与したことを特徴とする請求項1または2に記載の高強度薄鋼板の製造方法。
(1)酸洗後、焼鈍する工程。
(2)酸洗後、冷延し、焼鈍する工程。
Furthermore, one of the following processes was given, The manufacturing method of the high strength thin steel plate of Claim 1 or 2 characterized by the above-mentioned.
(1) A step of annealing after pickling.
(2) A step of cold rolling and annealing after pickling.
鋼成分として、更にTi,Nb,V,Mo,Zr,Crの一種または二種以上を合計で0.01〜0.3%添加する請求項1乃至3の何れかに記載の高強度薄鋼板の製造方法。  The high-strength thin steel sheet according to any one of claims 1 to 3, wherein one or more of Ti, Nb, V, Mo, Zr, and Cr is added as a steel component in a total amount of 0.01 to 0.3%. Manufacturing method.
JP2000060282A 1999-09-29 2000-03-06 Manufacturing method of high strength steel sheet Expired - Fee Related JP3864663B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000060282A JP3864663B2 (en) 2000-03-06 2000-03-06 Manufacturing method of high strength steel sheet
KR10-2001-7002607A KR100401272B1 (en) 1999-09-29 2000-09-27 Steel sheet and method therefor
PCT/JP2000/006639 WO2001023624A1 (en) 1999-09-29 2000-09-27 Sheet steel and method for producing sheet steel
EP00962863.7A EP1143019B1 (en) 1999-09-29 2000-09-27 Method for manufacturing a coiled steel sheet
US09/837,435 US6652670B2 (en) 1999-09-29 2001-04-18 Steel sheet and method for manufacturing the same
US10/448,697 US20030196731A1 (en) 1999-09-29 2003-05-30 Method for manufacturing a steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060282A JP3864663B2 (en) 2000-03-06 2000-03-06 Manufacturing method of high strength steel sheet

Publications (2)

Publication Number Publication Date
JP2001247918A JP2001247918A (en) 2001-09-14
JP3864663B2 true JP3864663B2 (en) 2007-01-10

Family

ID=18580623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060282A Expired - Fee Related JP3864663B2 (en) 1999-09-29 2000-03-06 Manufacturing method of high strength steel sheet

Country Status (1)

Country Link
JP (1) JP3864663B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661306B2 (en) * 2005-03-29 2011-03-30 Jfeスチール株式会社 Manufacturing method of ultra-high strength hot-rolled steel sheet
JP4644075B2 (en) * 2005-09-02 2011-03-02 新日本製鐵株式会社 High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP4751152B2 (en) * 2005-09-02 2011-08-17 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
JP4644077B2 (en) * 2005-09-05 2011-03-02 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet and alloyed hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and formability, and methods for producing them
JP4644076B2 (en) * 2005-09-05 2011-03-02 新日本製鐵株式会社 High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP4696870B2 (en) * 2005-11-21 2011-06-08 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP4992276B2 (en) * 2006-03-31 2012-08-08 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4992277B2 (en) * 2006-03-31 2012-08-08 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5348071B2 (en) * 2010-05-31 2013-11-20 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2001247918A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
WO2001023624A1 (en) Sheet steel and method for producing sheet steel
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP2004043856A (en) Low yield ratio type steel pipe
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP4506476B2 (en) Cold-rolled steel sheet suitable for warm forming and manufacturing method thereof
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
CN115461482A (en) Steel sheet, component and method for producing same
JP2007119842A (en) Method for producing high-strength galvanized steel sheet excellent in stretch-flanging property
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
WO1982001379A1 (en) Process for manufacturing hot-rolled dual-phase high-tensile steel plate
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JP4670135B2 (en) Manufacturing method of hot-rolled steel sheet with excellent strain age hardening characteristics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees