JP4110652B2 - Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness - Google Patents

Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness Download PDF

Info

Publication number
JP4110652B2
JP4110652B2 JP00038499A JP38499A JP4110652B2 JP 4110652 B2 JP4110652 B2 JP 4110652B2 JP 00038499 A JP00038499 A JP 00038499A JP 38499 A JP38499 A JP 38499A JP 4110652 B2 JP4110652 B2 JP 4110652B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
temperature range
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00038499A
Other languages
Japanese (ja)
Other versions
JP2000199011A (en
Inventor
教次 板倉
光浩 岡津
文丸 川端
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP00038499A priority Critical patent/JP4110652B2/en
Publication of JP2000199011A publication Critical patent/JP2000199011A/en
Application granted granted Critical
Publication of JP4110652B2 publication Critical patent/JP4110652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、材質ばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法に関し、特に建築、海洋構造物、パイプ、造船、貯蔵、土木および建築機械等の分野で使用される、厚鋼板、鋼帯、形鋼または棒鋼などの鋼材についてその材質ばらつきを低減すると共に、溶接部靱性の有利な向上を図ろうとするものである。
【0002】
【従来の技術】
厚鋼板に代表される肉厚の鋼材は、上述したように様々な分野で使用され、これまでにもその高強度化や高靱性化など種々の特性改善が図られてきたが、近年では、これらの特性が厚み方向において均一でかつ鋼材間でのばらつきが小さいことが要求されている。
【0003】
例えば、「鉄と鋼 第74年(1988)第6号」の第11〜21頁には、建築物の高層化が進むにつれ、巨大地震に対して建築物の変形によって振動エネルギーを吸収し倒壊を防ぐ設計が採られるようになってきたことが報告されている。具体的には、地震発生時に建築物の骨組みを所定形状で崩壊させ、この骨組み材の塑性化によって建物の倒壊を防ぐものである。
すなわち、地震発生時に建築物の骨組みが、設計者の意図した挙動を示すことが前提になり、建築物の柱や梁などの鋼材の耐力比を設計者が完全に把握していることが必要となる。
従って、柱や梁などに用いる鋼板やH形鋼などの鋼材は均質であることが不可欠であり、鋼材の強度ばらつきは大きな問題となる。
【0004】
ここで、建築や造船などに供する鋼材には、高張力かつ高靱性が要求されるところから、この種の鋼材は、制御圧延制御冷却法いわゆるTMCP法に従って製造されるのが通例である。
しかしながら、このTMCP法によって肉厚の鋼材を製造した場合、圧延後の冷却処理における冷却速度が厚み方向あるいは各鋼材間で異なることに起因して鋼組織が変化し、得られた鋼材の厚み方向あるいは各鋼材間で材質にばらつきが発生する場合がある。
材質のばらつきとしては、とくに厚鋼板において厚み方向に現れるものの他、H形鋼におけるウェブおよびフランジ間での冷却が不均一になってウェブおよびフランジ間に現れるもの、または各ロット間に現れるもの等がある。
【0005】
そこで、特開昭63−179020号公報では、成分、圧下量、冷却速度および冷却終了温度を制御することによって、板厚方向断面における硬度差を小さくする方法を提案している。
しかしながら、厚鋼板、とりわけ50mmを超えるような極厚鋼板の製造では、板厚方向における冷却速度分布が必然的に生じるために、上記の方法によって板厚方向断面における硬度差を抑制することは難しい。
【0006】
同様に、特開昭61-67717号公報では、極低Cとすることによって、板厚方向の強度差を大幅に低減しているが、同公報の図3に示されるように、特に極厚鋼板において不可避に生じる、冷却速度の変化に伴う強度のばらつきを解消するまでには至っていない。
【0007】
さらに、特開昭58-77528号公報には、NbおよびBの複合添加によって安定した硬さ分布が得られることが記載されているが、組織をベイナイトとするために冷却速度を15〜40℃/sの範囲に制御する必要がある。
しかしながら、冷却速度を板厚中心部においても厳密に制御することが難しいところから、板厚方向に均一な組織が得られず、強度がばらついたり、島状マルテンサイトが生成して、延性や靱性が劣化するという問題があった。
【0008】
さらに、溶接性を向上させる手法として、特開昭54−132421号公報には、極低炭素化を図ると共に、ラインパイプ向けの高靱性を得るために 800℃以下の仕上温度で圧延を行って、高張力ベイナイト鋼を製造する方法が開示されている。
しかしながら、この方法は、低温域で圧延を終了するため、生産性が低いという問題があり、また厚板等において条切りを必要とする場合には、条切りに伴う歪みの問題も残されていた。
【0009】
これに対し、発明者らは、特開平8−144019号公報において、極低C化することによって材質のばらつきを少なくした鋼材の製造方法を開示し、併せて0℃における溶接熱影響部(HAZ)の耐衝撃特性に優れる鋼材を提案した。
しかしながら、この鋼材でも、近年の高強度化に充分に対応できない場合があり、より一層の高強度化が望まれていた。
【0010】
【発明が解決しようとする課題】
この発明は、上記の要望に有利に応えるもので、材質ばらつきが少なくかつ HAZの耐衝撃特性に優れることは言うまでもなく、さらなる高強度化を達成し得る鋼材の有利な製造方法について、提案することを目的とする。
【0011】
【課題を解決するための手段】
さて、発明者らの研究によれば、厚肉の鋼材、その典型である厚鋼板の材質がばらつく原因は、冷却過程における、鋼板表面から中心部までの厚み方向の冷却速度の大幅な変化あるいは製造条件のばらつきによる冷却速度の変化から、鋼組織に変動が生じることに起因していることが判明した。
このような組織変動を回避するためには、広い冷却速度範囲で均質な組織を得ることが肝要である。
【0012】
そこで、発明者らは、製造条件が変化しても均質な組織を得る手法に関して、原点に立戻って検討を重ねたところ、合金成分を新たに設計し直すことにより、冷却速度の変化にかかわらず、厚み方向の組織を一定として、材質のばらつきを格段に低減できることの知見を得た。
すなわち、極低Cの下に、Nb、TiおよびBを適正量添加することによって、組織を冷却速度に依存することなくベイナイト組織に安定して変化させることができ、しかもこの鋼は、ベイナイト主体組織であるため十分な強度が得られることを見出した。
また、C量を極端に少なくすると共に、Pcm(溶接割れ感受性組成)を小さくすることが、HAZ 靱性を改善するのに有効であることを見い出した。
さらに、Crを適正量添加し、かつ熱間圧延におけるパス時間を規制することによって、なお一層の高強度化を達成できることも併せて見い出した。
この発明は、上記の知見に立脚するものである。
【0013】
すなわち、この発明の要旨構成は次のとおりである。
(1) C:0.001 wt%以上、0.030 wt%未満、
Si:0.60wt%以下、
Mn:0.8 〜3.0 wt%、
Cr:0.1 〜0.7 wt%、
Nb:0.005 〜0.200 wt%、
Ti:0.005 〜0.200 wt%、
B:0.0003〜0.0050wt%および
Al:0.05wt%以下
を含有し、残部は Fe および不可避的不純物である組成の鋼片を、Ac3〜1350℃の温度に加熱後、熱間圧延を施すに当り、 980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の圧延パスを 60 %以上行い、次いで空冷または加速冷却することを特徴とする材質ばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
【0014】
(2)C:0.001 wt%以上、0.030 wt%未満、
Si:0.60wt%以下、
Mn:0.8 〜3.0 wt%、
Cr:0.1 〜0.7 wt%、
Nb:0.005 〜0.200 wt%、
Ti:0.005 〜0.200 wt%、
B:0.0003〜0.0050wt%および
Al:0.05wt%以下
を含有し、残部は Fe および不可避的不純物である組成の鋼片を、Ac3〜1350℃の温度に加熱後、熱間圧延を施すに当り、 980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の圧延パスを 60 %以上行い、次いで空冷または加速冷却したのち、 500℃以上かつ 800℃未満の温度域に再加熱して保持する析出処理を行うことを特徴とする材質ばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
【0015】
(3) C:0.001 wt%以上、0.030 wt%未満、
Si:0.60wt%以下、
Mn:0.8 〜3.0 wt%、
Cr:0.1 〜0.7 wt%、
Nb:0.005 〜0.200 wt%、
Ti:0.005 〜0.200 wt%、
B:0.0003〜0.0050wt%および
Al:0.05wt%以下
を含有し、残部は Fe および不可避的不純物である組成の鋼片を、Ac3〜1350℃の温度に加熱後、熱間圧延を施すに当り、 980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の圧延パスを 60 %以上行い、次いで析出温度域である 500℃以上かつ 800℃未満の所定の温度域まで 0.1〜80℃/sの冷却速度で加速冷却したのち、この析出温度域において30s以上等温保持するかまたは当該温度域内において1℃/s以下の冷却速度で30s以上冷却する析出処理を行い、その後冷却することを特徴とする材質ばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
【0016】
(4) 上記(1) 、(2) または(3) において、鋼材がさらに
Cu:0.05〜3.0 wt%、
V:0.005 〜0.20wt%
Ni:3.0 wt%以下、
Mo:0.5 wt%以下、
W:0.5 wt%以下、
Zr:0.5 wt%以下、
REM :0.02wt%以下および
Ca:0.02wt%以下
のうちから選んだ少なくとも1種を含有することを特徴とするばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
【0017】
ここで、上記圧延パスとは、圧延機のロールに噛み込まれ噛み抜かれるまでの圧延動作をいう。圧延とは、この複数回の圧延動作によって構成される。また、圧延パス間時間とは、圧延機ロールに噛み込まれたn回めのパスから、そのパス(圧延)の後、次の(n+1)回め噛み込まれるパスまでの時間をいう。
【0018】
【発明の実施の形態】
まず、この発明において鋼材の成分組成を上記の範囲に限定した理由について説明する。
C:0.001 wt%以上、0.030 wt%未満
Cは、冷却速度に依存せずにベイナイト単相とするために、0.001 wt%以上が必要である。一方、0.030 wt%以上では、ベイナイト組織内部あるいはラス境界に炭化物が析出し、冷却速度の変化に伴い炭化物の析出形熊が変化するため、広い冷却速度範囲で一定の強度を得ることが困難になる。
【0019】
Si:0.60wt%以下
Siは、0.60wt%を超えると溶接部靱性が劣化するため、0.60wt%以下の範囲に限定する。
【0020】
Mn:0.8 〜3.0 wt%
Mnは、ベイナイト単相、特にベイナイト組織の体積率を90%以上にするためには少なくとも 0.8wt%の添加が必要であるが、3.0 wt%を超える添加は溶接による硬化が著しく高まって溶接熱影響部(HAZ)における靱性劣化を招くため、0.8 〜3.0 wt%の範囲とする。
【0021】
Nb:0.005 〜0.20wt%
Nbは、特にAr3を下げ低冷却速度側までベイナイト生成範囲を広げる効果があり、安定してベイナイト組織を得るために必要である。また、析出強化に寄与し、さらには靱性の向上にも有効である。これらの効果を期待するには 0.005wt%以上が必要であるが、0.20wt%を超えると靱性の向上効果は飽和に達し、むしろ不経済になるため、0.20wt%を上限とする。
【0022】
Ti:0.005 〜0.20wt%
Tiは、鋼中のNを固定し固溶B量を増加させるとともに、Ar3を下げてベイナイト組織の形成に寄与する。また、生成したTiNは、溶接部靱性を向上させ、かつ析出強化にも有効に寄与する。これらの効果は、含有量が 0.005wt%未満では乏しく、一方0.20wt%を超えると靱性が劣化するため、 0.005〜0.20wt%の範囲とする。
【0023】
B:0.0003〜0.0050wt%
Bは、ベイナイト単相とするために0.0003wt%以上が必要であるが、0.0050wt%をこえると、BNが析出して溶接性が劣化するため、0.0003〜0.0050wt%の範囲に限定する。
【0024】
Al:0.05 wt %以下
Alは、脱酸のために好ましくは0.010wt %以上で添加するが、0.05 wt %をこえると溶接性が損なわれるため、0.05 wt %以下とする。
【0025】
Cr:0.1 〜0.7 wt%
Crは、この発明において重要な元素である。すなわち、図1に、Cr含有量と引張強さとの関係について調べた結果を示す。なお、Cr以外の成分は、C:0.015 wt%、Si:0.25wt%、Mn:1.55wt%、Nb:0.04wt%、Ti:0.015wt %、B:0.0015wt%およびAl:0.03wt%を含み、残部はFeおよび不可避的不純物である。
【0026】
同図から明らかなように、Crを0.1 wt%以上で添加することによって引張強さが上昇するが、このCrの添加効果を得るには、熱間圧延条件を適正化する必要がある。すなわち、熱間圧延の980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、その圧延パス間時間を5s以下とする短時間圧延パスが60%以上の条件下で製造した場合に、Cr含有量を0.1 wt%以上にすることによって高強度化が達成されるのである。これは、熱間圧延中に導入される加工歪みが、0.1wt %以上のCrを添加し、かつ圧延パス間時間を短くした場合に、解放されずに残る結果、強度上昇に寄与することができたものと考えられる。なお、Cr含有量が0.7 wt%をこえると、強度上昇の効果が飽和し、一方で溶接部靱性の劣化をもたらすため、Cr含有量は0. 1〜0.7 wt%の範囲とした。
【0027】
上記したような鋼組成に成分調整をすることによって、製造条件とくに冷却速度にほとんど依存することなしに、均質な組成、具体的には90%以上がベイナイ卜の組成を得ることができる。
【0028】
次いで、図2に、この発明に従う成分組成に調整した鋼(発明例)と、建築材料に用いられる在来の鋼(従来例)について、製造工程における冷却速度を 0.1〜50℃/sの間で種々に変化させて得た鋼板の引張り強さについて調査した結果を示す。
同図に示したとおり、この発明に従う成分組成に調整することによって、冷却速度に依存することなしに、一定した強度が安定して得られている。
【0029】
特に、従来では予測できないほどの広い冷却速度範囲にわたって、Y.S.およびT.S.値のばらつきを低減することができた。
この理由は、上述したとおり、C量の制限、そしてMnおよびNb、さらにはBの適量添加が有効に寄与した結果と考えられる。従って、厚鋼板の厚み方向で冷却速度が変化しても、冷却速度に依存して強度が変化することがなく、厚み方向に材質ばらつきの少ない厚鋼板を得ることができるのである。
【0030】
なお、発明例は、C:0.016 wt%、Si:0.25wt%、Mn:1.57wt%、Cr:0.39wt%、Nb:0.041 wt%、Ti:0.015 wt%、B:0.0017wt%およびAl:0.03wt%を含み、残部はFeおよび不可避的不純物の成分組成になり、一方従来例は、C:0.14wt%、Si:0.4 wt%、Mn:1.31wt%、Al:0.024 wt%、Nb:0.015 wt%およびTi:0.013 wt%を含み、残部はFeおよび不可避的不純物の成分組成になるものであった。そして、同じ製造工程において、冷却速度を種々に変化させて、厚み:15mmの厚鋼板を多数製造し、それぞれの厚鋼板から採取した試験片にて引張り強さを測定した。なお、熱間圧延は、圧延パス時間が5秒以下の短時間圧延パスが全圧延パスの63%となる、条件で行った。
【0031】
以上、この発明に従う基本組成について説明したが、この発明では、さらに強度や靱性等の特性の一層の向上を目指して、以下に述べるような元素を適宜添加することができる。この時、既に獲得した均質な組織は、新たな元素の添加に影響されることがほとんどないので、基本組成の場合と同様に、材質ばらつきの少ない高強度・高靱性の厚鋼板を得ることができる。
【0032】
まず、強度の向上を図るために、析出強化成分としてCu:0.05〜3.0 wt%を、さらにはV:0.005 〜0.20wt%をそれぞれ添加することができる。なお、これらの析出強化成分を添加した場合は、後述する析出強化処理を施すことにより、さらなる強化が可能である。
【0033】
Cu:0.05〜3.0 wt%
Cuは、析出強化および固溶強化を図るために添加するが、3.0 wt%を超えると靱性が急激に劣化し、一方0.05wt%未満では析出強化および固溶強化の効果が少ないため、0.05〜3.0 wt%の範囲とする。
【0034】
V:0.005 〜0.20wt%
Vは、析出強化のために 0.005wt%以上を添加するが、0.20wt%を超えて添加してもその効果は飽和に達するため、 0.005〜0.20wt%の範囲とする。
【0035】
また、一層の強度向上を図るために、Ni:3.0 wt%以下、Mo:0.5 wt%以下、W:0.5 wt%以下およびZr:0.5 wt%以下のうちから選んだ1種または2種以上を添加することができる。なお、これらの成分は、徴量でも効果があるので、下限については特に限定しない。
【0036】
Ni:3.0 wt%以下
Niは、強度および靱性を向上させ、またCuを添加した場合には圧延時のCu割れを防止するのに有効であるが、高価である上、過剰に添加してもその効果は飽和に達するので、3.0 wt%を上限として添加する。なお、0.05wt%未満の添加では上記の効果が必ずしも十分に発揮されるとは限らないので、添加量は0.05wt%以上とすることが好ましい。
【0037】
Mo:0.5 wt%以下
Moは、常温および高温での強度を上昇させる効果があるが、0.5 wt%を超えると溶接性が劣化するため、0.5 wt%以下の範囲で添加する。とはいえ、0.05wt%未満の添加では強度上昇効果が十分とはいえないので、少なくとも0.05wt%添加することが好ましい。
【0038】
W:0.5 wt%以下
Wは、高温強度を上昇させる効果があるが、高価である上、0.5 wt%を超えると靱性が劣化するので、0.5 wt%以下の範囲で添加する。とはいえ、0.05wt%未満の添加では強度上昇効果が十分とはいえないので、少なくとも0.05wt%添加することが好ましい。
【0039】
Zr:0.5 wt%以下
Zrは、強度の上昇のみならず、亜鉛めっきを施した際の耐めっき割れ性を向上させる効果があるが、0.5 wt%を超えて添加すると溶接部靱性が劣化するため、0.5 wt%以下の範囲で添加する。なお下限は0.05wt%とすることが好ましい。
【0040】
さらに、 HAZの靱性向上を図るために、REM およびCaのうちから選んだ少なくとも1種を0.02wt%以下で添加することができる。
REM : 0.02wt%以下
REM は、オキシサルファイドとなってオーステナイト粒の粒成長を抑制することにより、 HAZの靱性向上に寄与するが、0.02wt%を超えて添加すると鋼の清浄度を損なうため、0.02wt%以下とする。なお、0.001 wt%未満の添加では上記した HAZ靱性の改善効果に乏しいので、添加量は 0.001wt%以上とすることが好ましい。
【0041】
Ca:0.02wt%以下
Caは、HAZ の靱性向上に有効であるだけでなく、鋼中硫化物の形熊制御により板厚方向の材質改善にも有効に寄与するが、0.02wt%を超えて添加すると非金属介在物量を増大させ内部欠陥の発生原因となるため、0.02wt%以下とする。なお0.0005wt%未満の添加では上記効果が不十分であるため、添加量は0.0005wt%以上とすることが好ましい。
【0042】
次に、この発明の製造工程について説明する。
上述した基本組成に成分調整した鋼片、例えば鋼スラブを、Ac3〜1350℃の温度に加熱後、熱間圧延を、980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の圧延パスを 60 %以上行う条件で施すことが、肝要である。
すなわち、加熱温度がAc3未満では完全にオーステナイト相とすることができずに均質化が不十分となり、一方1350℃を超えると表面酸化が著しくなるため、Ac3〜1350℃の温度域に加熱することが好ましい。
【0043】
そして、Crの添加による高強度化を実現するために、上述したように、980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の短時間圧延パスを60%以上は行う必要がある。
なお、この短時間圧延パスに関する規制を980 ℃以下の圧延温度域に限定するのは、980 ℃超えの温度域において導入された加工歪みは、鋼材の温度が高いため、直ちに再結晶し開放され易く強度上昇効果が得られないためである。980 ℃以下で導入された加工歪みは、鋼材が未再結晶状態であるため開放されることなく残り強度上昇に寄与する。
【0044】
また、短時間圧延パスを60%以上とするのは、980 ℃以下の温度域で導入された加工歪みをすべて残すことは工業的には不可能である。1回の圧延パスにより導入された加工歪みは、その何割かは次第に開放されてしまう。つまり圧延歪みを蓄積するには、開放される割合を少なくするためパス間時間を短くすることにより達成できる。強度上昇に効果のある圧延歪みの蓄積には図1に示した様に、圧延パス間時間が5秒以下の短時間圧延パスが全圧延パスの60%とすることが必要である。
【0045】
次に、圧延後の冷却は、従来のように厳密に管理する必要はなく、空冷または加速冷却のいずれでも可能であるが、冷却速度は 0.1〜80℃/sの範囲とすることが好ましい。というのは、80℃/sを超える冷却速度で冷却を行うと、ベイナイト・ラス間隔が密になり強度が冷却速度に依存して上昇し勝ちとなり、一方 0.1℃/s未満ではフェライ卜が生成しベイナイト単相となりにくいからである。
【0046】
また、製造工程においても、種々の処理工程を付加することによって、上記した添加成分の場合と同様に、強度や靱性のレベルを適宜コントロールすることができる。
すなわち、強化成分として、TiやCu、V等を添加した場合は、上記熱間圧延を終了したのち、析出処理温度域である 500℃以上、 800℃未満の所定温度まで 0.1〜80℃/sの冷却速度で加速冷却したのち、該所定温度において30s以上等温保持するか、または当該温度域内において1℃/s以下の冷却速度で30s以上冷却する析出処理を行うことが、強度の向上に有効である。
すなわち、圧延終了から析出処理温度までの冷却における速度が 0.1℃/s未満ではベイナイト組織中にフェライトが生成し、ー方80℃/sを超えるとベイナイト・ラス間隔が密になり強度が冷却速度に依存して上昇するようになるので、冷却温度は 0.1〜80℃/sの範囲とする。
【0047】
次いで、この加速冷却後、 500℃以上、 800℃未満の温度範囲で30s以上の等温保持または当該温度域内において1℃/s以下の冷却速度で30s以上冷却する析出処理を行うことにより、Cu,Ti(C,N)およびV(C,N)のいずれか1種または2種以上、さらにはNb(C,N)を析出させ、強度の上昇を図ることができる。また、この析出処理により組織の均一化が図られ、板厚方向の材質ばらつきもさらに改善される。
【0048】
ここで、析出処理の温度が 800℃以上になると、析出成分が溶解したままで析出が起こりにくくなるので、十分な析出を図るには 800℃未満で析出処理を行う必要がある。一方 500℃未満では析出反応が起こりにくいため、温度範囲は 500℃以上、 800℃未満とした。また、保持時間を30s以上としたのは、30s未満では十分な析出強化ができないためである。また、当該温度範囲内で1℃/s以下の冷却速度で30s以上保持することによっても析出強化が得られ、1℃/sを超えた冷却速度では十分な析出強化が得られない。なお、十分に析出強化をさせるためには 0.1℃/s以下の冷却速度とすることが望ましい。
【0049】
さらに、上記の析出処理は、上記圧延に続く冷却後に行うこともできる。すなわち、冷却後に 500℃以上、 800℃未満の温度域に再加熱して保持すればよい。
【0050】
【実施例】
表1に示す種々の成分組成に調整した鋼スラブを、表2に示す製造条件に従って、厚さ:80mmの厚鋼板を製造した。
かくして得られた各厚鋼板について、引張試験およびシャルピー試験を行ってその機械的性質を調査すると共に、厚み方向の強度のばらつきを評価するため、鋼板断面の硬さを表面より2mmピッチにて測定して板厚方向の硬さ分布を調査した。さらに、 HAZの靱性を評価するために、鋼板を1350℃に加熱後、 800℃から500 ℃まで 300sで冷却する熱サイクル(500 kJ/cm の入熱量で溶接したときのHAZ の熱履歴に相当)を施してから、シャルピー試験片を採取し、0℃でのシャルピー吸収エネルギーを測定した。
これらの各調査結果を、表3に示す。
【0051】
【表1】

Figure 0004110652
【0052】
【表2】
Figure 0004110652
【0053】
【表3】
Figure 0004110652
【0054】
表3に示したとおり、この発明に従う厚鋼板は、600MPa以上の引張強さを有しかつ組織が均一になるため、厚み方向の硬さのばらつきが比較例に比べて極めて小さく、硬さの最大値と最小値の差がHV で20以内となることが判る。
なお、ベイナイト組織の体積率は 400倍で撮影した光学顕微鏡写真により、点算法で測定した。
【0055】
【発明の効果】
かくして、この発明によれば、材質ばらつきの少なくかつ HAZにおける耐衝撃特性に優れ、さらには高強度を実現した高強度高靱性鋼材を安定して製造することができる。
なお、この発明は、厚鋼板のみならず、形鋼や棒鋼等の分野においても有利に適合するものである。
【図面の簡単な説明】
【図1】 厚鋼板におけるCr含有量と引張り強さとの関係を示したグラフである。
【図2】 厚鋼板における冷却速度と強度との関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a steel material with little material variation and excellent welded portion low temperature toughness, and particularly used in the fields of architecture, marine structures, pipes, shipbuilding, storage, civil engineering and building machinery, The present invention aims to reduce the variation in the material quality of steel materials such as steel strips, section steels, and steel bars, and to improve the toughness of the welded portion.
[0002]
[Prior art]
As described above, thick steel materials represented by thick steel plates have been used in various fields, and various properties have been improved so far, such as increasing their strength and toughness. It is required that these characteristics are uniform in the thickness direction and that there is little variation between steel materials.
[0003]
For example, pages 11-21 of “Iron and Steel No. 74 (1988) No. 6” on page 11-21 show that as the building heightens, vibration energy is absorbed by the deformation of the building and collapsed due to the earthquake. It has been reported that designs to prevent this have been adopted. Specifically, the building framework is collapsed in a predetermined shape when an earthquake occurs, and the collapse of the building is prevented by plasticizing the framework material.
In other words, it is assumed that the framework of the building will exhibit the behavior intended by the designer at the time of the earthquake occurrence, and it is necessary for the designer to fully understand the strength ratio of steel materials such as pillars and beams of the building. It becomes.
Therefore, it is indispensable that steel materials such as steel plates and H-shaped steel used for columns and beams are homogeneous, and the strength variation of the steel materials becomes a big problem.
[0004]
Here, since steel materials used for construction and shipbuilding are required to have high tension and high toughness, this type of steel materials is usually manufactured according to a controlled rolling control cooling method, so-called TMCP method.
However, when a thick steel material is produced by this TMCP method, the steel structure changes due to the cooling rate in the cooling treatment after rolling being different in the thickness direction or between each steel material, and the thickness direction of the obtained steel material Alternatively, there may be a variation in material quality between the steel materials.
As material variations, in particular, those appearing in the thickness direction in thick steel plates, those appearing between the web and flange due to non-uniform cooling between the web and flange in H-section steel, or those appearing between lots, etc. There is.
[0005]
Japanese Patent Application Laid-Open No. 63-179020 proposes a method of reducing the hardness difference in the cross section in the thickness direction by controlling the component, the amount of reduction, the cooling rate, and the cooling end temperature.
However, in the manufacture of thick steel plates, especially extra-thick steel plates exceeding 50 mm, it is difficult to suppress the hardness difference in the cross section in the plate thickness direction by the above method because the cooling rate distribution in the plate thickness direction inevitably occurs. .
[0006]
Similarly, in Japanese Patent Laid-Open No. 61-67717, the difference in strength in the plate thickness direction is greatly reduced by setting the extremely low C. However, as shown in FIG. It has not yet been possible to eliminate the variation in strength accompanying the change in cooling rate, which inevitably occurs in steel sheets.
[0007]
Furthermore, JP-A-58-77528 describes that a stable hardness distribution can be obtained by the combined addition of Nb and B, but in order to make the structure bainite, the cooling rate is 15 to 40 ° C. It needs to be controlled within the range of / s.
However, since it is difficult to strictly control the cooling rate even in the center of the plate thickness, a uniform structure cannot be obtained in the plate thickness direction, the strength varies, and island martensite is generated, resulting in ductility and toughness. There was a problem of deterioration.
[0008]
Furthermore, as a technique for improving weldability, JP-A-54-132421 discloses rolling at a finishing temperature of 800 ° C. or less in order to achieve extremely low carbon and to obtain high toughness for line pipes. A method for producing high-tensile bainite steel is disclosed.
However, this method has a problem that productivity is low because rolling is completed in a low temperature region, and a problem of distortion caused by the cutting is left when a cutting is required in a thick plate or the like. It was.
[0009]
On the other hand, the inventors disclosed in JP-A-8-144019 a method for manufacturing a steel material in which material variation is reduced by reducing the temperature to a very low C, and at the same time, a weld heat affected zone (HAZ at 0 ° C.). We proposed a steel material with excellent impact resistance.
However, even with this steel material, there is a case where it cannot sufficiently cope with the recent increase in strength, and a further increase in strength has been desired.
[0010]
[Problems to be solved by the invention]
The present invention advantageously responds to the above-mentioned demand, and it is needless to say that there is little material variation and excellent impact resistance characteristics of HAZ. With the goal.
[0011]
[Means for Solving the Problems]
According to the research by the inventors, the cause of the variation in the thickness of the thick steel material, and the typical thick steel plate, is that the cooling rate in the thickness direction from the steel plate surface to the center in the cooling process or From the change in the cooling rate due to the variation in manufacturing conditions, it was found that this was caused by fluctuations in the steel structure.
In order to avoid such a change in structure, it is important to obtain a homogeneous structure in a wide cooling rate range.
[0012]
Therefore, the inventors went back to the origin and repeatedly studied a method for obtaining a homogeneous structure even when the manufacturing conditions change, and redesigned the alloy components to influence the change in cooling rate. As a result, it was found that the variation in material can be remarkably reduced by making the structure in the thickness direction constant.
That is, by adding an appropriate amount of Nb, Ti and B under extremely low C, the structure can be stably changed to a bainite structure without depending on the cooling rate. It was found that sufficient strength can be obtained because of the structure.
Further, it has been found that it is effective to improve the HAZ toughness while reducing the C content extremely and reducing the Pcm (weld cracking susceptibility composition).
It was also found that even higher strength can be achieved by adding an appropriate amount of Cr and regulating the pass time in hot rolling.
The present invention is based on the above findings.
[0013]
That is, the gist configuration of the present invention is as follows.
(1) C: 0.001 wt% or more, less than 0.030 wt%,
Si: 0.60 wt% or less,
Mn: 0.8 to 3.0 wt%
Cr: 0.1-0.7 wt%
Nb: 0.005 to 0.200 wt%,
Ti: 0.005 to 0.200 wt%,
B: 0.0003 to 0.0050 wt% and
Al: containing less 0.05 wt%, the slab of the composition with the balance being Fe and unavoidable impurities was heated to a temperature of Ac 3 to 1350 ° C., hits subjected to hot rolling, 980 ° C. or less of the temperature range In the rolling pass from the end of rolling to the end of rolling, a steel material having a low material variation and excellent welded portion low temperature toughness characterized by performing a rolling pass with a time between rolling passes of 5 s or less for 60 % or more and then air cooling or accelerated cooling. Manufacturing method.
[0014]
(2) C: 0.001 wt% or more, less than 0.030 wt%,
Si: 0.60 wt% or less,
Mn: 0.8 to 3.0 wt%
Cr: 0.1-0.7 wt%
Nb: 0.005 to 0.200 wt%,
Ti: 0.005 to 0.200 wt%,
B: 0.0003 to 0.0050 wt% and
Al: containing less 0.05 wt%, the slab of the composition with the balance being Fe and unavoidable impurities was heated to a temperature of Ac 3 to 1350 ° C., hits subjected to hot rolling, 980 ° C. or less of the temperature range In the rolling pass from the end of rolling to the end of rolling, 60 % or more of rolling passes with a time between rolling passes of 5 s or less are performed, and then air-cooled or accelerated cooled , and then reheated to a temperature range of 500 ° C or higher and lower than 800 ° C. A method for producing a steel material having less material variation and excellent welded portion low temperature toughness, characterized by performing a precipitation treatment.
[0015]
(3) C: 0.001 wt% or more, less than 0.030 wt%,
Si: 0.60 wt% or less,
Mn: 0.8 to 3.0 wt%
Cr: 0.1-0.7 wt%
Nb: 0.005 to 0.200 wt%,
Ti: 0.005 to 0.200 wt%,
B: 0.0003 to 0.0050 wt% and
Al: containing less 0.05 wt%, the slab of the composition with the balance being Fe and unavoidable impurities was heated to a temperature of Ac 3 to 1350 ° C., hits subjected to hot rolling, 980 ° C. or less of the temperature range In the rolling pass from the end of rolling to the end of rolling, a rolling pass with a time between rolling passes of 5 s or less is performed for 60 % or more, and then to a predetermined temperature range of 500 ° C. or more and less than 800 ° C., which is the precipitation temperature range, 0.1-80 ° C. / After accelerating cooling at a cooling rate of s, a precipitation treatment is performed in which the temperature is kept isothermal for 30 s or more in this precipitation temperature range or cooled for 30 s or more at a cooling rate of 1 ° C./s or less in the temperature range, and then cooled. A method for producing a steel material with less material variation and excellent welded portion low temperature toughness.
[0016]
(4) In the above (1), (2) or (3), the steel material is further
Cu: 0.05 to 3.0 wt%
V: 0.005 to 0.20 wt%
Ni: 3.0 wt% or less,
Mo: 0.5 wt% or less,
W: 0.5 wt% or less,
Zr: 0.5 wt% or less,
REM: 0.02wt% or less and
Ca: A method for producing a steel material that has at least one selected from 0.02 wt% or less and is excellent in low-temperature toughness of welds and having little variation.
[0017]
Here, the said rolling pass means rolling operation until it is bitten by the roll of a rolling mill, and is bitten. Rolling is constituted by a plurality of rolling operations. Moreover, the time between rolling passes means the time from the nth pass bitten by the rolling mill roll to the next (n + 1) th bite after the pass (rolling).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason why the component composition of the steel material is limited to the above range in the present invention will be described.
C: 0.001 wt% or more and less than 0.030 wt% C is required to be 0.001 wt% or more in order to obtain a bainite single phase without depending on the cooling rate. On the other hand, at 0.030 wt% or more, carbide precipitates inside the bainite structure or at the lath boundary, and the precipitation shape of the carbide changes as the cooling rate changes, making it difficult to obtain a certain strength in a wide cooling rate range. Become.
[0019]
Si: 0.60 wt% or less
When Si exceeds 0.60 wt%, the weld toughness deteriorates, so the range is limited to 0.60 wt% or less.
[0020]
Mn: 0.8 to 3.0 wt%
Mn needs to be added at least 0.8wt% in order to increase the volume fraction of the bainite single phase, particularly the bainite structure, to 90% or more. In order to cause toughness deterioration in the affected zone (HAZ), the range is 0.8 to 3.0 wt%.
[0021]
Nb: 0.005 to 0.20wt%
Nb particularly has the effect of lowering Ar 3 and extending the bainite generation range to the low cooling rate side, and is necessary for obtaining a bainite structure stably. Moreover, it contributes to precipitation strengthening and is also effective in improving toughness. In order to expect these effects, 0.005 wt% or more is necessary. However, if it exceeds 0.20 wt%, the effect of improving toughness reaches saturation and is rather uneconomical, so 0.20 wt% is the upper limit.
[0022]
Ti: 0.005 to 0.20wt%
Ti fixes N in steel and increases the amount of dissolved B, and lowers Ar 3 and contributes to the formation of a bainite structure. Further, the produced TiN improves the weld zone toughness and contributes effectively to precipitation strengthening. These effects are scarce when the content is less than 0.005 wt%, whereas when the content exceeds 0.20 wt%, the toughness deteriorates, so the range is 0.005 to 0.20 wt%.
[0023]
B: 0.0003-0.0050wt%
B needs to be 0.0003 wt% or more in order to obtain a bainite single phase, but if it exceeds 0.0050 wt%, BN precipitates and weldability deteriorates, so it is limited to a range of 0.0003 to 0.0050 wt%.
[0024]
Al: 0.05 wt% or less
Al is preferably added in an amount of 0.010 wt% or more for deoxidation, but if it exceeds 0.05 wt%, the weldability is impaired, so 0.05 wt% or less.
[0025]
Cr: 0.1-0.7 wt%
Cr is an important element in the present invention. That is, FIG. 1 shows the results of examining the relationship between the Cr content and the tensile strength. Components other than Cr are C: 0.015 wt%, Si: 0.25 wt%, Mn: 1.55 wt%, Nb: 0.04 wt%, Ti: 0.015 wt%, B: 0.0015 wt% and Al: 0.03 wt%. The balance is Fe and unavoidable impurities.
[0026]
As apparent from the figure, the tensile strength is increased by adding Cr at 0.1 wt% or more. However, in order to obtain the effect of adding Cr, it is necessary to optimize the hot rolling conditions. That is, in a rolling pass from hot rolling at a temperature range of 980 ° C. or lower to the end of rolling, when a short rolling pass with a time between rolling passes of 5 s or less is produced under a condition of 60% or more, Cr High strength is achieved by making the content 0.1 wt% or more. This is because the work strain introduced during hot rolling is not released when Cr of 0.1 wt% or more is added and the time between rolling passes is shortened. It is thought that it was made. If the Cr content exceeds 0.7 wt%, the effect of increasing the strength is saturated, while the weld toughness is deteriorated. Therefore, the Cr content is set in the range of 0.1 to 0.7 wt%.
[0027]
By adjusting the components to the steel composition as described above, a homogeneous composition, specifically 90% or more of the composition of the bainai can be obtained almost without depending on the production conditions, particularly the cooling rate.
[0028]
Next, FIG. 2 shows the cooling rate in the manufacturing process between 0.1 to 50 ° C./s for steel (invention example) adjusted to the component composition according to the present invention and conventional steel (conventional example) used for building materials. The result of having investigated about the tensile strength of the steel plate obtained by changing variously is shown.
As shown in the figure, by adjusting to the component composition according to the present invention, a constant strength is stably obtained without depending on the cooling rate.
[0029]
In particular, variations in YS and TS values could be reduced over a wide cooling rate range that could not be predicted in the past.
The reason for this is considered to be the result of effective contribution of the limitation of the amount of C and addition of appropriate amounts of Mn and Nb, and further B as described above. Therefore, even if the cooling rate changes in the thickness direction of the thick steel plate, the strength does not change depending on the cooling rate, and a thick steel plate with little material variation in the thickness direction can be obtained.
[0030]
Examples of the invention include C: 0.016 wt%, Si: 0.25 wt%, Mn: 1.57 wt%, Cr: 0.39 wt%, Nb: 0.041 wt%, Ti: 0.015 wt%, B: 0.0017 wt%, and Al: Containing 0.03 wt%, the balance is the component composition of Fe and inevitable impurities, while the conventional examples are C: 0.14 wt%, Si: 0.4 wt%, Mn: 1.31 wt%, Al: 0.024 wt%, Nb: It contained 0.015 wt% and Ti: 0.013 wt%, and the balance was a component composition of Fe and inevitable impurities. And in the same manufacturing process, the cooling rate was changed variously, many steel plates with a thickness of 15 mm were manufactured, and the tensile strength was measured with the test piece extract | collected from each steel plate. The hot rolling was performed under the condition that the short-time rolling pass with a rolling pass time of 5 seconds or less was 63% of the total rolling pass.
[0031]
Although the basic composition according to the present invention has been described above, in the present invention, elements as described below can be appropriately added with the aim of further improving properties such as strength and toughness. At this time, since the already obtained homogeneous structure is hardly affected by the addition of new elements, as in the case of the basic composition, it is possible to obtain a high-strength, high-tough steel plate with little material variation. it can.
[0032]
First, in order to improve the strength, Cu: 0.05 to 3.0 wt% and further V: 0.005 to 0.20 wt% can be added as precipitation strengthening components. In addition, when these precipitation strengthening components are added, the further strengthening is possible by performing the precipitation strengthening process mentioned later.
[0033]
Cu: 0.05-3.0 wt%
Cu is added for the purpose of precipitation strengthening and solid solution strengthening, but when it exceeds 3.0 wt%, the toughness deteriorates rapidly, whereas when it is less than 0.05 wt%, the effect of precipitation strengthening and solid solution strengthening is small. The range is 3.0 wt%.
[0034]
V: 0.005 to 0.20 wt%
V is added in an amount of 0.005 wt% or more for precipitation strengthening, but even if added over 0.20 wt%, the effect reaches saturation, so the range is from 0.005 to 0.20 wt%.
[0035]
In order to further improve the strength, Ni: 3.0 wt% or less, Mo: 0.5 wt% or less, W: 0.5 wt% or less and Zr: 0.5 wt% or less Can be added. In addition, since these components are effective in the amount of collection, the lower limit is not particularly limited.
[0036]
Ni: 3.0 wt% or less
Ni improves strength and toughness, and is effective in preventing Cu cracking during rolling when Cu is added, but it is expensive and its effect reaches saturation when added excessively. Therefore, 3.0 wt% is added as the upper limit. Note that the addition of less than 0.05 wt% does not necessarily exhibit the above-mentioned effect sufficiently, so the addition amount is preferably 0.05 wt% or more.
[0037]
Mo: 0.5 wt% or less
Mo has the effect of increasing the strength at room temperature and high temperature, but if it exceeds 0.5 wt%, weldability deteriorates, so it is added in a range of 0.5 wt% or less. However, since addition of less than 0.05 wt% is not sufficient in increasing the strength, it is preferable to add at least 0.05 wt%.
[0038]
W: 0.5 wt% or less W has the effect of increasing the high-temperature strength, but is expensive, and if it exceeds 0.5 wt%, the toughness deteriorates, so it is added in the range of 0.5 wt% or less. However, since addition of less than 0.05 wt% is not sufficient in increasing the strength, it is preferable to add at least 0.05 wt%.
[0039]
Zr: 0.5 wt% or less
Zr is effective not only in increasing the strength but also improving the cracking resistance when galvanized, but if added over 0.5 wt%, the toughness of the weld deteriorates, so 0.5 wt% or less. Add in range. The lower limit is preferably 0.05 wt%.
[0040]
Furthermore, in order to improve the toughness of HAZ, at least one selected from REM and Ca can be added at 0.02 wt% or less.
REM: 0.02wt% or less
REM contributes to improving the toughness of HAZ by becoming oxysulfide and suppressing the growth of austenite grains, but if added over 0.02 wt%, the cleanliness of the steel is impaired, so 0.02 wt% or less . In addition, since the effect of improving the HAZ toughness described above is poor when the amount is less than 0.001 wt%, the amount added is preferably 0.001 wt% or more.
[0041]
Ca: 0.02wt% or less
Ca is not only effective in improving the toughness of HAZ, but also contributes effectively to improving the material in the thickness direction by controlling the shape of the sulfide in steel. However, if it exceeds 0.02 wt%, the amount of non-metallic inclusions is increased. Is increased to cause internal defects, so 0.02 wt% or less. In addition, since the said effect is inadequate if addition is less than 0.0005 wt%, it is preferable to make addition amount 0.0005 wt% or more.
[0042]
Next, the manufacturing process of this invention is demonstrated.
After heating the steel slab whose component is adjusted to the basic composition described above, for example, a steel slab, to a temperature of Ac 3 to 1350 ° C., the hot rolling is performed in the rolling pass from the temperature range of 980 ° C. or lower to the end of rolling. It is important to apply the rolling pass with an interval time of 5 seconds or less under the condition of 60 % or more .
That is, if the heating temperature is less than Ac 3 , the austenite phase cannot be obtained completely and homogenization becomes insufficient. On the other hand, if the heating temperature exceeds 1350 ° C., surface oxidation becomes remarkable, so heating to the temperature range of Ac 3 to 1350 ° C. It is preferable to do.
[0043]
In order to achieve high strength by adding Cr, as described above, in the rolling pass from the temperature range of 980 ° C. or lower to the end of rolling, a short rolling pass with a time between rolling passes of 5 s or less is used. % Or more must be done.
It should be noted that the restriction on the short-time rolling pass is limited to the rolling temperature range of 980 ° C or less because the work strain introduced in the temperature range exceeding 980 ° C is recrystallized and released immediately because the steel material temperature is high. This is because the strength increasing effect is not easily obtained. The work strain introduced at 980 ° C. or lower contributes to the increase in the remaining strength without being released because the steel is in an unrecrystallized state.
[0044]
In addition, it is industrially impossible for the short time rolling pass to be 60% or more to leave all the processing strain introduced in the temperature range of 980 ° C. or lower. Some of the processing distortion introduced by one rolling pass is gradually released. In other words, accumulation of rolling strain can be achieved by shortening the time between passes in order to reduce the release rate. As shown in FIG. 1, accumulation of rolling distortion effective in increasing the strength requires that a short rolling pass with a time between rolling passes of 5 seconds or less be 60% of all rolling passes.
[0045]
Next, the cooling after rolling does not need to be strictly controlled as in the prior art, and either air cooling or accelerated cooling is possible, but the cooling rate is preferably in the range of 0.1 to 80 ° C./s. This is because when cooling is performed at a cooling rate exceeding 80 ° C / s, the bainite-laser spacing becomes dense and the strength tends to increase depending on the cooling rate, while at less than 0.1 ° C / s, Ferai is generated. This is because it is difficult to become a single bainite phase.
[0046]
Also in the manufacturing process, by adding various treatment steps, the strength and toughness levels can be appropriately controlled as in the case of the additive component described above.
That is, when Ti, Cu, V, or the like is added as a strengthening component, 0.1 to 80 ° C./s to a predetermined temperature of 500 ° C. or more and less than 800 ° C., which is a precipitation treatment temperature range, after the hot rolling is finished. It is effective to improve the strength by accelerating and cooling at a predetermined cooling rate and then maintaining the isothermal condition for 30 s or more at the predetermined temperature, or performing a precipitation treatment that cools for 30 s or more at a cooling rate of 1 ° C./s or less within the temperature range. It is.
In other words, if the rate of cooling from the end of rolling to the precipitation treatment temperature is less than 0.1 ° C / s, ferrite forms in the bainite structure, and if it exceeds -80 ° C / s, the bainite-laser spacing becomes dense and the strength becomes the cooling rate. The cooling temperature should be in the range of 0.1 to 80 ° C / s.
[0047]
Next, after this accelerated cooling, Cu, by isothermal holding at a temperature range of 500 ° C. or higher and lower than 800 ° C. for 30 seconds or more, or by performing a precipitation treatment for cooling at a cooling rate of 1 ° C./s or lower for 30 seconds or longer in the temperature range Any one or more of Ti (C, N) and V (C, N), or even Nb (C, N) can be deposited to increase the strength. In addition, the precipitation process makes the structure uniform and further improves the material variation in the thickness direction.
[0048]
Here, when the temperature of the precipitation treatment is 800 ° C. or higher, precipitation does not easily occur while the precipitation components are dissolved. Therefore, in order to achieve sufficient precipitation, it is necessary to perform the precipitation treatment at less than 800 ° C. On the other hand, since the precipitation reaction hardly occurs at less than 500 ° C, the temperature range is set to 500 ° C or more and less than 800 ° C. The reason why the holding time is set to 30 s or longer is that sufficient precipitation strengthening cannot be achieved when the holding time is less than 30 s. Also, precipitation strengthening can be obtained by holding for 30 seconds or more at a cooling rate of 1 ° C./s or less within the temperature range, and sufficient precipitation strengthening cannot be obtained at a cooling rate exceeding 1 ° C./s. In order to sufficiently strengthen precipitation, a cooling rate of 0.1 ° C / s or less is desirable.
[0049]
Furthermore, the above precipitation treatment can also be performed after cooling following the rolling. That is, after cooling, it may be reheated to a temperature range of 500 ° C. or higher and lower than 800 ° C.
[0050]
【Example】
Steel slabs adjusted to various component compositions shown in Table 1 were produced according to the production conditions shown in Table 2 to produce a thick steel plate having a thickness of 80 mm.
Each thick steel plate thus obtained is subjected to a tensile test and a Charpy test to investigate its mechanical properties, and in order to evaluate the variation in strength in the thickness direction, the hardness of the steel plate cross section is measured at a 2 mm pitch from the surface. Then, the hardness distribution in the thickness direction was investigated. Furthermore, in order to evaluate the toughness of HAZ, the steel sheet was heated to 1350 ° C and then cooled from 800 ° C to 500 ° C in 300 s for 300 s (corresponding to the thermal history of HAZ when welding with a heat input of 500 kJ / cm ), Charpy specimens were collected and Charpy absorbed energy at 0 ° C. was measured.
Table 3 shows the results of these investigations.
[0051]
[Table 1]
Figure 0004110652
[0052]
[Table 2]
Figure 0004110652
[0053]
[Table 3]
Figure 0004110652
[0054]
As shown in Table 3, the thick steel plate according to the present invention has a tensile strength of 600 MPa or more and has a uniform structure. Therefore, the variation in hardness in the thickness direction is extremely small compared to the comparative example, it can be seen that the difference between the maximum value and the minimum value is 20 within at H V.
The volume fraction of the bainite structure was measured by a point calculation method using an optical microscope photograph taken at 400 times.
[0055]
【The invention's effect】
Thus, according to the present invention, it is possible to stably produce a high-strength, high-toughness steel material with little material variation, excellent impact resistance in HAZ, and high strength.
The present invention is advantageously adapted not only to thick steel plates but also to fields such as shape steel and bar steel.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Cr content and tensile strength in a thick steel plate.
FIG. 2 is a graph showing the relationship between cooling rate and strength in a thick steel plate.

Claims (4)

C:0.001 wt%以上、0.030 wt%未満、
Si:0.60wt%以下、
Mn:0.8 〜3.0 wt%、
Cr:0.1 〜0.7 wt%、
Nb:0.005 〜0.200 wt%、
Ti:0.005 〜0.200 wt%、
B:0.0003〜0.0050wt%および
Al:0.05wt%以下
を含有し、残部は Fe および不可避的不純物である組成の鋼片を、Ac3〜1350℃の温度に加熱後、熱間圧延を施すに当り、 980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の圧延パスを 60 %以上行い、次いで空冷または加速冷却することを特徴とする材質ばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
C: 0.001 wt% or more, less than 0.030 wt%,
Si: 0.60 wt% or less,
Mn: 0.8 to 3.0 wt%
Cr: 0.1-0.7 wt%
Nb: 0.005 to 0.200 wt%,
Ti: 0.005 to 0.200 wt%,
B: 0.0003 to 0.0050 wt% and
Al: containing less 0.05 wt%, the slab of the composition with the balance being Fe and unavoidable impurities was heated to a temperature of Ac 3 to 1350 ° C., hits subjected to hot rolling, 980 ° C. or less of the temperature range In the rolling pass from the end of rolling to the end of rolling, a steel material having a low material variation and excellent welded portion low temperature toughness characterized by performing a rolling pass with a time between rolling passes of 5 s or less for 60 % or more and then air cooling or accelerated cooling. Manufacturing method.
C:0.001 wt%以上、0.030 wt%未満、
Si:0.60wt%以下、
Mn:0.8 〜3.0 wt%、
Cr:0.1 〜0.7 wt%、
Nb:0.005 〜0.200 wt%、
Ti:0.005 〜0.200 wt%、
B:0.0003〜0.0050wt%および
Al:0.05wt%以下
を含有し、残部は Fe および不可避的不純物である組成の鋼片を、Ac3〜1350℃の温度に加熱後、熱間圧延を施すに当り、 980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の圧延パスを 60 %以上行い、次いで空冷または加速冷却したのち、 500℃以上かつ 800℃未満の温度域に再加熱して保持する析出処理を行うことを特徴とする材質ばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
C: 0.001 wt% or more, less than 0.030 wt%,
Si: 0.60 wt% or less,
Mn: 0.8 to 3.0 wt%
Cr: 0.1-0.7 wt%
Nb: 0.005 to 0.200 wt%,
Ti: 0.005 to 0.200 wt%,
B: 0.0003 to 0.0050 wt% and
Al: containing less 0.05 wt%, the slab of the composition with the balance being Fe and unavoidable impurities was heated to a temperature of Ac 3 to 1350 ° C., hits subjected to hot rolling, 980 ° C. or less of the temperature range In the rolling pass from the end of rolling to the end of rolling, 60 % or more of rolling passes with a time between rolling passes of 5 s or less are performed, and then air-cooled or accelerated cooled , and then reheated to a temperature range of 500 ° C or higher and lower than 800 ° C. A method for producing a steel material having less material variation and excellent welded portion low temperature toughness, characterized by performing a precipitation treatment.
C:0.001 wt%以上、0.030 wt%未満、
Si:0.60wt%以下、
Mn:0.8 〜3.0 wt%、
Cr:0.1 〜0.7 wt%、
Nb:0.005 〜0.200 wt%、
Ti:0.005 〜0.200 wt%、
B:0.0003〜0.0050wt%および
Al:0.05wt%以下
を含有し、残部は Fe および不可避的不純物である組成の鋼片を、Ac3〜1350℃の温度に加熱後、熱間圧延を施すに当り、 980 ℃以下の温度域から圧延終了に到る圧延パスにおいて、圧延パス間時間が5s以下の圧延パスを 60 %以上行い、次いで析出温度域である 500℃以上かつ 800℃未満の所定の温度域まで 0.1〜80℃/sの冷却速度で加速冷却したのち、この析出温度域において30s以上等温保持するかまたは当該温度域内において1℃/s以下の冷却速度で30s以上冷却する析出処理を行い、その後冷却することを特徴とする材質ばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
C: 0.001 wt% or more, less than 0.030 wt%,
Si: 0.60 wt% or less,
Mn: 0.8 to 3.0 wt%
Cr: 0.1-0.7 wt%
Nb: 0.005 to 0.200 wt%,
Ti: 0.005 to 0.200 wt%,
B: 0.0003 to 0.0050 wt% and
Al: containing less 0.05 wt%, the slab of the composition with the balance being Fe and unavoidable impurities was heated to a temperature of Ac 3 to 1350 ° C., hits subjected to hot rolling, 980 ° C. or less of the temperature range In the rolling pass from the end of rolling to the end of rolling, a rolling pass with a time between rolling passes of 5 s or less is performed for 60 % or more, and then to a predetermined temperature range of 500 ° C. or more and less than 800 ° C., which is the precipitation temperature range, 0.1-80 ° C. / After accelerating cooling at a cooling rate of s, a precipitation treatment is performed in which the temperature is kept isothermal for 30 s or more in this precipitation temperature range or cooled for 30 s or more at a cooling rate of 1 ° C./s or less in the temperature range, and then cooled. A method for producing a steel material with less material variation and excellent welded portion low temperature toughness.
請求項1、2または3において、鋼材がさらに
Cu:0.05〜3.0 wt%、
V:0.005 〜0.20wt%
Ni:3.0 wt%以下、
Mo:0.5 wt%以下、
W:0.5 wt%以下、
Zr:0.5 wt%以下、
REM :0.02wt%以下および
Ca:0.02wt%以下
のうちから選んだ少なくとも1種を含有することを特徴とするばらつきが少なくかつ溶接部低温靱性に優れた鋼材の製造方法。
In Claim 1, 2, or 3, steel material is further
Cu: 0.05 to 3.0 wt%
V: 0.005 to 0.20 wt%
Ni: 3.0 wt% or less,
Mo: 0.5 wt% or less,
W: 0.5 wt% or less,
Zr: 0.5 wt% or less,
REM: 0.02wt% or less and
Ca: A method for producing a steel material that has at least one selected from 0.02 wt% or less and is excellent in low-temperature toughness of welds and having little variation.
JP00038499A 1999-01-05 1999-01-05 Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness Expired - Fee Related JP4110652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00038499A JP4110652B2 (en) 1999-01-05 1999-01-05 Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00038499A JP4110652B2 (en) 1999-01-05 1999-01-05 Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness

Publications (2)

Publication Number Publication Date
JP2000199011A JP2000199011A (en) 2000-07-18
JP4110652B2 true JP4110652B2 (en) 2008-07-02

Family

ID=11472315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00038499A Expired - Fee Related JP4110652B2 (en) 1999-01-05 1999-01-05 Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness

Country Status (1)

Country Link
JP (1) JP4110652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872793A (en) * 1994-08-31 1996-03-19 Masaaki Ebina Vest or waist coat-like air bag device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925685B (en) 2008-07-30 2013-01-02 新日本制铁株式会社 High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
JP5464169B2 (en) * 2011-04-28 2014-04-09 Jfeスチール株式会社 High tensile steel plate with excellent workability and tensile strength of 628 MPa or less

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132421A (en) * 1978-04-05 1979-10-15 Nippon Steel Corp Manufacture of high toughness bainite high tensile steel plate with superior weldability
JPS55100924A (en) * 1979-01-25 1980-08-01 Nippon Steel Corp Production of high toughness bainite high tension steel plate having excellent weldability
JPS5877528A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of high tensile steel with superior toughness at low temperature
JPH0248606B2 (en) * 1982-01-21 1990-10-25 Nippon Kokan Kk HICHOSHITSUKOCHORYOKUKOJINSEIKOHANNOSEIZOHO
JPS60152626A (en) * 1984-01-20 1985-08-10 Kawasaki Steel Corp Method for stabilizing toughness of high tension steel for welded structure
JPS60169517A (en) * 1984-02-13 1985-09-03 Nippon Steel Corp Production of high-strength steel having not less than 50kg per milimeter squared tensile strength and uniform hardness in wall thickness direction
JPS6167717A (en) * 1984-09-10 1986-04-07 Kobe Steel Ltd Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPS6350422A (en) * 1986-08-19 1988-03-03 Nippon Steel Corp Manufacture of thick steel plate having uniform material characteristic in plate-thickness direction
JPS6365021A (en) * 1986-09-05 1988-03-23 Kawasaki Steel Corp Production of b-containing non-tempered high tensile steel sheet having excellent low-temperature toughness
JPS63179020A (en) * 1987-01-20 1988-07-23 Nippon Steel Corp Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
JPS6431935A (en) * 1987-07-28 1989-02-02 Sumitomo Metal Ind Production of hot rolled steel plate having excellent workability
JPH05148544A (en) * 1991-11-25 1993-06-15 Nippon Steel Corp Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP3520619B2 (en) * 1994-09-20 2004-04-19 Jfeスチール株式会社 Bainite steel material with less material variation and method of manufacturing the same
JPH09111336A (en) * 1995-10-20 1997-04-28 Kawasaki Steel Corp Production of high tensile strength steel excellent in hydrogen induced cracking resistance
JP3288572B2 (en) * 1996-03-14 2002-06-04 川崎製鉄株式会社 Manufacturing method of high toughness steel material with small material variation and excellent fatigue resistance
JP3383148B2 (en) * 1996-04-10 2003-03-04 新日本製鐵株式会社 Manufacturing method of high strength steel with excellent toughness
JP4006112B2 (en) * 1998-09-28 2007-11-14 新日本製鐵株式会社 Method for producing fine-grained high-tensile steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872793A (en) * 1994-08-31 1996-03-19 Masaaki Ebina Vest or waist coat-like air bag device

Also Published As

Publication number Publication date
JP2000199011A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4410836B2 (en) Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
EP0796921B1 (en) Method of manufacturing thick steel product of high strength and high toughness having excellent weldability and minimal variation of structure and physical properties
JPWO2020170774A1 (en) Square steel pipe and its manufacturing method, and building structures
JP3646512B2 (en) High strength and high toughness steel material with little material variation and excellent welded portion low temperature toughness, and method for producing the same
JP3873540B2 (en) Manufacturing method of high productivity and high strength rolled H-section steel
JP6813141B1 (en) Square steel pipe and its manufacturing method and building structure
JP4110652B2 (en) Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
WO1996009419A1 (en) Bainite steel material of little scatter of quality and method of manufacturing the same
JP3520619B2 (en) Bainite steel material with less material variation and method of manufacturing the same
JP3222695B2 (en) Ferrite-pearlite thick steel plate with less material variation and method for producing the same
JP2005226080A (en) Method of producing high tensile strength thick steel plate having excellent weldability and low temperature toughness
JP3559073B2 (en) Ferrite thick steel plate with less material variation and method of manufacturing the same
JP4299743B2 (en) High strength steel for high strength welded structure with excellent base metal toughness and super high heat input weld HAZ toughness, and its manufacturing method
JP3288572B2 (en) Manufacturing method of high toughness steel material with small material variation and excellent fatigue resistance
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP3376195B2 (en) Method for producing high-strength thick steel sheet with excellent in-plate homogeneity and having both brittle crack propagation arrestability and weldability
JP2005029841A (en) High strength steel for welded structure having excellent low temperature toughness in high heat input weld part haz, and its production method
JP3598640B2 (en) Method of manufacturing steel with low material variation and low yield ratio
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JP3598639B2 (en) Method for producing high-strength steel material with small material variation and small acoustic anisotropy
JP3500838B2 (en) High-strength steel material with small material variation and excellent weldability and method for producing the same
JPH1072620A (en) Production of wide flange shape small in dispersion in material and excellent in weldability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees