JP7043823B2 - Corrosion test method - Google Patents

Corrosion test method Download PDF

Info

Publication number
JP7043823B2
JP7043823B2 JP2017240413A JP2017240413A JP7043823B2 JP 7043823 B2 JP7043823 B2 JP 7043823B2 JP 2017240413 A JP2017240413 A JP 2017240413A JP 2017240413 A JP2017240413 A JP 2017240413A JP 7043823 B2 JP7043823 B2 JP 7043823B2
Authority
JP
Japan
Prior art keywords
corrosion
environment
seawater
hours
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017240413A
Other languages
Japanese (ja)
Other versions
JP2019109061A (en
Inventor
和幸 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017240413A priority Critical patent/JP7043823B2/en
Publication of JP2019109061A publication Critical patent/JP2019109061A/en
Application granted granted Critical
Publication of JP7043823B2 publication Critical patent/JP7043823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、腐食試験方法に係り、特に、舶用係留チェーン用金属材料の腐食試験方法に関する。 The present invention relates to a corrosion test method, and more particularly to a corrosion test method for a metal material for a marine mooring chain.

船舶の係留チェーンは、海水環境に曝されるため腐食が激しく、長期間使用の際には腐食が問題となる場合がある。ドックでの点検時に係留チェーンの径が計測されるが、元の径に対して12%以上減少している場合には、新たなチェーンに切り替えをしなければならないという基準が船級規則により定められている。現状では、船の寿命が20年程度であるのに対して、係留チェーンの寿命は15年程度である。そのため、係留チェーンに用いられる金属材料には、耐食性向上による寿命延長が望まれている。 Since the mooring chain of a ship is exposed to the seawater environment, it is severely corroded, and corrosion may become a problem during long-term use. The diameter of the mooring chain is measured at the time of inspection at the dock, but if it is reduced by 12% or more from the original diameter, the standard that a new chain must be switched to is set by the classification regulations. ing. At present, the life of a ship is about 20 years, while the life of a mooring chain is about 15 years. Therefore, it is desired that the metal material used for the mooring chain has a longer life by improving the corrosion resistance.

また、係留チェーンとして好適な金属材料を開発するに際しては、実環境を模擬した腐食試験の開発が求められる。例えば、特許文献1には、船舶バラストタンク環境で使用される鋼材等の金属材料の耐食性を実験室的にしかも短時間で評価することのできる、船舶バラストタンク用金属材料の腐食試験方法が開示されている。また、特許文献2には、実環境を模擬した金属材の耐食性評価方法と金属材、ならびに金属材の腐食促進試験装置が開示されている。 Further, when developing a metal material suitable as a mooring chain, it is required to develop a corrosion test simulating the actual environment. For example, Patent Document 1 discloses a corrosion test method for a metal material for a ship ballast tank, which can evaluate the corrosion resistance of a metal material such as a steel material used in a ship ballast tank environment in a laboratory and in a short time. Has been done. Further, Patent Document 2 discloses a method for evaluating corrosion resistance of a metal material simulating an actual environment, the metal material, and a corrosion acceleration test device for the metal material.

特開2008-232895号公報Japanese Unexamined Patent Publication No. 2008-232895 特開2011-169918号公報Japanese Unexamined Patent Publication No. 2011-169918

しかしながら、本発明者が検討を行った結果、特許文献1および2に記載の腐食試験によって形成した腐食生成物と、実環境で使用された係留チェーンに生じる腐食生成物とは組成が異なっており、十分に模擬できていないことが分かった。 However, as a result of the study by the present inventor, the composition of the corrosion product formed by the corrosion test described in Patent Documents 1 and 2 is different from that of the corrosion product generated in the mooring chain used in the actual environment. It turned out that I couldn't simulate it enough.

本発明は、上記の課題を解決し、実際の使用環境を模擬し、舶用係留チェーンとして用いた場合の金属材料の耐食性を評価することが可能な腐食試験方法を提供することを目的とする。 An object of the present invention is to provide a corrosion test method capable of solving the above problems, simulating an actual usage environment, and evaluating the corrosion resistance of a metal material when used as a marine mooring chain.

係留チェーンは、港湾沖での係留時には海水に浸かり、船舶の航行時にはチェーンロッカーと呼ばれる格納庫に納められる。そこで、本発明者は、実環境でのチェーンロッカー内の環境変動について調査を行った。そして、当該環境変動を再現したうえで、さらに試験条件を調整することによって、実環境を短期間で模擬することが可能な腐食試験方法を見出すに至った。 The mooring chain is submerged in seawater when moored off the harbor, and is stored in a hangar called a chain locker when the ship is sailing. Therefore, the present inventor investigated the environmental change in the chain locker in the actual environment. Then, by reproducing the environmental changes and further adjusting the test conditions, we have found a corrosion test method that can simulate the actual environment in a short period of time.

本発明は、上記の知見に基づいてなされたものであり、下記の腐食試験方法を要旨とする。 The present invention has been made based on the above findings, and the following corrosion test method is the gist of the present invention.

(1)海水浸漬工程と乾燥湿潤工程とを含む処理を1サイクルとして、金属材料に対して、該処理を1サイクル以上施す腐食試験方法であって、
前記海水浸漬工程では、前記金属材料を温度が0~60℃の自然海水または人工海水に5分~2時間浸漬し、
前記乾燥湿潤工程では、温度が20~70℃、相対湿度が50~75%RHである環境で1~12時間保持する乾燥工程と、温度が20~70℃、相対湿度が80%RH以上である環境で2~12時間保持する湿潤工程とを含む処理を1回として、該処理を5回以上繰り返し、
前記海水浸漬工程は、5~15日に1回の頻度で行われる、
腐食試験方法。
(1) A corrosion test method in which a treatment including a seawater immersion step and a drying and wetting step is set as one cycle, and the treatment is applied to a metal material for one cycle or more.
In the seawater immersion step, the metal material is immersed in natural seawater or artificial seawater having a temperature of 0 to 60 ° C. for 5 minutes to 2 hours.
In the drying and wetting step, the drying step is held for 1 to 12 hours in an environment where the temperature is 20 to 70 ° C. and the relative humidity is 50 to 75% RH, and the temperature is 20 to 70 ° C. and the relative humidity is 80% RH or more. The treatment including the wetting step of holding for 2 to 12 hours in a certain environment is regarded as one time, and the treatment is repeated 5 times or more.
The seawater immersion step is performed once every 5 to 15 days.
Corrosion test method.

(2)前記金属材料が、舶用係留チェーン用である、
上記(1)に記載の腐食試験方法。
(2) The metal material is for a marine mooring chain.
The corrosion test method according to (1) above.

本発明によれば、チェーンロッカー内の腐食環境を短期間で模擬することができるため、舶用係留チェーンとして用いた場合の金属材料の耐食性を迅速に評価することが可能となる。 According to the present invention, since the corrosive environment in the chain locker can be simulated in a short period of time, it is possible to quickly evaluate the corrosion resistance of the metal material when used as a marine mooring chain.

本発明の各要件について詳しく説明する。 Each requirement of the present invention will be described in detail.

本発明の一実施形態に係る腐食試験方法においては、海水浸漬工程と乾燥湿潤工程とを含む処理を1サイクルとして、金属材料に対して、該処理を1サイクル以上施す。上記処理のサイクル数については特に制限はないが、高い再現性で実環境を模擬するためには、3サイクル以上とすることが好ましく、5サイクル以上とすることがより好ましい。一方、迅速に試験を行うためには、20サイクル以下とすることが好ましく、10サイクル以下とすることがより好ましい。 In the corrosion test method according to the embodiment of the present invention, the treatment including the seawater immersion step and the drying and wetting step is set as one cycle, and the treatment is applied to the metal material for one cycle or more. The number of cycles of the above processing is not particularly limited, but in order to simulate the actual environment with high reproducibility, it is preferably 3 cycles or more, and more preferably 5 cycles or more. On the other hand, in order to carry out the test quickly, it is preferably 20 cycles or less, and more preferably 10 cycles or less.

海水浸漬工程では、金属材料を温度が0~60℃の自然海水または人工海水(以下、単に「海水」という。)に5分~2時間浸漬する。海水の温度は、5~40℃であるのが好ましい。例えば、金属材料に対して、海水を噴霧する等の方法では、塩の付着量が十分ではなく、実際の腐食環境を再現することができない。そのため、金属材料を海水に浸漬する必要がある。 In the seawater immersion step, the metal material is immersed in natural seawater or artificial seawater (hereinafter, simply referred to as “seawater”) having a temperature of 0 to 60 ° C. for 5 minutes to 2 hours. The temperature of seawater is preferably 5 to 40 ° C. For example, a method such as spraying seawater on a metal material does not have a sufficient amount of salt attached, and an actual corroded environment cannot be reproduced. Therefore, it is necessary to immerse the metal material in seawater.

海水の成分については特に制限は設けず、実際の使用環境を再現するものであればよいが、その一例として、NaCl:2.45%、MgCl:1.11%、NaSO:0.41%、CaCl:0.15%、KCl:0.07%、NaHCO:0.02%、
KBr:0.01%の組成(%は質量%を示す。)を有する人工海水が例示される。また、海水の温度を上記の範囲としたのは、実環境を模擬するためである。
There are no particular restrictions on the components of seawater, as long as they reproduce the actual usage environment. As an example, NaCl: 2.45%, MgCl 2 : 1.11%, Na 2 SO 4 : 0. .41%, CaCl 2 : 0.15%, KCl: 0.07%, NaCl 3 : 0.02%,
KBr: Artificial seawater having a composition of 0.01% (% indicates mass%) is exemplified. The reason why the temperature of seawater is set in the above range is to simulate the actual environment.

また、浸漬時間が5分未満では、特に腐食生成物が厚い場合に金属材料への塩の付着が不十分となり、係留チェーンの使用時の腐食環境を模擬することができない。一方、浸漬時間が2時間を超えても塩付着の効果は飽和し、迅速に試験を行うことができなくなる。 Further, if the immersion time is less than 5 minutes, the adhesion of salt to the metal material becomes insufficient, especially when the corrosion product is thick, and it is not possible to simulate the corrosion environment when the mooring chain is used. On the other hand, even if the immersion time exceeds 2 hours, the effect of salt adhesion is saturated and the test cannot be performed quickly.

乾燥湿潤工程では、乾燥工程と湿潤工程とを含む処理を1回として、該処理を5回以上繰り返す。 In the drying / wetting step, the treatment including the drying step and the wetting step is set as one time, and the treatment is repeated 5 times or more.

乾燥工程では、温度が20~70℃、相対湿度が50~75%RHの環境で1~12時間保持する。温度が20℃未満であると腐食の進行が遅く、短時間での腐食環境の模擬が困難になる。一方、温度が高いほど腐食は促進されるものの、70℃を超えると、生成する腐食生成物の組成が変化し、再現性が劣化する。 In the drying step, the temperature is maintained at 20 to 70 ° C. and the relative humidity is maintained at 50 to 75% RH for 1 to 12 hours. If the temperature is less than 20 ° C., the progress of corrosion is slow, and it becomes difficult to simulate the corroded environment in a short time. On the other hand, the higher the temperature, the more the corrosion is promoted, but when the temperature exceeds 70 ° C., the composition of the produced corrosion product changes and the reproducibility deteriorates.

また、本発明者の調査によれば、実際のチェーンロッカー内において、相対湿度が50%RH未満となることはなかった。そのため、乾燥工程での相対湿度は50%RH以上とする。一方、相対湿度が75%RHを超えると、海水に含まれる塩の主成分であるNaClが潮解し厚い水膜が形成されることにより、塩の濃縮が起こりにくくなる。この結果、実際の腐食環境を模擬することができなくなる。 Further, according to the investigation by the present inventor, the relative humidity did not become less than 50% RH in the actual chain rocker. Therefore, the relative humidity in the drying step is set to 50% RH or more. On the other hand, when the relative humidity exceeds 75% RH, NaCl, which is the main component of the salt contained in seawater, is deliquescent to form a thick water film, which makes it difficult for salt to be concentrated. As a result, it becomes impossible to simulate an actual corroded environment.

さらに、乾燥工程での保持時間が1時間未満であると乾燥が不十分となり、実環境の模擬が難しくなる。一方、保持時間が12時間を超えても腐食の促進効果が飽和し、試験時間が長期化するだけである。 Further, if the holding time in the drying step is less than 1 hour, the drying becomes insufficient and it becomes difficult to simulate the actual environment. On the other hand, even if the holding time exceeds 12 hours, the corrosion promoting effect is saturated and the test time is only prolonged.

また、湿潤工程では、温度が20~70℃、相対湿度が80%RH以上の環境で2~12時間保持する。乾燥工程と同様に、温度が20℃未満であると腐食の進行が遅く、短時間での腐食環境の模擬が困難になる。一方、温度が高いほど腐食は促進されるものの、70℃を超えると、生成する腐食生成物の組成が変化し、再現性が劣化する。湿潤工程では、NaClが完全に潮解する条件とする必要があるため、相対湿度は80%RH以上とする。 Further, in the wetting step, the temperature is maintained at 20 to 70 ° C. and the relative humidity is maintained at 80% RH or more for 2 to 12 hours. Similar to the drying step, if the temperature is less than 20 ° C., the progress of corrosion is slow, and it becomes difficult to simulate the corroded environment in a short time. On the other hand, the higher the temperature, the more the corrosion is promoted, but when the temperature exceeds 70 ° C., the composition of the produced corrosion product changes and the reproducibility deteriorates. In the wetting step, the relative humidity should be 80% RH or more because the conditions must be such that NaCl is completely deliquescent.

また、湿潤工程での保持時間が2時間未満であると腐食生成物が十分に生成せず、実環境の模擬が難しくなる。一方、保持時間が12時間を超えても腐食の促進効果が飽和し、試験時間が長期化するだけである。 Further, if the holding time in the wetting step is less than 2 hours, corrosion products are not sufficiently produced, and it becomes difficult to simulate the actual environment. On the other hand, even if the holding time exceeds 12 hours, the corrosion promoting effect is saturated and the test time is only prolonged.

なお、乾燥工程および湿潤工程においては、保持環境を変動させてもよいが、再現性の観点からは一定の条件で保持することが好ましい。そのような場合において、乾燥工程での所定条件から湿潤工程での所定条件に遷移するまでの時間は10分~11時間とすることが好ましい。保持条件の急激な変化は実環境の再現を阻害するおそれがある。一方、遷移する時間が11時間を超えると、各工程の所定条件での保持時間が不足するおそれがある。 In the drying step and the wetting step, the holding environment may be changed, but from the viewpoint of reproducibility, it is preferable to hold the holding environment under certain conditions. In such a case, the time from the predetermined condition in the drying step to the predetermined condition in the wetting step is preferably 10 minutes to 11 hours. Sudden changes in retention conditions may hinder the reproduction of the real environment. On the other hand, if the transition time exceeds 11 hours, the holding time under predetermined conditions of each step may be insufficient.

また、乾燥工程と湿潤工程との繰り返し回数が5回未満では、腐食の進行が十分ではなく、実環境を模擬することができない。乾燥工程と湿潤工程との繰り返し回数は10回以上であるのが好ましく、15回以上であるのがより好ましい。 Further, if the number of repetitions of the drying step and the wetting step is less than 5, the progress of corrosion is not sufficient and the actual environment cannot be simulated. The number of repetitions of the drying step and the wetting step is preferably 10 times or more, and more preferably 15 times or more.

また、海水浸漬工程と乾燥湿潤工程とを繰り返すことで腐食試験を行うに際しては、海水浸漬工程は5~15日に1回の頻度で行う必要がある。海水浸漬工程を少なくとも15日に1回の頻度で行わないと、塩の付着量が不十分となり、実際の腐食環境を再現することができない。一方、5日に1回を超える頻度で行う場合には、乾燥湿潤工程の時間が短くなり、腐食を十分に促進することができなくなる。 Further, when the corrosion test is carried out by repeating the seawater soaking step and the drying and wetting step, it is necessary to carry out the seawater soaking step once every 5 to 15 days. If the seawater immersion step is not performed at least once every 15 days, the amount of salt adhered will be insufficient and the actual corroded environment cannot be reproduced. On the other hand, if it is performed more than once every 5 days, the time of the drying and wetting step is shortened, and corrosion cannot be sufficiently promoted.

なお、海水浸漬工程を5~15日に1回の頻度で行うためには、乾燥湿潤工程が開始して終了するまでの期間が5~15日となるようにする必要がある。そこで、乾燥工程および湿潤工程での保持時間に応じ、上記期間が5~15日となるように、乾燥工程と湿潤工程との繰り返し回数を調整する必要がある。 In order to carry out the seawater soaking step once every 5 to 15 days, it is necessary to set the period from the start to the end of the drying and wetting step to 5 to 15 days. Therefore, it is necessary to adjust the number of repetitions of the drying step and the wetting step so that the above period is 5 to 15 days according to the holding time in the drying step and the wetting step.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

表1に示す化学組成を有する、長さ100mm、直径20mmの丸棒状の試験片を用いて、下記に示す各種の腐食試験を実施した。 Various corrosion tests shown below were carried out using round bar-shaped test pieces having the chemical composition shown in Table 1 and having a length of 100 mm and a diameter of 20 mm.

Figure 0007043823000001
Figure 0007043823000001

[本発明例]
上記の試験片に対して、海水浸漬工程と乾燥湿潤工程とからなる処理を1サイクルとして、8サイクル実施した。海水浸漬工程では、35℃の人工海水に15分浸漬した。また、乾燥湿潤工程では、60℃、相対湿度65%RHの環境で4時間保持する乾燥工程と、60℃、90%RHの環境で4時間保持する湿潤工程とを繰り返し実施した。そして、海水への浸漬は7日に1回行った。すなわち、試験期間は56日間とした。なお、試験に用いた人工海水の組成は、質量%で、NaCl:2.45%、MgCl:1.11%、NaSO:0.41%、CaCl:0.15%、KCl:0.07%、NaHCO:0.02%、KBr:0.01%であった。
[Example of the present invention]
Eight cycles were carried out on the above test pieces, with the treatment consisting of a seawater immersion step and a drying and wetting step as one cycle. In the seawater immersion step, it was immersed in artificial seawater at 35 ° C. for 15 minutes. Further, in the drying and wetting step, a drying step of holding in an environment of 60 ° C. and a relative humidity of 65% RH for 4 hours and a wetting step of holding in an environment of 60 ° C. and 90% RH for 4 hours were repeatedly carried out. Then, the immersion in seawater was performed once every 7 days. That is, the test period was 56 days. The composition of the artificial seawater used in the test was NaCl: 2.45%, MgCl 2 : 1.11%, Na 2 SO 4 : 0.41%, CaCl 2 : 0.15%, KCl in mass%. : 0.07%, NaCl 3 : 0.02%, KBr: 0.01%.

[比較例1]
上記の試験片に対して、35℃の5%NaCl溶液を56日間噴霧した。
[Comparative Example 1]
The above test pieces were sprayed with a 5% NaCl solution at 35 ° C. for 56 days.

[比較例2]
上記の試験片に対して、35℃の5%NaCl溶液を2時間噴霧した後、60℃、相対湿度25%RHの環境下で4時間乾燥させ、その後さらに、50℃、相対湿度100%の湿潤環境に2時間保持するという処理を繰り返した。試験期間は56日間とした。
[Comparative Example 2]
The above test piece was sprayed with a 5% NaCl solution at 35 ° C. for 2 hours and then dried in an environment of 60 ° C. and a relative humidity of 25% RH for 4 hours, and then further dried at 50 ° C. and a relative humidity of 100%. The process of keeping in a moist environment for 2 hours was repeated. The test period was 56 days.

[比較例3]
上記の試験片に対して、35℃の人工海水を2時間噴霧した後、60℃、相対湿度25%RHの環境下で4時間乾燥させ、その後さらに、50℃、相対湿度100%の湿潤環境に2時間保持するという処理を繰り返した。試験期間は56日間とした。
[Comparative Example 3]
The above test piece is sprayed with artificial seawater at 35 ° C. for 2 hours, dried in an environment of 60 ° C. and a relative humidity of 25% RH for 4 hours, and then further dried in a moist environment of 50 ° C. and a relative humidity of 100%. The process of holding for 2 hours was repeated. The test period was 56 days.

これらの腐食試験後の試験片について、腐食生成物の組成および腐食速度を調査した。なお、腐食速度は、丸棒状の試験片の長さ方向の中心位置および、中心から両側に20mmずつの位置の合計3か所について直径を測定し、その平均値を元々の直径と比較することで、直径の減少速度として測定を行った。 The composition and corrosion rate of corrosion products were investigated for the test pieces after these corrosion tests. For the corrosion rate, measure the diameter at the center position in the length direction of the round bar-shaped test piece and the position 20 mm on each side from the center, and compare the average value with the original diameter. Then, the measurement was performed as the rate of decrease in diameter.

また、腐食試験後の試験片より腐食生成物を採取し、内部標準法によるX線定量分析を実施した。具体的には、採取した腐食生成物を粉砕混合した後、重量を計測し、腐食生成物に対し重量比で20%のZnO粉末を混合した。続いて、前述の混合物に対し、X線回折測定を行なった。得られた回折パターンより、さび物質であるα-FeOOH、β-FeOOH、γ-FeOOHおよびFeの回折ピークとZnOの回折ピークの強度比を求め、予め作成した検量線を用い強度比を重量比に換算した。このようにして、腐食生成物の組成を求めた。 In addition, corrosion products were collected from the test pieces after the corrosion test and subjected to X-ray quantitative analysis by the internal standard method. Specifically, the collected corrosion products were pulverized and mixed, then weighed, and ZnO powder having a weight ratio of 20% with respect to the corrosion products was mixed. Subsequently, X-ray diffraction measurement was performed on the above-mentioned mixture. From the obtained diffraction pattern, the intensity ratio of the diffraction peaks of α-FeOOH, β-FeOOH, γ - FeOOH and Fe 3O4 , which are rust substances, and the diffraction peak of ZnO was obtained, and the intensity ratio was obtained using a calibration curve prepared in advance. Was converted into a weight ratio. In this way, the composition of the corrosion product was determined.

それらの結果を表2に示す。なお、表2には、実環境で腐食された係留チェーンに生成する腐食生成物の組成についても併せて載せている。 The results are shown in Table 2. Table 2 also shows the composition of the corrosion products generated in the mooring chain corroded in the actual environment.

Figure 0007043823000002
Figure 0007043823000002

表2に示されるように、腐食生成物には、α-FeOOH、β-FeOOH、γ-FeOOHおよびFeが含まれる。このうち、α-FeOOH、β-FeOOHおよびγ-FeOOHについては、加速試験においては再現が困難な生成物である。一方、Feは濡れ環境のような酸化の遅い環境で生成しやすい生成物である。そのため、チェーンロッカー内のような濡れ時間の長い腐食環境を模擬した腐食試験の再現性を評価する上で、Feの生成量は基準となりうる。 As shown in Table 2, corrosion products include α-FeOOH, β-FeOOH, γ-FeOOH and Fe 3O 4 . Of these, α-FeOOH, β-FeOOH and γ-FeOOH are products that are difficult to reproduce in an accelerated test. On the other hand, Fe 3 O 4 is a product that is easily produced in a slow-oxidizing environment such as a wet environment. Therefore, the amount of Fe 3 O 4 produced can be used as a reference in evaluating the reproducibility of a corrosion test simulating a corrosion environment having a long wetting time such as in a chain rocker.

表2から分かるように、比較例の腐食試験によって生成した腐食生成物中のFe量は、実環境での値と大きく異なるのに対して、本発明に係る腐食試験方法を採用した場合には、類似する組成を模擬することができた。 As can be seen from Table 2, the amount of Fe 3 O 4 in the corrosion product produced by the corrosion test of the comparative example is significantly different from the value in the actual environment, whereas the corrosion test method according to the present invention is adopted. In some cases, a similar composition could be simulated.

また、腐食速度も実環境の10倍以上であり、従来の腐食試験より高い値となった。このことから、本発明に係る腐食試験方法を用いることによって、短時間で腐食環境を再現できることが分かる。 In addition, the corrosion rate was more than 10 times that of the actual environment, which was higher than that of the conventional corrosion test. From this, it can be seen that the corrosive environment can be reproduced in a short time by using the corrosion test method according to the present invention.

本発明によれば、チェーンロッカー内の腐食環境を短期間で模擬することができるため、舶用係留チェーンとして用いた場合の金属材料の耐食性を迅速に評価することが可能となる。 According to the present invention, since the corrosive environment in the chain locker can be simulated in a short period of time, it is possible to quickly evaluate the corrosion resistance of the metal material when used as a marine mooring chain.

Claims (1)

海水浸漬工程と乾燥湿潤工程とを含む処理を1サイクルとして、舶用係留チェーン用である金属材料に対して、該処理を1サイクル以上施す腐食試験方法であって、
前記海水浸漬工程では、前記金属材料を温度が0~60℃の自然海水または人工海水に5分~2時間浸漬し、
前記乾燥湿潤工程では、温度が20~70℃、相対湿度が50~75%RHである環境で1~12時間保持する乾燥工程と、温度が20~70℃、相対湿度が80%RH以上である環境で2~12時間保持する湿潤工程とを含む処理を1回として、該処理を5回以上繰り返し、
前記海水浸漬工程は、5~15日に1回の頻度で行われる、
腐食試験方法。
It is a corrosion test method in which a treatment including a seawater immersion step and a drying and wetting step is one cycle, and the treatment is applied to a metal material for a marine mooring chain for one cycle or more.
In the seawater immersion step, the metal material is immersed in natural seawater or artificial seawater having a temperature of 0 to 60 ° C. for 5 minutes to 2 hours.
In the drying and wetting step, the drying step is held for 1 to 12 hours in an environment where the temperature is 20 to 70 ° C. and the relative humidity is 50 to 75% RH, and the temperature is 20 to 70 ° C. and the relative humidity is 80% RH or more. The treatment including the wetting step of holding for 2 to 12 hours in a certain environment is regarded as one time, and the treatment is repeated 5 times or more.
The seawater immersion step is performed once every 5 to 15 days.
Corrosion test method.
JP2017240413A 2017-12-15 2017-12-15 Corrosion test method Active JP7043823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240413A JP7043823B2 (en) 2017-12-15 2017-12-15 Corrosion test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240413A JP7043823B2 (en) 2017-12-15 2017-12-15 Corrosion test method

Publications (2)

Publication Number Publication Date
JP2019109061A JP2019109061A (en) 2019-07-04
JP7043823B2 true JP7043823B2 (en) 2022-03-30

Family

ID=67179412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240413A Active JP7043823B2 (en) 2017-12-15 2017-12-15 Corrosion test method

Country Status (1)

Country Link
JP (1) JP7043823B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352071B2 (en) * 2019-07-31 2023-09-28 日本製鉄株式会社 Chain lockers and steel plates for chain lockers
CN112161889A (en) * 2020-08-28 2021-01-01 鞍钢集团北京研究院有限公司 Device and method for testing seawater and sea ice mixture abrasion resistance of steel
CN113390777A (en) * 2021-05-17 2021-09-14 中国科学院金属研究所 Indoor dry-wet alternative acceleration test method for simulating coastal atmospheric corrosion process
CN113340800A (en) * 2021-06-09 2021-09-03 北京科技大学 Corrosion resistance test method for carbon steel
CN114112884A (en) * 2021-12-07 2022-03-01 江苏容大材料腐蚀检验有限公司 Detection method for steel corrosion performance under simulated seawater environment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241400A (en) 2004-02-26 2005-09-08 Jfe Steel Kk Method of evaluating corrosion resistance of indoor used steel sheet
JP2006009129A (en) 2004-06-29 2006-01-12 Kobe Steel Ltd Steel for vessel having excellent corrosion resistance
JP2008070298A (en) 2006-09-15 2008-03-27 Tokyo Electric Power Co Inc:The Corrosion resistance testing method and evaluating method for steel material
JP2011064678A (en) 2009-08-19 2011-03-31 Jfe Steel Corp Vessel ballast tank corrosion testing method
JP2012153933A (en) 2011-01-25 2012-08-16 Kobe Steel Ltd Steel product for ship, excellent in corrosion resistance
JP2013147729A (en) 2011-03-29 2013-08-01 Jfe Steel Corp Steel material with rust layer, excellent in weather resistance even in high-salt environment
CN104297138A (en) 2014-10-11 2015-01-21 浙江大学舟山海洋研究中心 Experimental device for simulating dry-wet cycling alternating coating corrosion destruction acceleration in seawater environment
CN105259098A (en) 2015-10-21 2016-01-20 中国船舶重工集团公司第七二五研究所 Test method for simulating marine steel in wet and dry alternate environment of seawater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196356U (en) * 1981-06-09 1982-12-13
JPH1062333A (en) * 1996-08-21 1998-03-06 Showa Alum Corp Corrosion resistance test equipment of metallic material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241400A (en) 2004-02-26 2005-09-08 Jfe Steel Kk Method of evaluating corrosion resistance of indoor used steel sheet
JP2006009129A (en) 2004-06-29 2006-01-12 Kobe Steel Ltd Steel for vessel having excellent corrosion resistance
JP2008070298A (en) 2006-09-15 2008-03-27 Tokyo Electric Power Co Inc:The Corrosion resistance testing method and evaluating method for steel material
JP2011064678A (en) 2009-08-19 2011-03-31 Jfe Steel Corp Vessel ballast tank corrosion testing method
JP2012153933A (en) 2011-01-25 2012-08-16 Kobe Steel Ltd Steel product for ship, excellent in corrosion resistance
JP2013147729A (en) 2011-03-29 2013-08-01 Jfe Steel Corp Steel material with rust layer, excellent in weather resistance even in high-salt environment
CN104297138A (en) 2014-10-11 2015-01-21 浙江大学舟山海洋研究中心 Experimental device for simulating dry-wet cycling alternating coating corrosion destruction acceleration in seawater environment
CN105259098A (en) 2015-10-21 2016-01-20 中国船舶重工集团公司第七二五研究所 Test method for simulating marine steel in wet and dry alternate environment of seawater

Also Published As

Publication number Publication date
JP2019109061A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP7043823B2 (en) Corrosion test method
US3950642A (en) Method of inspecting shot peened surfaces for extent of coverage
Ikechukwu et al. Studies on corrosion characteristics of carbon steel exposed to Na2CO3, Na2SO4 and NaCl solutions of different concentrations
JP2008232895A (en) Corrosion testing method of metallic material for ship ballast tank
Fytianos et al. Corrosion Evaluation of MEA Solutions by SEM-EDS, ICP-MS and XRD
Suyani et al. Application of central composite design optimization technique for determination of copper in fruit and vegetable samples with adsorptive stripping voltammetry in the presence of calcein.
Gundersen et al. Cathodic protection of aluminum in seawater
Pagano et al. Corrosion of mild steel subjected to alternating voltages in seawater
Wan et al. Pitting corrosion behavior and mechanism of 5083 aluminum alloy based on dry‐wet cycle exposure
JP4923614B2 (en) Corrosion resistant steel for ships
CN112129686A (en) Positioning tracking characterization method for corrosion research
BR112020015015B1 (en) STEEL FOR ANCHOR CHAIN AND ANCHOR CHAIN
JP2011064678A (en) Vessel ballast tank corrosion testing method
JP2016099259A (en) Evaluation method for delayed fracture characteristic of metallic material and metallic material
Ayoola et al. Effects of surface preparation on the corrosion behavior of mild steel
RU2235309C1 (en) Method of corrosion testing of steels
US6512382B1 (en) Method for corrosion susceptibility testing of magnetic heads using simulated disk corrosion products
JP2010122085A (en) Method for testing accelerated corrosion of steel material in atmospheric environment
Ayanwu et al. Characteristics behaviour of carbon steel exposed to Na2Co3 and NaCL Solution of Different Concentrations
Pyatanova et al. Assessment of the degree of protection of aluminum alloys against corrosion in an alkaline medium in the presence of “Green” inhibitors
CN108535177A (en) A kind of accelerated test method that simulation hot-galvanized steel corrodes under the industrial atmosphere of inland
Dorman et al. The Effect of Corrosion Inhibitors on Corrosion Fatigue under Complex Environmental Conditions
Ericsson et al. The influence of carbon particles on the corrosion of iron in a humid, sulphur dioxide‐containing atmosphere
Mahzan et al. Corrosion Behaviour of a Low Carbon Steel Piping Exposed to Different Water Conditions
JP2021156680A (en) Immersion testing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R151 Written notification of patent or utility model registration

Ref document number: 7043823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151