JP4858004B2 - High-strength steel sheet with excellent ductility and deep drawability and method for producing the same - Google Patents

High-strength steel sheet with excellent ductility and deep drawability and method for producing the same Download PDF

Info

Publication number
JP4858004B2
JP4858004B2 JP2006224814A JP2006224814A JP4858004B2 JP 4858004 B2 JP4858004 B2 JP 4858004B2 JP 2006224814 A JP2006224814 A JP 2006224814A JP 2006224814 A JP2006224814 A JP 2006224814A JP 4858004 B2 JP4858004 B2 JP 4858004B2
Authority
JP
Japan
Prior art keywords
less
phase
steel sheet
rolled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006224814A
Other languages
Japanese (ja)
Other versions
JP2008050622A (en
Inventor
玲子 海野
裕美 吉田
金晴 奥田
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006224814A priority Critical patent/JP4858004B2/en
Publication of JP2008050622A publication Critical patent/JP2008050622A/en
Application granted granted Critical
Publication of JP4858004B2 publication Critical patent/JP4858004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

この発明は、自動車用鋼板などに有用な、引張強度TSが440MPa以上と高強度で、平均r値(ランクフォード値)が1.2以上と深絞り性に優れ、かつ延性に優れ、すなわち引張強度TSと全伸びElの積TS×Elで表される強度-延性バランスとTSと一様伸びU-Elの積TS×U-Elで表される強度-一様伸びバランスに優れた高強度鋼板およびその製造方法に関する。   This invention is useful for steel sheets for automobiles, etc., and has a high tensile strength TS of 440 MPa or higher, an average r value (Rankford value) of 1.2 or higher, excellent deep drawability, and excellent ductility, that is, tensile strength TS The strength-ductility balance represented by the product TS x El of the total elongation El and the strength-ductility balance and the strength represented by the product TS x U-El of TS and uniform elongation U-El- It relates to the manufacturing method.

近年、地球環境保全の観点から、CO2の排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心とした安全性向上も要求されている。このため、自動車車体の軽量化および強化が積極的に進められている。 In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, improvement in fuel efficiency of automobiles has been demanded. In addition, in order to ensure the safety of passengers in the event of a collision, safety improvements centering on the collision characteristics of automobile bodies are also required. For this reason, the weight reduction and reinforcement of the automobile body are being actively promoted.

自動車車体の軽量化と強化を同時に満たすには、剛性が問題にならない範囲で部品素材を高強度化し、その板厚を薄くすることが効果的であると言われており、最近では高強度鋼板が自動車部品に積極的に使用されている。特に、軽量化効果は、使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば、内・外板パネル用材料としてTSが440MPa以上の鋼板が使用される動向にある。   In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that it is effective to increase the strength of component materials and reduce the plate thickness within a range where rigidity is not a problem. Are actively used in automotive parts. In particular, since the weight reduction effect increases as the strength of the steel sheet used increases, in the automobile industry, for example, steel sheets having a TS of 440 MPa or more are used as inner and outer panel material.

一方、鋼板を素材とする自動車部品の多くはプレス成形によって製造されるため、自動車用鋼板には優れたプレス成形性が必要とされる。一般に、高強度鋼板は、通常の軟鋼板に比べて成形性、特に深絞り性や延性に大きく劣っているため、自動車車体の軽量化を進める上で、TSが440MPa以上、好ましくは500MPa以上、さらに好ましくは590MPa以上、深絞り性の指標である平均r値が1.2以上、TS×Elが20000MPa・%以上の高強度鋼板が要求されている。さらに、張り出し性が重視される部品では、TS×U-Elが10000MPa・%以上であることが望まれている。   On the other hand, since many automotive parts made of steel plates are manufactured by press forming, the steel plates for automobiles require excellent press formability. In general, high-strength steel sheets are significantly inferior in formability, particularly deep drawability and ductility, compared to ordinary mild steel sheets, so in promoting weight reduction of automobile bodies, TS is 440 MPa or more, preferably 500 MPa or more, More preferably, a high-strength steel sheet is required that is 590 MPa or more, an average r value that is an index of deep drawability is 1.2 or more, and TS × El is 20000 MPa ·% or more. Furthermore, TS × U-El is desired to be 10000 MPa ·% or more for parts where overhang is important.

こうした高r値を有しながら高強度化する手段としては、極低炭素鋼にTiやNbを添加して固溶炭素や固溶窒素を固着したIF(Interstitial Free)鋼をベースとして、これにSi、Mn、Pなどの固溶強化元素を添加する手法がある。例えば、特許文献1には、C:0.002〜0.015%、Si:1.2%以下、Mn:0.04〜0.8%、P:0.03〜0.10%を含有し、NbをC×3〜(C×8+0.020)%(ここで、Cは元素Cの含有量を表す)となるように添加し、TSが340〜460MPa、平均r値が1.7以上、Elが36%以上で、しかも非時効性である成形性に優れた高張力冷延鋼板が開示されている。しかし、このような極低炭素鋼を素材としてTSが440MPa以上の鋼板を安定して製造することは難しく、また、TSが500MPa以上の鋼板を製造しようとすると、合金元素添加量が多くなり、表面外観の悪化、めっき性の劣化、2次加工脆性の顕在化などの問題が生じる。さらに、多量に固溶強化元素を添加するとr値が劣化するので、高強度化を図るほどr値が低下してしまう。   As a means to increase the strength while having such a high r value, based on IF (Interstitial Free) steel, in which Ti or Nb is added to extremely low carbon steel and solid solution carbon or solid solution nitrogen is fixed, it is based on this. There is a method of adding solid solution strengthening elements such as Si, Mn, and P. For example, Patent Document 1 contains C: 0.002 to 0.015%, Si: 1.2% or less, Mn: 0.04 to 0.8%, P: 0.03 to 0.10%, and Nb C × 3 to (C × 8 + 0.020 )% (Where C represents the content of element C), TS is 340 to 460 MPa, average r value is 1.7 or more, El is 36% or more, and non-aging A high-tensile cold-rolled steel sheet having excellent properties is disclosed. However, it is difficult to stably produce a steel plate with a TS of 440 MPa or more using such an ultra-low carbon steel as a raw material, and when trying to produce a steel plate with a TS of 500 MPa or more, the amount of alloying elements increases, Problems such as deterioration of surface appearance, deterioration of plating properties, and manifestation of secondary processing brittleness occur. Furthermore, since the r value deteriorates when a large amount of solid solution strengthening element is added, the r value decreases as the strength increases.

鋼板を高強度化するには、前述のような固溶強化による方法以外に、組織強化による方法もある。例えば、軟質なフェライト相と硬質のマルテンサイト相からなる複合組織としたDP(Dual-Phase)鋼板がある。DP鋼板は、一般的に延性は概ね良好であり優れたTS×Elを有し、また降伏比が低い、すなわち引張強度の割に降伏応力が低くプレス成形時の形状凍結性に優れるという特徴があるが、r値が低く深絞り性に劣る。これは、結晶方位的にr値に寄与しないマルテンサイト相が存在したり、マルテンサイト相形成に必須である固溶Cが高r値化に有効な{111}再結晶集合組織の形成を阻害するためと言われている。   In order to increase the strength of the steel sheet, there is a method by strengthening the structure in addition to the method by solid solution strengthening as described above. For example, there is a DP (Dual-Phase) steel sheet having a composite structure composed of a soft ferrite phase and a hard martensite phase. DP steel is generally characterized by excellent ductility and excellent TS x El, and low yield ratio, that is, low yield stress for tensile strength and excellent shape freezing properties during press forming. However, the r value is low and the deep drawability is poor. This is because there is a martensite phase that does not contribute to the r value in terms of crystal orientation, or solid solution C, which is essential for the formation of the martensite phase, inhibits the formation of {111} recrystallized texture effective for increasing the r value It is said to do.

DP鋼板のr値を改善する技術として、特許文献2には、C:0.05〜0.15%、Si:1.50%以下、Mn:0.30〜1.50%、P:0.030%以下、S:0.030%以下、sol.Al:0.020〜0.070%、N:0.0020〜0.0080%、残りFeおよび不可避的不純物からなる鋼をAr3変態点以上の仕上圧延出側温度、600℃以下の巻取温度で熱間圧延し、40%以上の圧下率で冷間圧延した後、バッチ焼鈍(箱焼鈍)を行い、その後、複合組織とするため連続焼鈍炉で700〜800℃に加熱し、水焼入れ後、200〜500℃で焼戻しを行う深絞り性に優れた高強度冷延鋼板の製造法が開示されている。 As a technique for improving the r value of DP steel sheet, Patent Document 2 includes C: 0.05 to 0.15%, Si: 1.50% or less, Mn: 0.30 to 1.50%, P: 0.030% or less, S: 0.030% or less, sol .Al: 0.020 to 0.070%, N: 0.0020 to 0.0080%, steel consisting of the remaining Fe and inevitable impurities is hot rolled at the finish rolling exit temperature above the Ar 3 transformation point at a coiling temperature of 600 ° C or less, After cold rolling at a rolling reduction of 40% or more, batch annealing (box annealing) is performed, and then heated to 700 to 800 ° C in a continuous annealing furnace to form a composite structure, and after water quenching, at 200 to 500 ° C A method for producing a high-strength cold-rolled steel sheet excellent in deep drawability for tempering is disclosed.

特許文献3には、C:0.20%以下、Si:1.0%以下、Mn:0.8〜2.5%、Sol.Al:0.01〜0.20%、N:0.0015〜0.0150%、P:0.10%以下、残部が実質的にFeからなる鋼を熱間圧延し、冷間圧延した後、650〜800℃の温度範囲で箱焼鈍を行い、その後、連続焼鈍炉で600〜850℃に加熱し、10〜100℃/sの冷却速度で冷却する深絞り性ならびに形状性に優れた高張力冷延鋼板の製造方法が開示されている。この方法では、箱焼鈍の均熱時にフェライト(α)相からオーステナイト(γ)相にMnを濃化させ、このMn濃化相をその後の連続焼鈍の均熱時に優先的にγ相とし、冷却時に複合組織が形成される。   In Patent Document 3, C: 0.20% or less, Si: 1.0% or less, Mn: 0.8 to 2.5%, Sol.Al: 0.01 to 0.20%, N: 0.0015 to 0.0150%, P: 0.10% or less, the balance is substantially In particular, steel made of Fe is hot-rolled, cold-rolled, then box-annealed in a temperature range of 650 to 800 ° C, and then heated to 600 to 850 ° C in a continuous annealing furnace. A method for producing a high-tensile cold-rolled steel sheet excellent in deep drawability and shape properties that is cooled at a cooling rate of s is disclosed. In this method, Mn is concentrated from the ferrite (α) phase to the austenite (γ) phase during soaking of the box annealing, and this Mn enriched phase is preferentially used as the γ phase during the subsequent soaking of the continuous annealing. Sometimes complex tissues are formed.

特許文献4には、C:0.003〜0.03%、Si:0.2〜1%、Mn:0.3〜1.5%、Al:0.01〜0.07%、Ti:0.02〜0.2%を含有し、原子濃度比(有効Ti)/(C+N)(ここで、Ti、C、Nは各元素の含有量を表す)を0.4〜0.8にコントロールした鋼を熱間圧延し、冷間圧延した後、連続焼鈍によりAc1変態点以上900℃以下の温度範囲に加熱後、30℃/s以上の平均冷却速度で急冷して深絞り性および形状性ともに優れた複合組織型高張力冷延鋼板の製造方法が開示されている。実際、質量%で、0.012%C-0.32%Si-0.53%Mn-0.03%P-0.051%Tiの組成の鋼を冷間圧延後α-γ2相域である870℃に加熱後、噴流水中で、すなわち100℃/sの平均冷却速度で冷却することにより、平均r値が1.6、TSが492MPa、Elが36%の複合組織型高張力冷延鋼板が得られている。 Patent Document 4 contains C: 0.003 to 0.03%, Si: 0.2 to 1%, Mn: 0.3 to 1.5%, Al: 0.01 to 0.07%, Ti: 0.02 to 0.2%, and an atomic concentration ratio (effective Ti ) / (C + N) (where Ti, C, and N represent the content of each element) were hot-rolled and cold-rolled steel, and after cold rolling, Ac 1 was obtained by continuous annealing. Disclosed is a method for producing a composite structure type high-tensile cold-rolled steel sheet that is excellent in both deep drawability and shape by rapid cooling at an average cooling rate of 30 ° C / s or higher after heating to a temperature range of not less than the transformation point and not more than 900 ° C. Yes. Actually, the steel with the composition of 0.012% C-0.32% Si-0.53% Mn-0.03% P-0.051% Ti in mass% was cold-rolled and then heated to 870 ° C which is the α-γ2 phase region, and then in the jet water That is, by cooling at an average cooling rate of 100 ° C./s, a composite-structure high-tensile cold-rolled steel sheet having an average r value of 1.6, TS of 492 MPa, and El of 36% is obtained.

特許文献5には、C:0.01〜0.080%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.02%以下およびV:0.01〜0.5%を含有し、かつVとCが0.5×C/12≦V/51≦3×C/12(ここで、V、Cは各元素の含有量を表す)の関係を満たし、残部が実質的にFeおよび不可避的不純物からなる深絞り性に優れた複合組織型高張力冷延鋼板が開示されている。この鋼板では、再結晶焼鈍前に鋼中のCをV系炭化物として析出させて固溶Cを極力低減させて高r値化を図り、引き続き、連続焼鈍によりα-γ2相域に加熱することによりV系炭化物を溶解させてγ相中にCを濃化させ、その後の冷却過程でマルテンサイト相が形成される。   In Patent Document 5, C: 0.01 to 0.080%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.02% or less and V: 0.01 to 0.5%, and V and C satisfy the relationship of 0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12 (where V and C represent the content of each element) Also disclosed is a high-strength cold-rolled steel sheet having excellent structure and deep drawability, the balance being substantially composed of Fe and inevitable impurities. In this steel sheet, before recrystallization annealing, C in the steel is precipitated as V-based carbides to reduce the solute C as much as possible to increase the r value, and then continuously heat to the α-γ2 phase region by continuous annealing. V-type carbides are dissolved by C to concentrate C in the γ phase, and a martensite phase is formed in the subsequent cooling process.

特許文献6には、C:0.03〜0.25%、Si:0.001〜3.0%、Mn:0.01〜3.0%、P:0.001〜0.06%、S:0.05%以下、Al:0.005〜0.3%、N:0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなり、平均r値が1.3以上で、組織中に、ベイナイト相、マルテンサイト相、オーステナイト相のうちの少なくとも1種を3〜100%含有する深絞り性に優れた高強度鋼板が開示されている。この鋼板は、高r値を図るために4〜200℃/hの加熱速度による焼鈍、すなわち箱焼鈍され、その後、ベイナイト相、マルテンサイト相、オーステナイト相などを形成するために短時間の熱処理が施されて製造される。   In Patent Document 6, C: 0.03-0.25%, Si: 0.001-3.0%, Mn: 0.01-3.0%, P: 0.001-0.06%, S: 0.05% or less, Al: 0.005-0.3%, N: 0.001 Contain ~ 0.030%, balance is Fe and inevitable impurities, average r value is 1.3 or more, and contains 3 ~ 100% of at least one of bainite phase, martensite phase and austenite phase in the structure A high-strength steel sheet having excellent deep drawability is disclosed. This steel sheet is annealed at a heating rate of 4 to 200 ° C./h in order to achieve a high r value, that is, box annealing, and then subjected to a short heat treatment to form a bainite phase, a martensite phase, an austenite phase, etc. Applied and manufactured.

特許文献7には、C:0.010〜0.050%、Si:1%以下、Mn:1.0〜3.0%、P:0.005〜0.1%、S:0.01%以下、Al:0.005〜0.5%、N:0.01%以下、Nb:0.01〜0.3%を含有し、かつNbとCの含有量が(Nb/93)/(C/12)=0.2〜0.7(ここで、Nb、Cは各元素の含有量を表す)なる関係を満たし、残部が実質的にFeおよび不可避的不純物からなる組成を有し、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む複合組織を有し、平均r値が1.2以上である深絞り性に優れた高強度鋼板が開示されている。この鋼板は、上記組成のスラブを800℃以上の仕上圧延出側温度で熱間圧延し、420〜720℃の巻取温度で巻取り、冷間圧延後、800〜950℃の焼鈍温度で焼鈍し、焼鈍温度から500℃までの温度域を5℃/s以上の平均冷却速度で冷却して製造される。
特開昭56-139654号公報 特公昭55-10650号公報 特開昭55-100934号公報 特公平1-35900号公報 特開2002-226941号公報 特開2003-64444号公報 特開2005-120467号公報
In Patent Document 7, C: 0.010 to 0.050%, Si: 1% or less, Mn: 1.0 to 3.0%, P: 0.005 to 0.1%, S: 0.01% or less, Al: 0.005 to 0.5%, N: 0.01% Hereinafter, Nb: 0.01 to 0.3%, and the content of Nb and C is (Nb / 93) / (C / 12) = 0.2 to 0.7 (where Nb and C represent the content of each element) ), The balance being substantially composed of Fe and inevitable impurities, and having a composite structure including a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more. A high-strength steel sheet excellent in deep drawability having an average r value of 1.2 or more is disclosed. This steel plate is hot rolled from a slab having the above composition at a finish rolling exit temperature of 800 ° C or higher, wound at a winding temperature of 420 to 720 ° C, and after cold rolling, annealed at an annealing temperature of 800 to 950 ° C. And the temperature range from the annealing temperature to 500 ° C. is cooled at an average cooling rate of 5 ° C./s or more.
JP-A-56-139654 Japanese Patent Publication No.55-10650 JP 55-100934 Japanese Patent Publication No. 1-35900 Japanese Patent Laid-Open No. 2002-226941 JP 2003-64444 A JP 2005-120467 A

しかしながら、こうした従来技術には以下のような問題がある。   However, these conventional techniques have the following problems.

特許文献2、3、6:いずれも箱焼鈍が必要であり、生産性が著しく劣るとともに、鋼板の密着、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造上の多くの問題がある。   Patent Documents 2, 3, and 6: Box annealing is required, and productivity is remarkably inferior, and there are many manufacturing problems such as adhesion of steel plates, generation of temper collars, and reduction in the life of the furnace body inner cover.

特許文献2、4:水焼入れ、噴流水冷却など特別な設備が必要でありコスト高になるとともに、鋼板の表面処理性の問題が顕在化する。
特許文献5:VCなどの影響により延性が劣り、優れたTS×ElやTS×U-Elが確保できない。
Patent Documents 2 and 4: Special equipment such as water quenching and jet water cooling is required, resulting in an increase in cost and a problem of surface treatment properties of the steel sheet.
Patent Document 5: Ductility is inferior due to the influence of VC and the like, and excellent TS × El and TS × U-El cannot be secured.

特許文献7:製造条件によっては、優れたTS×ElやTS×U-Elを確保できない場合がある。   Patent Document 7: Depending on manufacturing conditions, it may not be possible to secure excellent TS × El and TS × U-El.

本発明は、生産性の低い箱焼鈍や特別な設備を必要とすることなく、440MPa以上のTS、1.2以上の平均r値、20000MPa・%以上のTS×El、10000MPa・%以上のTS×U-Elが安定して得られる高強度鋼板およびその製造方法を提供することを目的とする。   The present invention does not require low-productivity box annealing or special equipment, and TS of 440 MPa or more, average r value of 1.2 or more, TS × El of 20000 MPa ·% or more, TS × U of 10000 MPa ·% or more It is an object of the present invention to provide a high-strength steel plate in which -El is stably obtained and a method for producing the same.

本発明者らは、上記のような課題を解決すべく鋭意検討を進めたところ、C量を0.020〜0.050%とし、このC量に応じてNb量を規制するとともに、フェライト相からなるマトリックス中に、マルテンサイト相を含む第2相を適当な面積率で均一に分散させることが効果的であることを見出した。   As a result of diligent studies to solve the above-mentioned problems, the present inventors set the C amount to 0.020 to 0.050%, regulates the Nb amount according to this C amount, and in the matrix composed of the ferrite phase. Furthermore, it has been found that it is effective to uniformly disperse the second phase containing the martensite phase at an appropriate area ratio.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.020〜0.050%、Si:1.0%以下、Mn:1.0〜2.5%、P:0.005〜0.1%、S:0.01%以下、Al:0.005〜0.5%、N:0.01%以下、Nb:0.010〜0.3%を含有し、かつNbとCの含有量が下記の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成を有し、かつフェライト相からなるマトリックス中に、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相が面積率で15%以下含まれ、かつ下記で定義されるNmaxが5以上である組織を有するとともに平均r値が1.2以上であることを特徴とする延性と深絞り性に優れた高強度鋼板を提供する。
(Nb/93)/(C/12)=0.2〜0.7 ・・・(1)
式(1)で各元素記号は各元素の含有量(質量%)を表し、
Nmaxは、鋼板板厚断面の走査電子顕微鏡による観察像を画像処理して求めた第2相の重心の分布図を用い、任意の重心を中心にフェライト平均粒径を半径とした円を描き、円の中心とした重心以外の円内に含まれる重心の数を求める操作を、上記観察像において認められる全ての重心に対して行ったとき、最も高頻度で現れる重心の数である。
The present invention was made based on such findings, and in mass%, C: 0.020 to 0.050%, Si: 1.0% or less, Mn: 1.0 to 2.5%, P: 0.005 to 0.1%, S: 0.01% Hereinafter, Al: 0.005 to 0.5%, N: 0.01% or less, Nb: 0.010 to 0.3%, Nb and C content satisfy the following formula (1), the balance is Fe and inevitable impurities Nmax defined by the following: a second phase containing a martensite phase with an area ratio of 1% or more with respect to the entire structure is contained in a matrix composed of a ferrite phase and having a composition of The present invention provides a high-strength steel sheet excellent in ductility and deep drawability, characterized in that it has a structure in which is 5 or more and an average r value is 1.2 or more.
(Nb / 93) / (C / 12) = 0.2 to 0.7 (1)
In the formula (1), each element symbol represents the content (% by mass) of each element,
Nmax is a distribution diagram of the center of gravity of the second phase obtained by image processing the image observed by the scanning electron microscope of the steel plate thickness cross section, and draws a circle with the ferrite average grain diameter as the radius around an arbitrary center of gravity, This is the number of centroids that appears most frequently when the operation for obtaining the number of centroids included in a circle other than the center of gravity of the circle is performed on all the centroids recognized in the observed image.

また、上記組成に加えて、さらに、質量%で、Cr:0.5%以下を含有させることもできる。   Further, in addition to the above composition, Cr: 0.5% or less can also be contained by mass%.

本発明の高強度鋼板は、質量%で、C:0.020〜0.050%、Si:1.0%以下、Mn:1.0〜2.5%、P:0.005〜0.1%、S:0.01%以下、Al:0.005〜0.5%、N:0.01%以下、Nb:0.010〜0.3%を含有し、かつNbとCの含有量が上記の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成の鋼スラブを、800℃以上の仕上圧延出側温度で熱間圧延し、400〜720℃の巻取温度で巻取り熱延鋼板とし、次いで40%以上の圧下率で冷間圧延して冷延鋼板とし、前記冷延鋼板を800〜950℃の焼鈍温度に加熱し、次いで前記焼鈍温度から580℃までの温度域を5〜30℃/sの平均冷却速度で冷却し、480〜580℃の過時効温度で30〜600sの時間保持後、少なくとも100℃までを5℃/s以上の平均冷却速度で冷却する方法により製造できる。   The high-strength steel sheet of the present invention is in mass%, C: 0.020 to 0.050%, Si: 1.0% or less, Mn: 1.0 to 2.5%, P: 0.005 to 0.1%, S: 0.01% or less, Al: 0.005 to 0.5 %, N: 0.01% or less, Nb: 0.010 to 0.3%, and the content of Nb and C satisfies the above formula (1), and the balance is composed of Fe and inevitable impurities. Hot rolled at a finish rolling exit temperature of 800 ° C. or higher, wound into a hot rolled steel sheet at a winding temperature of 400 to 720 ° C., then cold rolled at a rolling reduction of 40% or higher to obtain a cold rolled steel sheet, The cold-rolled steel sheet is heated to an annealing temperature of 800 to 950 ° C., then the temperature range from the annealing temperature to 580 ° C. is cooled at an average cooling rate of 5 to 30 ° C./s, and an overaging temperature of 480 to 580 ° C. After holding for 30 to 600 s, it can be produced by a method of cooling at least up to 100 ° C. at an average cooling rate of 5 ° C./s or more.

本発明の方法では、上記組成に加えて、さらに、質量%で、Cr:0.5%以下を含有させることもできる。 In the method of the present invention, in addition to the above composition, the it is et al., In mass%, Cr: may contain 0.5% or less.

本発明により、生産性の低い箱焼鈍や特別な設備を必要とすることなく、TS≧440MPaと高強度で、かつ1.2以上の平均r値と深絞り性に優れ、20000MPa・%以上のTS×El、10000MPa・%以上のTS×U-Elと延性にも優れた高強度鋼板を安定して製造できるようになった。本発明の高強度鋼板を自動車部品に適用することにより、これまでプレス成形が困難であった部品も高強度化が可能となり、自動車車体の衝突安全性や軽量化を十分に図れる。また、本発明の高強度鋼板は、自動車部品に限らず家電部品やパイプ素材としても適用可能である。   According to the present invention, TS ≧ 440 MPa, high strength, excellent average r value of 1.2 or more and deep drawability without requiring low productivity box annealing and special equipment, TS × 20,000 MPa ·% or more El, TS × U-El of 10000 MPa ·% or more and high-strength steel sheets with excellent ductility can be manufactured stably. By applying the high-strength steel sheet of the present invention to automobile parts, it is possible to increase the strength of parts that have been difficult to press-form so far, and it is possible to sufficiently achieve collision safety and weight reduction of automobile bodies. Moreover, the high-strength steel sheet of the present invention is applicable not only to automobile parts but also to home appliance parts and pipe materials.

以下に、本発明の詳細を説明する。なお、以下の「%」は、特に断らない限り「質量%」を表す。   Details of the present invention will be described below. The “%” below represents “% by mass” unless otherwise specified.

1)成分
C:0.020〜0.050%
Cは、高強度化に有効であるとともに、後述のNbとともに本発明における重要な元素である。440MPa以上のTSと高いElやU-Elを得るためは、後述するように、フェライト相のマトリックス中にマルテンサイト相を含む第2相を均一に分散させる必要がある。マルテンサイト相を形成させて高強度化するにはC量を0.020%以上にする必要がある。特に、590MPa以上のTSを得るためには、C量を0.025%以上にすることが望ましい。一方、過剰な添加は焼鈍時の{111}再結晶集合組織の発達を妨げ、1.2以上の平均r値が得られなくなるため、C量の上限は0.050%とする。
1) ingredients
C: 0.020 ~ 0.050%
C is effective for increasing the strength and is an important element in the present invention together with Nb described later. In order to obtain TS of 440 MPa or higher and high El and U-El, as described later, it is necessary to uniformly disperse the second phase including the martensite phase in the matrix of the ferrite phase. In order to increase the strength by forming a martensite phase, the C content needs to be 0.020% or more. In particular, in order to obtain a TS of 590 MPa or more, it is desirable that the C content be 0.025% or more. On the other hand, excessive addition hinders the development of {111} recrystallization texture during annealing, and an average r value of 1.2 or more cannot be obtained, so the upper limit of C content is 0.050%.

Si:1.0%以下
Siは、固溶強化の効果のほか、α変態を促進させ、未変態γ相中のC含有量を上昇させてフェライト相とマルテンサイト相を含む第2相との複合組織を形成させやすくする効果を有する。上記効果を得るためには、Si量は0.01%以上にすることが好ましく、0.05%以上にすることがより好ましい。一方、Si量が1.0%を超えると熱間圧延時に赤スケールと呼ばれる表面欠陥が発生し、鋼板の表面外観を悪くし、また、溶融亜鉛めっきを施す場合には、めっきの濡れ性を悪くしてめっきむらの発生を招く。したがって、Si量は1.0%以下、好ましくは0.7%以下とする。
Si: 1.0% or less
In addition to the effect of solid solution strengthening, Si promotes α transformation and increases the C content in the untransformed γ phase, making it easier to form a composite structure of the ferrite phase and the second phase including the martensite phase. Has an effect. In order to obtain the above effect, the Si content is preferably 0.01% or more, and more preferably 0.05% or more. On the other hand, if the Si content exceeds 1.0%, a surface defect called red scale occurs during hot rolling, which deteriorates the surface appearance of the steel sheet. Cause uneven plating. Therefore, the Si content is 1.0% or less, preferably 0.7% or less.

Mn:1.0〜2.5%
Mnは、高強度化に有効であるととともに、マルテンサイト相を含む第2相が得られる臨界冷却速度を低くする作用があり、焼鈍の冷却時に第2相の形成を促す。そのため、要求される強度レベルおよび焼鈍の冷却速度に応じてその量を調整することが好ましい。また、Mnは、Sによる熱間割れを防止するのに有効な元素である。このような観点から、Mn量は1.0%以上、好ましくは1.2%以上にする必要がある。一方、Mn量が2.5%を超えるとr値や溶接性を劣化させるので、Mn量の上限は2.5%とする。
Mn: 1.0-2.5%
Mn is effective for increasing the strength and has the effect of lowering the critical cooling rate at which the second phase including the martensite phase is obtained, and promotes the formation of the second phase during the cooling of the annealing. Therefore, the amount is preferably adjusted according to the required strength level and the cooling rate of annealing. Mn is an element effective for preventing hot cracking due to S. From such a viewpoint, the amount of Mn needs to be 1.0% or more, preferably 1.2% or more. On the other hand, if the Mn content exceeds 2.5%, the r value and weldability deteriorate, so the upper limit of the Mn content is set to 2.5%.

P:0.005〜0.1%
Pは、固溶強化の効果を有する。しかし、P量が0.005%未満では、その効果が現れないだけでなく、製鋼時の脱りんコストの上昇を招く。したがって、P量は0.005%以上、好ましくは0.01%以上とする。一方、P量が0.1%を超えると、Pが粒界に偏析して耐2次加工脆性および溶接性を劣化させる。また、溶融亜鉛めっき後の合金化処理時に、Pはめっき層と鋼板の界面におけるFeの拡散を抑制して合金化処理性を劣化させるので、高温での合金化処理が必要となり、パウダリングやチッピングなどのめっき剥離が生じやすくなる。したがって、P量の上限は0.1%とする。
P: 0.005-0.1%
P has a solid solution strengthening effect. However, if the amount of P is less than 0.005%, not only the effect does not appear, but also the dephosphorization cost at the time of steelmaking increases. Therefore, the P content is 0.005% or more, preferably 0.01% or more. On the other hand, if the amount of P exceeds 0.1%, P segregates at the grain boundaries and deteriorates the secondary work brittleness resistance and weldability. In addition, during alloying after hot dip galvanizing, P suppresses the diffusion of Fe at the interface between the plating layer and the steel sheet and degrades the alloying processability. Therefore, alloying at high temperatures is required, and powdering and Plating peeling such as chipping is likely to occur. Therefore, the upper limit of the P content is 0.1%.

S: 0.01%以下
Sは、熱間割れの原因になるほか、鋼中で介在物として存在して鋼板の諸特性を劣化させる。したがって、S量は0.01%以下にする必要があるが、できるだけ低減することが好ましい。
S: 0.01% or less
In addition to causing hot cracking, S is present as an inclusion in steel and deteriorates various properties of the steel sheet. Therefore, the S amount needs to be 0.01% or less, but is preferably reduced as much as possible.

Al:0.005〜0.5%
Alは、鋼の固溶強化元素や脱酸元素として有用であるほか、固溶NをAlNとして析出させ耐常温時効性を向上させる作用がある。また、Alは、フェライト生成元素としてα-γ2相域の温度調整にも有用である。そのため、Al量は0.005%以上にする必要がある。一方、Al量が0.5%を超えると合金コスト増や表面欠陥の誘発を招くので、Al量の上限は0.5%以下、好ましくは0.1%以下とする。
Al: 0.005-0.5%
In addition to being useful as a solid solution strengthening element and deoxidizing element for steel, Al has the effect of improving the normal temperature aging resistance by precipitating solid solution N as AlN. Al is also useful for adjusting the temperature in the α-γ2 phase region as a ferrite-forming element. Therefore, the Al amount needs to be 0.005% or more. On the other hand, if the Al content exceeds 0.5%, alloy costs increase and surface defects are induced, so the upper limit of Al content is 0.5% or less, preferably 0.1% or less.

N:0.01%以下
Nが多量に存在すると耐常温時効性を劣化させるため、その分多量のAlやTiの添加が必要となる。したがって、N量の上限は0.01%にする必要があるが、できるだけ低減することが好ましい。
N: 0.01% or less
When N is present in a large amount, the room temperature aging resistance is deteriorated, so that a large amount of Al or Ti needs to be added accordingly. Therefore, the upper limit of the N amount needs to be 0.01%, but it is preferable to reduce it as much as possible.

Nb:0.010〜0.3%
Nbは、本発明において最も重要な元素であり、熱延鋼板の組織を微細化したり、熱延鋼板中にNbCとして析出して固溶C量を減少させて高r値化に寄与する。このような観点から、Nb量は0.010%以上にする必要がある。一方、焼鈍の冷却過程でマルテンサイト相を含む第2相を形成させるためには固溶Cが必要とされるが、それにはNb量を0.3%以下にする必要がある。
Nb: 0.010-0.3%
Nb is the most important element in the present invention, and contributes to increasing the r value by refining the structure of the hot-rolled steel sheet, or by precipitating it as NbC in the hot-rolled steel sheet and reducing the amount of dissolved C. From such a viewpoint, the Nb amount needs to be 0.010% or more. On the other hand, in order to form the second phase including the martensite phase during the cooling process of annealing, solid solution C is required, and for that purpose, the Nb content needs to be 0.3% or less.

(Nb/93)/(C/12):0.2〜0.7(ただし、NbとCは各元素の含有量を表す。)
上記のようにC量とNb量を制御した上で、NbとCの原子濃度比を表す(Nb/93)/(C/12)を次のように制御する必要がある。(Nb/93)/(C/12)が0.2未満では、熱延鋼板の組織の微細化の効果が少なく、また、固溶C量が多くなり高r値化に有利な再結晶集合組織の形成を阻害する。一方、(Nb/93)/(C/12)が0.7を超えると、マルテンサイト相を含む第2相を形成するのに必要なC量を鋼中に存在させることを妨げ、最終的にマルテンサイト相を含む第2相が形成されない。したがって、高r値化と高延性を両立させるには、(Nb/93)/(C/12)は0.2〜0.7、好ましくは0.2〜0.5にする必要がある。
(Nb / 93) / (C / 12): 0.2 to 0.7 (where Nb and C represent the content of each element)
As described above, it is necessary to control (Nb / 93) / (C / 12) representing the atomic concentration ratio of Nb and C as follows after controlling the amounts of C and Nb. When (Nb / 93) / (C / 12) is less than 0.2, the effect of refining the structure of the hot-rolled steel sheet is small, and the amount of solute C increases, which is advantageous for increasing the r value. Inhibits formation. On the other hand, if (Nb / 93) / (C / 12) exceeds 0.7, the amount of C necessary to form the second phase including the martensite phase is prevented from being present in the steel, and finally the martensite. The second phase including the site phase is not formed. Therefore, in order to achieve both high r value and high ductility, (Nb / 93) / (C / 12) needs to be 0.2 to 0.7, preferably 0.2 to 0.5.

残部は、Feおよび不可避的不純物である。ここで、不可避的不純物としては、0.01%以下のSb、0.1%以下のSn、0.01%以下のZn、0.1%以下のCo、0.05%以下のMoなどが挙げられる。特に、Moはマルテンサイト相を含む第2相の分散状態を不均一にし、優れた一様伸びが得られなくなるので、不純物としてのMo量は0.05%以下に制限する必要がある。   The balance is Fe and inevitable impurities. Here, the inevitable impurities include 0.01% or less of Sb, 0.1% or less of Sn, 0.01% or less of Zn, 0.1% or less of Co, and 0.05% or less of Mo. In particular, Mo makes the dispersion state of the second phase including the martensite phase non-uniform and excellent uniform elongation cannot be obtained. Therefore, the amount of Mo as an impurity needs to be limited to 0.05% or less.

本発明の目的を達成するには上記の成分で十分であるが、以下の理由により、さらにTi:0.1%以下やCr:0.5%以下を含有させることができる。   In order to achieve the object of the present invention, the above components are sufficient. However, Ti: 0.1% or less and Cr: 0.5% or less can be further contained for the following reasons.

Ti:0.1%以下
Tiは、Alと同等あるいはAl以上にNとの親和力が大きく、固溶Nを析出させる効果がある。この効果を得るには、Ti量は0.005%以上とすることが好ましい。しかしながら,0.1%を超えるとコストの上昇を招くばかりか、TiCの形成によりマルテンサイト相を含む第2相の形成に必要な固溶C量を減少させる。したがって、Ti量は0.1%以下とする。また、Tiは鋼中でSおよびNと優先的に結合し、次いでCと結合する。鋼中での介在物の形成等によるTiの歩留まり低下を考慮すると、(Ti/48)/{(S/32)+(N/14)}が2.0を超えるTi添加量では、S、Nを固定するというTi添加の効果は飽和し、かえってTiCの形成を促進して鋼中に固溶Cを残すことを妨げるという弊害が大きくなる。したがって、Ti含有量は鋼中で優先的に結合するSおよびNの含有量との関係で、(Ti/48)/{(S/32)+(N/14)}≦2.0を満足することが好ましい。なお、ここで該関係式中のTi、S、Nは各々の元素の含有量(質量%)である。
Ti: 0.1% or less
Ti has the same affinity as Al or higher affinity for N than Al, and has the effect of precipitating solute N. In order to obtain this effect, the Ti content is preferably 0.005% or more. However, if it exceeds 0.1%, not only will the cost increase, but the amount of solute C required to form the second phase including the martensite phase will be reduced by the formation of TiC. Therefore, the Ti content is 0.1% or less. Further, Ti preferentially bonds with S and N in the steel, and then bonds with C. Considering the decrease in Ti yield due to the formation of inclusions in steel, etc., when Ti content exceeds (Ti / 48) / {(S / 32) + (N / 14)} exceeds 2.0, S and N The effect of Ti addition of fixing is saturated, and on the contrary, the effect of promoting the formation of TiC and preventing the solute C from remaining in the steel is increased. Therefore, the Ti content should satisfy (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2.0 in relation to the contents of S and N that are preferentially bonded in steel. Is preferred. Here, Ti, S, and N in the relational expression are the contents (mass%) of each element.

Cr:0.5%以下
Crは、Mnと同様、高強度化に有効であるととともに、マルテンサイト相を含む第2相が得られる臨界冷却速度を低くする作用を有し、焼鈍の冷却時に第2相の形成を促す。この効果を得るためには、Cr量を0.05%以上にすることが好ましい。一方、Cr量が0.5%を超えると、r値の低下を招くため、Cr量は0.5%以下とする。
Cr: 0.5% or less
Cr, like Mn, is effective for increasing the strength and has the effect of lowering the critical cooling rate at which a second phase including a martensite phase is obtained, and promotes the formation of the second phase during annealing cooling. . In order to obtain this effect, the Cr content is preferably 0.05% or more. On the other hand, if the Cr content exceeds 0.5%, the r value is lowered, so the Cr content is 0.5% or less.

なお、さらに、B、Ca、REMなどを通常の鋼の組成範囲内であれば含有できる。例えば、鋼の焼入性を向上させるBを0.003%以下の範囲で、また硫化物系介在物の形態制御に効果的なCaやREMのうち少なくとも1種の元素を0.01%以下の範囲で含有できる。   Furthermore, B, Ca, REM, and the like can be contained as long as they are within the normal steel composition range. For example, B that improves the hardenability of steel is contained in the range of 0.003% or less, and at least one element of Ca and REM effective for the shape control of sulfide inclusions is contained in the range of 0.01% or less. it can.

2)組織
2-1)組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相の面積率:15%以下
440MPa以上のTS、良好なTS×El、TS×U-Elと深絞り性を有する高強度鋼板を得るためには、フェライト相からなるマトリックス中に、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相が面積率で15%以下含まれる組織にする必要がある。なお、ここで、組織全体とは、フェライト相からなるマトリックスと第2相とを合わせた鋼板組織全体を意味する。本発明ではマトリックス(組織の主体)を{111}再結晶集合組織が発達したフェライト相とすることで1.2以上の平均r値が得られる。ここで、フェライト相とは、ポリゴナルフェライト相や、γ相から変態した転位密度の高いベイニチックフェライト相を意味する。
2) Organization
2-1) Area ratio of the second phase including martensite phase of 1% or more in terms of the area ratio relative to the entire structure: 15% or less
In order to obtain a high-strength steel sheet having a TS of 440 MPa or more, good TS × El, TS × U-El and deep drawability, a martens of 1% or more in the area ratio of the entire structure in the matrix composed of ferrite phase The second phase including the site phase needs to have a structure including 15% or less in area ratio. Here, the entire structure means the entire steel sheet structure including the matrix composed of the ferrite phase and the second phase. In the present invention, an average r value of 1.2 or more can be obtained by using a ferrite phase in which a {111} recrystallized texture is developed as the matrix (structure main body). Here, the ferrite phase means a polygonal ferrite phase or a bainitic ferrite phase having a high dislocation density transformed from a γ phase.

440MPa以上のTSを確実に得るには、マルテンサイト相の面積率を組織全体に対する面積率で1%以上にする必要があり、3%以上とすることがより好ましい。マルテンサイト相を含む第2相は、上記したように、{111}再結晶集合組織が発達したフェライト相をマトリックスとすることによって平均r値を1.2以上とするため、組織全体に対する面積率で15%以下とする必要がある。第2相の面積率が15%超え、すなわちフェライト相の面積率が85%未満では、1.2以上の平均r値を確保することが困難である。なお、第2相の組織は、上記したマルテンサイト相以外は特に規定する必要はなく、ベイナイト相やセメンタイト相等を含んだ組織としてもよい。ここで、フェライト相と上記した第2相の面積率や後述するフェライト平均粒径は、圧延方向に平行な板厚断面についてSEMにより組織観察し、画像解析ソフト(Media Cybernetics 社 “Image-ProPLUSVer.4.0.0.11)を用いて求めた。   In order to reliably obtain a TS of 440 MPa or more, the area ratio of the martensite phase needs to be 1% or more in terms of the area ratio with respect to the entire structure, and more preferably 3% or more. As described above, the second phase including the martensite phase has an average r value of 1.2 or more by using a ferrite phase in which a {111} recrystallized texture is developed as a matrix. Must be less than%. If the area ratio of the second phase exceeds 15%, that is, the area ratio of the ferrite phase is less than 85%, it is difficult to ensure an average r value of 1.2 or more. The structure of the second phase need not be specified except for the martensite phase described above, and may be a structure containing a bainite phase, a cementite phase, or the like. Here, the area ratio of the ferrite phase and the above-mentioned second phase and the average ferrite grain size described later were observed by SEM for the plate thickness section parallel to the rolling direction, and image analysis software (Media Cybernetics “Image-ProPLUSVer. 4.0.0.11).

2-2)第2相の分散性:Nmax≧5
20000MPa・%以上のTS×El、10000MPa・%以上のTS×U-Elを安定して得るには、上述した組織の規定に加え、さらに上記のように定義したNmaxを5以上とする必要がある。
2-2) Dispersibility of the second phase: Nmax ≧ 5
In order to obtain TS × El of 20000 MPa ·% or more and TS × U-El of 10000 MPa ·% or more stably, it is necessary to further increase the Nmax as defined above to 5 or more in addition to the above-mentioned organizational regulations. is there.

Nmaxは、具体的には次のように測定される。まず、図1の(a)に示すような圧延方向に平行な板厚断面のSEMによる観察像を、画像処理により(b)に示すようなフェライト相と(c)に示すような第2相に分離し、上記の画像解析ソフトを用いて第2相のまわりでの1次モーメントが0となる重心座標を求め、(d)に示すような第2相の重心の分布図を求める。図1では、後述する実施例の鋼板No.1、2と16の例が示されているが、鋼板によって第2相の重心の分布が大きく異なっていることがわかる。次に、図1の(d)に示す第2相の重心の分布図から任意の重心を選び、図2に示すように、その重心を中心に図1の(b)を用いて求めたフェライト平均粒径Dを半径とした円を描き、円の中心とした重心以外の円内に含まれる重心の数(図2の場合は6)を求める。このとき、観察像の縁に存在する第2相に関しては、周期的境界条件を仮定し、次のようにして重心の数を求める。すなわち、円の中心となる重心が縁に存在する場合、測定を行っている観察像を囲むように同一視野を並べ、フェライト平均粒径Dの円に含まれる重心の数を求める。なお、フェライト平均粒径Dの円上に存在する重心は、重心の数としては数えない。この操作を他の重心を円の中心として繰り返し、最も高頻度で現れる重心の数をNmaxとする。図3に、鋼板No.1、No.2とNo.16における重心の数と頻度(全測定数に対する各重心の数の現れる測定数の割合)の関係を示すが、鋼板No.1およびNo.2ではNmaxが5以上、鋼板No.16ではNmaxが4となる。後述する表3に示すように、鋼板No.1、No.2では優れたTS×ElとTS×U-Elが得られた。発明者らはこのような検討を、種々の鋼板について行い、Nmaxを5以上とすることにより優れたTS×ElとTS×U-Elが得られることを見出したのである。   Specifically, Nmax is measured as follows. First, the SEM observation image of the plate thickness cross section parallel to the rolling direction as shown in FIG. 1 (a), by image processing, the ferrite phase as shown in (b) and the second phase as shown in (c) The center of gravity coordinates where the first moment around the second phase is 0 are obtained using the above image analysis software, and the distribution map of the center of gravity of the second phase as shown in (d) is obtained. In FIG. 1, examples of steel plates Nos. 1, 2 and 16 of examples described later are shown, but it can be seen that the distribution of the center of gravity of the second phase differs greatly depending on the steel plates. Next, select an arbitrary center of gravity from the distribution diagram of the center of gravity of the second phase shown in (d) of FIG. 1, and as shown in FIG. 2, the ferrite obtained using (b) of FIG. A circle with the average particle diameter D as the radius is drawn, and the number of centroids contained in the circle other than the centroid at the center of the circle (6 in the case of FIG. 2) is obtained. At this time, regarding the second phase existing at the edge of the observed image, a periodic boundary condition is assumed and the number of centroids is obtained as follows. That is, when the center of gravity that is the center of the circle is present at the edge, the same field of view is arranged so as to surround the observation image being measured, and the number of centers of gravity contained in the circle having the average ferrite particle diameter D is obtained. Note that the centroid existing on the circle having the average ferrite particle diameter D is not counted as the number of centroids. This operation is repeated with the other centroid as the center of the circle, and the number of centroids that appears most frequently is Nmax. Fig. 3 shows the relationship between the number of centroids and the frequency (ratio of the number of centroids where each center of gravity appears relative to the total number of measurements) in steel plates No. 1, No. 2 and No. 16. In .2, Nmax is 5 or more, and in steel plate No. 16, Nmax is 4. As shown in Table 3 to be described later, excellent TS × El and TS × U-El were obtained for steel plates No. 1 and No. 2. The inventors have conducted such studies on various steel plates and found that excellent TS × El and TS × U-El can be obtained by setting Nmax to 5 or more.

Nmaxを5以上とすると、優れたTS×ElとTS×U-Elが得られる理由は次のように考えられる。すなわち、フェライト平均粒径Dを半径とする円内にはフェライト粒が完全に1個含まれる。粒界三重点が最適な第2相の存在位置であると仮定すると、Nmaxが5以上のとき第2相は三重点に均等に配置され、第2相はフェライト相のマトリックス中に均一に分散されるのでU-Elが向上し、優れたTS×ElとTS×U-Elが得られる。   The reason why excellent TS × El and TS × U-El can be obtained when Nmax is 5 or more is considered as follows. That is, one ferrite grain is completely contained in a circle whose radius is the average ferrite grain diameter D. Assuming that the grain boundary triple point is the optimal location of the second phase, when Nmax is 5 or more, the second phase is evenly distributed at the triple point, and the second phase is uniformly dispersed in the ferrite phase matrix. Therefore, U-El is improved, and excellent TS × El and TS × U-El are obtained.

本発明の高強度鋼板は、上記成分、鋼ミクロ組織を満足するとともに、平均r値が1.2以上となる。このような平均r値を有する本願発明の鋼板は、集合組織を鋼板1/4板厚位置におけるX線回折により求め、板面に平行な(222)面、(200)面、(110)面および(310)面のX線回析積分強度比P(222)、P(200)、P(110)、P(310)が、P(222)/{P(200)+P(110)+P(310)}≧1.5を満足することが好ましく、より好ましくはP(222)/{P(200)+P(110)+P(310)}≧2.0である。 The high-strength steel sheet of the present invention satisfies the above components and steel microstructure, and has an average r value of 1.2 or more. The steel sheet of the present invention having such an average r value is determined by X-ray diffraction at the 1/4 thickness position of the steel sheet, and the (222) plane, (200) plane, (110) plane parallel to the plane And (310) plane X-ray diffraction integrated intensity ratios P (222) , P (200) , P (110) , P (310) are P (222) / {P (200) + P (110) + P (310) } ≧ 1.5 is preferably satisfied, and more preferably P (222) / {P (200) + P (110) + P (310) } ≧ 2.0.

従来より、{111}面が板面に平行な集合組織をもつ場合はr値が高いが、{110}面や{100}面が板面に平行な集合組織ではr値が低いことが知られている。ここで、詳細はまだ明らかではないが、{310}面は強度が低いながらも{100}、{110}面同様、r値を低下させる集合組織であり、本願発明の鋼板では、これを低減していることも高r値化に寄与していることを知見している。なお、本願発明の鋼板では、Nbを添加しているため熱間圧延時の未再結晶γ域での圧下率が高いことや、微細なNbCの析出、およびNbCとして析出固定されないCの存在などが、{310}面強度の低減に寄与していると考えられる。   Conventionally, the r value is high when the {111} surface has a texture parallel to the plate surface, but the r value is low when the {110} surface or {100} surface is parallel to the plate surface. It has been. Here, the details are not yet clear, but the {310} plane is a texture that lowers the r-value, like the {100} and {110} planes, although the strength is low. We know that this also contributes to higher r-values. In addition, in the steel sheet of the present invention, because Nb is added, the rolling reduction in the non-recrystallized γ region at the time of hot rolling is high, the precipitation of fine NbC, and the presence of C not precipitated and fixed as NbC, etc. However, it is thought that it contributes to the reduction of {310} surface strength.

なお、{111}集合組織とは、鋼板面垂直方向に結晶の<111>方向が向いていることを言う。Braggの反射条件から、体心立方構造であるα-Feの場合、{111}面の回折としては、(111)面では起こらず、(222)面で起こるため、X線回析積分強度比としては(222)面の値(P(222))を用いた。よって、(222)面の強度が高いことは、{111}集合組織が発達していることに対応する。{100}面に対しても同様の理由から、(200)面の値(P(200))を用いた。ここで、X線回折積分強度比とは、無方向性標準試料(不規則試料)のX線回折積分強度を基準としたときの相対的な強度である。X線回折は、角度分散型、エネルギー分散型のいずれでもよく、X線源は特性X線でも白色X線でもよい。測定面は、α-Feの主要回折面である(110)から(420)までの7面から10面を測定することが望ましい。 In addition, {111} texture means that the <111> direction of the crystal is oriented in the direction perpendicular to the steel plate surface. From the Bragg reflection condition, in the case of α-Fe with a body-centered cubic structure, diffraction on the {111} plane does not occur on the (111) plane, but occurs on the (222) plane. The value of (222) plane (P (222) ) was used. Therefore, the high strength of the (222) plane corresponds to the development of the {111} texture. For the same reason, the value of (200) plane (P (200) ) was used for {100} plane. Here, the X-ray diffraction integrated intensity ratio is a relative intensity based on the X-ray diffraction integrated intensity of a non-directional standard sample (irregular sample). The X-ray diffraction may be either an angle dispersion type or an energy dispersion type, and the X-ray source may be a characteristic X-ray or a white X-ray. The measurement surface is desirably measured from 7 to 10 surfaces (110) to (420) which are the main diffraction surfaces of α-Fe.

3)製造方法
本発明の製造方法では、まず、上記組成を有する鋼スラブ(以下、単にスラブという)を、800℃以上の仕上圧延出側温度FTで熱間圧延し、400〜720℃の巻取温度CTで巻取り熱延鋼板とする。
3) Manufacturing Method In the manufacturing method of the present invention, first, a steel slab having the above composition (hereinafter simply referred to as slab) is hot-rolled at a finish rolling exit temperature FT of 800 ° C. or higher, and rolled at 400 to 720 ° C. A hot rolled steel sheet is wound at a coiling temperature CT.

このとき、使用するスラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造されることが望ましいが、造塊法で製造されてもよい。連続鋳造法では、薄スラブ鋳造法でもよい。また、スラブを熱間圧延するには、スラブを一旦室温まで冷却、その後再加熱して圧延する従来法に加え、連続鋳造後直ちに熱間圧延する方法、あるいは室温まで冷却せず温片のままで加熱炉に装入し圧延する方法などの省エネルギープロセスも問題なく適用できる。   At this time, the slab to be used is preferably manufactured by a continuous casting method to prevent macro segregation of components, but may be manufactured by an ingot-making method. The continuous casting method may be a thin slab casting method. Also, in order to hot-roll the slab, in addition to the conventional method in which the slab is once cooled to room temperature and then reheated and rolled, a method of hot rolling immediately after continuous casting, or a hot piece without cooling to room temperature. Energy-saving processes such as the method of charging in a heating furnace and rolling can be applied without problems.

スラブ加熱温度は、析出物を粗大化させることにより{111}再結晶集合組織を発達させて深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が1000℃未満では圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増大するので、スラブ加熱温度は1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大を防止するために、スラブ加熱温度は1300℃以下とすることが好適である。スラブには、粗圧延および仕上圧延を行う熱間圧延が施される。   The slab heating temperature is preferably low because the precipitates are coarsened to develop a {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 1000 ° C., the rolling load increases and the risk of trouble during hot rolling increases, so the slab heating temperature is preferably set to 1000 ° C. or higher. In order to prevent an increase in scale loss accompanying an increase in oxidized weight, the slab heating temperature is preferably 1300 ° C. or lower. The slab is subjected to hot rolling for rough rolling and finish rolling.

ここで、スラブは、粗圧延によりシートバーとされる。粗圧延の条件は、特に規定されず、常法に従って行えばよい。また、スラブの加熱温度を低くした場合は、圧延時のトラブルを防止するといった観点から、シートバーヒーターを活用してシートバーを加熱することが好ましい。   Here, the slab is made into a sheet bar by rough rolling. The conditions for rough rolling are not particularly limited, and may be performed according to a conventional method. Further, when the heating temperature of the slab is lowered, it is preferable to heat the sheet bar using a sheet bar heater from the viewpoint of preventing troubles during rolling.

シートバーは、仕上圧延により熱延板とされる。このとき、冷間圧延、再結晶焼鈍後に優れた深絞り性が得られるように微細な熱延鋼板の組織とするために、FTは800℃以上にする必要がある。FTが800℃未満では熱延鋼板の組織が加工組織を有し、冷間圧延、焼鈍後に{111}再結晶集合組織が発達せず高r値が得難いだけでなく、熱間圧延時の圧延負荷も高くなる。一方、FTが980℃を越えると熱延鋼板の組織が粗大化し、冷間圧延、焼鈍後の{111}再結晶集合組織の形成および発達を妨げ高r値が得られない場合があるので、FTは980℃以下にすることが好ましい。   The sheet bar is a hot-rolled sheet by finish rolling. At this time, in order to obtain a fine hot-rolled steel sheet structure so that excellent deep drawability can be obtained after cold rolling and recrystallization annealing, FT needs to be 800 ° C. or higher. If the FT is less than 800 ° C, the structure of the hot-rolled steel sheet has a processed structure, and the {111} recrystallized texture does not develop after cold rolling and annealing, and it is difficult to obtain a high r value. The load is also high. On the other hand, when the FT exceeds 980 ° C, the structure of the hot-rolled steel sheet becomes coarse, which may hinder the formation and development of {111} recrystallized texture after cold rolling and annealing, and may not obtain a high r value. FT is preferably 980 ° C. or lower.

また、熱間圧延時の圧延荷重を低減したり、鋼板の形状や特性の均一化を図るために、仕上圧延の一部または全部のパス間で潤滑圧延を行うこともできる。潤滑圧延時の摩擦係数は0.10〜0.25の範囲にすることが好ましい。さらに、熱間圧延の操業安定性の観点から、シートバー同士を接合して連続的に仕上圧延する連続圧延プロセスを適用することが好ましい。   Moreover, in order to reduce the rolling load at the time of hot rolling or to make the shape and characteristics of the steel sheet uniform, lubrication rolling can be performed between some or all passes of finish rolling. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, from the viewpoint of operational stability of hot rolling, it is preferable to apply a continuous rolling process in which sheet bars are joined and finish-rolled continuously.

熱間圧延後の熱延鋼板は巻取られるが、熱延鋼板の組織の微細化およびNbCの析出のためにCTは400〜720℃、好ましくは550〜680℃にする必要がある。CTが720℃を超えると、熱延鋼板の結晶粒が粗大化し、強度低下やr値の低下を招く。また、CTが400℃未満では、NbCの析出が起こり難く、深絞り性を確保することが困難になる。   The hot-rolled steel sheet after hot rolling is wound, but the CT needs to be 400 to 720 ° C, preferably 550 to 680 ° C in order to refine the structure of the hot-rolled steel sheet and precipitate NbC. When CT exceeds 720 ° C, the crystal grains of the hot-rolled steel sheet become coarse, leading to a decrease in strength and a decrease in r value. Further, when the CT is less than 400 ° C., it is difficult for NbC to precipitate, and it becomes difficult to ensure deep drawability.

次に、熱延鋼板は、冷間圧延により冷延鋼板とされる。なお、熱延鋼板は、冷間圧延前にスケール除去のため酸洗を行うことが好ましい。酸洗は通常の条件にて行えばよい。冷間圧延の圧下率は、40%未満では{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となるので、40%以上、好ましくは50%以上にする必要がある。一方、本発明では90%までの範囲では圧下率を高くするほどr値が上昇するが、圧下率が90%を越えるとその効果が飽和するばかりでなく、圧延時のロールへの負荷も高まるため、圧下率の上限は90%とすることが好ましい。   Next, the hot rolled steel sheet is made into a cold rolled steel sheet by cold rolling. Note that the hot-rolled steel sheet is preferably pickled to remove scale before cold rolling. Pickling may be performed under normal conditions. If the rolling reduction of cold rolling is less than 40%, {111} recrystallized texture does not develop and it is difficult to obtain excellent deep drawability, so it is necessary to make it 40% or more, preferably 50% or more. There is. On the other hand, in the present invention, in the range up to 90%, the r value increases as the rolling reduction increases, but when the rolling reduction exceeds 90%, not only the effect is saturated, but also the load on the roll during rolling increases. Therefore, the upper limit of the rolling reduction is preferably 90%.

冷延鋼板は、800〜950℃の焼鈍温度に加熱し、次いで焼鈍温度から580℃までの温度域を5〜30℃/sの平均冷却速度で冷却し、480〜580℃の過時効温度で30〜600sの時間保持後、少なくとも100℃まで5℃/s以上の平均冷却速度で冷却する焼鈍が施される。この焼鈍は、冷却条件や過時効処理条件を確保するために、連続焼鈍ラインあるいは連続溶融亜鉛めっきラインで行う連続焼鈍とすることが好ましい。   The cold-rolled steel sheet is heated to an annealing temperature of 800 to 950 ° C., then cooled in the temperature range from the annealing temperature to 580 ° C. at an average cooling rate of 5 to 30 ° C./s, and with an overaging temperature of 480 to 580 ° C. After holding for 30 to 600 s, annealing is performed to cool to at least 100 ° C. at an average cooling rate of 5 ° C./s or more. This annealing is preferably continuous annealing performed in a continuous annealing line or a continuous hot dip galvanizing line in order to ensure cooling conditions and overaging treatment conditions.

焼鈍では、再結晶を行わせるためと第2相形成のためにα-γ2相域となる800℃以上の焼鈍温度に加熱する必要がある。一方、焼鈍温度は、950℃を超えると再結晶粒が著しく粗大化し、特性が著しく劣化するため、950℃以下にする必要がある。加熱時の昇温速度は、限定する必要はないが、例えば300〜700℃までの平均昇温速度は、1℃/s未満であると再結晶前に回復により歪みエネルギーが解放されることで再結晶の駆動力を減少させてしまう傾向にあるので、1℃/s以上とすることが好ましい。なお、300〜700℃までの平均昇温速度の上限は、現状の設備では、50℃/s程度である。また、700℃から焼鈍温度までは、再結晶集合組織形成の観点から、平均昇温速度0.1℃/s以上で加熱することが好ましい。一方、700℃から焼鈍均熱温度までを20℃/s以上の平均昇温速度で加熱すると、未再結晶部からの変態あるいは未再結晶のまま変態が進みやすくなり、集合組織形成の点で不利になりやすいため、20℃/s以下の平均昇温速度で加熱することが好ましい。   In annealing, it is necessary to heat to an annealing temperature of 800 ° C. or higher, which is in the α-γ2 phase region, for recrystallization and for the formation of the second phase. On the other hand, when the annealing temperature exceeds 950 ° C., the recrystallized grains are remarkably coarsened and the characteristics are remarkably deteriorated. The heating rate during heating need not be limited. For example, if the average heating rate from 300 to 700 ° C is less than 1 ° C / s, strain energy is released by recovery before recrystallization. Since the driving force for recrystallization tends to be reduced, it is preferably set to 1 ° C./s or more. In addition, the upper limit of the average temperature increase rate to 300-700 degreeC is about 50 degreeC / s in the present installation. Further, from 700 ° C. to the annealing temperature, it is preferable to heat at an average temperature increase rate of 0.1 ° C./s or more from the viewpoint of forming a recrystallized texture. On the other hand, when heating from 700 ° C to the annealing soaking temperature at an average heating rate of 20 ° C / s or more, transformation from the non-recrystallized part or non-recrystallized easily proceeds, and in terms of texture formation Since it tends to be disadvantageous, it is preferable to heat at an average heating rate of 20 ° C./s or less.

加熱後の冷延鋼板は、冷却中にα相とγ相に分離し、γ相中にCを濃化させるという観点から、これに大きく影響する焼鈍温度から580℃までの温度域を5〜30℃/sの平均冷却速度で冷却される必要がある。平均冷却速度が5℃/s未満だと第2相が形成され難く、フェライト単相組織となり、440MPa以上のTSが得られない。一方、平均冷却速度が30℃/sを超えると、フェライト変態で得られる組織が転位密度の高い低温変態組織となり、延性が低下する。   The cold-rolled steel sheet after heating is separated into an α phase and a γ phase during cooling, and from the viewpoint of concentrating C in the γ phase, the temperature range from the annealing temperature to 580 ° C, which greatly affects this, is 5 to 5 ° C. It needs to be cooled at an average cooling rate of 30 ° C / s. If the average cooling rate is less than 5 ° C / s, the second phase is difficult to form, and a ferrite single phase structure is formed, and a TS of 440 MPa or more cannot be obtained. On the other hand, when the average cooling rate exceeds 30 ° C./s, the structure obtained by the ferrite transformation becomes a low-temperature transformation structure having a high dislocation density, and the ductility is lowered.

引き続き、480〜580℃の過時効温度で30〜600sの時間保持の過時効処理を行う必要がある。図4に過時効温度と引張特性値の関係を示すが、480〜580℃の過時効温度でNmaxが5以上となり、高El、高U-Elが得られ、TS×Elが20000MPa・%以上、TS×U-Elが10000MPa・%以上になる。過時効温度が480℃未満では、Nmaxが5未満となり、良好なTS×El、TS×U-Elとすることができない。一方、過時効温度が580℃以上では、γ相が不安定であり、十分な第2相を得ることができず、Nmaxが小さくなり、良好なTS×El、TS×U-Elとすることができない。また、過時効処理の保持時間が30s未満ではγ相が不安定であり、十分な第2相が得られず、600sを超えると過剰なセメンタイトが生成するため、保持時間は30〜600sにする必要がある。   Subsequently, it is necessary to perform an overaging treatment with a holding time of 30 to 600 seconds at an overaging temperature of 480 to 580 ° C. Fig. 4 shows the relationship between overaging temperature and tensile property values. Nmax is 5 or more at overaging temperatures of 480 to 580 ° C, high El and high U-El are obtained, and TS x El is 20000 MPa ·% or more. , TS x U-El is over 10000 MPa ·%. When the overaging temperature is less than 480 ° C., Nmax is less than 5, and it is not possible to obtain good TS × El and TS × U-El. On the other hand, when the over-aging temperature is 580 ° C or higher, the γ phase is unstable and a sufficient second phase cannot be obtained, Nmax becomes small, and good TS × El and TS × U-El. I can't. In addition, if the retention time of the overaging treatment is less than 30 s, the γ phase is unstable and a sufficient second phase cannot be obtained, and if it exceeds 600 s, excessive cementite is generated, so the retention time is set to 30 to 600 s. There is a need.

過時効処理後の冷延鋼板は、過剰なセメンタイト相の生成を抑制するため、5℃/s以上の平均冷却速度で100℃以下まで、すなわち少なくとも100℃までは平均冷却速度を5℃/s以上として冷却される。   The cold-rolled steel sheet after over-aging treatment suppresses the formation of excessive cementite phase, so that the average cooling rate is 5 ° C / s or higher to 100 ° C or lower, that is, at least 100 ° C, the average cooling rate is 5 ° C / s. Cooled as above.

なお、加熱後の冷却や過時効処理後の冷却は、ロール冷却、ガスジェット冷却、水焼入冷却などで行える。   In addition, cooling after heating or cooling after overaging treatment can be performed by roll cooling, gas jet cooling, water quenching cooling, or the like.

焼鈍後の冷延鋼板には、電気めっき処理、あるいは溶融めっき処理などによりめっき層を形成してもよい。また、上記焼鈍を連続焼鈍ラインで行い、一旦室温まで冷却した後に溶融亜鉛めっきラインにて溶融亜鉛めっきを施し、あるいはさらに合金化処理を行ってもよい。ここで、めっき層は純亜鉛および亜鉛系合金めっきに限らず、AlやAl系合金めっきなど、従来より鋼板表面に施されている各種めっき層とすることも勿論可能である。   A plated layer may be formed on the cold-rolled steel sheet after annealing by electroplating or hot dipping. Further, the annealing may be performed in a continuous annealing line, once cooled to room temperature, and then hot dip galvanized in a hot dip galvanizing line, or further alloyed. Here, the plating layer is not limited to pure zinc and zinc-based alloy plating, but may of course be various plating layers conventionally applied to the steel sheet surface, such as Al or Al-based alloy plating.

このようにして製造された冷延鋼板あるいはめっき鋼板には、形状矯正、表面粗度調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延あるいはレベラー加工の伸び率は合計で0.2〜15%の範囲内であることが好ましい。これは、0.2%未満では、形状矯正や表面粗度調整の目的が達成できないおそれがあり、15%を超えると顕著な延性低下をもたらすためである。なお、調質圧延とレベラー加工では加工形式が相違するが、その効果は両者で大きな差がないことを確認している。また、調質圧延、レベラー加工はめっき処理後でも有効である。   The cold-rolled steel plate or plated steel plate thus produced may be subjected to temper rolling or leveler processing for the purpose of shape correction and surface roughness adjustment. The total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. This is because if it is less than 0.2%, the purpose of shape correction and surface roughness adjustment may not be achieved, and if it exceeds 15%, a significant reduction in ductility is caused. In addition, although the processing form differs between temper rolling and leveler processing, it has been confirmed that there is no significant difference between the two. In addition, temper rolling and leveler processing are effective even after plating.

表1に示す組成の鋼A〜Qを転炉で溶製し、連続鋳造法でスラブとした。これらスラブを1250℃に加熱後、粗圧延してシートバーとし、次いで表2、3に示す熱延条件で熱延鋼板とした。これらの熱延鋼板を酸洗後圧下率70%で冷間圧延して冷延鋼板(板厚:1.2mm)とし、引き続き、連続焼鈍ラインにて表2、3に示す焼鈍条件で焼鈍を行い、伸び率0.5%の調質圧延を施して鋼板No.1〜50の試料を作製した。なお、焼鈍加熱時、300〜700℃の平均昇温速度を14〜16℃/s、700℃から焼鈍温度までの平均昇温速度を3〜4℃/sとした。そして、得られた試料について、組織、引張特性、r値、集合組織の調査を以下の方法で行った。   Steels A to Q having the compositions shown in Table 1 were melted in a converter and made into slabs by a continuous casting method. These slabs were heated to 1250 ° C., roughly rolled into sheet bars, and then hot-rolled steel sheets under the hot-rolling conditions shown in Tables 2 and 3. These hot-rolled steel sheets are pickled and cold-rolled at a reduction rate of 70% to form cold-rolled steel sheets (thickness: 1.2 mm), followed by annealing in the continuous annealing line under the annealing conditions shown in Tables 2 and 3. Then, temper rolling with an elongation of 0.5% was performed to prepare steel plate Nos. 1 to 50 samples. During annealing, the average temperature increase rate from 300 to 700 ° C. was 14 to 16 ° C./s, and the average temperature increase rate from 700 ° C. to the annealing temperature was 3 to 4 ° C./s. And about the obtained sample, the structure | tissue, a tensile characteristic, r value, and a texture were investigated by the following method.

組織:圧延方向に平行な板厚断面について光学顕微鏡あるいは走査型電子顕微鏡を用いて観察し、上記の画像解析ソフトを用いフェライト相の面積率、マルテンサイト相および第2相の面積率、フェライト平均粒径およびNmaxを求めた。   Microstructure: Observe the cross section of the plate parallel to the rolling direction using an optical microscope or scanning electron microscope. Using the above image analysis software, the area ratio of the ferrite phase, the area ratio of the martensite phase and the second phase, and the ferrite average The particle size and Nmax were determined.

引張特性:試料から圧延方向に対して90°方向にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験を行い、YS、TS、El、TS×El、U-El、TS×U-Elを求めた。   Tensile properties: JIS No. 5 tensile test specimens were taken from the sample at 90 ° to the rolling direction, and subjected to a tensile test at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241. YS, TS, El, TS × El, U-El, and TS × U-El were obtained.

r値:試料から圧延方向、圧延方向に対し45°方向、圧延方向に対し90°方向からJIS5号引張試験片を採取し、10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を測定し、JIS S 2254の規定に準拠して平均のr値(平均塑性歪比)を次の式から算出し、深絞り性を評価した。
平均r値=(r0+2r45+r90)/4
ここで、r0、r45、r90は、それぞれ圧延方向に対し0°、45°、90°方向から採取した試験片で測定した塑性歪比である。
r value: JIS No. 5 tensile specimen taken from the sample in the rolling direction, 45 ° direction to the rolling direction, and 90 ° direction to the rolling direction, and the width of each specimen when 10% uniaxial tensile strain was applied. Strain and plate thickness strain were measured, and an average r value (average plastic strain ratio) was calculated from the following formula in accordance with the provisions of JIS S 2254 to evaluate deep drawability.
Average r value = (r 0 + 2r 45 + r 90 ) / 4
Here, r 0, r 45, and r 90 are plastic strain ratios measured with test pieces taken from 0 °, 45 °, and 90 ° directions with respect to the rolling direction, respectively.

集合組織:試料の1/4板厚位置にて、エネルギー分散型X線回折を行った。測定面はα-Feの主要回折面である(110)面、(200)面、(211)面、(220)面、(310)面、(222)面、(321)面、(400)面、(411)面、(420)面の計10面について測定し、無方向性標準試料との相対強度比で各面のX線回折積分強度比を求め、求めた(222)面、(200)面、(110)面および(310)面のX線回折積分強度比P(222)、P(200)、P(110)およびP(310)を求め、下記式からTAを算出した。
TA=P(222)/{P(200)+P(110)+P(310)}
なお、TAが大きいほどr値に有利な集合組織が発達しているといえる。
Texture: Energy dispersive X-ray diffraction was performed at 1/4 thickness position of the sample. The measurement surface is the main diffraction surface of α-Fe (110), (200), (211), (220), (310), (222), (321), (400) Surface, (411) surface, (420) surface a total of 10 surfaces, relative intensity ratio with the non-directional standard sample to determine the X-ray diffraction integrated intensity ratio of each surface, (222) surface, ( The X-ray diffraction integrated intensity ratios P (222), P (200), P (110) and P (310) of the (200) plane, (110) plane and (310) plane were determined, and TA was calculated from the following equation.
TA = P (222) / {P (200) + P (110) + P (310) }
In addition, it can be said that the larger the TA, the more the texture that is more advantageous for the r value is developed.

結果を表4、5、6に示す。本発明例では、いずれもNmaxが5以上であり、440MPa以上のTS、1.2以上の平均r値、20000MPa・%以上のTS×El、10000MPa・%以上のTS×U-Elが得られていることがわかる。   The results are shown in Tables 4, 5, and 6. In each of the present invention examples, Nmax is 5 or more, TS of 440 MPa or more, average r value of 1.2 or more, TS × El of 20000 MPa ·% or more, TS × U-El of 10,000 MPa ·% or more are obtained. I understand that.

Figure 0004858004
Figure 0004858004

Figure 0004858004
Figure 0004858004

Figure 0004858004
Figure 0004858004

Figure 0004858004
Figure 0004858004

Figure 0004858004
Figure 0004858004

Figure 0004858004
Figure 0004858004

板厚断面のSEM像(a)、フェライト相(b)、第2相(c)、第2相の重心の分布(d)の一例を示す図である。FIG. 3 is a diagram showing an example of a SEM image (a) of a plate thickness section, a ferrite phase (b), a second phase (c), and a distribution (d) of the center of gravity of the second phase. 第2相の重心の数を求める方法を示す図である。It is a figure which shows the method of calculating | requiring the number of gravity centers of a 2nd phase. 第2相の重心の数とその頻度の関係の一例を示す図である。It is a figure which shows an example of the relationship between the number of gravity centers of a 2nd phase, and its frequency. 過時効処理温度と引張特性値との関係を示す図である。It is a figure which shows the relationship between overaging treatment temperature and a tensile characteristic value.

Claims (4)

質量%で、C:0.020〜0.050%、Si:1.0%以下、Mn:1.0〜2.5%、P:0.005〜0.1%、S:0.01%以下、Al:0.005〜0.5%、N:0.01%以下、Nb:0.010〜0.3%を含有し、かつNbとCの含有量が下記の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成を有し、かつフェライト相からなるマトリックス中に、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相が面積率で15%以下含まれ、かつ下記で定義されるNmaxが5以上である組織を有するとともに平均r値が1.2以上であることを特徴とする延性と深絞り性に優れた高強度鋼板;
(Nb/93)/(C/12)=0.2〜0.7 ・・・(1)
式(1)で各元素記号は各元素の含有量(質量%)を表し、
Nmaxは、鋼板板厚断面の走査電子顕微鏡による観察像を画像処理して求めた第2相の重心の分布図を用い、任意の重心を中心にフェライト平均粒径を半径とした円を描き、円の中心とした重心以外の円内に含まれる重心の数を求める操作を、上記観察像において認められる全ての重心に対して行ったとき、最も高頻度で現れる重心の数である。
In mass%, C: 0.020 to 0.050%, Si: 1.0% or less, Mn: 1.0 to 2.5%, P: 0.005 to 0.1%, S: 0.01% or less, Al: 0.005 to 0.5%, N: 0.01% or less, In a matrix containing Nb: 0.010 to 0.3%, the contents of Nb and C satisfy the following formula (1), the balance is composed of Fe and inevitable impurities, and is composed of a ferrite phase, The second phase containing a martensite phase of 1% or more in terms of the area ratio relative to the entire structure has an area ratio of 15% or less, and the Nmax defined below is 5 or more and an average r value of 1.2 or more High strength steel plate with excellent ductility and deep drawability, characterized by
(Nb / 93) / (C / 12) = 0.2 to 0.7 (1)
In the formula (1), each element symbol represents the content (% by mass) of each element,
Nmax is a distribution diagram of the center of gravity of the second phase obtained by image processing the image observed by the scanning electron microscope of the steel plate thickness cross section, and draws a circle with the ferrite average grain diameter as the radius around an arbitrary center of gravity, This is the number of centroids that appears most frequently when the operation for obtaining the number of centroids included in a circle other than the center of gravity of the circle is performed on all the centroids recognized in the observed image.
上記組成に加えて、さらに、質量%で、Cr:0.5%以下を含有することを特徴とする請求項1に記載の延性と深絞り性に優れた高強度鋼板。   2. The high-strength steel sheet excellent in ductility and deep drawability according to claim 1, further comprising Cr: 0.5% or less in mass% in addition to the above composition. 質量%で、C:0.020〜0.050%、Si:1.0%以下、Mn:1.0〜2.5%、P:0.005〜0.1%、S:0.01%以下、Al:0.005〜0.5%、N:0.01%以下、Nb:0.010〜0.3%を含有し、かつNbとCの含有量が下記の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成の鋼スラブを、800℃以上の仕上圧延出側温度で熱間圧延し、400〜720℃の巻取温度で巻取り熱延鋼板とし、次いで40%以上の圧下率で冷間圧延して冷延鋼板とし、前記冷延鋼板を800〜950℃の焼鈍温度に加熱し、次いで前記焼鈍温度から580℃までの温度域を5〜30℃/sの平均冷却速度で冷却し、480〜580℃の過時効温度で30〜600sの時間保持後、少なくとも100℃までを5℃/s以上の平均冷却速度で冷却することを特徴とする延性と深絞り性に優れた高強度鋼板の製造方法;
(Nb/93)/(C/12)=0.2〜0.7 ・・・(1)
式(1)で各元素記号は各元素の含有量(質量%)を表す。
In mass%, C: 0.020 to 0.050%, Si: 1.0% or less, Mn: 1.0 to 2.5%, P: 0.005 to 0.1%, S: 0.01% or less, Al: 0.005 to 0.5%, N: 0.01% or less, A steel slab having a composition containing Nb: 0.010 to 0.3%, the contents of Nb and C satisfying the following formula (1), the balance being Fe and inevitable impurities, and finishing rolling at 800 ° C. or higher Hot-rolled at a temperature, made into a rolled hot-rolled steel sheet at a winding temperature of 400 to 720 ° C., then cold-rolled into a cold-rolled steel sheet by cold rolling at a reduction rate of 40% or more, and the cold-rolled steel sheet is 800 to 950 ° C. Then, the temperature range from the annealing temperature to 580 ° C. is cooled at an average cooling rate of 5 to 30 ° C./s, and after holding at an overaging temperature of 480 to 580 ° C. for 30 to 600 s, A method for producing a high-strength steel sheet excellent in ductility and deep drawability, characterized by cooling at least to 100 ° C. at an average cooling rate of 5 ° C./s or higher;
(Nb / 93) / (C / 12) = 0.2 to 0.7 (1)
In the formula (1), each element symbol represents the content (% by mass) of each element.
鋼スラブが、さらに、質量%で、Cr:0.5%以下を含有することを特徴とする請求項3に記載の延性と深絞り性に優れた高強度鋼板の製造方法。   4. The method for producing a high-strength steel sheet excellent in ductility and deep drawability according to claim 3, wherein the steel slab further contains, by mass%, Cr: 0.5% or less.
JP2006224814A 2006-08-22 2006-08-22 High-strength steel sheet with excellent ductility and deep drawability and method for producing the same Expired - Fee Related JP4858004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006224814A JP4858004B2 (en) 2006-08-22 2006-08-22 High-strength steel sheet with excellent ductility and deep drawability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006224814A JP4858004B2 (en) 2006-08-22 2006-08-22 High-strength steel sheet with excellent ductility and deep drawability and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011201366A Division JP5327301B2 (en) 2011-09-15 2011-09-15 High-strength steel sheet with excellent ductility and deep drawability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008050622A JP2008050622A (en) 2008-03-06
JP4858004B2 true JP4858004B2 (en) 2012-01-18

Family

ID=39234946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224814A Expired - Fee Related JP4858004B2 (en) 2006-08-22 2006-08-22 High-strength steel sheet with excellent ductility and deep drawability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4858004B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251206B2 (en) * 2008-03-28 2013-07-31 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP5173638B2 (en) * 2008-07-14 2013-04-03 株式会社神戸製鋼所 Method for producing galvannealed steel sheet
JP5655475B2 (en) * 2010-03-24 2015-01-21 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5825481B2 (en) 2010-11-05 2015-12-02 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501699B2 (en) * 2004-02-18 2010-07-14 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same

Also Published As

Publication number Publication date
JP2008050622A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
US9598755B2 (en) High strength galvanized steel sheet having excellent deep drawability and stretch flangeability and method for manufacturing the same
EP3255162B1 (en) High-strength steel sheet and production method therefor
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
EP2749665B1 (en) High strength hot dip galvanized steel sheet having excellent deep- drawability, and method for producing same
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5327301B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP4858004B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
CN115298342B (en) steel plate
JP5088092B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP3872595B2 (en) Cold rolled steel sheet with low in-plane anisotropy and excellent formability
WO2024002314A1 (en) 120-kg-grade ultrahigh-strength galvanized steel sheet and manufacturing method therefor
JP2008266673A (en) High-strength steel sheet and method producing the same
JP2009235531A (en) High strength steel sheet having excellent deep drawability, aging resistance and baking hardenability, and to provide method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4858004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees