JP3543104B2 - Ultrafine structure steel and its manufacturing method - Google Patents

Ultrafine structure steel and its manufacturing method Download PDF

Info

Publication number
JP3543104B2
JP3543104B2 JP25668297A JP25668297A JP3543104B2 JP 3543104 B2 JP3543104 B2 JP 3543104B2 JP 25668297 A JP25668297 A JP 25668297A JP 25668297 A JP25668297 A JP 25668297A JP 3543104 B2 JP3543104 B2 JP 3543104B2
Authority
JP
Japan
Prior art keywords
ferrite
steel
less
grain boundaries
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25668297A
Other languages
Japanese (ja)
Other versions
JPH1192861A (en
Inventor
史郎 鳥塚
兼彰 津崎
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP25668297A priority Critical patent/JP3543104B2/en
Priority to EP98307632A priority patent/EP0903412A3/en
Priority to CN98120620A priority patent/CN1121502C/en
Priority to US09/157,394 priority patent/US6221178B1/en
Priority to TW087115693A priority patent/TW580519B/en
Priority to KR1019980038944A priority patent/KR100536827B1/en
Publication of JPH1192861A publication Critical patent/JPH1192861A/en
Application granted granted Critical
Publication of JP3543104B2 publication Critical patent/JP3543104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、高強度構造用鋼として有用な、超微細組織鋼の製造方法に関するものである。
【0002】
【従来の技術とその課題】
従来、鋼材の強化方法としては、固溶強化や、マルテンサイト等との複合化による第2相による強化、析出強化、結晶粒の微細化が知られている。なかでも、強度と靱性をともに高くし、強度−延性バランスを良好にする方法としては、結晶粒の微細化が最も優れた方法である。この方法では焼き入れ性を高めるNi,Cr等の高価な元素の添加を必要としないため、低コストで高強度鋼材の製造が可能とされている。この結晶粒の微細化の観点からは、構造用鋼において、フェライトの結晶粒径が3μm以下まで微細化されると、強度は急激に大きくなることが期待されている。しかしながら、一般の加工熱処理技術で現在までに得られている5μm程度の粒径では、高強度化されるものの、大きな強度上昇量は得られていないのが実情である。
【0003】
従来、制御圧延−加速冷却技術は低合金鋼において、微細なフェライトを得るための有効な方法であった。すなわち、オーステナイト未再結晶域における累積圧下率とその後の冷却速度を制御することによって、微細な組織が得られている。しかし、得られるフェラ
イト粒径はせいぜいSi−Mn鋼で10μm、Nb鋼で5μmが限界であった。一方、特開昭58−123823、特開昭59−205447、特公昭62−39228、特公昭62−5212、特公昭62−7247に述べられているように、2相域も含めたAr1〜Ar3+100℃の温度域で合計減面率が75%以上の圧下を加え、その後20K/s以上で冷却する場合には、3〜4μm程度のフェライト粒が得られることが報告されている。しかしながら、20K/s以上の急冷は、板厚が薄い場合にのみ成り立ち得る手段であり、広く一般溶接構造用鋼の製造方法としては成立しがたい非実際的なものにすぎない。また、強加工そのものについても、ロール圧延では、オーステナイト低温域での1パスで50%を越える大圧下を行うことは、その変形抵抗の大きさやロールのかみこみ制限から、一般的にむずかしい。また、未再結晶域での累積圧下には一般的には70%以上必要であり、鋼板の温度低下によりそれも難しい。
【0004】
制御圧延鋼の変態フェライト相は、一般に集合組織を形成することが知られており、強圧下の結果得られたフェライト相は小傾角粒界を有するようになる。すなわち、単純な強加工では、集合組織が形成され、大角粒界からなるフェライト粒を得ることはできないのである。このため、特公昭62−39228、特公昭62−7247に示された以上の強加工を行っても、大傾角粒界からなるより微細なフェライト組織を得ることは困難である。
【0005】
そこで、この出願の発明では、以上のとおりの従来技術の限界を克服し、その強度をより大きく増大させることのできる3μm以下の超微細組織を持つ構造用鋼を提供し、しかも、実際的に許容されるより遅い冷却速度で、しかも実用的加工手段によって、この新しい鋼を提供することを目的としている。
【0006】
【課題を解決するための手段】
この出願は、上記の課題を解決するものとして、C,Si,Mn,Al,P,SおよびNを含有し、残部がFeと不可避的不純物からなる組成を有し、平均粒径が3μm以下で、粒界の方位差角15°以上の大角粒界に囲まれたフェライトを母相とし、40体積%未満のパーライトを第二相とする超微細組織鋼の製造方法であって、Ac3点以上に加熱してオーステナイト化した後に、Ar3点以上の温度で、圧下率50%以上のアンビル圧縮加工を被加工材のX、YおよびZの3面のうちの少くとも2面からの加工として、同時、または連続的に加え、次いで500℃までの平均冷却速度3〜10K/sで冷却することを特徴とする超微細組織鋼の製造方法を提供する。
【0007】
【発明の実施の形態】
この出願の発明は、以上のとおりの特徴を有するものであるが、以下にさらに詳しく説明する。
【0008】
この発明では、構造用鋼として高強度な超微細組織鋼を提供するが、このものは、前記のように、
1)フェライト粒の平均粒径が3μm以下、より好ましくは2μm以下、
2)フェライトの粒界の方位差角が15°以上の大角粒界に囲まれたフェライト、
3)このフェライトを母相とし、40体積%未満のパーライトを第二相とし、
4)C,Si,Mn,Al,P,SおよびNを含有し、残部がFeと不可避的不純物か らなる組成を有する
ことにより特定されるものである。このような鋼は、これまで全く実現されていない。
【0009】
この発明の超微細組織鋼は、たとえば前記のとおり、この出願の発明の製造方法によって提供される。
【0010】
すなわち、まず、発明者らの研究の結果、フェライトの超微細化とその大角粒界化にはアンビル圧縮加工が極めて有効であることが見出された。図1は、このアンビル圧縮加工の態様を例示したものである。アンビル圧縮では、減面率で1パス90%を越える強加工も可能である。加工部はロール圧延に比べ同じ減面率でも、せん断変形を含む大きな変形を受けることになる。その結果、未再結晶域で、このアンビル圧縮加工を行うことによって、平均粒径で3μm以下のフェライト粒が50%以上の減面率の加工で得られるようになった。そのフェライトは隣接方位差角が15°以上のいわゆる大角粒界を有している。すなわち、加工前のオーステナイト粒径、加工量、加工温度を制御することによって、大角粒界からなりかつ3μm以下のフェライト微細な組織鋼が製造が可能となる。
【0011】
一般に、微細なフェライトはその変態過程及びその後において、極めて合体、粒成長しやすいが、大角粒界からなるフェライトは容易に合体、粒成長せず、微細なまま室温にいたる。その結果、冷却速度は、従来の20K/s以上に対し、3K/s以上でも上記の微細粒を得ることができる。このような遅い冷却速度はこれまで全く考えられなかったものである。この発明の加工時のひずみ速度は1/s十分である。1−10/sは厚板圧延の一般的ひずみ速度である。
【0012】
加工に用いるアンビル幅と試料の板厚との関係は適宜調節可能であり、アンビルと試料の間には潤滑材を塗布してもよい。
【0013】
以上のことから、この発明では、Ac3点以上に加熱してオーステナイト化した後に、Ar3点以上の温度で、圧下率50%以上のアンビル圧縮加工を被加工材のX、YおよびZの3面のうちの少くとも2面からの加工として、同時、または連続的に加え、次いで500℃までの平均冷却速度3K/s〜10K/sの速度で冷却する。
【0014】
加工前のオーステナイト粒径については、たとえば300μm以下においてフェライトの微細化が可能であることが確認されている。加工量として断面圧下率で50%以上が必要で、2μm未満の粒径を得るためには70%以上が望ましい。加工温度としてはオーステナイト未再結晶域が必要で、Ar3+200℃以内が望ましい。なるべく微細な粒を得るためにはAr3+100℃以内が望ましい。
【0015】
また、この発明では前記のとおりのフェライトを母相とするが、フェライト相以外の相としては、パーライトを第二相として有している。
【0016】
溶接性、靱性の劣化を防ぐとの観点から、パーライトの体積率は40%未満とする。
【0017】
なお、この発明で規定するところのフェライト平均粒径は、たとえば直線切断法により計測される。また、フェライト粒界の方位は、加工部の代表的な約0.1×0.1mmの数視野をSEMで観察し、1視野につき数百個のフェライト粒を電子線後方散乱回析(EBSD)法で測定することができる。フェライトの粒界の方位差角は15°以上であるときを大角粒界とする。大角粒界が全粒界の80%以上を占めるとき、組織は大角粒界からなっているとする。
【0018】
大角粒界の割合が80%未満の時には、組織の微細化による強度の上昇は十分に得られないからである。
【0019】
鋼の化学的組成についてはCとともに、Si,Mn,Al,P,SおよびNを含有し、残部がFeと不可避的不純物からなる組成である。
【0020】
一般溶接構造用鋼を例示という観点からは、たとえば次の添加元素の組成が考慮される

【0021】
0.001mass%≦C≦0.3mass%:Cは鋼の強度を上昇させる重要な添加元素であるが、0.3%以上添加すると溶接性、靱性が劣化し、一般溶接構造用鋼としての利用が難しくなる。
【0022】
Si,Mn:固溶強化元素であり、適量添加することが望ましい。溶接性の観点からMnは3%以下、Siは2.5%以下である。
【0023】
Al:清浄度の観点から0.1%以下。
【0024】
P,Sは一般的に0.05%以下とする。
【0025】
また、この発明では、前記のアンビル圧縮加工については、より低加工量でも同様な微細化を達成する方法として、多軸加工が有効であることを見出している。また、同一加工量であれば、より微細な粒が得られる。加工に用いる応力は、圧縮だけでなく、せん断、引張、ねじりでもよい。
【0026】
すなわち、図2に示すように、試料のA面とB面から交互に加工を加える。その後、適切な速度で冷却することによって、1軸圧縮に比べ、方位の異なるフェライト核生成量を増加させることができる。従って、同一減面率であれば、1軸圧縮に比べフェライト粒径が小さくさせることができる。1軸圧延に比べ低減面率でも、超微細なフェライト粒を得ることができるのである。
【0027】
以上のことから、この発明では、供試鋼をAc3点以上にあげ、オーステナイト化した後、未再結晶域まで温度を低下させ、各面の加工量、加工温度を制御することによって、変態フェライトの微細化、粒界の大角化を効果的に行う多軸加工熱処理技術も提供する。図2では、加工軸を一つとし、サンプルを回転させることによって、2面からの加工を行う例を示したが、あらかじめ加工軸を2本用意しておき、A面、B面を交互に加工してもよい。さらに、加工軸が2本ある時は、A面、B面を同時に加工することもフェライトの微細化に効果的である。
【0028】
以下、実施例を示し、さらに詳しく説明する。
【0029】
【実施例】
以下の例においては、加工中心部および未加工部の組織をSEMにより観察し、直接切断法により平均粒径を求めた。また、電子線後方散乱回析(EBSD)法を用いてフェライト粒の方位を測定した。
参考例1〜10
表1の1−3の組成の鋼を加熱し、完全にオーステナイト化した後に、20×18×12(黒四角)の試験片を、アンビル幅5mmの図1に示す方式で、表2に示す条件で加工し、冷却を行った。その結果、表2に示す平均粒径を有するフェライト−パーライト鋼を得た。これらの鋼のAr3は、全自動変態率測定装置で鋼を900℃に加熱し、10K/sで冷却し、熱膨張曲線の変化から求めた。
【0030】
【表1】

Figure 0003543104
【0031】
【表2】
Figure 0003543104
【0032】
実施例1
表1の1の組成の鋼を900℃に加熱し、完全にオーステナイト化した後に、750℃に冷却し、図2のA面より圧下率で減面率15%の平面ひずみ圧縮加工を行った。0.1
秒後にB面より、減面率が未加工時に比べ、60%となるように平面ひずみ圧縮加工を行い、500℃まで、10K/sで冷却した。その結果、加工部のフェライトの平均粒径が2.0μmのフェライト−パーライト鋼を得た。電子線後方散乱(EBSD)法で測定したフェライトの粒界の傾角は15°以上のものが94%を占め、フェライトは大角粒界に囲まれていた。
実施例2
表1の1の組成の鋼を900℃に加熱し、完全にオーステナイト化した後に、750℃に冷却し、図2のA面より圧下率で減面率10%の平面ひずみ圧縮加工を行った。0.1秒後にB面より減面率が未加工時に比べ、45%となるように平面ひずみ圧縮加工を行い、500℃まで、10K/sで冷却した。その結果、加工部のフェライトの平均粒径が2.5μmのフェライト−パーライト鋼を得た。電子線後方散乱(EBSD)法で測定したフェライトの粒界の傾角は15°以上のものが95%を占め、フェライトは大角粒界に囲まれていた。
実施例3
表1の1の組成の鋼を900℃に加熱し、完全にオーステナイト化した後に、750℃に冷却し、図2のA面より圧下率で減面率10%の平面ひずみ圧縮加工を行った。0.1秒後にB面より減面率が未加工時に比べ、70%となるように平面ひずみ圧縮加工を行い、500℃まで、10K/sで冷却した。その結果、加工部のフェライトの平均粒径が1.4μmのフェライト−パーライト鋼を得た。電子線後方散乱(EBSD)法で測定したフェライトの粒界の傾角は15°以上のものが95%を占め、フェライトは大角粒界に囲まれていた。
比較例1
表1の1の組成のオーステナイト粒径15μmの鋼を800℃の温度で加工量70%のロール圧延を行い、500℃の温度まで平均冷却速度12K/sで冷却した。得られた加工部のフェライト平均粒径は4.8μmであった。
比較例2
表1の2の組成のオーステナイト粒径20μmの鋼を850℃の温度で加工量70%のロール圧延を行い、500℃の温度まで平均冷却速度40K/sで冷却した。得られた加工部のフェライト平均粒径は3.6μmであった。
比較例3
表1の1の組成のオーステナイト粒径25μmの鋼を750℃の温度で加工量73%のアンビル圧縮加工を行い、500℃の温度まで平均冷却速度1K/sで冷却した。得られたフェライトーパーライト鋼のフェライトの粒界の傾角は15°以上のものが90%を占めていたが、フェライト平均粒径は5.3μmであった。
比較例4
表1の1の組成の鋼を熱間圧延の後、冷間圧延、熱処理の結果、平均フェライト粒径2.5μmのフェライト−パーライト鋼を得た。EBSD測定の結果、フェライト粒界にしめる傾角15°以上の粒界の割合は30%であった。そのとき、引張強度は480N/mm2であった。
【0033】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、大角粒界を有する平均粒径3μm以下のフェライト組織という、従来の微細組織鋼の限界をこえ高強度な超微細組織鋼が提供される。そしてまた、その製造法として、冷却速度の遅いことが工業的に大きな意味を持つ新しい方法が提供される。
【図面の簡単な説明】
【図1】アンビル圧縮加工について示した概要図である。
【図2】多軸加工熱処理について示した概要図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for producing an ultrafine-structured steel useful as a high-strength structural steel.
[0002]
[Prior art and its problems]
Conventionally, as a method of strengthening a steel material, solid solution strengthening, strengthening by a second phase by compounding with martensite, precipitation strengthening, and refinement of crystal grains are known. Above all, as a method for increasing both strength and toughness and improving the strength-ductility balance, refinement of crystal grains is the most excellent method. This method does not require the addition of expensive elements, such as Ni and Cr, which enhance hardenability, so that it is possible to manufacture high-strength steel at low cost. From the viewpoint of the refinement of the crystal grains, it is expected that the strength of the structural steel will rapidly increase when the crystal grain size of the ferrite is refined to 3 μm or less. However, in the case of a particle diameter of about 5 μm, which has been obtained by a general thermomechanical processing technique, the strength is increased, but a large increase in strength is not obtained.
[0003]
Conventionally, the controlled rolling-accelerated cooling technique has been an effective method for obtaining fine ferrite in a low alloy steel. That is, a fine structure is obtained by controlling the cumulative rolling reduction in the austenite non-recrystallized region and the subsequent cooling rate. However, the grain size of the obtained ferrite was at most 10 μm for Si—Mn steel and 5 μm for Nb steel. On the other hand, as described in JP-A-58-123823, JP-A-59-20547, JP-B-62-39228, JP-B-62-5212 and JP-B-62-7247, Ar1 to Ar3 + 100 including the two-phase region are included. It has been reported that ferrite grains of about 3 to 4 μm can be obtained when a reduction with a total area reduction of 75% or more is applied in a temperature range of ° C. and then cooled at a rate of 20 K / s or more. However, quenching of 20 K / s or more is a means that can be realized only when the sheet thickness is small, and is only an impractical method that cannot be widely used as a method for manufacturing general welding structural steel. Also, in the case of strong working itself, it is generally difficult to perform a large reduction of more than 50% in a single pass in a low temperature range of austenite in roll rolling due to the magnitude of the deformation resistance and the limitation of roll intrusion. In addition, the cumulative reduction in the unrecrystallized region generally requires 70% or more, which is also difficult due to a decrease in the temperature of the steel sheet.
[0004]
It is known that the transformed ferrite phase of the control rolled steel generally forms a texture, and the ferrite phase obtained as a result of the high-pressure treatment has a low-angle grain boundary. That is, with simple heavy working, a texture is formed and ferrite grains composed of large-angle grain boundaries cannot be obtained. For this reason, it is difficult to obtain a finer ferrite structure composed of large-angle grain boundaries even if the hard working described in JP-B-62-39228 and JP-B-62-7247 is performed.
[0005]
Therefore, the invention of this application provides a structural steel having an ultrafine structure of 3 μm or less capable of overcoming the limitations of the conventional technology as described above and further increasing the strength thereof. The aim is to provide this new steel with a lower cooling rate than is permissible and with practical working means.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present application has a composition containing C, Si, Mn, Al, P, S and N, the balance being Fe and unavoidable impurities, and having an average particle size of 3 μm or less. A method for producing an ultrafine-structured steel comprising a ferrite surrounded by a large-angle grain boundary having a misorientation angle of 15 ° or more at a grain boundary as a mother phase and less than 40% by volume of pearlite as a second phase. After the above heating to austenitize, the anvil compression working at a temperature of Ar 3 or more and a rolling reduction of 50% or more is performed as processing from at least two of the three surfaces X, Y and Z of the workpiece. , Simultaneously or continuously, and then cooling at an average cooling rate of 3 to 10 K / s up to 500 ° C.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention of this application has the features described above, and will be described in more detail below.
[0008]
In the present invention, a high-strength ultra-fine structure steel is provided as a structural steel, but as described above,
1) Ferrite grains have an average grain size of 3 μm or less, more preferably 2 μm or less,
2) ferrite surrounded by large-angle grain boundaries in which the misorientation angle of the ferrite grain boundaries is 15 ° or more;
3) This ferrite is used as a mother phase, and less than 40% by volume of pearlite is used as a second phase;
4) It is specified by containing C, Si, Mn, Al, P, S and N, with the balance being Fe and unavoidable impurities. Such steels have never been realized.
[0009]
The ultrafine-structured steel of the present invention is provided, for example, by the manufacturing method of the present invention as described above.
[0010]
That is, first, as a result of the research by the inventors, it has been found that anvil compression working is extremely effective for ultrafine refining of ferrite and formation of large-angle grain boundaries. FIG. 1 illustrates an aspect of the anvil compression processing. In the anvil compression, it is possible to perform a strong machining exceeding 90% in one pass at a reduction in area. The processed part undergoes a large deformation including a shear deformation even at the same area reduction ratio as compared with the roll rolling. As a result, by performing this anvil compression working in the non-recrystallized region, ferrite grains having an average grain size of 3 μm or less can be obtained by working with a reduction in area of 50% or more. The ferrite has a so-called large-angle grain boundary having an adjacent misorientation angle of 15 ° or more. That is, by controlling the austenite grain size, working amount, and working temperature before working, it is possible to manufacture a ferrite microstructured steel having large-angle grain boundaries and 3 µm or less.
[0011]
In general, fine ferrite is extremely easy to coalesce and grow during the transformation process and thereafter, but ferrite consisting of large-angle grain boundaries does not easily coalesce and grow, and reaches room temperature as it is in a fine state. As a result, the above-mentioned fine particles can be obtained even when the cooling rate is 3 K / s or more, compared with the conventional cooling rate of 20 K / s or more. Such a slow cooling rate has never been considered before. The strain rate during processing according to the present invention is 1 / s sufficient. 1-10 / s is a general strain rate of plate rolling.
[0012]
The relationship between the width of the anvil used for processing and the thickness of the sample can be adjusted as appropriate, and a lubricant may be applied between the anvil and the sample.
[0013]
In view of the above, in the present invention, after the material is heated to an austenite by heating to a temperature of 3 or more, anvil compression working at a temperature of a temperature of 3 or more and a rolling reduction of 50% or more is performed on the three surfaces X, Y, and Z of the workpiece. And at the same time, or continuously, as processing from at least two sides, and then cool at an average cooling rate up to 500 ° C. at a rate of 3 K / s to 10 K / s.
[0014]
As for the austenite grain size before working, it has been confirmed that ferrite can be miniaturized at, for example, 300 μm or less. The processing amount is required to be 50% or more in cross-sectional reduction ratio, and is preferably 70% or more in order to obtain a particle diameter of less than 2 μm. As the processing temperature, an austenite non-recrystallized region is required, and it is desirable that Ar3 + 200 ° C. or less. In order to obtain as fine grains as possible, it is desirable that Ar3 + 100 ° C or less.
[0015]
In the present invention, ferrite as described above is used as a mother phase, but as a phase other than the ferrite phase, pearlite is used as a second phase.
[0016]
From the viewpoint of preventing deterioration in weldability and toughness, the volume ratio of pearlite is set to less than 40%.
[0017]
The average ferrite grain size specified in the present invention is measured by, for example, a linear cutting method. The orientation of the ferrite grain boundary is determined by observing several fields of about 0.1 × 0.1 mm typical of the processed part by SEM, and electron beam backscatter diffraction (EBSD) of several hundred ferrite grains per field. ) Method. When the misorientation angle of the ferrite grain boundary is 15 ° or more, it is defined as a large-angle grain boundary. When the large-angle grain boundaries occupy 80% or more of all the grain boundaries, it is assumed that the structure is composed of large-angle grain boundaries.
[0018]
This is because when the ratio of the large angle grain boundaries is less than 80%, a sufficient increase in strength due to the refinement of the structure cannot be obtained.
[0019]
The chemical composition of steel is such that it contains Si, Mn, Al, P, S and N together with C, and the balance is composed of Fe and unavoidable impurities.
[0020]
From the viewpoint of exemplifying a general welding structural steel, for example, the composition of the following additional element is considered.
[0021]
0.001 mass% ≦ C ≦ 0.3 mass%: C is an important additive element for increasing the strength of steel, but if added 0.3% or more, the weldability and toughness deteriorate, and as a general welded structural steel, It becomes difficult to use.
[0022]
Si, Mn: solid solution strengthening elements, and desirably added in an appropriate amount. From the viewpoint of weldability, Mn is 3% or less and Si is 2.5% or less.
[0023]
Al: 0.1% or less from the viewpoint of cleanliness.
[0024]
P and S are generally set to 0.05% or less.
[0025]
Further, in the present invention, it has been found that, with respect to the above-mentioned anvil compression processing, multiaxial processing is effective as a method for achieving similar miniaturization with a lower processing amount. Further, if the processing amount is the same, finer grains can be obtained. The stress used for processing may be not only compression but also shear, tension, and torsion.
[0026]
That is, as shown in FIG. 2, processing is performed alternately from the A side and the B side of the sample. Thereafter, by cooling at an appropriate speed, the amount of ferrite nuclei having different orientations can be increased as compared with uniaxial compression. Therefore, if the area reduction rate is the same, the ferrite grain size can be made smaller than in uniaxial compression. Ultra-fine ferrite grains can be obtained even with a reduced area ratio as compared with uniaxial rolling.
[0027]
From the above, according to the present invention, the test steel is raised to an Ac point of 3 or more, after austenitizing, the temperature is lowered to a non-recrystallized region, and the amount of processing and the processing temperature of each surface are controlled, whereby the transformed ferrite is formed. Also provides multi-axis processing heat treatment technology for effectively reducing the grain size and increasing the angle of grain boundaries. FIG. 2 shows an example in which machining is performed from two surfaces by using one machining axis and rotating the sample. However, two machining axes are prepared in advance, and the A surface and the B surface are alternately arranged. It may be processed. Further, when there are two machining axes, machining the A surface and the B surface at the same time is also effective for miniaturization of ferrite.
[0028]
Hereinafter, examples will be shown and described in more detail.
[0029]
【Example】
In the following examples, the structures at the center of the processing and the unprocessed part were observed by SEM, and the average particle size was determined by a direct cutting method. Further, the orientation of the ferrite grains was measured using an electron beam backscatter diffraction (EBSD) method.
Reference Examples 1 to 10
After heating the steel having a composition of 1-3 in Table 1 to completely austenitize the steel, a test piece of 20 × 18 × 12 (black square) is shown in Table 2 by a method shown in FIG. It processed under conditions and cooled. As a result, a ferrite-pearlite steel having an average particle size shown in Table 2 was obtained. Ar3 of these steels was determined by heating the steels to 900 ° C. with a fully automatic transformation rate measuring device, cooling the steels at 10 K / s, and changing the thermal expansion curves.
[0030]
[Table 1]
Figure 0003543104
[0031]
[Table 2]
Figure 0003543104
[0032]
Example 1
The steel having the composition shown in Table 1 was heated to 900 ° C. and completely austenitized, then cooled to 750 ° C., and subjected to plane strain compression at a rolling reduction of 15% from the A side in FIG. . 0.1
After the second, the plane strain compression processing was performed from the side B so that the area reduction rate was 60% as compared with the unprocessed state, and the surface was cooled to 500 ° C. at 10 K / s. As a result, a ferrite-pearlite steel having an average ferrite grain size of 2.0 μm in the processed portion was obtained. The tilt angle of the grain boundaries of ferrite measured by the electron beam back scattering (EBSD) method accounted for 94% of those having a tilt angle of 15 ° or more, and the ferrite was surrounded by the large-angle grain boundaries.
Example 2
The steel having the composition shown in Table 1 was heated to 900 ° C. and completely austenitized, then cooled to 750 ° C., and subjected to plane strain compression with a rolling reduction of 10% from the A side in FIG. . After 0.1 second, plane strain compression processing was performed so that the area reduction rate from the B side was 45% as compared with the unprocessed state, and the surface was cooled to 500 ° C. at 10 K / s. As a result, a ferrite-pearlite steel having an average ferrite grain size of 2.5 μm in the processed portion was obtained. The tilt angle of the ferrite grain boundaries measured by the electron beam back scattering (EBSD) method accounted for 95% of those having a tilt angle of 15 ° or more, and the ferrite was surrounded by the large-angle grain boundaries.
Example 3
The steel having the composition shown in Table 1 was heated to 900 ° C. and completely austenitized, then cooled to 750 ° C., and subjected to plane strain compression with a rolling reduction of 10% from the side A in FIG. . After 0.1 second, plane strain compression processing was performed so that the area reduction rate from the B side was 70% as compared with the unprocessed state, and cooling was performed to 500 ° C. at 10 K / s. As a result, a ferrite-pearlite steel having an average ferrite grain size of 1.4 μm in the processed portion was obtained. The tilt angle of the ferrite grain boundaries measured by the electron beam back scattering (EBSD) method accounted for 95% of those having a tilt angle of 15 ° or more, and the ferrite was surrounded by the large-angle grain boundaries.
Comparative Example 1
A steel having an austenite grain size of 15 μm having a composition shown in Table 1 was roll-rolled at a temperature of 800 ° C. with a working amount of 70%, and cooled to a temperature of 500 ° C. at an average cooling rate of 12 K / s. The ferrite average particle size of the obtained processed part was 4.8 μm.
Comparative Example 2
The steel having the composition shown in Table 1 and having an austenite grain size of 20 μm was roll-rolled at a temperature of 850 ° C. and a working amount of 70%, and cooled to a temperature of 500 ° C. at an average cooling rate of 40 K / s. The average ferrite particle size of the obtained processed part was 3.6 μm.
Comparative Example 3
A steel having an austenite grain size of 25 μm having a composition shown in Table 1 was subjected to anvil compression working at a temperature of 750 ° C. and a working amount of 73%, and cooled to a temperature of 500 ° C. at an average cooling rate of 1 K / s. In the obtained ferrite-pearlite steel, 90% of the ferrite had a grain boundary inclination angle of 15 ° or more occupying 90%, but the average ferrite grain size was 5.3 μm.
Comparative Example 4
As a result of hot rolling, cold rolling and heat treatment of the steel having the composition of 1 in Table 1, a ferrite-pearlite steel having an average ferrite grain size of 2.5 µm was obtained. As a result of the EBSD measurement, the ratio of the grain boundaries having a tilt angle of 15 ° or more to form the ferrite grain boundaries was 30%. At that time, the tensile strength was 480 N / mm2.
[0033]
【The invention's effect】
As described in detail above, the invention of this application provides a high-strength ultrafine-structured steel having a ferrite structure having a large-angle grain boundary and having an average grain size of 3 μm or less, which exceeds the limit of the conventional fine-structured steel. Further, a new method is provided as a manufacturing method, in which the slow cooling rate has great industrial significance.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an anvil compression process.
FIG. 2 is a schematic diagram showing a multi-axis machining heat treatment.

Claims (2)

C,Si,Mn,Al,P,SおよびNを含有し、残部がFeと不可避的不純物からなる組成を有し、平均粒径が3μm以下で、粒界の方位差角15°以上の大角粒界に囲まれたフェライトを母相とし、40体積%未満のパーライトを第二相とする超微細組織鋼の製造方法であって、Ac3点以上に加熱してオーステナイト化した後に、Ar3点以上の温度で、圧下率50%以上のアンビル圧縮加工を被加工材のX、YおよびZの3面のうちの少くとも2面からの加工として、同時、または連続的に加え、次いで500℃までの平均冷却速度3〜10K/sで冷却することを特徴とする超微細組織鋼の製造方法。Large angle containing C, Si, Mn, Al, P, S and N, the balance being Fe and unavoidable impurities, having an average grain size of 3 μm or less, and a misorientation angle of grain boundaries of 15 ° or more. A method for producing an ultrafine-structured steel having a ferrite surrounded by grain boundaries as a parent phase and less than 40% by volume of pearlite as a second phase, wherein the steel is heated to Ac 3 points or more to austenitize and then Ar 3 points or more. At the temperature of annealed, an anvil compression process with a reduction of 50% or more is applied simultaneously or continuously as a process from at least two of the three surfaces X, Y and Z of the workpiece, and then up to 500 ° C. A method for producing ultra-fine structure steel, comprising cooling at an average cooling rate of 3 to 10 K / s. Ar3点〜Ar3+200℃の範囲内の温度においてアンビル圧縮加工を加える請求項1の製造方法。2. The method according to claim 1, wherein the anvil compression process is performed at a temperature within a range of Ar3 point to Ar3 + 200C.
JP25668297A 1997-09-22 1997-09-22 Ultrafine structure steel and its manufacturing method Expired - Lifetime JP3543104B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25668297A JP3543104B2 (en) 1997-09-22 1997-09-22 Ultrafine structure steel and its manufacturing method
EP98307632A EP0903412A3 (en) 1997-09-22 1998-09-21 Ultra-fine texture steel and method for producing it
CN98120620A CN1121502C (en) 1997-09-22 1998-09-21 Super fine organization steel and method for mfg. same
US09/157,394 US6221178B1 (en) 1997-09-22 1998-09-21 Ultra-fine grain steel and method for producing it
TW087115693A TW580519B (en) 1997-09-22 1998-09-21 Super fine structure steel and manufacturing method thereof
KR1019980038944A KR100536827B1 (en) 1997-09-22 1998-09-21 Ultra-fine grain steel and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25668297A JP3543104B2 (en) 1997-09-22 1997-09-22 Ultrafine structure steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH1192861A JPH1192861A (en) 1999-04-06
JP3543104B2 true JP3543104B2 (en) 2004-07-14

Family

ID=17296013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25668297A Expired - Lifetime JP3543104B2 (en) 1997-09-22 1997-09-22 Ultrafine structure steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3543104B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704716B2 (en) * 2011-06-23 2015-04-22 株式会社神戸製鋼所 Machine structural steel for cold working and method for producing the same

Also Published As

Publication number Publication date
JPH1192861A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
EP0152160B1 (en) High strength low carbon steels, steel articles thereof and method for manufacturing the steels
US6221178B1 (en) Ultra-fine grain steel and method for producing it
KR20140129365A (en) Low density steel with good stamping capability
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP4189133B2 (en) High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same
JP3527641B2 (en) Steel wire with excellent cold workability
JP3790135B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
KR100665443B1 (en) Method for controlling structure of two-phase steel
JPH09202919A (en) Production of high tensile strength steel material excellent in toughness at low temperature
EP0033600A2 (en) Process for producing a steel with dual-phase structure
JP3543104B2 (en) Ultrafine structure steel and its manufacturing method
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP4164589B2 (en) Manufacturing method of ultra-fine structure steel
JP2808675B2 (en) Fine grain bainite steel
JP4116708B2 (en) Manufacturing method of fine grain structure steel
JP2004100038A (en) Low alloy steel material having spheroidized structure in as hot rolled state, and its manufacturing method
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
KR100946050B1 (en) Method for manufacturing the ultra-fine ferrite by dynamic transformation
CN114790530B (en) High-plasticity ultrahigh-strength steel plate and manufacturing method thereof
JPS6220820A (en) Cold working method
JPH1192855A (en) Steel having ultrafine double phase structure
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term