JP4441372B2 - High strength and high toughness gas shielded arc welding wire - Google Patents

High strength and high toughness gas shielded arc welding wire Download PDF

Info

Publication number
JP4441372B2
JP4441372B2 JP2004298948A JP2004298948A JP4441372B2 JP 4441372 B2 JP4441372 B2 JP 4441372B2 JP 2004298948 A JP2004298948 A JP 2004298948A JP 2004298948 A JP2004298948 A JP 2004298948A JP 4441372 B2 JP4441372 B2 JP 4441372B2
Authority
JP
Japan
Prior art keywords
weld metal
toughness
welding wire
strength
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004298948A
Other languages
Japanese (ja)
Other versions
JP2006110581A (en
Inventor
俊永 長谷川
茂 大北
勇 木本
隆一 元松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004298948A priority Critical patent/JP4441372B2/en
Publication of JP2006110581A publication Critical patent/JP2006110581A/en
Application granted granted Critical
Publication of JP4441372B2 publication Critical patent/JP4441372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建設機械および産業機械用などの用途に適用される高張力鋼板のガスシールドアーク溶接用ワイヤに関し、特に強度が引張強さTSで1200MPa以上、降伏応力YPで1100MPa以上、かつ、靭性が−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40で27J以上である溶接金属が得られる高強度高靭性ガスシールドアーク溶接用ワイヤに関する。 The present invention relates to a gas shielded arc welding wire for a high-strength steel sheet applied to uses such as for construction machinery and industrial machinery, and in particular, the strength is 1200 MPa or more in tensile strength TS, 1100 MPa or more in yield stress YP, and Further, the present invention relates to a high-strength, high-toughness gas shielded arc welding wire from which a weld metal having an absorption energy vE- 40 of 27 J or more by a 2 mmV notch Charpy impact test at −40 ° C. can be obtained.

近年、建設機械および産業機械などにおいて鋼構造物の大型化や軽量化の要求が多くなるにともない、使用される鋼板の高張力化が進み、最近では引張強さTSが780MPa級以上の高張力鋼が一般的に使用されるようになり、今後は引張強さTSが950MPa以上、さらには引張強さTSが1200MPa以上の超高張力鋼の使用も増えてくると考えられる。また、鋼構造物用鋼板の強度として、引張強さTSと同様に降伏応力YPの向上も要求され、引張強さTSが950MPa以上の高張力鋼板に対して、降伏応力YPは850MPa以上、引張強さTSが1200MPa以上の高張力鋼板では、降伏応力YPで1100MPa以上であることが望まれている。   In recent years, as the demand for larger and lighter steel structures has increased in construction machinery and industrial machinery, etc., the tensile strength of steel plates used has increased, and recently, the tensile strength TS is higher than 780 MPa class. Steel is generally used, and in the future, it is considered that the use of ultra high strength steel having a tensile strength TS of 950 MPa or more and further a tensile strength TS of 1200 MPa or more will increase. Further, as the strength of the steel sheet for steel structure, it is required to improve the yield stress YP in the same manner as the tensile strength TS, and the yield stress YP is 850 MPa or higher for the high strength steel plate having the tensile strength TS of 950 MPa or higher. In a high-tensile steel sheet having a strength TS of 1200 MPa or more, it is desired that the yield stress YP is 1100 MPa or more.

このような引張強さTSおよび降伏応力YPが高い高張力鋼板を溶接して鋼構造物を製造する場合には、高張力鋼板と同様に溶接継ぎ手部、特に溶接金属の引張強さTSおよび降伏応力YPの向上が要求される。通常の溶接鋼構造物の溶接部では溶接金属の強度は鋼板に対してオーバーマッチングになるように設計されることが多いため、溶接金属の強度は、少なくとも鋼板の強度以上とする必要がある。また、鋼構造物の用途によっては、溶接金属の高強度化と同時に低温靱性も要求される。   When a steel structure is manufactured by welding such a high strength steel plate having a high tensile strength TS and a high yield stress YP, the tensile strength TS and yield of the welded joint, particularly the weld metal, as in the case of the high strength steel plate. Improvement of stress YP is required. In a welded part of a normal welded steel structure, the strength of the weld metal is often designed to be overmatched to the steel plate, so the strength of the weld metal needs to be at least equal to or greater than the strength of the steel plate. Moreover, depending on the use of the steel structure, high strength of the weld metal and low temperature toughness are required at the same time.

引張強さTSが950MPa級以上、さらには、1200MPa以上の高張力鋼板を用いて高強度・高靱性の健全な溶接継手を作製するためには、その溶接方法は限定される。   In order to produce a high-strength and high-toughness welded joint using a high-tensile steel plate having a tensile strength TS of 950 MPa or higher, or 1200 MPa or higher, the welding method is limited.

このような引張強さTSの高い高張力鋼板を溶接する場合には、溶接金属において低温割れの発生が懸念されるため、溶接金属中の水素量を低減でき、かつ、高強度・高靱性の溶接継手を得ることができる、TIG溶接、MIG溶接、MAG溶接(Ar+CO溶接あるいはCO溶接)などのガスシールドアーク溶接が好ましい。また、ガスシールドアーク溶接の中で、TIG溶接は溶接金属中の水素量をより低減できるため、溶接金属を高靱性とするためには好適であるが、MIG溶接、MAG溶接に比べて溶接施工効率が劣る。このため、MIG溶接、MAG溶接を用いて高強度・高靱性の溶接継手を作製する方法が要望されている。 When welding such high tensile strength steel plates with high tensile strength TS, there is concern about the occurrence of cold cracks in the weld metal, so the amount of hydrogen in the weld metal can be reduced, and high strength and toughness can be achieved. Gas shielded arc welding such as TIG welding, MIG welding, MAG welding (Ar + CO 2 welding or CO 2 welding) that can obtain a welded joint is preferable. Also, among gas shielded arc welding, TIG welding can reduce the amount of hydrogen in the weld metal, so it is suitable for making the weld metal high toughness, but it is more suitable for welding than MIG welding and MAG welding. Inefficient. Therefore, there is a demand for a method for producing a high-strength and high-toughness welded joint using MIG welding and MAG welding.

従来から引張強さTSが780〜900MPa級の高張力鋼板をガスシールドアーク溶接する際の溶接部の高強度・高靱性化について数多く検討されている。   Conventionally, many studies have been made on increasing the strength and toughness of a welded portion when gas shielded arc welding is performed on a high-tensile steel sheet having a tensile strength TS of 780 to 900 MPa.

最近では、引張強さTSが900MPa以上の板厚50mm以上の厚肉高張力鋼板をガスシールドアーク溶接する際に溶接金属の形状や溶接条件、さらに溶接ワイヤ成分を規定することにより、引張強さTSが1070MPaの鋼板に対して、引張強さTSが988MPaで、20℃でのシャルピー吸収エネルギー(vE−20)が74Jの溶接金属を形成する強度・靱性に優れた溶接継手を得る方法が提案されている(例えば、特許文献1参照)。この方法では、鋼板の引張強さTSに対して溶接金属の引張強さTSを低くすることにより、溶接金属の靭性を向上させ、溶接金属の形状や溶接条件の規定により溶接継ぎ手の引張強さTSを鋼板の引張強さTS並みに維持させるものである。このため溶接条件の制約により溶接施工効率が低下するとともに、引張強さTSが950Mpa以上、さらには1100MPa以上の高張力鋼板の溶接継ぎ手における溶接金属の引張強さと靭性を向上することは困難である。 Recently, when gas-shielded arc welding is performed on thick high-tensile steel sheets with a tensile strength TS of 900 MPa or more and a thickness of 50 mm or more, the shape of the weld metal, welding conditions, and the components of the welding wire are specified. Proposed method to obtain welded joint with excellent strength and toughness to form weld metal with tensile strength TS of 988MPa and Charpy absorbed energy (vE- 20 ) at 20 ° C of 74J for steel plate with TS of 1070MPa (For example, refer to Patent Document 1). In this method, the toughness of the weld metal is improved by lowering the tensile strength TS of the weld metal relative to the tensile strength TS of the steel plate, and the tensile strength of the weld joint is defined by the specifications of the weld metal shape and welding conditions. The TS is maintained at the same level as the tensile strength TS of the steel sheet. For this reason, it is difficult to improve the tensile strength and toughness of the weld metal in the weld joint of the high-tensile steel plate having a tensile strength TS of 950 Mpa or more, and further 1100 MPa or more, while the welding construction efficiency is lowered due to the restriction of the welding conditions. .

従来、例えば、引張強さTSが1200MPa以上の高張力鋼板をガスシールドアーク溶接し、引張強さTSが1200MPa以上で、降伏応力が1100MPa以上の強度で、かつ−40℃における2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40が27J以上の靭性を満足する溶接金属を形成できるようなガスシールドアーク溶接用ワイヤは見いだされていない。 Conventionally, for example, a high-strength steel plate having a tensile strength TS of 1200 MPa or higher is gas shielded arc welded, a tensile strength TS of 1200 MPa or higher, a yield stress of 1100 MPa or higher, and a 2 mmV notch at −40 ° C. No gas shielded arc welding wire has been found that can form a weld metal satisfying a toughness with an absorbed energy vE- 40 of 27 J or more in a Charpy impact test.

特開2001−1148号公報JP 2001-1148 A

上記従来技術の現状に鑑み、本発明は、引張強さTSが1200MPa以上の高張力鋼板をMIG溶接、MAG溶接(Ar+CO溶接あるいはCO溶接)等のガスシールドアーク溶接を用いて、引張強さTSが1200MPa以上、降伏応力YPが1100MPa以上で、かつ、−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40が27J以上の溶接金属を形成できる、高強度高靭性ガスシールドアーク溶接用ワイヤを提供することを課題とする。 In view of the current state of the above-mentioned prior art, the present invention uses a gas shielded arc welding such as MIG welding, MAG welding (Ar + CO 2 welding or CO 2 welding) to tension a high strength steel plate having a tensile strength TS of 1200 MPa or more. High-strength, high-toughness gas shield capable of forming a weld metal having a strength TS of 1200 MPa or more, a yield stress YP of 1100 MPa or more, and an absorbed energy vE- 40 of 27 J or more by a 2 mm V notch Charpy impact test at −40 ° C. It is an object to provide an arc welding wire.

溶接金属は、溶接入熱により溶接用ワイヤと一部の鋼板が溶融後、凝固して形成され、その組織は一部再熱の影響は受けるものの、基本的には凝固まま組織であるため、圧延組織を有する鋼板のように明確な降伏現象を示さない場合が多い。例えば、溶接金属中の焼き入れる成分の含有量を高めてマルテンサイト主体組織とし引張強さTSを向上させても、鋼板のように引張強さTSの上昇に比例して降伏応力YPを高めることが困難であり、逆に降伏応力YPは極端に低下する場合さえ生じる。特に、引張強さTSが1200MPa以上の溶接金属において、降伏応力YPを1100MPa以上に向上することは従来技術では達成されない。 The weld metal is formed by solidification after welding wire and some steel plates are melted by welding heat input, and the structure is basically affected by reheating, but is basically solidified structure. In many cases, such as a steel sheet having a rolled structure, no clear yield phenomenon is exhibited. For example, even if the content of the quenching component in the weld metal is increased to obtain a martensite-based structure and the tensile strength TS is improved, the yield stress YP is increased in proportion to the increase in the tensile strength TS like a steel plate. On the contrary, the yield stress YP occurs even when it is extremely reduced. In particular, in a weld metal having a tensile strength TS of 1200 MPa or more, the yield stress YP cannot be improved to 1100 MPa or more in the prior art.

本発明者らは、高張力鋼板のガスシールドアーク溶接において引張強さTSが1200MPa以上、降伏応力YPが1100MPa以上で、かつ、−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40が27J以上の溶接金属を形成できる、高強度高靭性ガスシールドアーク溶接用ワイヤの成分組成について実験などにより詳細に検討を行った。その結果、溶接金属において、高い引張強さTSと同時に高い降伏応力YPが得られ、かつ、靱性の向上も同時に達成させるためには、溶接ワイヤ中に引張強さと靱性を安定的に確保するためのNiを所定量含有させ、所定の焼き入れ性を確保した上で、可動転位密度の上昇および残留オーステナイトの生成を抑制するMoを適正量含有させることが必須であることを知見した。
本発明はこの新たな知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
In the gas shield arc welding of a high-strength steel sheet, the inventors have a tensile strength TS of 1200 MPa or more, a yield stress YP of 1100 MPa or more, and an absorbed energy vE by a 2 mmV notch Charpy impact test at −40 ° C. The component composition of the high-strength, high-toughness gas shielded arc welding wire capable of forming a weld metal having a J of 40 J or more was examined in detail by experiments and the like. As a result, in order to ensure high tensile strength and toughness in the welding wire in order to achieve a high yield stress YP at the same time as the high tensile strength TS and to improve the toughness simultaneously in the weld metal, It has been found that it is essential to contain an appropriate amount of Mo that suppresses the increase in movable dislocation density and the generation of retained austenite, while containing a predetermined amount of Ni and ensuring a predetermined hardenability.
The present invention has been made on the basis of this new finding, and the gist thereof is as follows.

(1)溶接ワイヤの組成が、質量%で、
C :0.06〜0.2%、
Si:0.2〜1%、
Mn:0.5〜2.5%、
Al:0.002〜0.1%、
Ti:0.005〜0.3%、
N:0.001〜0.015%、
Ni:0.5〜6%
を含み、
P:0.02%以下、
S:0.01%以下、
O:0.01%以下
に制限し、
さらに、
Mo:0.1〜4%、
W:0.1〜3%、
Nb:0.005〜0.1%、
V:0.005〜0.5%、および、
Ta:0.005〜0.5%
のうちの1種または2種以上を含有し、
下記(1)式で示される炭素当量(Ceq)が0.8〜2%であり、かつ下記(2)式で示されるNb当量(Nbeq)が0.091〜0.5%であり、残部が不可避不純物ならびにFeからなることを特徴とする高強度高靭性ガスシールドアーク溶接用ワイヤ。
Ceq=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Mo%]/4+[W%]/8 ・・・(1)
Nbeq=[Nb%]+[V%]/5+[Mo%]/20+[W%]/10+[Ta%]/5 ・・・(2)
但し、[C%]、[Mn%]、[Si%]、[Ni%]、[Mo%]、[W%]、[Nb%]、[V%]、[Ta%]は、C、Mn、Si、Ni、Mo、W、Nb、V、Taのそれぞれの含有量(質量%)を示す。
(1) The composition of the welding wire is mass%,
C: 0.06 to 0.2%,
Si: 0.2-1%,
Mn: 0.5 to 2.5%
Al: 0.002 to 0.1%,
Ti: 0.005 to 0.3%,
N: 0.001 to 0.015%,
Ni: 0.5-6%
Including
P: 0.02% or less,
S: 0.01% or less,
O: limited to 0.01% or less,
further,
Mo: 0.1 to 4%
W: 0.1 to 3%
Nb: 0.005 to 0.1%,
V: 0.005-0.5% and
Ta: 0.005 to 0.5%
Containing one or more of
The carbon equivalent (Ceq) represented by the following formula (1) is 0.8 to 2%, and the Nb equivalent (Nbeq) represented by the following formula (2) is 0.091 to 0.5%, and the balance A wire for high-strength, high-toughness gas shielded arc welding, characterized by comprising inevitable impurities and Fe.
Ceq = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Mo%] / 4+ [W%] / 8 (1)
Nbeq = [Nb%] + [V%] / 5+ [Mo%] / 20+ [W%] / 10+ [Ta%] / 5 (2)
However, [C%], [Mn%], [Si%], [Ni%], [Mo%], [W%], [Nb%], [V%], and [Ta%] are C, Each content (mass%) of Mn, Si, Ni, Mo, W, Nb, V, and Ta is shown.

(2) 質量%で、さらに、
Cu:0.01〜1.5%、
Cr:0.01〜2%、
Co:0.01〜6%、および、
B:0.001〜0.015%
のうちの1種または2種以上を含有し、下記(3)式で示される炭素当量(Ceq)が0.8〜2%であることを特徴とする前記(1)に記載の高強度高靭性ガスシールドアーク溶接用ワイヤ。
Ceq=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Cr%]/5+[Mo%]/4+[W%]/8 ・・・(3)
但し、[C%]、[Mn%]、[Si%]、[Ni%]、[Cr%]、[Mo%]、[W%]は、C、Mn、Si、Ni、Cr、Mo、Wのそれぞれの含有量(質量%)を示す。
(2) In mass%,
Cu: 0.01 to 1.5%,
Cr: 0.01-2%
Co: 0.01-6%, and
B: 0.001 to 0.015%
1 or 2 or more of them, and the carbon equivalent (Ceq) represented by the following formula (3) is 0.8 to 2%. Wire for tough gas shielded arc welding.
Ceq = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Cr%] / 5+ [Mo%] / 4+ [W%] / 8 (3)
However, [C%], [Mn%], [Si%], [Ni%], [Cr%], [Mo%], and [W%] are C, Mn, Si, Ni, Cr, Mo, Each content (mass%) of W is shown.

(3) 質量%で、さらに、
Ca:0.0002〜0.01%、
Mg:0.0002〜0.01%、および、
REM:0.0002〜0.01%
のうちの1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の高強度高靭性ガスシールドアーク溶接用ワイヤ。
(3) In mass%,
Ca: 0.0002 to 0.01%,
Mg: 0.0002 to 0.01%, and
REM: 0.0002 to 0.01%
The wire for high strength and high toughness gas shielded arc welding as described in (1) or (2) above, comprising one or more of the above.

本発明のガスシールドアーク溶接用ワイヤによれば、引張強さが1200MPa以上の高張力鋼板におけるMIG溶接、MAG溶接(Ar+CO溶接あるいはCO溶接)等のガスシールドアーク溶接全般において、降伏応力が高く、かつ、靱性に優れた溶接金属を得ることができ、高張力鋼板において強度が高く安全性に優れた溶接継手を提供することが可能である。本発明は、特に、溶接金属の降伏応力が1100MPa以上で、かつ、−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーが27J以上の靱性を達成するために特に有用である。 According to the gas shielded arc welding wire of the present invention, the yield stress in gas shielded arc welding in general, such as MIG welding and MAG welding (Ar + CO 2 welding or CO 2 welding) on a high-tensile steel sheet having a tensile strength of 1200 MPa or more. It is possible to obtain a weld metal having high strength and high toughness, and providing a welded joint having high strength and high safety in a high-tensile steel plate. The present invention is particularly useful for achieving a toughness in which the yield stress of a weld metal is 1100 MPa or more and the absorbed energy in a 2 mmV notch Charpy impact test at −40 ° C. is 27 J or more.

本発明の目標とする溶接金属の引張強さTSが1200MPa以上に対して降伏応力YPが1100MPa以上を達成するための溶接金属組織は、マルテンサイト主体組織となことに起因し、可動転位密度は高くなり、また、残留オーステナイトが増加する。溶接金属中の可動転位密度の増加は、降伏応力YPおよび靭性を低下させ、溶接金属中の残留オーステナイトは低温環境に晒されたり、応力が負荷される場合にマルテンサイト変態し、靭性を劣化させる原因となる。また、鋼板の降伏応力YPを高める手段として析出元素による析出強化が知られているが、鋼板のように圧延や熱処理によって析出挙動を容易に制御できる鋼板とは異なり、基本的に熱処理しない凝固まま組織の溶接金属では、鋼板と同じような降伏現象を示さないことが従来の常識であった。このため、溶接金属の引張強さTSが向上しても、降伏応力YPは必ずしも向上せず、逆に降伏応力YPが著しく低下する場合があった。 The weld metal structure for achieving the yield strength YP of 1100 MPa or more with respect to the tensile strength TS of the weld metal of the present invention, which is 1200 MPa or more, is a martensite-based structure, so The density increases and the retained austenite increases. Increasing the density of movable dislocations in the weld metal lowers the yield stress YP and toughness, and the residual austenite in the weld metal undergoes martensitic transformation when exposed to low-temperature environments or when stress is applied, degrading toughness. Cause. Further, precipitation strengthening by precipitation elements is known as a means for increasing the yield stress YP of a steel sheet, but unlike a steel sheet in which precipitation behavior can be easily controlled by rolling or heat treatment like a steel sheet, it is basically solidified without heat treatment. The conventional common sense is that the weld metal of the structure does not show the yield phenomenon similar to that of the steel plate. For this reason, even if the tensile strength TS of the weld metal is improved, the yield stress YP is not necessarily improved, and conversely, the yield stress YP may be significantly reduced.

そこで、本発明者らは、高張力鋼板のガスシールドアーク溶接において引張強さTSが1200MPa以上、降伏応力YPが1100MPa以上で、かつ、−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40が27J以上の溶接金属を形成することを目標とし、これを達成するための高強度高靭性ガスシールドアーク溶接用ワイヤの成分組成について実験などにより詳細に検討を行った。 Therefore, the inventors have absorbed energy by a 2 mmV notch Charpy impact test at −40 ° C. at a tensile strength TS of 1200 MPa or more, a yield stress YP of 1100 MPa or more in gas shielded arc welding of a high-strength steel plate. With the goal of forming a weld metal with a vE- 40 of 27 J or more, the component composition of the high-strength, high-toughness gas shielded arc welding wire for achieving this was examined in detail by experiments and the like.

その検討結果、1200MPa以上の引張強さTSの溶接金属において、Niを所定量含有し、その他成分による所定の焼き入れ性を確保した条件で、さらに、Mo、Nb、V、および、Taのうちの1種または2種以上を所定量含有させると、これらの析出元素が炭素および/または窒素と結合し溶接金属中で析出した析出物が、主としてマルテンサイト変態によって多量に導入された可動転位の移動をピン止めする作用により、降伏応力YPおよび靭性を同時に向上させる効果があることが明らかになった。また、Mo、Nb、V、および、Taの析出元素は溶接金属のフェライト相を安定化させ、溶接金属の靭性を阻害する残留オーステナイトを低減し、溶接金属の靭性を向上させることも判った。 As a result of the examination, in a weld metal having a tensile strength TS of 1200 MPa or more, Ni is contained in a predetermined amount, and a predetermined hardenability by other components is ensured, and Mo, Nb, V, and Ta are further included. When one or more of these elements are contained in a predetermined amount, these precipitates are combined with carbon and / or nitrogen, and precipitates precipitated in the weld metal are introduced in large amounts mainly by martensitic transformation. It has been clarified that the effect of pinning the movement of is effective in improving the yield stress YP and toughness at the same time. It has also been found that the precipitated elements of Mo, Nb, V and Ta stabilize the ferrite phase of the weld metal, reduce the retained austenite which inhibits the toughness of the weld metal, and improve the toughness of the weld metal.

また、上記Mo、Nb、V、および、Taの析出元素による溶接金属の降伏応力YPおよび靭性の向上効果は、引張強さTSと靭性を同時に達成できるNiを基本成分元素として比較的多量に含有させた条件で、かつ可動転位および残留オーステナイトを多く含む溶接金属組織において、はじめて効果を発揮するものである。すなわち、引張強さTSが低く、フェライトおよびパーライトの混合組織、または、ベイナイト主体組織の溶接金属では、上記Moは、溶接金属中で単に析出強化元素として作用するのみであり、溶接金属の降伏強度の向上効果は小さく、また、強度上昇にともなう溶接金属の靭性劣化を抑制する効果は得られないことを発明者らは確認している。なお、Mo、Nb、V、および、Taの析出元素の上記効果は、後述するNb当量の指標を満足する含有量の範囲内でこれらの析出元素を添加することで得られるが、単独で添加する場合は、溶接金属の強度−靱性バランスの点からこれらの析出元素の中でMoがより好ましい。   In addition, the effect of improving the yield stress YP and toughness of the weld metal by the precipitation elements of Mo, Nb, V, and Ta includes a relatively large amount of Ni as a basic component element that can simultaneously achieve the tensile strength TS and toughness. It is effective for the first time in a weld metal structure containing a large amount of movable dislocations and retained austenite under the above conditions. That is, in a weld metal having a low tensile strength TS, a mixed structure of ferrite and pearlite, or a bainite-based structure, the Mo only acts as a precipitation strengthening element in the weld metal, and the yield strength of the weld metal The inventors have confirmed that the improvement effect is small and the effect of suppressing the toughness deterioration of the weld metal accompanying the increase in strength cannot be obtained. In addition, although the said effect of the precipitation element of Mo, Nb, V, and Ta is obtained by adding these precipitation elements within the content range which satisfies the parameter | index of Nb equivalent mentioned later, it adds independently. In this case, Mo is more preferable among these precipitation elements from the viewpoint of the balance between strength and toughness of the weld metal.

以上の知見から、引張強さTSが1200MPa以上で、高い可動転位密度を有するマルテンサイト組織主体組織で、かつ靭性を阻害する残留オーステナイトが残存しやすい溶接金属において、溶接金属の降伏応力YP(1100MPa以上)と靭性vE−40(−40℃でのシャルピー:27J以上)を向上させるためには、溶接ワイヤ中に引張強さと靱性を安定的に確保するためのNiを所定量含有させ、所定の焼き入れ性を確保した上で、Moの析出物によるピン止め効果とフェライト安定化による残留オーステナイトの抑制効果の相乗効果を有効に活用することが有効となる。本発明は、これらの知見および技術思想を基になされたものである。 From the above knowledge, in the weld metal having a tensile strength TS of 1200 MPa or more, a martensite structure main structure having a high movable dislocation density, and residual austenite that inhibits toughness is likely to remain, the yield stress YP ( 1100 MPa or more) and toughness vE- 40 (Charpy at −40 ° C .: 27 J or more) in order to improve the tensile strength and toughness in the welding wire in a predetermined amount, It is effective to effectively utilize the synergistic effect of the pinning effect due to the Mo precipitate and the retained austenite suppressing effect due to the stabilization of the ferrite after ensuring the predetermined hardenability. The present invention has been made based on these findings and technical ideas.

以下に本発明におけるガスシールドアーク溶接用ワイヤの成分組成の限定理由について説明する。   The reason for limiting the component composition of the wire for gas shielded arc welding in the present invention will be described below.

なお、以下の説明において「%」は特に説明がない限りは、「質量%」を意味するものとする。   In the following description, “%” means “% by mass” unless otherwise specified.

Cは、溶接金属の引張強さTSを1200MPa以上に向上させ、高張力鋼板の引張強さTSのアンバランスが生じないようにするために必須の元素であり、このため溶接ワイヤ中にCを0.06%以上含有させる必要がある。溶接ワイヤ中のC含有量は多いほど溶接金属の引張強さTSを高める上で好ましいが、Cの過度な含有は溶接金属の靱性を著しく劣化させる。溶接金属の−40℃での靱性を確保するためには溶接ワイヤ中のC含有量の上限を0.2%とする必要がある。従って、本発明においては溶接ワイヤ中のC含有量は0.06〜0.2%とする。   C is an essential element for improving the tensile strength TS of the weld metal to 1200 MPa or more and preventing the unbalance of the tensile strength TS of the high-strength steel plate. For this reason, C is contained in the welding wire. It is necessary to contain 0.06% or more. The higher the C content in the welding wire, the better the tensile strength TS of the weld metal, but the excessive content of C significantly deteriorates the toughness of the weld metal. In order to ensure the toughness of the weld metal at −40 ° C., the upper limit of the C content in the weld wire needs to be 0.2%. Therefore, in the present invention, the C content in the welding wire is 0.06 to 0.2%.

Siは、脱酸元素であり、溶接金属中のO量を低減して清浄度を高めるためには溶接ワイヤ中のSi含有量を0.2%以上とする必要がある。一方、溶接ワイヤ中のSi含有量が1%を超えて過剰になると、粗大な酸化物を生成し溶接金属の靱性を著しく劣化させる。このため、本発明において溶接ワイヤ中のSi含有量は0.2〜1%とする。   Si is a deoxidizing element, and in order to reduce the amount of O in the weld metal and increase the cleanliness, the Si content in the welding wire needs to be 0.2% or more. On the other hand, when the Si content in the welding wire exceeds 1% and becomes excessive, a coarse oxide is generated and the toughness of the weld metal is significantly deteriorated. For this reason, in this invention, Si content in a welding wire shall be 0.2-1%.

Mnは、溶接金属の焼入性を確保して強度を高めるために、また、一定量以内であれば、組織を微細化して靱性向上にも有効な元素である。これらのMnの作用を利用し溶接ワイヤの強度向上、組織微細化効果を確実に発揮するためには、溶接ワイヤ中にMnを0.5%以上含有させる必要がある。一方、Mnは溶接ワイヤ中に2.5%を超えて含有させると、粒界脆化感受性が増加して溶接金属の靱性劣化、耐溶接割れ性劣化の可能性が高くなる。このため、本発明においては、溶接ワイヤ中のMn含有量は0.5〜2.5%に限定する。   Mn is an element effective for improving the toughness by refining the structure so as to increase the strength by ensuring the hardenability of the weld metal and within a certain amount. In order to reliably exhibit the effect of improving the strength of the welding wire and refining the structure using the action of Mn, it is necessary to contain 0.5% or more of Mn in the welding wire. On the other hand, when Mn exceeds 2.5% in the welding wire, the susceptibility to grain boundary embrittlement increases, and the possibility of deterioration of the toughness and weld crack resistance of the weld metal increases. For this reason, in this invention, Mn content in a welding wire is limited to 0.5 to 2.5%.

Alは脱酸元素であり、Siと同様、溶接金属中のO低減、清浄度向上に効果があるが、効果を発揮するためには溶接ワイヤ中に0.002%以上含有させる必要がある。一方、Alは溶接ワイヤ中に0.1%を超えて過剰に含有させると、溶接金属中に粗大な酸化物を形成して、この粗大酸化物が靱性を著しく劣化させるため、好ましくない。従って、本発明においては、溶接ワイヤ中のAl含有量を0.002〜0.1%とする。   Al is a deoxidizing element and, like Si, is effective in reducing O in the weld metal and improving cleanliness, but in order to exert the effect, it is necessary to contain 0.002% or more in the welding wire. On the other hand, if Al exceeds 0.1% in the welding wire, a coarse oxide is formed in the weld metal, and this coarse oxide significantly deteriorates the toughness, which is not preferable. Therefore, in the present invention, the Al content in the welding wire is 0.002 to 0.1%.

Tiは溶接金属において脱酸元素としても有効であり、かつ溶接金属中の固溶Nを窒化物として固定して固溶Nの靱性への悪影響を緩和でき、さらにはTiNを形成して多層盛溶接の場合に溶接金属の再加熱領域における加熱オーステナイト粒を微細化する作用もある。これらのTiの作用により溶接金属の靱性向上効果を発揮するためには溶接ワイヤ中にTiを0.005%以上含有させる必要がある。一方、溶接ワイヤ中のTi含有量が0.3%を超えて過剰になると、溶接金属中の粗大な酸化物の形成、および、TiNの過度な析出による靱性劣化が顕著に生じる可能性が大となる。このため、本発明においては、溶接ワイヤ中のTi含有量を0.005〜0.3%とする。なお、Tiによる溶接金属の靱性向上効果をより明確に発揮するためには、溶接ワイヤ中のTi含有量を0.01〜0.1%とすることがより好ましい。   Ti is also effective as a deoxidizing element in the weld metal, and can fix the solid solution N in the weld metal as a nitride to mitigate the adverse effect on the toughness of the solid solution N. In the case of welding, there is also an effect of refining the heated austenite grains in the reheat region of the weld metal. In order to exhibit the effect of improving the toughness of the weld metal by the action of Ti, it is necessary to contain 0.005% or more of Ti in the welding wire. On the other hand, if the Ti content in the welding wire exceeds 0.3% and excessive, there is a great possibility that the formation of coarse oxides in the weld metal and the toughness deterioration due to excessive precipitation of TiN will remarkably occur. It becomes. For this reason, in this invention, Ti content in a welding wire shall be 0.005-0.3%. In order to more clearly exhibit the effect of improving the toughness of the weld metal by Ti, the Ti content in the welding wire is more preferably 0.01 to 0.1%.

Nは、溶接金属中でTiとTiNを形成して、多層盛り溶接の場合に溶接金属の再加熱領域における加熱オーステナイト粒を微細化する作用効果があり、この効果を発揮するため、溶接ワイヤ中にNを0.001%以上含有させることが好ましい。一方、Nは、ワイヤ中に0.015%を超えて過剰に含有させると、溶接金属中の固溶N量が増加して靱性を著しく劣化させるため、本発明においては、溶接ワイヤ中のN含有量を0.001〜0.015%に限定する。   N has the effect of forming Ti and TiN in the weld metal and refining the heated austenite grains in the reheat region of the weld metal in the case of multi-layer welding, and in order to exert this effect, It is preferable to contain 0.001% or more of N. On the other hand, if N exceeds 0.015% in the wire, the amount of solute N in the weld metal increases and the toughness is remarkably deteriorated. The content is limited to 0.001 to 0.015%.

Niは、固溶靱化により溶接金属の他の成分、組織によらず安定して靱性を向上できる唯一の元素であり、特に、引張強さTSが1200MPa以上の高強度溶接金属における靱性を高めるために本発明ワイヤで特に重要な元素である。溶接金属でNiの固溶靱化効果を確実に発揮するためには溶接ワイヤ中にNiを0.5%以上含有させる必要がある。ワイヤ中のNi含有量が多いほど溶接金属の靱性を向上する上で有利であるが、溶接ワイヤ中のNi含有量が6%を超えると、該効果が飽和するのと、溶接ワイヤの製造コストが過大となるため、好ましくない。そのため、本発明においては、溶接ワイヤ中のNi含有量を0.5〜6%に限定する。 Ni is the only element that can stably improve toughness regardless of the other components and structure of the weld metal by solid solution toughening. In particular, the toughness of high-strength weld metal with a tensile strength TS of 1200 MPa or more is achieved. It is a particularly important element in the wire of the present invention for enhancing. In order to exhibit the solid solution toughening effect of Ni reliably in the weld metal, it is necessary to contain 0.5% or more of Ni in the welding wire. The higher the Ni content in the wire, the more advantageous in improving the toughness of the weld metal. However, if the Ni content in the welding wire exceeds 6%, the effect is saturated and the manufacturing cost of the welding wire Is excessively undesirable. Therefore, in this invention, Ni content in a welding wire is limited to 0.5 to 6%.

Pはワイヤ中の不可避不純物元素であり、溶接金属の靱性を阻害するため極力低減する必要がある。溶接ワイヤ中のP含有量が0.02%以下では溶接金属の靱性への悪影響が許容できるため、本発明では溶接ワイヤ中のP含有量は0.02%以下に制限する。   P is an inevitable impurity element in the wire and needs to be reduced as much as possible in order to inhibit the toughness of the weld metal. If the P content in the welding wire is 0.02% or less, adverse effects on the toughness of the weld metal can be tolerated. Therefore, in the present invention, the P content in the welding wire is limited to 0.02% or less.

Sもワイヤ中の不可避不純物元素であり、溶接金属中に過大に存在すると溶接金属の靱性と延性とをともに劣化させるため、極力低減することが好ましい。溶接ワイヤ中のS含有量が0.01%以下では溶接金属の靱性、延性への悪影響が許容できるため、本発明では溶接ワイヤ中のS含有量は0.01%以下に制限する。本発明のように溶接金属の降伏応力YPが1100MPa以上となるような、特に高強度の溶接金属においては、Sの延性、靭性への悪影響がより顕著に表れるため、溶接ワイヤ中の含有量を0.005%以下に制限する方がより好ましい。   S is also an inevitable impurity element in the wire, and if it is excessively present in the weld metal, it deteriorates both the toughness and ductility of the weld metal, so it is preferable to reduce it as much as possible. If the S content in the welding wire is 0.01% or less, adverse effects on the toughness and ductility of the weld metal can be tolerated. Therefore, in the present invention, the S content in the welding wire is limited to 0.01% or less. Especially in high-strength weld metal where the yield stress YP of the weld metal is 1100 MPa or more as in the present invention, the adverse effect on ductility and toughness of S appears more significantly. It is more preferable to limit it to 0.005% or less.

Oも溶接ワイヤ中の不可避不純物元素であり、多量に存在すると、溶接ワイヤの製造性を阻害し、また、溶接金属中のO含有量を過剰に増加させて、溶接金属の延性、靱性を劣化させるため、好ましくない。本発明においては、溶接ワイヤの製造性、溶接金属の材質劣化を生じない範囲として、O含有量の上限を0.01%に制限する。   O is also an inevitable impurity element in the welding wire, and if present in a large amount, the manufacturability of the welding wire is hindered, and the O content in the weld metal is excessively increased to deteriorate the ductility and toughness of the weld metal. Therefore, it is not preferable. In the present invention, the upper limit of the O content is limited to 0.01% as a range in which the weld wire manufacturability and the weld metal quality do not deteriorate.

本発明において、目標とする1200MPa以上の引張強さTSに見合った1100MPa以上の降伏応力YPを確保するためには、上記成分に加えて、さらに溶接ワイヤ中に、Mo、W、Nb、V、および、Taのうちの1種または2種以上を以下の所定範囲で含有する必要がある。 In the present invention, in order to secure a yield stress YP of 1100 MPa or more commensurate with the target tensile strength TS of 1200 MPa or more, in addition to the above components, Mo, W, Nb, It is necessary to contain one or more of V and Ta within the following predetermined range.

Mo、W、Nb、V、Taはフェライト安定化元素であり、かつ析出物形成元素であり、定性的には以下の効果をほぼ同様に有する。   Mo, W, Nb, V, and Ta are ferrite stabilizing elements and precipitate forming elements, and qualitatively have the following effects in substantially the same manner.

Moは、溶接金属の引張強さTSを高めるための焼入性向上元素であるが、かつ、フェライト安定化元素であるために溶接金属の靭性を阻害する残留オーステナイト低減に有効な元素である。また、Moは、溶接金属中で微細炭化物を形成して、析出強化により降伏応力YPを高めると同時に析出物によるピン止め作用により、主としてマルテンサイト変態時に生じた可動転位の移動を妨げて降伏応力YPおよび靭性を向上させるためにも有効な元素である。これらの効果を十分発揮するためには、ワイヤ中にMoを0.1%以上含有させる必要がある。一方、Moは溶接ワイヤ中に4%を超えて含有させると、溶接金属中に粗大な析出物が生じて溶接金属の靭性を劣化させるとともに、熱間〜冷間での変形抵抗が過大となって加工性が劣化し、ワイヤ製造に困難を生じる。このため、本発明において、溶接ワイヤ中のMo含有量は0.1〜4%とする。 Mo is a hardenability improving element for increasing the tensile strength TS of the weld metal, and is an element effective for reducing retained austenite that inhibits the toughness of the weld metal because it is a ferrite stabilizing element. In addition, Mo forms fine carbides in the weld metal to increase the yield stress YP by precipitation strengthening, and at the same time, the pinning action by the precipitates hinders the movement of movable dislocations generated mainly during the martensitic transformation, thereby yielding stress. It is also an effective element for improving YP and toughness. In order to fully exhibit these effects, it is necessary to contain 0.1% or more of Mo in the wire. On the other hand, when Mo exceeds 4% in the welding wire, coarse precipitates are generated in the weld metal to deteriorate the toughness of the weld metal, and the deformation resistance between hot and cold becomes excessive. As a result, workability deteriorates, making wire production difficult. For this reason, in this invention, Mo content in a welding wire shall be 0.1 to 4%.

Wは、Moとほぼ同様に、溶接金属の引張強さTSを高めるための焼入性向上元素として作用し、かつ、フェライト安定化元素であるために溶接金属の靭性を阻害する残留オーステナイト低減に有効である。また、溶接金属中で微細炭化物を形成して、析出強化により降伏応力YPを高めると同時に析出物によるピン止め作用により、主としてマルテンサイト変態時に生じた可動転位の移動を妨げて靭性を向上させるために有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても0.1%以上含有させることが好ましい。一方、ワイヤ中にWを3%を超えて含有させると、熱間〜冷間での変形抵抗が過大となって加工性が劣化し、ワイヤ製造に困難を生じるため、本発明においては、溶接ワイヤ中にWを含有させる場合の含有量は0.1〜3%とするのが好ましい。   W, like Mo, acts as a hardenability improving element to increase the tensile strength TS of the weld metal and reduces the retained austenite which inhibits the toughness of the weld metal because it is a ferrite stabilizing element. It is valid. In order to improve the toughness by forming fine carbides in the weld metal and increasing the yield stress YP by precipitation strengthening, and at the same time, the pinning action by the precipitates hinders the movement of movable dislocations generated during martensitic transformation. It is effective for. In order to exhibit these effects, it is preferable to contain 0.1% or more even in consideration of combined effects with other elements having similar effects. On the other hand, if the wire contains more than 3% W, the deformation resistance between hot and cold becomes excessive and the workability deteriorates, resulting in difficulty in wire production. The content when W is contained in the wire is preferably 0.1 to 3%.

Nbもフェライト安定化元素であり、溶接金属の靭性を阻害する残留オーステナイト低減に有効である。また、溶接金属中で微細炭化物を形成して、析出強化により降伏応力YPを高めると同時に析出物によるピン止め作用により、主としてマルテンサイト変態時に生じた可動転位の移動を妨げて靭性を向上させるために有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても0.005%以上含有させることが好ましい。一方、ワイヤ中にNbを0.1%を超えて過剰に含有させると、粗大な析出物を形成して溶接金属の靭性を劣化させるため好ましくない。そのため、本発明においては、溶接ワイヤ中にNbを含有させる場合の含有量は0.005〜0.1%とするのが好ましい。   Nb is also a ferrite stabilizing element, and is effective in reducing retained austenite that inhibits the toughness of the weld metal. In order to improve the toughness by forming fine carbides in the weld metal and increasing the yield stress YP by precipitation strengthening, and at the same time, the pinning action by the precipitates hinders the movement of movable dislocations generated during martensitic transformation. It is effective for. In order to exhibit these effects, it is preferable to contain 0.005% or more even if the combined effect with other elements having similar effects is taken into consideration. On the other hand, if Nb is excessively contained in the wire in excess of 0.1%, coarse precipitates are formed and the toughness of the weld metal is deteriorated, which is not preferable. Therefore, in the present invention, the content when Nb is contained in the welding wire is preferably 0.005 to 0.1%.

Vもフェライト安定化元素であり、溶接金属の靭性を阻害する残留オーステナイト低減に有効である。また、溶接金属中で微細炭化物を形成して、析出強化により降伏応力YPを高めると同時に析出物によるピン止め作用により、主としてマルテンサイト変態時に生じた可動転位の移動を妨げて靭性を向上させるために有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても0.005%以上含有させることが好ましい。一方、ワイヤ中にVを0.5%を超えて溶接ワイヤ中に過剰に含有させると、粗大な析出物を形成して溶接金属の靭性を劣化させるため好ましくない。そのため、本発明においては、溶接ワイヤ中にVを含有させる場合の含有量は0.005〜0.5%とするのが好ましい。   V is also a ferrite stabilizing element, and is effective in reducing retained austenite which inhibits the toughness of the weld metal. In order to improve the toughness by forming fine carbides in the weld metal and increasing the yield stress YP by precipitation strengthening, and at the same time, the pinning action by the precipitates hinders the movement of movable dislocations generated during martensitic transformation. It is effective for. In order to exhibit these effects, it is preferable to contain 0.005% or more even if the combined effect with other elements having similar effects is taken into consideration. On the other hand, if V exceeds 0.5% in the wire and excessively contained in the welding wire, coarse precipitates are formed and the toughness of the weld metal is deteriorated. Therefore, in the present invention, the content when V is contained in the welding wire is preferably 0.005 to 0.5%.

Taもフェライト安定化元素であり、溶接金属の靭性を阻害する残留オーステナイト低減に有効である。また、溶接金属中で微細炭化物を形成して、析出強化により降伏応力を高めると同時に析出物によるピン止め作用により、主としてマルテンサイト変態時に生じた可動転位の移動を妨げて靭性を向上させるために有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても0.005%以上含有させることが好ましい。一方、ワイヤ中にTaを0.5%を超えて溶接ワイヤ中に過剰に含有させると、粗大な析出物を形成して溶接金属の靭性を劣化させるため好ましくない。そのため、本発明においては、溶接ワイヤ中にTaを含有させる場合の含有量は0.005〜0.5%とするのが好ましい。   Ta is also a ferrite stabilizing element, and is effective in reducing retained austenite that inhibits the toughness of the weld metal. Also, in order to improve the toughness by forming fine carbides in the weld metal and increasing the yield stress by precipitation strengthening, and at the same time, the pinning action by the precipitates hinders the movement of movable dislocations that occurred mainly during martensitic transformation. It is valid. In order to exhibit these effects, it is preferable to contain 0.005% or more even if the combined effect with other elements having similar effects is taken into consideration. On the other hand, if Ta exceeds 0.5% in the wire and excessively contained in the welding wire, coarse precipitates are formed and the toughness of the weld metal is deteriorated. Therefore, in the present invention, the content when Ta is contained in the welding wire is preferably 0.005 to 0.5%.

以上が本発明における溶接ワイヤの基本成分元素および制限すべき不可避不純物の含有量の限定理由である。これらの成分含有量の限定に加え、本発明では目標とする引張強さTSで1200MPa以上の高強度の溶接金属を得るために必要な焼入性を担保するために、さらに下記の(1)式で示す炭素当量Ceqを限定する必要がある。
Ceq=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Mo%]/4+[W%]/8 ・・・(1)
但し、[C%]、[Mn%]、[Si%]、[Ni%]、[Mo%]、[W%]は、C、Mn、Si、Ni、Mo、Wのそれぞれの含有量(質量%)を示す。
The above is the reason for limiting the contents of the basic component elements of the welding wire and the inevitable impurities to be limited in the present invention. In addition to the limitation of the content of these components, in the present invention, in order to ensure the hardenability necessary for obtaining a weld metal having a target tensile strength TS of 1200 MPa or more, the following (1 ) It is necessary to limit the carbon equivalent Ceq represented by the formula.
Ceq = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Mo%] / 4+ [W%] / 8 (1)
However, [C%], [Mn%], [Si%], [Ni%], [Mo%], and [W%] are the respective contents of C, Mn, Si, Ni, Mo, and W ( Mass%).

すなわち、溶接金像の引張強さTSが1200MPa以上とするためには、焼入性を十分に確保して溶接金属の変態組織をマルテンサイトないしはマルテンサイトとベイナイトの混合組織とすることが必須である。そのためには溶接ワイヤ中の上記基本成分の含有量を上記の範囲に限定した上で、さらに、溶接ワイヤ中の焼き入れ成分である、C、Si、Mn、Ni、Mo、Wの含有量を基に上記(1)式で求められる焼入性指標の炭素当量Ceqを0.8%以上に限定する必要がある。炭素当量Ceqが0.8未満の場合には、溶接金像の引張強さTSが1200MPa以上とするための焼入性が十分に確保できない。 That is, in order for the tensile strength TS of the weld metal image to be 1200 MPa or more, it is essential that the hardenability is sufficiently secured and the transformation structure of the weld metal is martensite or a mixed structure of martensite and bainite. It is. For that purpose, the content of the basic component in the welding wire is limited to the above range, and further, the content of C, Si, Mn, Ni, Mo, W, which are quenching components in the welding wire, is reduced. It is necessary to limit the carbon equivalent Ceq of the hardenability index obtained by the above formula (1) to 0.8% or more. When the carbon equivalent Ceq is less than 0.8, the hardenability for ensuring that the tensile strength TS of the weld metal image is 1200 MPa or more cannot be ensured.

上記(1)式で求められる炭素当量Ceqが大きくなるほど安定した焼入性が確保できるが、炭素当量Ceqが2%を超えて焼き入れ性が過剰になると、溶接金属の引張強さTSの向上効果は飽和する上、溶接金属中の残留オーステナイトの生成が増加すること等により降伏応力YPおよび靭性が劣化するため好ましくない。以上の理由により、本発明においては、上記(1)式で求められる溶接ワイヤの炭素当量Ceqを0.8〜2%に限定する。   Stable hardenability can be secured as the carbon equivalent Ceq determined by the above formula (1) increases, but when the carbon equivalent Ceq exceeds 2% and the hardenability becomes excessive, the tensile strength TS of the weld metal is improved. This is not preferable because the effect is saturated and the yield stress YP and toughness deteriorate due to an increase in the formation of retained austenite in the weld metal. For the above reason, in the present invention, the carbon equivalent Ceq of the welding wire obtained by the above equation (1) is limited to 0.8 to 2%.

また、溶接ワイヤ中の上記成分含有量の限定に加えて、本発明では目標とする1200MPa以上の溶接金属において、YPが1100MPa以上の高い降伏応力を確保するために、下記(2)式で示されるNb当量Nbeqを以下の所定範囲に限定するのが好ましい。
Nbeq=[Nb%]+[V%]/5+[Mo%]/20+[W%]/10+[Ta%]/5 ・・・(2)
但し、[Nb%]、[V%]、[Mo%]、[W%]、[Ta%]は、Nb、V、Mo、W、Taのそれぞれの含有量(質量%)を示す。
Further, in addition to the limitation of the content of the components in the welding wire, in the present invention, a target weld metal of 1200 MPa or more, in order to ensure a high yield stress with YP of 1100 MPa or more, the following formula (2) It is preferable to limit the Nb equivalent Nbeq represented by the following predetermined range.
Nbeq = [Nb%] + [V%] / 5+ [Mo%] / 20+ [W%] / 10+ [Ta%] / 5 (2)
However, [Nb%], [V%], [Mo%], [W%], and [Ta%] indicate the respective contents (mass%) of Nb, V, Mo, W, and Ta.

上記(2)式で示されるNb当量Nbeqが0.091%未満であると、上述したMo、W、Nb、V、Taの各含有量の規定範囲を満足していても、1100MPa以上に降伏応力YPを安定して向上することは困難となる。一方、上記(2)式で示されるNb当量Nbeqが0.5%超では、溶接金属の靭性が大きく劣化したり、溶接ワイヤの製造性を阻害する等、好ましくない。目標とする1200MPa以上の引張強さTSに見合った1100MPa以上の降伏応力YPを確保し、さらに、降伏比YR(降伏応力YP(0.2%耐力(PS))/引張強さTS)で0.8以上を確保するために上記(2)式で示されるNb当量Nbeqを0.091〜0.5%とする。 When the Nb equivalent Nbeq represented by the above formula (2) is less than 0.091 %, even if the specified ranges of the respective contents of Mo, W, Nb, V, and Ta described above are satisfied, 1100 MPa or more It is difficult to stably improve the yield stress YP. On the other hand, if the Nb equivalent Nbeq represented by the above formula (2) exceeds 0.5%, it is not preferable because the toughness of the weld metal is greatly deteriorated or the manufacturability of the welding wire is hindered. Yield stress YP of 1100 MPa or more commensurate with the target tensile strength TS of 1200 MPa or more is secured, and further, yield ratio YR (yield stress YP (0.2% proof stress (PS)) / tensile strength TS) in order to ensure at least 0.8, you the Nb equivalent Nbeq represented by formula (2) and from 0.091 to 0.5%.

以上が本発明の溶接ワイヤの基本成分元素および制限すべき不可避不純物の含有量の限定理由であるが、本発明の溶接ワイヤ中に、本発明の目的とする溶接金属の基本特性を阻害しない範囲内で特定の機械的特性を調整するために、必要に応じて、さらに、溶接ワイヤ中にCu、Cr、CoおよびBのうちの1種または2種以上を含有させることができる。   The above is the reason for limiting the basic component elements of the welding wire of the present invention and the contents of unavoidable impurities to be limited. In order to adjust a specific mechanical property, one or more of Cu, Cr, Co and B can be further contained in the welding wire as necessary.

Cuは溶接ワイヤがめっきされて使用される場合には不可避的にワイヤ及び溶接金属に含有される。Cuは強度向上には有効な元素であり、効果を発揮させるためには0.01%以上含有させる必要がある。ただし、過剰に含有されると、溶接金属の靭性の劣化や耐高温割れ性の劣化を招くため好ましくない。めっきとして含有される場合、あるいは強度向上のために意図的に含有する場合とも、溶接金属の靭性の劣化や耐高温割れ性の劣化を生じない上限として、本発明においては、ワイヤのCu含有量の上限は1.5%とする。   Cu is inevitably contained in the wire and the weld metal when the welding wire is plated and used. Cu is an element effective for improving the strength, and in order to exert the effect, it is necessary to contain 0.01% or more. However, if it is contained excessively, deterioration of the toughness and hot cracking resistance of the weld metal is not preferable. In the present invention, the Cu content of the wire is the upper limit that does not cause deterioration of the toughness or hot cracking resistance of the weld metal, even if it is contained as plating or intentionally contained for strength improvement. The upper limit is 1.5%.

Crは、焼入性を高めることにより高強度化に有効元素である。そのために溶接ワイヤ中に含有させる場合は0.01%以上必要である。一方、2%を超えて過剰に含有させると、ベイナイトやマルテンサイトを不均一に硬化させ、靱性を著しく劣化させるため、本発明においては、溶接ワイヤ中の含有量の上限を2%に定める。   Cr is an effective element for increasing strength by enhancing hardenability. Therefore, when it contains in a welding wire, 0.01% or more is required. On the other hand, when the content exceeds 2%, bainite and martensite are hardened unevenly and the toughness is remarkably deteriorated. Therefore, in the present invention, the upper limit of the content in the welding wire is set to 2%.

Coは、ベイナイト〜マルテンサイト組織において、極端に変態点が低下することを抑制することで、強度の調整、残留オーステナイトの生成抑制を介した降伏応力の確保に有効な元素である。該効果を確実に発揮するためには溶接ワイヤ中に0.01%以上含有させる必要がある。一方、6%を超えて含有させても効果が飽和し、製造コストが過大となるため、本発明においては、溶接ワイヤにCoを含有させる場合はその範囲を0.01〜6%とする。 Co is an element effective in securing the yield stress through the adjustment of strength and the suppression of the formation of retained austenite by suppressing the extreme reduction of the transformation point in the bainite-martensite structure. In order to exhibit this effect reliably, it is necessary to make it contain 0.01% or more in a welding wire. On the other hand, if the content exceeds 6%, the effect is saturated and the manufacturing cost becomes excessive. Therefore, in the present invention, when Co is contained in the welding wire, the range is set to 0.01 to 6%.

Bは、溶接金属中に適正量含有されると、固溶Nと結びついてBNを形成して、固溶Nの靭性に対する悪影響を減じる効果があり、また、焼入性を高めて強度向上に寄与し得る元素である。これらの効果を確実に発揮するためには、溶接ワイヤ中のB含有量は0.001%以上必要である。一方、溶接ワイヤ中のB含有量が0.015%超になると、溶接金属中のBが過剰となり、粗大なBNやFe 23 (C、B) 等のB化合物を形成して靭性を逆に劣化させるため、好ましくない。そこで、本発明においては、溶接ワイヤにBを含有させる場合は、0.001〜0.015%に限定する。 When B is contained in an appropriate amount in the weld metal, it is combined with solute N to form BN, and has the effect of reducing the adverse effect on the toughness of solute N, and also improves hardenability and improves strength. It is an element that can contribute. In order to exert these effects reliably, the B content in the welding wire needs to be 0.001% or more. On the other hand, when the B content in the welding wire exceeds 0.015%, the B in the weld metal becomes excessive and forms coarse B compounds such as BN and Fe 23 (C, B) 6 to reverse the toughness. It is not preferable because it deteriorates. Therefore, in the present invention, when B is contained in the welding wire, the content is limited to 0.001 to 0.015%.

溶接ワイヤ中に上述の基本成分に加えて、上記のCu、Cr、CoおよびBの1種または2種以上を含有させる場合は、上記(1)または下記(3)式で示される焼入性指標の炭素当量Ceqが0.8未満では、溶接金像の引張強さTSが1200MPa以上とするための焼入性が十分に確保できず、炭素当量Ceqが2%を超えると、降伏応力YPおよび靭性が劣化するため好ましくない。このため、上述と同様に炭素当量Ceqを0.8〜2%以上に限定する必要がある。
Ceq=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Cr%]/5+[Mo%]/4+[W%]/8 ・・・(3)
但し、[C%]、[Mn%]、[Si%]、[Ni%]、[Cr%]、[Mo%]、[W%]は、C、Mn、Si、Ni、Cr、Mo、Wのそれぞれの含有量(質量%)を示す。
In the case where the welding wire contains one or more of Cu, Cr, Co and B in addition to the basic components described above, the hardenability represented by the above formula (1) or the following formula (3) If the carbon equivalent Ceq of the index is less than 0.8, the hardenability for making the tensile strength TS of the weld metal image 1200 MPa or more cannot be ensured. If the carbon equivalent Ceq exceeds 2%, the yield stress YP Further, it is not preferable because toughness deteriorates. For this reason, it is necessary to limit carbon equivalent Ceq to 0.8-2% or more like the above.
Ceq = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Cr%] / 5+ [Mo%] / 4+ [W%] / 8 (3)
However, [C%], [Mn%], [Si%], [Ni%], [Cr%], [Mo%], and [W%] are C, Mn, Si, Ni, Cr, Mo, Each content (mass%) of W is shown.

さらに、溶接金属の延性、靭性を調整する目的で、必要に応じて、溶接ワイヤ中にさらにCa、Mg、および、REMのうちの1種または2種以上を含有させることができる。Ca、Mg、REMはいずれも硫化物の構造を変化させ、また溶接金属中での硫化物、酸化物のサイズを微細化して延性及び靭性向上に有効である。その効果を発揮するための下限の含有量は、いずれも0.0002%である。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性の劣化を招くため、また、溶接ビード形状の劣化、溶接性の劣化の可能性も生じるため、上限をいずれも0.01%とする。   Further, for the purpose of adjusting the ductility and toughness of the weld metal, one or more of Ca, Mg, and REM can be further contained in the welding wire as necessary. Ca, Mg, and REM are all effective in improving the ductility and toughness by changing the sulfide structure and reducing the size of the sulfide and oxide in the weld metal. The lower limit content for exhibiting the effect is 0.0002%. On the other hand, excessive content causes coarsening of sulfides and oxides, leading to deterioration of ductility and toughness, and also may cause deterioration of weld bead shape and weldability. 0.01%.

なお、以上の溶接ワイヤの化学組成は最終のワイヤ形態での値であり、該化学組成が本発明を満足していれば、溶接ワイヤが、ソリッドワイヤでも、鋼製外皮の中に金属または合金、フラックス等の粒状または粉状原料で充填されたワイヤであっても本発明の効果を損なうものではない。   The chemical composition of the above welding wire is a value in the final wire form, and if the chemical composition satisfies the present invention, even if the welding wire is a solid wire, a metal or alloy is contained in the steel outer shell. Even a wire filled with a granular or powdery raw material such as flux does not impair the effects of the present invention.

本発明の効果を実施例によりさらに詳細に説明する。種々の化学組成のガスシールドアーク溶接用ソリッドワイヤを用いて図1に示すような継手を作製し、丸棒引張試験、2mmVノッチシャルピー衝撃試験により溶接金属の強度、靱性を評価した。鋼板は板厚25mmの、降伏応力YP:1100MPa、引張強さTS:1200MPa級の鋼板を用い、V形開先の突き合わせ継手とし、表1の条件で、表2の化学組成を有する直径1.2mmのソリッドワイヤを用いたAr+20%CO ガスシールドアーク溶接により多層盛溶接を行った。 The effects of the present invention will be described in more detail with reference to examples. 1 were prepared using solid wires for gas shielded arc welding with various chemical compositions, and the strength and toughness of the weld metal were evaluated by a round bar tensile test and a 2 mm V notch Charpy impact test. The steel plate is a steel plate of 25 mm thickness, yield stress YP: 1100 MPa, tensile strength TS: 1200 MPa class, V-shaped groove butt joint, and under the conditions of Table 1, the diameter of 1. Multi-layer welding was performed by Ar + 20% CO 2 gas shielded arc welding using a 2 mm solid wire.

溶接後の継手の溶接金属から試験片を採取し、機械的性質を調査した。引張試験は、平行部径が6mm、平行部長さが32mmの丸棒引張試験片を鋼板の板厚中心、溶接金属幅中央から、試験片長手方向が溶接ビード長手方向に平行になるように採取して室温において行った。全ての溶接金属において、明確な降伏点、降伏伸びを生じなかったため、降伏応力YPとしては0.2%耐力(0.2%PS)を採用した。靭性は2mmVノッチシャルピー衝撃試験の−40℃における平均吸収エネルギーvE−40(3本の平均値)により評価した。試験片は図1に示すように、試験片の中心が鋼板の板厚1/4位置で、ノッチが溶接金属の幅方向中央がくるように採取した。 A specimen was taken from the weld metal of the joint after welding and investigated for mechanical properties. In the tensile test, a round bar tensile test piece having a parallel part diameter of 6 mm and a parallel part length of 32 mm was sampled from the steel plate thickness center and the weld metal width center so that the test piece longitudinal direction was parallel to the weld bead longitudinal direction. At room temperature. Since all the weld metals did not yield a clear yield point and yield elongation, 0.2% proof stress (0.2% PS) was adopted as the yield stress YP. The toughness was evaluated by the average absorbed energy vE- 40 (average value of three) at −40 ° C. in a 2 mmV notch Charpy impact test. As shown in FIG. 1, the test piece was sampled so that the center of the test piece was at the position ¼ of the steel plate thickness and the notch was in the center in the width direction of the weld metal.

表2に溶接ワイヤの化学組成及び機械試験結果を示す。継手A1〜継手A11は本発明の化学組成を有する溶接ワイヤを用いて溶接した継手である。継手A1〜継手A11の溶接金属の強度は、引張強さTSが1200MPa以上で、かつ、降伏応力YP(0.2%耐力PS)も1100MPa以上と、十分な強度を達成している。また、溶接金属の靭性についても、0.2%耐力PSが1100MPa以上の極めて高い強度の溶接金属であって、全て−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギー(vE−40)で40J以上が得られており、十分な低温靭性を達成している。 Table 2 shows the chemical composition and mechanical test results of the welding wire. Fittings A1~ joint A 11 is welded joints using the welding wire having the chemical composition of the present invention. Strength of the weld metal of the joint A1~ joint A 11 is a tensile strength TS of 1200 MPa or more, and the yield stress YP (0.2% proof stress PS) also 1100 MPa or higher and has achieved sufficient strength . Also, the toughness of the weld metal is a very high strength weld metal with a 0.2% proof stress PS of 1100 MPa or more, all of which are absorbed energy (vE- 40 ) by a 2 mmV notch Charpy impact test at -40 ° C. or 40J are obtained, that has achieved sufficient low-temperature toughness.

一方、継手B1〜B14は本発明の要件を満足しないワイヤにより溶接した比較例であり、溶接ワイヤの組成が本発明を満足していないために、強度あるいは/及び靭性が十分でない。   On the other hand, the joints B1 to B14 are comparative examples welded with a wire that does not satisfy the requirements of the present invention, and the composition of the welding wire does not satisfy the present invention, and therefore the strength and / or toughness is not sufficient.

継手B1は、溶接ワイヤのMo含有量が過大であるため、粗大な析出物が生じて溶接金属の靭性vE−40が13Jであり、著しく劣化した。また、ワイヤの熱間〜冷間での変形抵抗が過大となって加工性も劣化し、ワイヤ製造にも困難を生じた。 In the joint B1, since the Mo content of the welding wire is excessive, coarse precipitates are generated, and the toughness vE- 40 of the weld metal is 13J, which is remarkably deteriorated. In addition, the deformation resistance of the wire between hot and cold is excessive, the workability is deteriorated, and the wire production becomes difficult.

継手B2は、溶接ワイヤのC含有量が過大であるため、溶接金属の靭性vE−40が15Jであり、本発明例に比べて大幅に劣化している。 In the joint B2, since the C content of the welding wire is excessive, the toughness vE- 40 of the weld metal is 15 J, which is greatly deteriorated compared to the example of the present invention.

継手B3は、溶接ワイヤのCr含有量が過大であるため、ベイナイトやマルテンサイトを不均一に硬化させ、溶接金属の靭性vE−40が20Jであり、著しく劣る。 In the joint B3, since the Cr content of the welding wire is excessive, bainite and martensite are hardened unevenly, and the weld metal has a toughness vE- 40 of 20 J, which is extremely inferior.

継手B4は、溶接ワイヤのP含有量が過大であるため、やはり、溶接金属の靭性vE−40が14Jであり、靭性の劣化が著しい。 In the joint B4, since the P content of the welding wire is excessive, the weld metal has a toughness vE- 40 of 14J, and the deterioration of the toughness is remarkable.

継手B5は、溶接ワイヤのS含有量が過大であるため、溶接金属の靭性vE−40が21Jであり、本発明例に比べて明らかに靭性が劣る。 In the joint B5, since the S content of the welding wire is excessive, the toughness vE- 40 of the weld metal is 21 J, and the toughness is clearly inferior to the example of the present invention.

継手B6は、溶接ワイヤのTi含有量が過小であるため、溶接金属の組織微細化が十分でなく、そのため、溶接金属の靭性vE−40が22Jであり、靭性が劣る。 In the joint B6, since the Ti content of the welding wire is excessively small, the microstructure of the weld metal is not sufficiently refined. Therefore, the toughness vE- 40 of the weld metal is 22J, and the toughness is inferior.

継手B7は、溶接ワイヤの炭素当量CeqおよびNb当量Nbeqが過小であるため、溶接金属の引張強さTSおよび降伏応力YP(0.2%PS)が本発明の目標値(TS≧1200MPa、YS≧1100MPa)を下回っており、引張強さ950MPa級以上の高強度鋼を溶接するためのワイヤとして溶接金属の十分な強度が達せられていない。   In the joint B7, since the carbon equivalent Ceq and the Nb equivalent Nbeq of the welding wire are too small, the tensile strength TS and the yield stress YP (0.2% PS) of the weld metal are the target values (TS ≧ 1200 MPa, YS ≧ 1100 MPa), and sufficient strength of the weld metal is not achieved as a wire for welding high-strength steel having a tensile strength of 950 MPa or higher.

継手B8は、逆に溶接ワイヤの炭素当量Ceqが過大であるため、溶接金属の引張強さTSの割に降伏応力YP(0.2%PS)が1015MPaと低く不十分であり、溶接金属の靭性も17Jと低値である。また、溶接金属の引張強さTSに対して降伏応力YP(0.2%PS)が低すぎるため、溶接金属の降伏比YRも0.69と低くなった。   In the joint B8, on the contrary, since the carbon equivalent Ceq of the welding wire is excessive, the yield stress YP (0.2% PS) is as low as 1015 MPa for the weld metal tensile strength TS, which is insufficient. The toughness is also as low as 17J. Moreover, since the yield stress YP (0.2% PS) was too low with respect to the tensile strength TS of the weld metal, the yield ratio YR of the weld metal was also as low as 0.69.

継手B9は、溶接ワイヤのNb当量Nbeqが過小であるため、溶接金属の降伏応力YP(0.2%PS)が741MPaと本発明例に比べて低くなった。また、溶接金属の引張強さTSに対して降伏応力YP(0.2%PS)が低すぎるため、溶接金属の降伏比YRも0.70と低くなった。   In the joint B9, since the Nb equivalent Nbeq of the welding wire is too small, the yield stress YP (0.2% PS) of the weld metal is 741 MPa, which is lower than that of the example of the present invention. Moreover, since the yield stress YP (0.2% PS) was too low with respect to the tensile strength TS of the weld metal, the yield ratio YR of the weld metal was also as low as 0.70.

継手B10は、溶接ワイヤのNb当量Nbeqが過大な場合であり、溶接金属の靭性vE−40が11Jであり、著しく靭性が劣化した。 In the joint B10, the Nb equivalent Nbeq of the welding wire was excessive, the toughness vE- 40 of the weld metal was 11 J, and the toughness was significantly deteriorated.

継手B11は、溶接ワイヤにMo、W、Nb、V、Taのいずれも含有されていないために溶接金属の降伏応力YPが784MPaであり、降伏応力が著しく低下した。 In the joint B11, since any of Mo, W, Nb, V, and Ta was not contained in the welding wire, the yield stress YP of the weld metal was 784 MPa, and the yield stress was significantly reduced.

継手B12は、溶接ワイヤにMoは含有されているものの、その含有量が過小であるために溶接金属の降伏応力YPが788MPaであり、降伏応力が著しく低下した。   In the joint B12, although Mo was contained in the welding wire, the yield stress YP of the weld metal was 788 MPa because the content was too small, and the yield stress was significantly reduced.

継手B13は、溶接ワイヤにNbは含有されているものの、その含有量が過小であるために溶接金属の降伏応力YPが784MPaであり、降伏応力が著しく低下した。   In the joint B13, although Nb was contained in the welding wire, the yield stress YP of the weld metal was 784 MPa because the content was too small, and the yield stress was significantly reduced.

継手B14は、溶接ワイヤにMo、Nbが含有されているが、その含有量が両元素とも過小であるために溶接金属の降伏応力YPが765MPaであり、降伏応力が著しく低下した。   In the joint B14, although Mo and Nb are contained in the welding wire, since the contents of both elements are too small, the yield stress YP of the weld metal is 765 MPa, and the yield stress is significantly reduced.

以上の実施例からも、本発明によれば、引張強さTSが1200MPa級以上、降伏応力YPが1100MPa級以上の高張力鋼板におけるガスシールドアーク溶接全般において、引張強さTS、降伏応力YP、降伏比YR(YP/TS)、および、靱性vE−40の全てに優れた溶接金属を得ることができ、鋼構造物で適用される高張力鋼板の溶接において強度および靭性が高く安全性に優れた溶接継手を提供することが可能であることが明らかである。 Also from the above examples, according to the present invention, the tensile strength TS, the yield stress YP, in general in gas shielded arc welding in a high-tensile steel plate having a tensile strength TS of 1200 MPa class or higher and a yield stress YP of 1100 MPa class or higher, Weld metal with excellent yield ratio YR (YP / TS) and toughness vE- 40 can be obtained, and the strength and toughness are high and the safety is excellent in the welding of high-tensile steel plates applied in steel structures. Obviously, it is possible to provide a welded joint.

Figure 0004441372
Figure 0004441372

Figure 0004441372
Figure 0004441372

実施例に用いた溶接継手の開先形状と2mmVノッチシャルピー衝撃試験片の採取要領とを示す模式図である。It is a schematic diagram which shows the groove shape of the weld joint used for the Example, and the extraction | collection point of a 2mmV notch Charpy impact test piece.

1 鋼板
2 裏当金
3 溶接ビード
4 2mmVノッチシャルピー衝撃試験片
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Backing metal 3 Weld bead 4 2mmV notch Charpy impact test piece

Claims (3)

溶接ワイヤの組成が、質量%で、
C :0.06〜0.2%、
Si:0.2〜1%、
Mn:0.5〜2.5%、
Al:0.002〜0.1%、
Ti:0.005〜0.3%、
N:0.001〜0.015%、
Ni:0.5〜6%
を含み、
P:0.02%以下、
S:0.01%以下、
O:0.01%以下
に制限し、
さらに、
Mo:0.1〜4%、
W:0.1〜3%、
Nb:0.005〜0.1%、
V:0.005〜0.5%、および、
Ta:0.005〜0.5%
のうちの1種または2種以上を含有し、
下記(1)式で示される炭素当量(Ceq)が0.8〜2%であり、かつ下記(2)式で示されるNb当量(Nbeq)が0.091〜0.5%であり、残部が不可避不純物ならびにFeからなることを特徴とする高強度高靭性ガスシールドアーク溶接用ワイヤ。
Ceq=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Mo%]/4+[W%]/8 ・・・(1)
Nbeq=[Nb%]+[V%]/5+[Mo%]/20+[W%]/10+[Ta%]/5 ・・・(2)
但し、[C%]、[Mn%]、[Si%]、[Ni%]、[Mo%]、[W%]、[Nb%]、[V%]、[Ta%]は、C、Mn、Si、Ni、Mo、W、Nb、V、Taのそれぞれの含有量(質量%)を示す。
The composition of the welding wire is mass%,
C: 0.06 to 0.2%,
Si: 0.2-1%,
Mn: 0.5 to 2.5%
Al: 0.002 to 0.1%,
Ti: 0.005 to 0.3%,
N: 0.001 to 0.015%,
Ni: 0.5-6%
Including
P: 0.02% or less,
S: 0.01% or less,
O: limited to 0.01% or less,
further,
Mo: 0.1 to 4%
W: 0.1 to 3%
Nb: 0.005 to 0.1%,
V: 0.005-0.5% and
Ta: 0.005 to 0.5%
Containing one or more of
The carbon equivalent (Ceq) represented by the following formula (1) is 0.8 to 2%, and the Nb equivalent (Nbeq) represented by the following formula (2) is 0.091 to 0.5%, and the balance A wire for high-strength, high-toughness gas shielded arc welding, characterized by comprising inevitable impurities and Fe.
Ceq = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Mo%] / 4+ [W%] / 8 (1)
Nbeq = [Nb%] + [V%] / 5+ [Mo%] / 20+ [W%] / 10+ [Ta%] / 5 (2)
However, [C%], [Mn%], [Si%], [Ni%], [Mo%], [W%], [Nb%], [V%], and [Ta%] are C, Each content (mass%) of Mn, Si, Ni, Mo, W, Nb, V, and Ta is shown.
質量%で、さらに、
Cu:0.01〜1.5%、
Cr:0.01〜2%、
Co:0.01〜6%、および、
B:0.001〜0.015%
のうちの1種または2種以上を含有し、下記(3)式で示される炭素当量(Ceq)が0.8〜2%であることを特徴とする請求項1に記載の高強度高靭性ガスシールドアーク溶接用ワイヤ。
Ceq=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Cr%]/5+[Mo%]/4+[W%]/8 ・・・(3)
但し、[C%]、[Mn%]、[Si%]、[Ni%]、[Cr%]、[Mo%]、[W%]は、C、Mn、Si、Ni、Cr、Mo、Wのそれぞれの含有量(質量%)を示す。
In mass%,
Cu: 0.01 to 1.5%,
Cr: 0.01-2%
Co: 0.01-6%, and
B: 0.001 to 0.015%
The high-strength, high-toughness according to claim 1, wherein the carbon equivalent (Ceq) represented by the following formula (3) is 0.8 to 2%. Gas shielded arc welding wire.
Ceq = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Cr%] / 5+ [Mo%] / 4+ [W%] / 8 (3)
However, [C%], [Mn%], [Si%], [Ni%], [Cr%], [Mo%], and [W%] are C, Mn, Si, Ni, Cr, Mo, Each content (mass%) of W is shown.
質量%で、さらに、
Ca:0.0002〜0.01%、
Mg:0.0002〜0.01%、および、
REM:0.0002〜0.01%
のうちの1種または2種以上を含有することを特徴とする請求項1または2に記載の高強度高靭性ガスシールドアーク溶接用ワイヤ。
In mass%,
Ca: 0.0002 to 0.01%,
Mg: 0.0002 to 0.01%, and
REM: 0.0002 to 0.01%
The high-strength, high-toughness gas shielded arc welding wire according to claim 1, wherein the wire contains one or more of them.
JP2004298948A 2004-10-13 2004-10-13 High strength and high toughness gas shielded arc welding wire Active JP4441372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004298948A JP4441372B2 (en) 2004-10-13 2004-10-13 High strength and high toughness gas shielded arc welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004298948A JP4441372B2 (en) 2004-10-13 2004-10-13 High strength and high toughness gas shielded arc welding wire

Publications (2)

Publication Number Publication Date
JP2006110581A JP2006110581A (en) 2006-04-27
JP4441372B2 true JP4441372B2 (en) 2010-03-31

Family

ID=36379526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004298948A Active JP4441372B2 (en) 2004-10-13 2004-10-13 High strength and high toughness gas shielded arc welding wire

Country Status (1)

Country Link
JP (1) JP4441372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175019A (en) * 2014-08-22 2014-12-03 首钢总公司 Gas shield solid welding wire for circumferential weld of X90 pipeline steel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896691B2 (en) * 2006-12-07 2012-03-14 新日本製鐵株式会社 Solid wire for gas shielded arc welding
JP5157606B2 (en) * 2008-04-10 2013-03-06 新日鐵住金株式会社 TIG welding method of high strength steel using flux cored wire
CN104271310B (en) 2012-05-08 2016-04-27 新日铁住金株式会社 Ultra-high tensile steel welding flux-cored wire
CN103121148B (en) * 2012-10-23 2016-07-13 中国石油天然气集团公司 For welding welding material and the welding procedure of X100 level pipe line steel
DE112013007707B4 (en) 2013-12-24 2024-02-01 Posco Co., Ltd Ultra-high strength gas metal arc welding joint with excellent notched impact strength and solid wire to produce the same
JP6386918B2 (en) * 2015-01-08 2018-09-05 日鐵住金溶接工業株式会社 Solid wire for gas shielded arc welding
KR20230040512A (en) * 2021-09-16 2023-03-23 주식회사 포스코 Wire for gas-shielded arc welding and welded member having excellent fatigue resistance properties and resistance to deformation due to residual stress of weld zone and method of manufacturing the same
CN114799611B (en) * 2022-05-09 2024-03-19 南京钢铁股份有限公司 High-strength welding wire with 1300 MPa-grade yield strength and wire rod
CN115365697A (en) * 2022-08-23 2022-11-22 中国船舶重工集团公司第七二五研究所 Gas-shielded solid welding wire for polar low-temperature steel and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175019A (en) * 2014-08-22 2014-12-03 首钢总公司 Gas shield solid welding wire for circumferential weld of X90 pipeline steel

Also Published As

Publication number Publication date
JP2006110581A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP5387168B2 (en) Welding wire for high strength steel with flux and manufacturing method thereof
JP4879696B2 (en) High yield strength, high toughness, flux-cored wire for gas shielded arc welding
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
KR101846759B1 (en) Steel plate and method for manufacturing same
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
JP2011020154A (en) Flux-cored wire for gas shielded welding
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5005395B2 (en) Welding wire for high strength and toughness steel
JP2017202494A (en) Austenitic heat-resistant steel weld metal and weld joint having the same
WO2014119189A1 (en) Coated electrode
EP3533891A1 (en) Steel for high heat input welding
KR20160127808A (en) High-tensile-strength steel plate and process for producing same
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
WO2015159806A1 (en) Welded metal having excellent strength, toughness and sr cracking resistance
TWI526545B (en) Steel material for welding
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
WO2014178359A1 (en) High-strength, low-specific gravity steel plate having excellent spot welding properties
JP5849892B2 (en) Steel material for large heat input welding
KR101937005B1 (en) Weld joint
JP4469226B2 (en) Solid wire for gas shielded arc welding for underlay welding.
EP3378962B1 (en) High heat input welded steel material
JP4326020B1 (en) High-strength steel plate with excellent stress-relieving annealing characteristics and low-temperature joint toughness
CN113490571B (en) Welding material for high Cr ferrite heat-resistant steel
JP4539100B2 (en) Super high heat input welded heat affected zone
CN111788325B (en) High Mn steel and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4441372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350