JPWO2020170774A1 - Square steel pipe and its manufacturing method, and building structures - Google Patents

Square steel pipe and its manufacturing method, and building structures Download PDF

Info

Publication number
JPWO2020170774A1
JPWO2020170774A1 JP2020543115A JP2020543115A JPWO2020170774A1 JP WO2020170774 A1 JPWO2020170774 A1 JP WO2020170774A1 JP 2020543115 A JP2020543115 A JP 2020543115A JP 2020543115 A JP2020543115 A JP 2020543115A JP WO2020170774 A1 JPWO2020170774 A1 JP WO2020170774A1
Authority
JP
Japan
Prior art keywords
less
steel pipe
square steel
cooling
square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020543115A
Other languages
Japanese (ja)
Other versions
JP6813140B1 (en
Inventor
井手 信介
信介 井手
晃英 松本
晃英 松本
昌士 松本
昌士 松本
岡部 能知
能知 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6813140B1 publication Critical patent/JP6813140B1/en
Publication of JPWO2020170774A1 publication Critical patent/JPWO2020170774A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal

Abstract

角形鋼管およびその製造方法、並びにこの角形鋼管を使用した建築構造物を提供する。本発明は、平板部と角部を有する角形鋼管であって、特定の成分組成を有し、鋼管の外表面から板厚tの1/4深さ位置における鋼組織は、フェライトが面積率で55%以上80%以下であり、硬質相の平均アスペクト比が0.1〜0.8であり、平板部は、YSが350MPa以上、TSが520MPa以上であり、角部に対する平板部のYSの比は0.80以上0.90以下、角部に対する平板部のTSの比は0.90以上1.00以下であり、平板部の−40℃のシャルピー吸収エネルギーが100J以上であり、角部のRは(2.3×t)以上(2.9×t)以下である。 Provided are a square steel pipe, a method for manufacturing the same, and a building structure using the square steel pipe. The present invention is a square steel pipe having a flat plate portion and a square portion, which has a specific component composition, and the steel structure at a depth of 1/4 of the plate thickness t from the outer surface of the steel pipe has ferrite as an area ratio. 55% or more and 80% or less, the average aspect ratio of the hard phase is 0.1 to 0.8, and the flat plate portion has a YS of 350 MPa or more and a TS of 520 MPa or more, and the YS of the flat plate portion with respect to the corner portion. The ratio is 0.80 or more and 0.90 or less, the ratio of TS of the flat plate portion to the corner portion is 0.90 or more and 1.00 or less, the charpy absorption energy of -40 ° C of the flat plate portion is 100 J or more, and the corner portion. R is (2.3 × t) or more and (2.9 × t) or less.

Description

本発明は、角形鋼管およびその製造方法並びに建築構造物に関する。本発明の角部と平板部の強度差の小さい角形鋼管は建築構造部材として好適に用いられる。 The present invention relates to a square steel pipe, a method for manufacturing the same, and a building structure. The square steel pipe having a small difference in strength between the corner portion and the flat plate portion of the present invention is suitably used as a building structural member.

角形鋼管(「角コラム」とも称する。)は、通常、熱延鋼板(熱延鋼帯)または厚板を素材とし、冷間成形することにより製造される。冷間成形する方法としては、プレス成形およびロール成形がある。しかし、これらの何れの方法においても、角形鋼管の角部には角形鋼管の平板部と比較して大きな塑性ひずみが加わるため、角部の強度が上昇しやすく、角部と平板部の強度差が大きくなるという問題がある。角部と平板部で特性が大きく異なる場合、溶接材料の選定や建築設計が非常に困難となるため、角形鋼管を建築構造用材料として用いることが難しくなる。 Square steel pipes (also referred to as "square columns") are usually manufactured by cold forming a hot-rolled steel plate (hot-rolled steel strip) or thick plate as a material. Cold forming methods include press forming and roll forming. However, in any of these methods, since a large plastic strain is applied to the corner portion of the square steel pipe as compared with the flat plate portion of the square steel pipe, the strength of the corner portion tends to increase, and the strength difference between the corner portion and the flat plate portion. There is a problem that becomes large. If the characteristics of the corner and the flat plate are significantly different, it will be very difficult to select the welding material and design the building, and it will be difficult to use the square steel pipe as the material for the building structure.

このような問題に対して、直接的な検討が行われた例は多くないが、例えば建築構造物用の角形鋼管として特許文献1の技術がある。特許文献1には、鋼板を冷間曲げ加工して得られる角形鋼管であって、前記鋼管は、C:0.02〜0.18%(「%」は「質量%」の意味であり、以下の化学成分について同じである。)、Si:0.03〜0.5%、Mn:0.7〜2.5%、Al:0.005〜0.12%およびN:0.008%以下(0%を含まない。)を夫々含有し、残部がFeおよび不可避的不純物からなり、該不可避的不純物のうちP:0.02%以下(0%を含まない。)、S:0.01%以下(0%を含まない。)およびO:0.004%以下(0%を含まない。)に夫々抑制されており、前記曲げ加工部は直角に加工ままの状態であり、且つ下記(A)〜(C)の要件を満足することで耐震性を確保する冷間成形角形鋼管が開示されている。
(A)鋼管の平坦部における降伏強度:355MPa以上、引張強度:520MPa以上である、
(B)前記平坦部のミクロ組織において、ベイナイト組織の面積分率:40%以上である、
(C)鋼管の角部における表層部がビッカース硬さHv:350以下、引張試験での伸び:10%以上、0℃のシャルピー吸収エネルギーvE0:70J以上である。
Although there are not many examples of direct studies on such problems, for example, there is a technique of Patent Document 1 as a square steel pipe for a building structure. Patent Document 1 describes a square steel pipe obtained by cold bending a steel plate, wherein the steel pipe has a C: 0.02 to 0.18% (“%” means “mass%”. The same applies to the following chemical components), Si: 0.03 to 0.5%, Mn: 0.7 to 2.5%, Al: 0.005 to 0.12% and N: 0.008%. Each contains the following (not including 0%), the balance is composed of Fe and unavoidable impurities, and among the unavoidable impurities, P: 0.02% or less (not including 0%), S: 0. It is suppressed to 01% or less (excluding 0%) and O: 0.004% or less (excluding 0%), respectively, and the bent portion is in a state of being processed at a right angle and described below. Cold-formed square steel pipes that ensure earthquake resistance by satisfying the requirements (A) to (C) are disclosed.
(A) Yield strength at a flat portion of a steel pipe: 355 MPa or more, tensile strength: 520 MPa or more.
(B) In the microstructure of the flat portion, the surface integral of the bainite structure: 40% or more.
(C) The surface layer portion at the corner of the steel pipe has a Vickers hardness Hv: 350 or less, elongation in a tensile test: 10% or more, and Charpy absorption energy vE 0: 70J or more at 0 ° C.

特許第5385760号公報Japanese Patent No. 5385760

冷間のロール成形により製造される角形鋼管は、熱間圧延によって造り込まれた幅方向に平坦な材料(熱間圧延材)を、ロール成形により、丸形鋼管とした後、角部と平板部を有する角形鋼管に成形される。このような製法上、加工硬化の差により、角部と平板部の強度差は大きくなりやすい。さらには、ロール成形前に行われる熱間圧延では、熱間圧延材の表面からの冷却制御によって材料の造り込みを行うため、冷却速度が相対的に大きくなる熱間圧延材の表層近傍では加工前の強度(硬さ)が大きくなるという問題があった。 Square steel pipes manufactured by cold roll forming are made from a material (hot rolled material) that is flat in the width direction, which is made by hot rolling, into round steel pipes by roll forming, and then the corners and flat plates. It is formed into a square steel pipe having a portion. Due to such a manufacturing method, the difference in strength between the corner portion and the flat plate portion tends to be large due to the difference in work hardening. Furthermore, in hot rolling performed before roll forming, the material is built in by cooling control from the surface of the hot rolled material, so processing is performed near the surface layer of the hot rolled material where the cooling rate is relatively high. There was a problem that the previous strength (hardness) increased.

しかし、上述の特許文献1に開示された技術では、熱間圧延での温度制御により、鋼板の表面の硬さが過度に上昇しないようにすることにとどまっており、積極的に角部と平板部の強度差を小さくするものではない。そのため、冷間曲げ加工して得られた角形鋼管は、たとえ角部の特性が所定の基準を満たしていても、角部の強度が平板部の強度と比較して相対的に高くなっているのは明らかであった。角部の強度の上昇を抑えるには、角部の塑性ひずみを小さくすることが有効である。角部の塑性ひずみを小さくするには、角部のR(丸み)を大きくすることが考えられる。しかし、角部のRが大きい角形鋼管は、角形の部材として他の部材と組み合わせる際に、設計上の問題や、隙間の発生などにより建築物としての性能低下につながる問題があるため好ましくない。 However, in the technique disclosed in Patent Document 1 described above, the temperature control in hot rolling is limited to preventing the surface hardness of the steel sheet from increasing excessively, and the corners and the flat plate are positively used. It does not reduce the difference in strength of the parts. Therefore, in the square steel pipe obtained by cold bending, the strength of the corner portion is relatively higher than the strength of the flat plate portion even if the characteristics of the corner portion satisfy a predetermined standard. Was clear. In order to suppress the increase in the strength of the corners, it is effective to reduce the plastic strain of the corners. In order to reduce the plastic strain of the corners, it is conceivable to increase the R (roundness) of the corners. However, a square steel pipe having a large R at a corner is not preferable because when it is combined with another member as a square member, there is a problem in design and a problem that the performance as a building is deteriorated due to the occurrence of a gap or the like.

本発明はかかる事情に鑑みてなされたものであって、角部と平板部の強度差の小さい角形鋼管およびその製造方法、並びにこの角形鋼管を使用した建築構造物を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a square steel pipe having a small difference in strength between a corner portion and a flat plate portion, a method for manufacturing the same, and a building structure using the square steel pipe. ..

本発明者らは、上記課題を解決するために鋭意検討した結果、以下の知見を得た。 As a result of diligent studies to solve the above problems, the present inventors have obtained the following findings.

本発明では、冷間でのロール成形で導入される加工ひずみ(塑性ひずみ)が特に大きくなる鋼管の表層近傍(以下、外表面近傍と称する。)において、加工硬化を生じにくくすることにより、角部と平板部の強度差を小さくすることに着想した。 In the present invention, the corners are made less likely to occur in the vicinity of the surface layer of the steel pipe (hereinafter, referred to as the vicinity of the outer surface) where the processing strain (plastic strain) introduced by cold roll forming is particularly large. The idea was to reduce the difference in strength between the part and the flat plate part.

そこで、本発明者らは、角形鋼管の鋼組織としてフェライトの面積率およびフェライト以外の硬質相(以下、硬質相と称する。)のアスペクト比を変化させた試料を複数用意し、加工硬化のしやすさを調べた。ここで、硬質相とは、ベイナイト、パーライト、マルテンサイト、および残留オーステナイトなどが含まれるが、特に限定されない。 Therefore, the present inventors prepared a plurality of samples in which the area ratio of ferrite and the aspect ratio of a hard phase other than ferrite (hereinafter referred to as a hard phase) were changed as the steel structure of a square steel pipe, and processed and cured. I checked the ease. Here, the hard phase includes, but is not limited to, bainite, pearlite, martensite, retained austenite, and the like.

その結果、平板部のYSが350MPa以上、TSが520MPa以上の強度を有する角形鋼管において、フェライトの割合を一定以上とし、さらに硬質相の平均アスペクト比が0.1〜0.8とすることにより、加工硬化しにくい鋼組織を造り込めることを見出した。これは、フェライトの加工硬化能が小さい上にそのフェライトにひずみが集中しやすくなったことで、鋼組織全体としての加工硬化能が小さくなることによるものと考えられる。 As a result, in a square steel pipe having a strength of 350 MPa or more in YS and 520 MPa or more in TS of the flat plate portion, the ratio of ferrite is set to a certain level or higher, and the average aspect ratio of the hard phase is set to 0.1 to 0.8. , Found that it is possible to create a steel structure that is difficult to work harden. It is considered that this is because the work hardening ability of the ferrite is small and the strain is easily concentrated on the ferrite, so that the work hardening ability of the steel structure as a whole becomes small.

また、本発明者らは、素材(熱間圧延材)の鋼組織を活かして角部の加工硬化を抑制するためには、角形鋼管を製造する際に、一旦、縦径/横径の比で0.99以上1.01以下の円筒状の丸形鋼管に成形した後、上下および左右に配置されたロールにより、角部のRが2.3×t(tは板厚)以上2.9×t以下である角状に成形する。これにより、角部を過度に加工硬化させずに角形鋼管を得られることを見出した。ここで、「縦径」とは、上記丸形鋼管の管軸に対する鉛直方向の外径をさし、「横径」とは、上記丸形鋼管の管軸に対する水平方向の外径をさす。 Further, in order to utilize the steel structure of the material (hot rolled material) to suppress work hardening of the corners, the present inventors once manufacture a square steel pipe, the vertical diameter / horizontal diameter ratio. After forming into a cylindrical round steel pipe of 0.99 or more and 1.01 or less, the corner radius is 2.3 × t (t is the plate thickness) or more by the rolls arranged vertically and horizontally. It is molded into a square shape of 9 × t or less. As a result, it has been found that a square steel pipe can be obtained without excessive work hardening of the corners. Here, the "vertical diameter" refers to the outer diameter in the vertical direction with respect to the pipe axis of the round steel pipe, and the "horizontal diameter" refers to the outer diameter in the horizontal direction with respect to the pipe axis of the round steel pipe.

以上より、本発明では、冷間でのロール成形で導入される加工ひずみが最も大きくなる角形鋼管の外表面近傍の鋼組織について、フェライトの割合を一定以上とし、さらに硬質相の平均アスペクト比を0.1〜0.8とする。また、熱間圧延材を縦径/横径の比で0.99以上1.01以下の円筒状に成形した後、上下および左右に配置されたロールで角状に成形することにより、角部と平板部の強度差の小さい角形鋼管を製造することができると考えた。 Based on the above, in the present invention, the ratio of ferrite is set to a certain value or more and the average aspect ratio of the hard phase is set to a certain value or more for the steel structure near the outer surface of the square steel pipe having the largest processing strain introduced by cold roll forming. It shall be 0.1 to 0.8. Further, the hot-rolled material is formed into a cylindrical shape having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less, and then formed into a square shape with rolls arranged vertically and horizontally to form a corner portion. It was thought that a square steel pipe with a small difference in strength between the flat plate and the flat plate could be manufactured.

なお、本発明において、「角部と平板部の強度差が小さい角形鋼管」とは、角部に対する平板部のYSの比が0.80以上0.90以下、角部に対する平板部のTSの比が0.90以上1.00以下であることを示す。 In the present invention, the "square steel pipe having a small difference in strength between the corner portion and the flat plate portion" means that the ratio of YS of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less, and the TS of the flat plate portion with respect to the corner portion. It shows that the ratio is 0.90 or more and 1.00 or less.

本発明者らは、さらに詳細な検討を重ね、本発明を完成するに至った。本発明の要旨は、次の通りである。
[1] 平板部と角部を有する角形鋼管であって、
成分組成は、質量%で、
C:0.07〜0.20%、
Si:1.0%以下、
Mn:0.5〜2.0%、
P:0.030%以下、
S:0.015%以下、
Al:0.01〜0.06%、
N:0.006%以下
を含有し、残部がFeおよび不可避的不純物からなり、
鋼管の外表面から板厚tの1/4深さ位置における鋼組織は、フェライトが面積率で55%以上80%以下であり、硬質相平均アスペクト比が0.1〜0.8であり、
前記平板部は、YSが350MPa以上、TSが520MPa以上であり、
前記角部に対する前記平板部のYSの比は0.80以上0.90以下、前記角部に対する前記平板部のTSの比は0.90以上1.00以下であり、
前記平板部の−40℃のシャルピー吸収エネルギーが100J以上であり、
前記角部のRは(2.3×t)以上(2.9×t)以下
である角形鋼管。
[2] 前記成分組成に加えてさらに、質量%で、下記A群〜C群のうちから選ばれた1群または2群以上を含有する[1]に記載の角形鋼管。

A群:Nb:0.05%以下、Ti:0.05%以下、V:0.10%以下のうちから選ばれた1種または2種以上
B群:B:0.008%以下
C群:Cr:0.01〜1.0%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.30%、Ca:0.001〜0.010%のうちから選ばれた1種または2種以上
[3] 前記鋼組織は、さらに、前記硬質相の平均円相当径が20μm以下である[1]または[2]に記載の角形鋼管。
[4] [1]〜[3]のいずれか1つに記載の角形鋼管の製造方法であって、
鋼板を冷間でロール成形して円筒状にした端面を溶接し、縦径/横径の比で0.99以上1.01以下の円筒状に成形した後、角状に成形する造管工程を施す角形鋼管の製造方法。
[5] [1]〜[3]のいずれか1つに記載の角形鋼管の製造方法であって、
鋼素材に、熱間圧延工程、冷却工程、巻取工程および造管工程をこの順に施して角形鋼管を製造するに際し、
前記鋼素材を加熱温度:1100〜1300℃に加熱した後、
板厚中心温度が1000℃以上での粗圧延時間:200秒以上400秒以内、粗圧延終了温度:1000〜800℃、
仕上圧延開始温度:1000〜800℃、仕上圧延終了温度:900〜750℃とする熱間圧延工程を施して熱延板とし、
次いで、前記熱延板に、冷却開始から10s間の初期冷却工程における0.2s以上3.0s未満の放冷を1回以上有し、板厚中心温度での平均冷却速度:4〜25℃/sとする冷却工程を施し、
次いで、前記熱延板を巻取温度:580℃以下で巻取る巻取工程を施して鋼板とし、
次いで、前記鋼板を冷間でロール成形して円筒状にした端面を溶接し、縦径/横径の比で0.99以上1.01以下の円筒状に成形した後、角状に成形する造管工程を施す角形鋼管の製造方法。
[6] 前記冷却工程の冷却停止温度を580℃以下とする[5]に記載の角形鋼管の製造方法。
[7] [1]〜[3]のいずれか1つに記載の角形鋼管を使用した建築構造物。
The present inventors have repeated more detailed studies and have completed the present invention. The gist of the present invention is as follows.
[1] A square steel pipe having a flat plate portion and a corner portion.
Ingredient composition is mass%,
C: 0.07 to 0.20%,
Si: 1.0% or less,
Mn: 0.5-2.0%,
P: 0.030% or less,
S: 0.015% or less,
Al: 0.01-0.06%,
N: Contains 0.006% or less, the balance consists of Fe and unavoidable impurities,
In the steel structure at a depth of 1/4 of the plate thickness t from the outer surface of the steel pipe, ferrite has an area ratio of 55% or more and 80% or less, and a hard phase average aspect ratio is 0.1 to 0.8.
The flat plate portion has a YS of 350 MPa or more and a TS of 520 MPa or more.
The ratio of YS of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less, and the ratio of TS of the flat plate portion to the corner portion is 0.90 or more and 1.00 or less.
The Charpy absorption energy at −40 ° C. of the flat plate portion is 100 J or more.
A square steel pipe having an R of the corner portion of (2.3 × t) or more and (2.9 × t) or less.
[2] The square steel pipe according to [1], which further contains one group or two or more groups selected from the following groups A to C in mass% in addition to the component composition.
Group A: Nb: 0.05% or less, Ti: 0.05% or less, V: 0.10% or less, one or more selected from Group B: B: 0.008% or less C Group: Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.30%, Ca: 0. One or more selected from 001 to 0.010% [3] The steel structure further described in [1] or [2], wherein the average circle equivalent diameter of the hard phase is 20 μm or less. Square steel pipe.
[4] The method for manufacturing a square steel pipe according to any one of [1] to [3].
A pipe-making process in which a steel plate is cold-rolled to form a cylindrical end face, welded, formed into a cylindrical shape with a vertical / horizontal diameter ratio of 0.99 or more and 1.01 or less, and then formed into a square shape. A method of manufacturing a square steel pipe.
[5] The method for manufacturing a square steel pipe according to any one of [1] to [3].
When manufacturing a square steel pipe by subjecting a steel material to a hot rolling process, a cooling process, a winding process, and a pipe making process in this order.
After heating the steel material to a heating temperature: 1100 to 1300 ° C.
Rough rolling time when the center temperature of the plate thickness is 1000 ° C or higher: 200 seconds or more and 400 seconds or less, rough rolling end temperature: 1000 to 800 ° C,
A hot rolling process of finishing rolling start temperature: 1000 to 800 ° C. and finish rolling end temperature: 900 to 750 ° C. is performed to obtain a hot-rolled plate.
Next, the hot-rolled plate has one or more cooling releases of 0.2 s or more and less than 3.0 s in the initial cooling step from the start of cooling to 10 s, and the average cooling rate at the plate thickness center temperature: 4 to 25 ° C. A cooling process of / s is performed, and
Next, the hot-rolled plate is subjected to a winding step of winding at a winding temperature of 580 ° C. or lower to obtain a steel sheet.
Next, the steel plate is cold-rolled to form a cylindrical end face, and the end face is welded to form a cylindrical shape having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less, and then formed into a square shape. A method for manufacturing a square steel pipe to be subjected to a pipe making process.
[6] The method for manufacturing a square steel pipe according to [5], wherein the cooling stop temperature in the cooling step is 580 ° C. or lower.
[7] A building structure using the square steel pipe according to any one of [1] to [3].

本発明によれば、角部と平板部の強度差が小さい角形鋼管を得ることができる。この角形鋼管は、角部のRが適切な大きさに制御されているため、例えば建築構造部材向け角形鋼管として好適に用いることができる。 According to the present invention, it is possible to obtain a square steel pipe having a small difference in strength between a square portion and a flat plate portion. Since the R of the corner portion is controlled to an appropriate size, this square steel pipe can be suitably used as, for example, a square steel pipe for building structural members.

図1は、電縫鋼管の製造設備の一例を示す模式図である。FIG. 1 is a schematic view showing an example of an electric resistance welded steel pipe manufacturing facility. 図2は、角鋼管の成形過程を示す模式図である。FIG. 2 is a schematic view showing a molding process of a square steel pipe. 図3は、本発明の角形鋼管を使用した建築構造物の一例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an example of a building structure using the square steel pipe of the present invention. 図4は、角鋼管の断面を示す模式図である。FIG. 4 is a schematic view showing a cross section of a square steel pipe.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の角形鋼管は以下の通りである。成分組成は、質量%で、C:0.07〜0.20%、Si:1.0%以下、Mn:0.5〜2.0%、P:0.030%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.006%以下を含有し、残部がFeおよび不可避的不純物からなる。この角形鋼管の外表面から板厚tの1/4深さ位置(以下、1/4t位置と称する。)における鋼組織は、フェライトが面積率で55%以上80%以下であり、硬質相の平均アスペクト比が0.1〜0.8である。また、角形鋼板の平板部は、YSが350MPa以上、TSが520MPa以上であり、角部に対する平板部のYSの比は0.80以上0.90以下、角部に対する平板部のTSの比は0.90以上1.00以下であり、平板部の板厚1/4t位置における−40℃のシャルピー吸収エネルギーが100J以上であり、角部のRは(2.3×t)以上(2.9×t)以下である。 The square steel pipe of the present invention is as follows. The composition of the components is C: 0.07 to 0.20%, Si: 1.0% or less, Mn: 0.5 to 2.0%, P: 0.030% or less, S: 0. It contains 015% or less, Al: 0.01 to 0.06%, N: 0.006% or less, and the balance consists of Fe and unavoidable impurities. The steel structure at the 1/4 depth position (hereinafter referred to as 1 / 4t position) of the plate thickness t from the outer surface of this square steel pipe has a ferrite content ratio of 55% or more and 80% or less, and is of a hard phase. The average aspect ratio is 0.1 to 0.8. Further, the flat plate portion of the square steel plate has a YS of 350 MPa or more and a TS of 520 MPa or more, the ratio of YS of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less, and the ratio of TS of the flat plate portion to the corner portion is It is 0.90 or more and 1.00 or less, the Charpy absorption energy at −40 ° C. at the plate thickness 1/4 t position of the flat plate portion is 100 J or more, and the R of the corner portion is (2.3 × t) or more (2. 9 × t) or less.

まず、本発明の成分組成について説明する。なお、特に断らない限り質量%は、単に%で記す。なお、本発明では、角形鋼管と角形鋼管の素材に用いる鋼板との成分組成は同一である。そのため、以下においては、角形鋼管と素材に用いる鋼板の成分組成の限定理由として説明する。 First, the component composition of the present invention will be described. Unless otherwise specified, mass% is simply expressed as%. In the present invention, the composition of the square steel pipe and the steel plate used as the material of the square steel pipe are the same. Therefore, in the following, the reason for limiting the component composition of the square steel pipe and the steel plate used as the material will be described.

C:0.07〜0.20%
Cは、固溶強化により鋼板および角形鋼管の強度を増加させる。一方、Cは、硬質相の生成量を増加させることでフェライトの生成量を減少させる元素である。所望の強度、さらに所望の鋼板および角形鋼管の鋼組織を確保するためには、Cは0.07%以上の含有を必要とする。一方、0.20%を超えるCの含有は、所望のフェライト量を確保することが難しくなる。このため、Cは0.07〜0.20%とする。Cは、好ましくは0.09%以上であり、より好ましくは0.10%以上である。また、Cは、好ましくは0.18%以下であり、より好ましくは0.17%以下である。
C: 0.07 to 0.20%
C increases the strength of the steel plate and the square steel pipe by solid solution strengthening. On the other hand, C is an element that reduces the amount of ferrite produced by increasing the amount of hard phase produced. In order to secure the desired strength and the steel structure of the desired steel plate and square steel pipe, C needs to be contained in an amount of 0.07% or more. On the other hand, if the content of C exceeds 0.20%, it becomes difficult to secure a desired ferrite amount. Therefore, C is set to 0.07 to 0.20%. C is preferably 0.09% or more, and more preferably 0.10% or more. Further, C is preferably 0.18% or less, and more preferably 0.17% or less.

Si:1.0%以下
Siは、固溶強化で鋼板および角形鋼管の強度増加に寄与する元素である。所望の鋼板および角形鋼管の強度を確保するためには、Siは0.01%を超えて含有することが望ましい。しかし、1.0%を超えてSiを含有すると、靱性が低下する。このため、Siは1.0%以下とする。なお、Siは、好ましくは0.8%以下、より好ましくは0.6%以下である。より好ましくは0.03%以上である。
Si: 1.0% or less Si is an element that contributes to increasing the strength of steel sheets and square steel pipes by solid solution strengthening. In order to secure the desired strength of the steel plate and the square steel pipe, it is desirable that Si is contained in an amount of more than 0.01%. However, if Si is contained in excess of 1.0%, the toughness decreases. Therefore, Si is set to 1.0% or less. Si is preferably 0.8% or less, more preferably 0.6% or less. More preferably, it is 0.03% or more.

Mn:0.5〜2.0%
Mnは、固溶強化を介して鋼板および角形鋼管の強度を増加させる元素であり、所望の鋼板および角形鋼管の強度を確保するために、0.5%以上の含有を必要とする。Mnが0.5%未満の含有では、フェライト変態開始温度の上昇を招き、それに伴って硬質相が過度に粗大化しやすい。一方、Mnは2.0%を超えて含有すると、中心偏析部の硬度が上昇し、角形鋼管の現場での溶接時の割れの原因となる懸念がある。このため、Mnは0.5〜2.0%とする。Mnは、好ましくは1.8%以下であり、より好ましくは1.6%以下である。Mnは、好ましくは0.6%以上であり、より好ましくは0.7%以上である。
Mn: 0.5-2.0%
Mn is an element that increases the strength of the steel plate and the square steel pipe through solid solution strengthening, and needs to be contained in an amount of 0.5% or more in order to secure the desired strength of the steel plate and the square steel pipe. If the Mn content is less than 0.5%, the ferrite transformation start temperature rises, and the hard phase tends to be excessively coarsened accordingly. On the other hand, if Mn is contained in an amount of more than 2.0%, the hardness of the central segregated portion increases, and there is a concern that it may cause cracks during welding of the square steel pipe at the site. Therefore, Mn is set to 0.5 to 2.0%. Mn is preferably 1.8% or less, more preferably 1.6% or less. Mn is preferably 0.6% or more, more preferably 0.7% or more.

P:0.030%以下
Pは、フェライト粒界に偏析して、鋼板および角形鋼管の靭性を低下させる作用を有する元素である。本発明では、不純物としてできるだけ低減することが望ましい。しかし、過度のPの低減は、精錬コストの高騰を招くため、0.002%以上とすることが好ましい。なお、Pの含有は0.030%までは許容できる。このため、Pは0.030%以下とする。Pは、好ましくは0.025%以下であり、より好ましくは0.020%以下である。
P: 0.030% or less P is an element that segregates into ferrite grain boundaries and has the effect of reducing the toughness of steel sheets and square steel pipes. In the present invention, it is desirable to reduce impurities as much as possible. However, excessive reduction of P causes an increase in refining cost, so it is preferably 0.002% or more. The content of P is acceptable up to 0.030%. Therefore, P is set to 0.030% or less. P is preferably 0.025% or less, and more preferably 0.020% or less.

S:0.015%以下
Sは、鋼中では硫化物として存在し、本発明の成分組成の範囲であれば、主としてMnSとして存在する。MnSは、熱間圧延工程で薄く延伸され、鋼板および角形鋼管の延性および靭性に悪影響を及ぼす。このため、本発明ではできるだけMnSを低減することが望ましい。しかし、過度のSの低減は、精錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。なお、Sの含有は0.015%までは許容できる。このため、Sは0.015%以下とする。Sは、好ましくは0.010%以下であり、より好ましくは0.008%以下である。
S: 0.015% or less S exists as a sulfide in steel, and mainly exists as MnS within the range of the component composition of the present invention. MnS is thinly stretched in the hot rolling process and adversely affects the ductility and toughness of steel sheets and square steel pipes. Therefore, in the present invention, it is desirable to reduce MnS as much as possible. However, excessive reduction of S causes an increase in refining cost, so S is preferably 0.0002% or more. The content of S is acceptable up to 0.015%. Therefore, S is set to 0.015% or less. S is preferably 0.010% or less, more preferably 0.008% or less.

Al:0.01〜0.06%
Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素である。このような効果を得るためには、0.01%以上のAlの含有を必要とする。Alは0.01%未満では、Si無添加の場合に脱酸力が不足し、酸化物系介在物が増加し、鋼板の清浄度が低下する。一方、0.06%を超えるAlの含有は、固溶Al量が増加し、角形鋼管の長手溶接時(すなわち、角形鋼管の製造における鋼管長手方向の電縫溶接時)、特に大気中での溶接の場合に、溶接部に酸化物を形成させる危険性が高くなり、角形鋼管溶接部の靭性が低下する。このため、Alは0.01〜0.06%にする。Alは、好ましくは0.02%以上である。また、Alは、好ましくは0.05%以下である。
Al: 0.01-0.06%
Al is an element that acts as an antacid and also has an action of fixing N as AlN. In order to obtain such an effect, the content of Al of 0.01% or more is required. If Al is less than 0.01%, the deoxidizing power is insufficient when Si is not added, oxide-based inclusions increase, and the cleanliness of the steel sheet decreases. On the other hand, if the Al content exceeds 0.06%, the amount of solid-dissolved Al increases, and during longitudinal welding of square steel pipes (that is, during electric welding in the longitudinal direction of steel pipes in the production of square steel pipes), especially in the atmosphere. In the case of welding, the risk of forming oxides in the welded portion increases, and the toughness of the square steel pipe welded portion decreases. Therefore, Al is set to 0.01 to 0.06%. Al is preferably 0.02% or more. Further, Al is preferably 0.05% or less.

N:0.006%以下
Nは、転位の運動を強固に固着することで鋼板および角形鋼管の靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましく、0.006%までは許容できる。このため、Nは0.006%以下とする。Nは、好ましくは0.005%以下である。本発明では特に規定しないが、製造コストの観点より、Nは0.001%以上とすることが好ましい。
N: 0.006% or less N is an element that has the effect of reducing the toughness of steel sheets and square steel pipes by firmly fixing the motion of dislocations. In the present invention, it is desirable to reduce N as an impurity as much as possible, and up to 0.006% is acceptable. Therefore, N is set to 0.006% or less. N is preferably 0.005% or less. Although not particularly specified in the present invention, N is preferably 0.001% or more from the viewpoint of manufacturing cost.

残部はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲においては、不可避的不純物として、例えばO(酸素):0.005%以下を含有することを許容できる。 The balance is Fe and unavoidable impurities. However, as long as the effect of the present invention is not impaired, it is permissible to contain, for example, O (oxygen): 0.005% or less as an unavoidable impurity.

以上が本発明の基本の成分組成である。上記した必須元素で本発明で目的とする特性は得られるが、必要に応じて下記の元素を含有することができる。 The above is the basic composition of the present invention. Although the above-mentioned essential elements can obtain the properties desired in the present invention, the following elements can be contained as needed.

Nb:0.05%以下、Ti:0.05%以下、V:0.10%以下のうちから選ばれた1種または2種以上
Nb、Ti、Vは、いずれも鋼中で微細な炭化物、窒化物を形成し、析出強化を通じて鋼の強度向上に寄与する元素である。このため、本発明では強度を調整する目的で含有してもよい。このような効果を得るために、Nb、Ti、Vを含有する場合は、それぞれ、Nb:0.05%以下、Ti:0.05%以下、V:0.10%以下とすることが好ましく、Nb:0.04%以下、Ti:0.04%以下、V:0.08%以下とすることがより好ましい。Nb、Ti、Vを含有する場合は、それぞれ、Nb:0.001%以上、Ti:0.001%以上、V:0.001%以上とすることが好ましく、Nb:0.003%以上、Ti:0.003%以上、V:0.003%以上とすることがより好ましい。
One or more selected from Nb: 0.05% or less, Ti: 0.05% or less, V: 0.10% or less Nb, Ti, V are all fine carbides in steel. , It is an element that forms nitride and contributes to the improvement of steel strength through precipitation strengthening. Therefore, in the present invention, it may be contained for the purpose of adjusting the strength. In order to obtain such an effect, when Nb, Ti, and V are contained, it is preferable that Nb: 0.05% or less, Ti: 0.05% or less, and V: 0.10% or less, respectively. , Nb: 0.04% or less, Ti: 0.04% or less, V: 0.08% or less, more preferably. When Nb, Ti, and V are contained, Nb: 0.001% or more, Ti: 0.001% or more, V: 0.001% or more are preferable, and Nb: 0.003% or more, respectively. It is more preferable that Ti: 0.003% or more and V: 0.003% or more.

なお、Nb、Ti、Vのうちから選ばれた2種以上を含有する場合には、合計で0.2%以下とすることが好ましく、0.005%以上とすることが好ましい。 When two or more kinds selected from Nb, Ti, and V are contained, the total content is preferably 0.2% or less, and preferably 0.005% or more.

B:0.008%以下
Bは、冷却過程のフェライト変態を遅延させ、低温変態フェライトの形成を促進し、鋼板および角形鋼管の強度を増加させる作用を有する元素である。Bの含有は、鋼板の降伏比、すなわち角形鋼管の降伏比の増加に繋がる。このため、本発明では、角形鋼管の降伏比が90%以下となるような範囲であれば、強度を調整する目的で必要に応じてBを含有することができる。Bを含有する場合は、B:0.008%以下とすることが好ましい。Bは、より好ましくは0.0015%以下であり、さらに好ましくは0.0008%以下である。Bは、好ましくは0.0001%以上であり、より好ましくは0.0003%以上である。
B: 0.008% or less B is an element having an action of delaying the ferrite transformation in the cooling process, promoting the formation of low temperature transformed ferrite, and increasing the strength of the steel plate and the square steel pipe. The content of B leads to an increase in the yield ratio of the steel sheet, that is, the yield ratio of the square steel pipe. Therefore, in the present invention, B can be contained as necessary for the purpose of adjusting the strength as long as the yield ratio of the square steel pipe is within the range of 90% or less. When B is contained, it is preferably B: 0.008% or less. B is more preferably 0.0015% or less, still more preferably 0.0008% or less. B is preferably 0.0001% or more, and more preferably 0.0003% or more.

Cr:0.01〜1.0%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.30%、Ca:0.001〜0.010%のうちから選ばれた1種または2種以上
Cr:0.01〜1.0%
Crは、焼入れ性を高めることで、鋼板および角形鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。そのような効果を得るためにCrを含有する場合は、0.01%以上のCrを含有することが好ましい。一方、1.0%を超えて含有すると靱性や溶接性を低下させるおそれがあるので、Crを含有する場合は1.0%以下とすることが好ましい。Crは、より好ましくは0.02%以上であり、より好ましくは0.8%以下である。
Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.30%, Ca: 0.001 to One or more selected from 0.010% Cr: 0.01-1.0%
Cr is an element that increases the strength of steel sheets and square steel pipes by enhancing hardenability, and can be contained as necessary. When Cr is contained in order to obtain such an effect, it is preferable that Cr is contained in an amount of 0.01% or more. On the other hand, if it is contained in excess of 1.0%, the toughness and weldability may be deteriorated. Therefore, when Cr is contained, it is preferably 1.0% or less. Cr is more preferably 0.02% or more, and more preferably 0.8% or less.

Mo:0.01〜1.0%
Moは、焼入れ性を高めることで、鋼板および角形鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。そのような効果を得るためにMoを含有する場合は、0.01%以上のMoを含有することが好ましい。一方、1.0%を超えてMoを含有すると靱性を低下させるおそれがあるので、Moを含有する場合は1.0%以下とすることが好ましい。Moは、より好ましくは0.02%以上であり、より好ましくは0.8%以下である。
Mo: 0.01-1.0%
Mo is an element that increases the strength of steel plates and square steel pipes by enhancing hardenability, and can be contained as necessary. When Mo is contained in order to obtain such an effect, it is preferable to contain 0.01% or more of Mo. On the other hand, if Mo is contained in an amount of more than 1.0%, the toughness may be lowered. Therefore, when Mo is contained, it is preferably 1.0% or less. Mo is more preferably 0.02% or more, and more preferably 0.8% or less.

Cu:0.01〜0.50%
Cuは、固溶強化により鋼板および角形鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。そのような効果を得るためにCuを含有する場合は、0.01%以上のCuを含有することが好ましい。一方、0.50%を超えてCuを含有すると靱性を低下させるおそれがあるので、Cuを含有する場合は0.50%以下とすることが好ましい。Cuは、より好ましくは0.02%以上であり、より好ましくは0.4%以下である。
Cu: 0.01-0.50%
Cu is an element that increases the strength of steel sheets and square steel pipes by solid solution strengthening, and can be contained as needed. When Cu is contained in order to obtain such an effect, it is preferable to contain 0.01% or more of Cu. On the other hand, if Cu is contained in excess of 0.50%, the toughness may be lowered. Therefore, when Cu is contained, it is preferably 0.50% or less. Cu is more preferably 0.02% or more, and more preferably 0.4% or less.

Ni:0.01〜0.30%
Niは、固溶強化により鋼板および角形鋼管の強度を上昇させる元素であり、必要に応じて含有することができる。そのような効果を得るためにNiを含有する場合は、0.01%以上のNiを含有することが好ましい。一方、0.30%を超えてNiを含有するとフェライトの面積率が低下しやすくなるおそれがあるので、Niを含有する場合は0.30%以下とすることが好ましい。Niは、より好ましくは0.02%以上であり、より好ましくは0.2%以下である。
Ni: 0.01 to 0.30%
Ni is an element that increases the strength of steel sheets and square steel pipes by solid solution strengthening, and can be contained as needed. When Ni is contained in order to obtain such an effect, it is preferable to contain 0.01% or more of Ni. On the other hand, if Ni is contained in excess of 0.30%, the area ratio of ferrite may easily decrease. Therefore, when Ni is contained, it is preferably 0.30% or less. Ni is more preferably 0.02% or more, and more preferably 0.2% or less.

Ca:0.001〜0.010%
Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を、球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有することができる。このような効果を得るためにCaを含有する場合は、0.001%以上のCaを含有することが好ましい。しかし、Ca含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化するおそれがある。このため、Caを含有する場合は、Ca含有量は0.001〜0.010%とすることが好ましい。Caは、より好ましくは0.0015%以上であり、より好ましくは0.0050%以下である。
Ca: 0.001 to 0.010%
Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process, and can be contained as needed. When Ca is contained in order to obtain such an effect, it is preferable to contain 0.001% or more of Ca. However, if the Ca content exceeds 0.010%, Ca oxide clusters may be formed in the steel and the toughness may deteriorate. Therefore, when Ca is contained, the Ca content is preferably 0.001 to 0.010%. Ca is more preferably 0.0015% or more, and more preferably 0.0050% or less.

次に、本発明の角形鋼管の鋼組織について説明する。 Next, the steel structure of the square steel pipe of the present invention will be described.

本発明の角形鋼管の外表面から1/4t位置における鋼組織は、フェライトが面積率で55%以上80%以下であり、硬質相の平均アスペクト比が0.1〜0.8である。鋼組織は、さらに、硬質相の平均円相当径を20μm以下とすることができる。 In the steel structure at a position 1 / 4t from the outer surface of the square steel pipe of the present invention, the area ratio of ferrite is 55% or more and 80% or less, and the average aspect ratio of the hard phase is 0.1 to 0.8. The steel structure can further have an average circle-equivalent diameter of the hard phase of 20 μm or less.

フェライト:面積率で55%以上80%以下
本発明の角形鋼管は、所望の強度を確保するため、鋼管の外表面から1/4t位置の鋼組織は、フェライトおよびそれ以外の硬質相からなる。ここで、硬質相とは、フェライト以外の相、すなわちベイナイト、パーライト、マルテンサイト、および残留オーステナイトなどが含まれる。この硬質相は、各相の面積率の合計で20〜45%である。
Ferrite: 55% or more and 80% or less in area ratio In order to secure the desired strength in the square steel pipe of the present invention, the steel structure at 1/4 t position from the outer surface of the steel pipe is composed of ferrite and other hard phases. Here, the hard phase includes phases other than ferrite, that is, bainite, pearlite, martensite, retained austenite, and the like. This hard phase has a total area ratio of 20 to 45% for each phase.

フェライトが面積率で55%未満の場合、本発明の上記成分組成の範囲においてはベイナイトの割合が過剰となり、ひずみが硬質相に分散しやすくなるため、加工硬化しやすくなる。その結果、角部と平板部の強度差の小さい角形鋼管を得られない。一方、フェライトが面積率で80%を超える場合、所望の強度を得られない。フェライトは、好ましくは60%以上であり、好ましくは75%以下である。 When the area ratio of ferrite is less than 55%, the proportion of bainite becomes excessive in the range of the above-mentioned component composition of the present invention, and strain is easily dispersed in the hard phase, so that work hardening is easily performed. As a result, it is not possible to obtain a square steel pipe having a small difference in strength between the corner portion and the flat plate portion. On the other hand, if the area ratio of ferrite exceeds 80%, the desired strength cannot be obtained. Ferrite is preferably 60% or more, preferably 75% or less.

硬質相の平均アスペクト比:0.1〜0.8
硬質相の平均アスペクト比が0.1未満では、亀裂の起点が生じやすくなるため、靱性が低下する。一方、硬質相の平均アスペクト比が0.8を超えると、硬質相にひずみが分散しやすくなるため、加工硬化しやすくなる。その結果、鋼板を用いて角形鋼管を製造する際に、角部と平板部の強度差が小さい角形鋼管を得られない。より好ましくは0.2以上であり、より好ましくは0.7以下である。本発明では、後述するように、硬質相のアスペクト比は、フェライト以外の組織におけるナノ硬さが3.0GPa以上の粒のアスペクト比の平均値である。
Average aspect ratio of hard phase: 0.1-0.8
If the average aspect ratio of the hard phase is less than 0.1, crack origins are likely to occur, resulting in a decrease in toughness. On the other hand, when the average aspect ratio of the hard phase exceeds 0.8, strain is easily dispersed in the hard phase, so that work hardening is likely to occur. As a result, when manufacturing a square steel pipe using a steel plate, it is not possible to obtain a square steel pipe having a small difference in strength between the corner portion and the flat plate portion. It is more preferably 0.2 or more, and more preferably 0.7 or less. In the present invention, as will be described later, the aspect ratio of the hard phase is the average value of the aspect ratios of grains having a nanohardness of 3.0 GPa or more in a structure other than ferrite.

硬質相の平均円相当径:20μm以下(好適条件)
硬質相の平均円相当径が20μmを超えると、靱性が低下するため、20μm以下とすることが好ましい。より好ましくは15μm以下である。本発明では、後述するように、硬質相の平均円相当径は、フェライト以外の組織におけるナノ硬さが3.0GPa以上の粒の円相当径の平均値である。
Average circle equivalent diameter of hard phase: 20 μm or less (optimal conditions)
If the average circle-equivalent diameter of the hard phase exceeds 20 μm, the toughness decreases, so it is preferably 20 μm or less. More preferably, it is 15 μm or less. In the present invention, as will be described later, the average circle-equivalent diameter of the hard phase is the average value of the circle-equivalent diameter of grains having a nanohardness of 3.0 GPa or more in a structure other than ferrite.

なお、一般的に、鋼板(熱延鋼板)を素材としてロール成形により製造される角形鋼管は、角部および平板部ともに1/4t位置の鋼組織が同じになるため、平板部1/4t位置あるいは角部の1/4t位置のどちらで測定してもよい。ここでは、平板部の1/4t位置の鋼組織を規定している。 In general, a square steel pipe manufactured by roll forming using a steel plate (hot-rolled steel plate) has the same steel structure at the 1 / 4t position in both the corner portion and the flat plate portion, so that the flat plate portion is located at the 1 / 4t position. Alternatively, the measurement may be performed at either the 1 / 4t position of the corner portion. Here, the steel structure at the 1 / 4t position of the flat plate portion is defined.

本発明では、鋼管の3/16t位置〜5/16t位置の範囲内に、上述の鋼組織が存在していても同様に上述の効果は得られる。そのため、本発明において「1/4t位置における鋼組織」とは、上記した3/16t位置〜5/16t位置の範囲のいずれかにおいて、上述の鋼組織が存在していることを意味する。 In the present invention, the above-mentioned effect can be obtained even if the above-mentioned steel structure exists within the range of the 3 / 16t position to the 5 / 16t position of the steel pipe. Therefore, in the present invention, the "steel structure at the 1 / 4t position" means that the above-mentioned steel structure exists in any of the above-mentioned ranges from the 3 / 16t position to the 5 / 16t position.

上記の鋼組織は、以下の方法で観察し、組織の種類および面積率(%)を求める。組織観察用試験片は、角形鋼管から採取し、圧延方向断面(L断面)が観察面となるように研磨し、ナイタール腐食を施して作製する。組織観察は、組織観察用試験片の表面(すなわち、角形鋼管の外表面)から板厚1/4t位置における組織を観察の中心とし、光学顕微鏡(倍率:500倍)または走査型電子顕微鏡(SEM、倍率:500倍)を用いて鋼組織を観察し、撮像する。測定領域は500μm×500μmとした。ここで、「t」は鋼管の厚さ(板厚)を示す。得られた組織写真から、画像解析装置(画像解析ソフト:Photoshop、Adobe社製)を用いて、組織の種類を特定し、フェライトの面積率を算出する。組織の面積率は、5視野以上で観察を行い、各視野で得られた値の平均値として求めた。 The above steel structure is observed by the following method, and the type and area ratio (%) of the structure are determined. The test piece for structure observation is collected from a square steel pipe, polished so that the cross section in the rolling direction (L cross section) becomes the observation surface, and subjected to nital corrosion to prepare it. For structure observation, the structure at a position of 1/4 t in thickness from the surface of the test piece for structure observation (that is, the outer surface of the square steel tube) is the center of observation, and an optical microscope (magnification: 500 times) or a scanning electron microscope (SEM) is used. , Magnification: 500 times) to observe and image the steel structure. The measurement area was 500 μm × 500 μm. Here, "t" indicates the thickness (plate thickness) of the steel pipe. From the obtained tissue photograph, the type of structure is specified using an image analysis device (image analysis software: Photoshop, manufactured by Adobe), and the area ratio of ferrite is calculated. The area ratio of the tissue was determined by observing in 5 or more visual fields and as an average value of the values obtained in each visual field.

また、硬質相の平均アスペクト比は、次のように求めた。まず、上記で得られた組織写真からフェライト以外の組織について、ナノインデンテーション法によりナノ硬さを求めた。ナノ硬さが3.0GPa以上の粒について、その全ての粒における、(板厚方向の長さの平均/圧延方向の長さの平均)で計算される値を求め、平均アスペクト比とした。 The average aspect ratio of the hard phase was determined as follows. First, the nanohardness of structures other than ferrite was determined by the nanoindentation method from the structure photographs obtained above. For grains having a nanohardness of 3.0 GPa or more, the value calculated by (average length in the plate thickness direction / average length in the rolling direction) for all the grains was obtained and used as the average aspect ratio.

また、硬質相の平均円相当径は、SEM/EBSD法を用いて測定した。平均円相当径は、隣接する結晶粒の方位差を求め、方位差が15°以上の境界を結晶粒界として測定した。得られた結晶粒界から粒径の算術平均を求めて、平均円相当径とした。測定領域は500μm×500μm、測定ステップサイズは0.5μmとした。なお、結晶粒径解析においては、結晶粒径が2.0μm以下のものは測定ノイズとし、また、ナノ硬さ3.0GPa未満のものは非硬質相として解析対象から除外した。 The average circle equivalent diameter of the hard phase was measured by using the SEM / EBSD method. For the average circle equivalent diameter, the orientation difference between adjacent crystal grains was determined, and the boundary where the orientation difference was 15 ° or more was measured as the crystal grain boundary. The arithmetic mean of the particle size was obtained from the obtained grain boundaries and used as the average circle-equivalent diameter. The measurement area was 500 μm × 500 μm, and the measurement step size was 0.5 μm. In the crystal grain size analysis, those having a crystal grain size of 2.0 μm or less were regarded as measurement noise, and those having a nanohardness of less than 3.0 GPa were excluded from the analysis as non-hard phases.

次に、図1、図2を用いて、本発明の角形鋼管の製造方法について説明する。図1は、電縫鋼管の製造設備の一例を示す模式図である。図2は、角鋼管の成形過程を示す模式図である。 Next, the method for manufacturing the square steel pipe of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing an example of an electric resistance welded steel pipe manufacturing facility. FIG. 2 is a schematic view showing a molding process of a square steel pipe.

本発明の角形鋼管の製造方法は、鋼板に造管工程を施して角形鋼管とするものである。本発明の造管工程では、鋼板を冷間でロール成形して円筒状にした端面を溶接する。次いで、縦径/横径の比で0.99以上1.01以下の円筒状の丸形鋼管に成形した後、上下および左右に配置されたロールにより、さらに冷間で丸形鋼管を角状に成形し、角部と平板部を有する角形鋼管に成形する。 In the method for manufacturing a square steel pipe of the present invention, a steel plate is subjected to a pipe making process to obtain a square steel pipe. In the pipe making process of the present invention, a steel plate is coldly rolled and a cylindrical end face is welded. Next, after forming into a cylindrical round steel pipe having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less, the round steel pipe is further coldly formed into a square shape by rolls arranged vertically and horizontally. It is formed into a square steel pipe having a square portion and a flat plate portion.

まず、図1に示すように、電縫鋼管の素材である鋼帯1は、例えばレベラー2による入側矯正を施した後、複数のロールからなるケージロール群3で中間成形されてオープン管とされた後、複数のロールからなるフィンパスロール群4で仕上げ成形される。仕上げ成形の後は、スクイズロール5で圧接しながら鋼帯1の幅端部を溶接機6で電気抵抗溶接して、円筒状の電縫鋼管7となる。また、本発明では、電縫鋼管7の製造設備は図1のような造管工程に限定されない。 First, as shown in FIG. 1, the steel strip 1, which is the material of the electrosewn steel pipe, is subjected to, for example, the entry side correction by the leveler 2, and then intermediately formed by the cage roll group 3 composed of a plurality of rolls to form an open pipe. After that, the fin pass roll group 4 composed of a plurality of rolls is finished and molded. After the finish molding, the width end portion of the steel strip 1 is electrically resistance welded by the welding machine 6 while being pressure-welded with the squeeze roll 5 to form a cylindrical electric resistance sewn steel pipe 7. Further, in the present invention, the manufacturing equipment for the electrosewn steel pipe 7 is not limited to the pipe making process as shown in FIG.

その後、図2に示すように、電縫鋼管7は複数のロールからなるサイジングロール群(サイジングスタンド)8によって円筒状のまま縮径され、縦径/横径の比で0.99以上1.01以下の円筒状とされる。その後、複数のロールからなる角成形ロール群(角成形スタンド)9によって、順次R1、R2、R3のような形状に成形され、角形鋼管10となる。なお、サイジングロール群8および角成形ロール群9のスタンド数は特に制限されない。 After that, as shown in FIG. 2, the electrosewn steel pipe 7 is reduced in diameter while remaining cylindrical by a sizing roll group (sizing stand) 8 composed of a plurality of rolls, and the ratio of vertical diameter / horizontal diameter is 0.99 or more. It has a cylindrical shape of 01 or less. After that, the square steel pipe 10 is sequentially formed into shapes such as R1, R2, and R3 by a square forming roll group (square forming stand) 9 composed of a plurality of rolls. The number of stands of the sizing roll group 8 and the square forming roll group 9 is not particularly limited.

ここで、角状に成形する前に、縦径/横径の比で0.99以上1.01以下の円筒状に成形する理由について説明する。 Here, the reason for forming into a cylindrical shape having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less before forming into a square shape will be described.

本発明では、次の理由により、縦径/横径の比で0.99以上1.01以下とすることが重要である。一般に、ロール成形により鋼管を製造する場合、その過程において、スプリングバックの抑制を目的として円周方向に不均一なひずみを付与することが多い。しかし、最後に角形に成形することを前提とした場合には、その前段階である円筒形状の断面は必ずしも真円であることを必要としない。そのため、円筒状といっても角形鋼管を製造する途中段階では必ずしも真円ではなく、その結果、得られる角形鋼管は平板部と角部の特性差を小さくすることができない。このことから、本発明では、平板部と角部の特性差を小さくするために、前段階において形状を縦径/横径の比で0.99以上1.01以下の円筒状に成形することが必須である。 In the present invention, it is important that the ratio of vertical diameter / horizontal diameter is 0.99 or more and 1.01 or less for the following reasons. Generally, when a steel pipe is manufactured by roll forming, a non-uniform strain is often applied in the circumferential direction for the purpose of suppressing springback in the process. However, on the premise that the shape is finally formed into a square shape, the cross section of the cylindrical shape, which is the previous step, does not necessarily have to be a perfect circle. Therefore, even if it is cylindrical, it is not necessarily a perfect circle in the middle of manufacturing a square steel pipe, and as a result, the obtained square steel pipe cannot reduce the characteristic difference between the flat plate portion and the square portion. From this, in the present invention, in order to reduce the characteristic difference between the flat plate portion and the corner portion, the shape is formed into a cylindrical shape having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less in the previous step. Is essential.

上記した縦径/横径の比で0.99以上1.01以下の円筒状に成形しなければ、平板部に比べて角部の塑性ひずみが大きくなりすぎる。その結果、角部に対する平板部のYSの比が0.80未満、および角部に対する平板部のTSの比が0.90未満となってしまう。なお、平板部に比べて角部の塑性ひずみが大きくなることから、角部に対する平板部のYSの比が0.90以下、および角部に対する平板部のTSの比が1.00以下となるのは当然である。したがって、本発明で目的とする平板部のYSを350MPa以上、TSを520MPa以上であり、角部に対する平板部のYSの比を0.80以上0.90以下、角部に対する平板部のTSの比を0.90以上1.00以下とするためには、角成形の前に、縦径/横径の比を0.99以上1.01以下の円筒状に成形する。 Unless it is formed into a cylindrical shape having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less, the plastic strain of the corner portion becomes too large as compared with the flat plate portion. As a result, the ratio of YS of the flat plate portion to the corner portion is less than 0.80, and the ratio of TS of the flat plate portion to the corner portion is less than 0.90. Since the plastic strain of the corner portion is larger than that of the flat plate portion, the ratio of YS of the flat plate portion to the corner portion is 0.90 or less, and the ratio of TS of the flat plate portion to the corner portion is 1.00 or less. Of course. Therefore, the YS of the flat plate portion, which is the object of the present invention, is 350 MPa or more, the TS is 520 MPa or more, the ratio of the YS of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less, and the TS of the flat plate portion with respect to the corner portion. In order to make the ratio 0.90 or more and 1.00 or less, the vertical diameter / horizontal diameter ratio is formed into a cylindrical shape of 0.99 or more and 1.01 or less before square forming.

また、上記した縦径/横径の比で0.99以上1.01以下の円筒状に成形することにより、角成形の際に均等に角部を成形できるため、角部のRは(2.3×t)以上(2.9×t)以下(ここで、tは板厚である。)とすることができる。角部のRが(2.3×t)以上(2.9×t)以下(ここで、tは板厚である。)となることにより、角部と平板部の強度差を小さくすることができる。 Further, by molding into a cylindrical shape having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less, the corners can be uniformly molded at the time of square molding, so that the R of the corners is (2). It can be .3 × t) or more (2.9 × t) or less (where t is the plate thickness). By making the R of the corner portion equal to or greater than (2.3 × t) (2.9 × t) or less (where t is the plate thickness), the difference in strength between the corner portion and the flat plate portion is reduced. Can be done.

以上に説明したように、本発明によれば、平板部のYSが350MPa以上、TSが520MPa以上であり、角部に対する平板部のYSの比が0.80以上0.90以下、角部に対する平板部のTSの比が0.90以上1.00以下、平板部の−40℃のシャルピー吸収エネルギーが100J以上、角部のRが(2.3×t)以上(2.9×t)以下となるため、角部と平板部の強度差の小さい角形鋼管を得ることができる。この角形鋼管は、角部のRが適切な大きさに制御され、さらに角部と平板部の強度差が小さいため、特に建築構造部材向け角形鋼管として好適に用いることができる。 As described above, according to the present invention, the YS of the flat plate portion is 350 MPa or more, the TS is 520 MPa or more, the ratio of the YS of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less, and the ratio of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less. The ratio of TS in the flat plate is 0.90 or more and 1.00 or less, the Charpy absorption energy at -40 ° C in the flat plate is 100J or more, and the R in the corner is (2.3 × t) or more (2.9 × t). Therefore, it is possible to obtain a square steel pipe having a small difference in strength between the corner portion and the flat plate portion. Since the R of the corner portion is controlled to an appropriate size and the strength difference between the corner portion and the flat plate portion is small, this square steel pipe can be particularly suitably used as a square steel pipe for building structural members.

なお、上述したように、本発明の角形鋼管はその素材として、以下に説明する熱延工程、冷却工程および巻取工程をこの順に施して得られた鋼板(熱延鋼板)を好適に用いることができる。本発明では、この鋼板に対して上述した造管工程を施して角形鋼管としてもよい。 As described above, as the material of the square steel pipe of the present invention, a steel plate (hot-rolled steel plate) obtained by performing the hot-rolling step, the cooling step, and the winding step described below in this order is preferably used. Can be done. In the present invention, the steel sheet may be subjected to the above-mentioned pipe making process to form a square steel pipe.

本発明の角形鋼管の素材として好適な鋼板の製造方法の一例について説明する。 An example of a method for manufacturing a steel plate suitable as a material for a square steel pipe of the present invention will be described.

本発明の角形鋼管の素材として好適な鋼板の製造方法は、例えば、上述した成分組成を有する鋼素材に、以下に説明する条件で、熱間圧延工程(以下、熱延工程と称する。)、冷却工程および巻取工程をこの順に施して鋼板(熱延鋼板)とすることができる。 A method for producing a steel sheet suitable as a material for a square steel pipe of the present invention is, for example, a hot rolling step (hereinafter referred to as a hot rolling step) on a steel material having the above-mentioned composition under the conditions described below. A steel sheet (hot-rolled steel sheet) can be obtained by performing a cooling step and a winding step in this order.

例えば、上記した成分組成を有する鋼素材を、加熱温度:1100〜1300℃に加熱した後、鋼素材の板厚中心温度が1000℃以上での粗圧延時間:200秒以上400秒以内、粗圧延終了温度:1000〜800℃、仕上圧延開始温度:1000〜800℃、仕上圧延終了温度:900〜750℃とする熱間圧延工程を施して熱延板とする。次いで、熱延工程後の熱延板に、冷却開始から10s間の初期冷却における0.2s以上3.0s未満の放冷を1回以上有し、熱延板の板厚中心温度での平均冷却速度:4〜25℃/s、冷却停止温度:580℃以下とする冷却工程を施す。次いで、冷却工程後の熱延板を巻取温度:580℃以下で巻取り、その後放冷する巻取工程を施して鋼板(熱延鋼板)を得る。 For example, after heating a steel material having the above-mentioned component composition to a heating temperature of 1100 to 1300 ° C., rough rolling time at a plate thickness center temperature of 1000 ° C. or higher of the steel material: 200 seconds or more and 400 seconds or less, rough rolling A hot rolling process is performed in which the end temperature is 1000 to 800 ° C., the finish rolling start temperature is 1000 to 800 ° C., and the finish rolling end temperature is 900 to 750 ° C. to obtain a hot-rolled plate. Next, the hot-rolled plate after the hot-rolling step has one or more cooling releases of 0.2 s or more and less than 3.0 s in the initial cooling for 10 s from the start of cooling, and the average of the hot-rolled plates at the plate thickness center temperature. A cooling step is performed in which the cooling rate is 4 to 25 ° C./s and the cooling stop temperature is 580 ° C. or lower. Next, the hot-rolled sheet after the cooling step is wound at a winding temperature of 580 ° C. or lower, and then a winding step of allowing to cool is performed to obtain a steel sheet (hot-rolled steel sheet).

以下に、各工程について詳細に説明する。なお、以下の製造方法の説明において、温度(℃)は、特に断らない限り鋼素材、シートバー、熱延板あるいは鋼板等の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。平均冷却速度(℃/s)は、特に断らない限り
((冷却前の温度−冷却後の温度)/冷却時間)
で求められる値とする。
Each step will be described in detail below. In the following description of the manufacturing method, the temperature (° C.) is the surface temperature of a steel material, a sheet bar, a hot-rolled plate, a steel plate, or the like unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. The average cooling rate (° C./s) shall be ((Temperature before cooling-Temperature after cooling) / Cooling time) unless otherwise specified.
The value obtained in.

本発明において、上記した成分組成を有する鋼素材(鋼スラブ)の溶製方法は、特に限定されず、転炉、電気炉、真空溶解炉等の公知の溶製方法を用いて溶製することができる。鋳造方法も特に限定されず、連続鋳造法等の公知の鋳造方法により、所望の寸法に製造することができる。なお、連続鋳造法に代えて、造塊−分塊圧延法を適用しても何ら問題はない。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。 In the present invention, the melting method of the steel material (steel slab) having the above-mentioned composition is not particularly limited, and melting is performed using a known melting method such as a converter, an electric furnace, or a vacuum melting furnace. Can be done. The casting method is not particularly limited, and it can be produced to a desired size by a known casting method such as a continuous casting method. There is no problem even if the ingot-block rolling method is applied instead of the continuous casting method. The molten steel may be further subjected to secondary refining such as ladle refining.

次いで、得られた鋼素材(鋼スラブ)に熱延工程を施す。熱延工程では、鋼素材を加熱温度:1100〜1300℃に加熱する。その後、加熱炉から抽出した加熱された鋼素材に、鋼素材の板厚中心温度が1000℃以上での粗圧延時間:200秒以上400秒以内に制御した上で、粗圧延終了温度:1000〜800℃とする粗圧延を施した後、仕上圧延開始温度:1000〜800℃、仕上圧延終了温度:900〜750℃とする仕上圧延を施して熱延板とする。 Next, the obtained steel material (steel slab) is subjected to a heat spreading process. In the hot rolling process, the steel material is heated to a heating temperature of 1100 to 1300 ° C. After that, on the heated steel material extracted from the heating furnace, the rough rolling time at a plate thickness center temperature of 1000 ° C. or higher: 200 seconds or more and 400 seconds or less is controlled, and then the rough rolling end temperature: 1000 to After rough rolling at 800 ° C., finish rolling is performed at a finish rolling start temperature of 1000 to 800 ° C. and a finish rolling end temperature of 900 to 750 ° C. to obtain a hot-rolled plate.

なお、熱延工程における鋼素材の板厚中心の温度は、伝熱解析により鋼素材断面内の温度分布を計算することにより求める。 The temperature at the center of the thickness of the steel material in the heat spreading process is obtained by calculating the temperature distribution in the cross section of the steel material by heat transfer analysis.

加熱温度:1100〜1300℃
鋼素材の加熱温度が1100℃未満では、被圧延材の変形抵抗が大きくなり過ぎて、粗圧延機および仕上圧延機で耐荷重、圧延トルクの不足が生じ、圧延が困難となる。一方、加熱温度が1300℃を超えると、オーステナイト結晶粒が粗大化し、粗圧延および仕上圧延でオーステナイト粒の加工および再結晶を繰返しても、細粒化することが困難となる。また、熱延鋼板における所望の靱性を確保することが困難となる場合もある。このため、鋼素材の加熱温度は1100〜1300℃とする。加熱温度は、好ましくは1280℃以下である。加熱温度は、好ましくは1150℃以上である。
Heating temperature: 1100 to 1300 ° C
If the heating temperature of the steel material is less than 1100 ° C., the deformation resistance of the material to be rolled becomes too large, and the rough rolling mill and the finishing rolling mill lack the load capacity and rolling torque, which makes rolling difficult. On the other hand, when the heating temperature exceeds 1300 ° C., the austenite crystal grains become coarse, and it becomes difficult to make the austenite grains finer even if the processing and recrystallization of the austenite grains are repeated in rough rolling and finish rolling. In addition, it may be difficult to secure the desired toughness of the hot-rolled steel sheet. Therefore, the heating temperature of the steel material is set to 1100 to 1300 ° C. The heating temperature is preferably 1280 ° C. or lower. The heating temperature is preferably 1150 ° C. or higher.

なお、各圧延機の耐荷重、圧延トルクに余裕がある場合には、1100℃以下Ar3変態点以上の範囲の温度を、加熱温度として選択してもよい。 If there is a margin in the load capacity and rolling torque of each rolling mill, a temperature in the range of 1100 ° C. or lower and Ar3 transformation point or higher may be selected as the heating temperature.

加熱された鋼素材は、次いで粗圧延を施され、シートバー等とされる。 The heated steel material is then roughly rolled to form a seat bar or the like.

板厚中心温度で1000℃以上での粗圧延時間:200秒以上400秒以内
鋼素材を加熱炉から抽出した後、鋼素材の板厚中心温度で1000℃以上での粗圧延時間を400秒以内とすることにより、被圧延材の表面近傍が優先的に冷却される。これにより、被圧延材の表面から1/4t位置のオーステナイト粒径の粗大化が抑制され、その後のフェライト変態を促進する。その結果、鋼組織におけるフェライトの割合を面積率で55%以上とすることができる。上記粗圧延時間が400秒を超えるとオーステナイトが粗粒化し、所望のフェライト量が確保できなくなり、角部と平板部の強度差の小さい角形鋼管を得られない。一方、上記粗圧延時間が200秒未満であるとオーステナイト粒径が微細になり過ぎ、鋼組織におけるフェライトの割合が面積率で80%を超えることになり強度が不足する。粗圧延時間は、好ましくは220秒以上であり、さらに好ましくは250秒以上である。粗圧延時間は、好ましくは380秒以下であり、さらに好ましくは350秒以下である。
Rough rolling time at 1000 ° C or higher at the center temperature of the plate thickness: 200 seconds or more and 400 seconds or less After extracting the steel material from the heating furnace, the rough rolling time at the center temperature of the plate thickness of the steel material at 1000 ° C or higher is within 400 seconds. By doing so, the vicinity of the surface of the material to be rolled is preferentially cooled. As a result, coarsening of the austenite particle size at a position 1/4 t from the surface of the material to be rolled is suppressed, and subsequent ferrite transformation is promoted. As a result, the ratio of ferrite in the steel structure can be 55% or more in terms of area ratio. If the rough rolling time exceeds 400 seconds, the austenite is coarse-grained, the desired amount of ferrite cannot be secured, and a square steel pipe having a small difference in strength between the square portion and the flat plate portion cannot be obtained. On the other hand, if the rough rolling time is less than 200 seconds, the austenite particle size becomes too fine, the proportion of ferrite in the steel structure exceeds 80% in terms of area ratio, and the strength is insufficient. The rough rolling time is preferably 220 seconds or more, and more preferably 250 seconds or more. The rough rolling time is preferably 380 seconds or less, and more preferably 350 seconds or less.

粗圧延終了温度:1000〜800℃
加熱された鋼素材は、粗圧延により、オーステナイト粒が加工、再結晶されて微細化する。粗圧延終了温度が800℃未満では、粗圧延機の耐荷重、圧延トルクの不足が生じやすくなる。一方、粗圧延終了温度が1000℃を超えて高温となると、オーステナイト粒が粗大化し、角形鋼管の靱性が低下しやすくなる。粗圧延終了温度は、好ましくは820℃以上であり、さらに好ましくは840℃以上である。粗圧延終了温度は、好ましくは980℃以下であり、さらに好ましくは950℃以下である。
Rough rolling end temperature: 1000-800 ° C
Austenite grains are processed and recrystallized from the heated steel material by rough rolling to make it finer. If the rough rolling end temperature is less than 800 ° C., the load capacity of the rough rolling mill and the rolling torque are likely to be insufficient. On the other hand, when the rough rolling end temperature exceeds 1000 ° C. and becomes high, the austenite grains become coarse and the toughness of the square steel pipe tends to decrease. The rough rolling end temperature is preferably 820 ° C. or higher, more preferably 840 ° C. or higher. The rough rolling end temperature is preferably 980 ° C. or lower, more preferably 950 ° C. or lower.

なお、この粗圧延終了温度は、鋼素材の加熱温度、上記の粗圧延中の冷却条件、粗圧延のパス間での滞留、鋼素材厚さ等を調整することにより達成できる。粗圧延が終了した段階での被圧延材の厚さ(シートバー等の厚さ)は、特に限定する必要はなく、仕上圧延で所望の製品厚さの製品板(熱延鋼板)とすることができればよい。例えば建築構造部材向け角形鋼管の製造では、製品厚さは12〜28mm程度が好ましい。 The rough rolling end temperature can be achieved by adjusting the heating temperature of the steel material, the cooling conditions during the rough rolling, the retention between the rough rolling passes, the thickness of the steel material, and the like. The thickness of the material to be rolled (thickness of the sheet bar, etc.) at the stage when the rough rolling is completed is not particularly limited, and a product plate (hot-rolled steel plate) having a desired product thickness for finish rolling shall be used. I wish I could. For example, in the production of square steel pipes for building structural members, the product thickness is preferably about 12 to 28 mm.

粗圧延後は、被圧延材は、例えばタンデム圧延機により仕上圧延を施され、熱延板とされる。 After rough rolling, the material to be rolled is finish-rolled by, for example, a tandem rolling mill to be a hot-rolled plate.

仕上圧延開始温度:1000〜800℃
仕上圧延では、圧延加工および再結晶が繰り返され、オーステナイト(γ)粒の微細化が進行する。仕上圧延開始温度(仕上圧延入側温度)が低くなると、圧延加工により導入される加工ひずみが残存しやすくなり、γ粒の微細化を達成しやすい。仕上圧延開始温度が800℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr3変態点以下となりフェライトが生成する危険性が増大する。生成したフェライトは、その後の仕上圧延加工により圧延方向に伸長したフェライト粒となり、加工性低下の原因となる。一方、仕上圧延開始温度が1000℃を超えて高温となると、上記した仕上圧延によるγ粒の微細化効果が低減し、角形鋼管の靱性が低下しやすくなる。このため、仕上圧延開始温度は800〜1000℃とする。仕上圧延開始温度は、好ましくは825〜975℃である。
Finish rolling start temperature: 1000-800 ° C
In finish rolling, rolling and recrystallization are repeated, and miniaturization of austenite (γ) grains progresses. When the finish rolling start temperature (finish rolling inlet side temperature) becomes low, the machining strain introduced by the rolling process tends to remain, and the miniaturization of γ grains is likely to be achieved. If the finish rolling start temperature is less than 800 ° C., the temperature near the surface of the steel sheet in the finish rolling mill becomes equal to or lower than the Ar3 transformation point, and the risk of ferrite formation increases. The produced ferrite becomes ferrite grains elongated in the rolling direction by the subsequent finish rolling process, which causes a decrease in workability. On the other hand, when the finish rolling start temperature exceeds 1000 ° C. and becomes high, the effect of miniaturizing the γ grains by the finish rolling described above is reduced, and the toughness of the square steel pipe is likely to be lowered. Therefore, the finish rolling start temperature is set to 800 to 1000 ° C. The finish rolling start temperature is preferably 825 to 975 ° C.

仕上圧延終了温度:900〜750℃
仕上圧延終了温度(仕上圧延出側温度)が900℃を超えて高温となると、仕上圧延時に付加される加工ひずみが不足し、γ粒の微細化が達成されず、角形鋼管の靱性が低下しやすくなる。一方、仕上圧延終了温度が750℃未満では、仕上圧延機内で鋼板表面近傍の温度がAr3変態点以下となり、圧延方向に伸長したフェライト粒が形成され、フェライト粒が混粒となる。これにより、靱性が低下する危険性が増大する。このため、仕上圧延終了温度は900〜750℃とする。仕上圧延終了温度は、好ましくは850℃以下である。好ましくは770℃以上である。
Finish rolling end temperature: 900-750 ° C
When the finish rolling end temperature (finish rolling output side temperature) exceeds 900 ° C., the processing strain applied during finish rolling becomes insufficient, γ grain miniaturization is not achieved, and the toughness of the square steel pipe decreases. It will be easier. On the other hand, when the finish rolling end temperature is less than 750 ° C., the temperature near the surface of the steel sheet in the finish rolling mill becomes equal to or lower than the Ar3 transformation point, ferrite grains elongated in the rolling direction are formed, and the ferrite grains are mixed. This increases the risk of reduced toughness. Therefore, the finish rolling end temperature is set to 900 to 750 ° C. The finish rolling end temperature is preferably 850 ° C. or lower. It is preferably 770 ° C. or higher.

仕上圧延終了後は、熱延板に冷却工程を施す。 After the finish rolling is completed, the hot-rolled plate is subjected to a cooling process.

冷却開始から10s間の初期冷却における0.2s以上3.0s未満の放冷の回数:1回以上
本発明では、熱延工程で得られる熱延板の冷却を開始してから10秒間(10s間)を初期冷却工程とする。冷却工程の初期冷却工程では、0.2s以上3.0s未満の放冷工程を1回以上設けて冷却する。これは、鋼板の表裏面において、マルテンサイト組織の生成を抑制するために行なう。初期冷却工程において、放冷工程を設けないか、あるいは放冷工程が0.2s未満の場合、鋼板の表裏面の鋼組織がマルテンサイト組織となり、角形鋼管の靱性が低下する。また、初期冷却工程において、放冷工程が3.0s以上の場合、硬質相の平均アスペクト比が0.1未満となり、靱性が不足する。このため、冷却工程の初期冷却工程中に行う1回の放冷工程の時間は、0.2s以上3.0s未満とする。1回の放冷工程の時間は、好ましくは0.4s以上であり、好ましくは2.0s以下である。
Number of times of cooling of 0.2 s or more and less than 3.0 s in the initial cooling for 10 s from the start of cooling: 1 time or more In the present invention, 10 seconds (10 s) after the start of cooling of the hot-rolled plate obtained in the hot-rolling step. (Between) is the initial cooling step. In the initial cooling step of the cooling step, a cooling step of 0.2 s or more and less than 3.0 s is provided at least once to cool. This is done to suppress the formation of martensite structure on the front and back surfaces of the steel sheet. If the cooling step is not provided in the initial cooling step, or if the cooling step is less than 0.2 s, the steel structure on the front and back surfaces of the steel sheet becomes a martensite structure, and the toughness of the square steel pipe is lowered. Further, in the initial cooling step, when the cooling step is 3.0 s or more, the average aspect ratio of the hard phase is less than 0.1, and the toughness is insufficient. Therefore, the time of one cooling step performed during the initial cooling step of the cooling step is set to 0.2 s or more and less than 3.0 s. The time of one cooling step is preferably 0.4 s or more, preferably 2.0 s or less.

上記効果を得るためには、初期冷却工程中に行う放冷工程の回数は、1回以上を必要とする。なお、放冷工程の回数は、冷却設備の配列や冷却停止温度などによって適宜設定すればよい。ここで、放冷とは自然冷却とする。放冷工程の回数の上限は特に限定しないが、生産性の観点より、好ましくは10回以下とする。放冷の回数を複数回とする場合には、例えば後述する水冷用のノズルの一部区間におけるノズルからの水の噴射を停止させることにより、間欠噴射とさせることなどによって適宜設定すればよい。 In order to obtain the above effect, the number of cooling steps performed during the initial cooling step needs to be one or more. The number of cooling steps may be appropriately set depending on the arrangement of cooling equipment, the cooling stop temperature, and the like. Here, the cooling is naturally cooled. The upper limit of the number of cooling steps is not particularly limited, but is preferably 10 or less from the viewpoint of productivity. When the number of times of cooling is set to a plurality of times, it may be appropriately set by, for example, intermittent injection by stopping the injection of water from the nozzle in a part section of the water cooling nozzle described later.

板厚中心温度での平均冷却速度:4〜25℃/s、冷却停止温度:580℃以下
冷却工程では、仕上圧延で得られた熱延板に、冷却開始から冷却停止(冷却終了)までの板厚中心温度での平均冷却速度が4〜25℃/s、冷却停止温度が580℃以下となる冷却を施す。冷却工程で施す冷却は、例えばノズルから水を噴射する、水柱冷却、スプレー冷却、ミスト冷却等の水冷(水冷却)や、冷却ガスを噴射するガスジェット冷却等で行われる。なお、熱延板(鋼板)の両面(表裏面)が同条件で冷却されるように熱延板の両面に冷却操作を施すことが好ましい。
Plate thickness Average cooling rate at center temperature: 4 to 25 ° C / s, cooling stop temperature: 580 ° C or less In the cooling process, the hot-rolled plate obtained by finish rolling is cooled from the start to the stop (cooling end). Cooling is performed so that the average cooling rate at the center temperature of the plate thickness is 4 to 25 ° C./s and the cooling stop temperature is 580 ° C. or less. The cooling performed in the cooling step is performed by, for example, water cooling (water cooling) such as water column cooling, spray cooling, mist cooling, etc., in which water is jetted from a nozzle, gas jet cooling in which cooling gas is jetted, or the like. It is preferable to perform a cooling operation on both sides of the hot-rolled plate (steel plate) so that both sides (front and back surfaces) of the hot-rolled plate (steel plate) are cooled under the same conditions.

熱延板の板厚中心の平均冷却速度が4℃/s未満では、フェライト粒の生成頻度が減少し、フェライト結晶粒が粗大化して靱性が低下する。一方、上記平均冷却速度が25℃/sを超えると、フェライトの生成が抑制されて55%未満となり、さらに硬質相の平均アスペクト比が0.8を超えて、加工硬化しにくい鋼組織を得られない。このため、熱延板の板厚中心の平均冷却速度は4〜25℃/sとする。熱延板の板厚中心の平均冷却速度は、好ましくは5℃/s以上であり、好ましくは15℃/s以下である。 If the average cooling rate at the center of the thickness of the hot-rolled plate is less than 4 ° C./s, the frequency of ferrite grain formation decreases, the ferrite crystal grains become coarse, and the toughness decreases. On the other hand, when the average cooling rate exceeds 25 ° C./s, the formation of ferrite is suppressed to less than 55%, and the average aspect ratio of the hard phase exceeds 0.8 to obtain a steel structure that is difficult to work harden. I can't. Therefore, the average cooling rate at the center of the thickness of the hot-rolled plate is set to 4 to 25 ° C./s. The average cooling rate at the center of the thickness of the hot-rolled plate is preferably 5 ° C./s or more, and preferably 15 ° C./s or less.

ここで、熱延板の板厚中心の平均冷却速度は、
((冷却開始時の板厚中心の温度(℃)−冷却停止時の板厚中心の温度(℃))/冷却時間(s))
で求められる。熱延板の板厚中心の温度は、伝熱解析により鋼板断面内の温度分布を計算して求めることができる。
Here, the average cooling rate at the center of the thickness of the hot-rolled plate is
((Temperature at the center of plate thickness at the start of cooling (° C.)-Temperature at the center of plate thickness at the start of cooling (° C.)) / Cooling time (s))
Is required by. The temperature at the center of the thickness of the hot-rolled plate can be obtained by calculating the temperature distribution in the cross section of the steel plate by heat transfer analysis.

冷却停止温度が580℃を超えると、鋼板の硬質相の平均円相当径が20μmを超え、靱性が低下する恐れがある。冷却停止温度は、より好ましくは560℃以下である。 If the cooling stop temperature exceeds 580 ° C., the average circle equivalent diameter of the hard phase of the steel sheet exceeds 20 μm, and the toughness may decrease. The cooling stop temperature is more preferably 560 ° C. or lower.

なお、所望の1/4t位置の鋼組織を得るためには、熱延板の表面温度で750℃〜650℃の温度域での平均冷却速度は20℃/s以上とすることが好ましい。この温度域での平均冷却速度が20℃/s未満では、硬質相の平均円相当径が20μmを超える場合がある。熱延板の表面温度で750℃〜650℃の温度域での平均冷却速度は80℃/s以下とすることが好ましい。この温度域での平均冷却速度が80℃/sを超えると、硬質相の平均アスペクト比が0.8超えとなる場合がある。また、硬質相の平均アスペクト比を0.8以下とするため、仕上圧延終了から直ちに(5秒以内に)冷却工程を開始することが好ましい。 In order to obtain a steel structure at a desired 1 / 4t position, the average cooling rate in the temperature range of 750 ° C. to 650 ° C. at the surface temperature of the hot-rolled plate is preferably 20 ° C./s or more. If the average cooling rate in this temperature range is less than 20 ° C./s, the average circle equivalent diameter of the hard phase may exceed 20 μm. The average cooling rate in the temperature range of 750 ° C. to 650 ° C. on the surface temperature of the hot-rolled plate is preferably 80 ° C./s or less. If the average cooling rate in this temperature range exceeds 80 ° C./s, the average aspect ratio of the hard phase may exceed 0.8. Further, in order to set the average aspect ratio of the hard phase to 0.8 or less, it is preferable to start the cooling step immediately (within 5 seconds) from the end of finish rolling.

冷却終了後は、熱延板に巻取工程を施して鋼板(熱延鋼板)を得る。 After the cooling is completed, the hot-rolled plate is subjected to a winding process to obtain a steel plate (hot-rolled steel plate).

巻取温度:580℃以下
巻取工程では、熱延板を巻取温度:580℃以下で巻取り、その後放冷する。巻取温度が580℃を超えると、巻取り後にフェライト変態とパーライト変態が進行して、パーライトの割合が過剰となり、角形鋼管の靱性が低下する。このため、巻取温度は580℃以下とする。巻取温度は、好ましくは550℃以下である。なお、巻取温度を低くしても材質上の問題は生じないが、巻取温度が400℃未満となると、特に板厚が25mmを超えるような厚肉鋼板では、巻取り変形抵抗が多大になり、きれいに巻き取れない場合がある。このため、巻取り温度は400℃以上とすることが好ましい。
Winding temperature: 580 ° C. or less In the winding process, the hot-rolled plate is wound at a winding temperature: 580 ° C. or less, and then allowed to cool. When the winding temperature exceeds 580 ° C., ferrite transformation and pearlite transformation proceed after winding, the proportion of pearlite becomes excessive, and the toughness of the square steel pipe decreases. Therefore, the winding temperature is set to 580 ° C. or lower. The winding temperature is preferably 550 ° C. or lower. Although there is no problem with the material even if the take-up temperature is lowered, when the take-up temperature is less than 400 ° C., the take-up deformation resistance becomes large especially in a thick steel sheet having a plate thickness of more than 25 mm. It may not be able to be wound cleanly. Therefore, the winding temperature is preferably 400 ° C. or higher.

その後、巻取工程後の鋼板(熱延鋼板)に上述の造管工程を施して角形鋼管を得る。 Then, the steel sheet (hot-rolled steel sheet) after the winding process is subjected to the above-mentioned pipe making process to obtain a square steel pipe.

次に、本発明の角形鋼管を使用した建築構造物の一例について説明する。 Next, an example of a building structure using the square steel pipe of the present invention will be described.

図3は、本発明の実施形態に係る建築構造物を模式的に示す斜視図である。図3に示すように、本実施形態の建築構造物は、本発明の角形鋼管11が複数立設され、柱材として用いられている。隣り合う角形鋼管11の間には、H形鋼等の鋼材からなる大梁14が複数架設されている。また、隣り合う大梁14の間には、H形鋼等の鋼材からなる小梁15が複数架設されている。角形鋼管11とダイアフラム16とを溶接し、それに大梁14となるH型鋼を溶接することによって、隣り合う角形鋼管11の間にH形鋼等の鋼材からなる大梁14が架設されている。また、壁等の取り付けのため、必要に応じて間柱17が設けられる。 FIG. 3 is a perspective view schematically showing a building structure according to an embodiment of the present invention. As shown in FIG. 3, in the building structure of the present embodiment, a plurality of square steel pipes 11 of the present invention are erected and used as pillars. A plurality of girders 14 made of steel such as H-shaped steel are erected between adjacent square steel pipes 11. Further, a plurality of small beams 15 made of a steel material such as H-shaped steel are erected between the adjacent large beams 14. By welding the square steel pipe 11 and the diaphragm 16 and welding the H-shaped steel to be the girder 14, the girder 14 made of a steel material such as H-shaped steel is erected between the adjacent square steel pipes 11. In addition, studs 17 are provided as needed for mounting walls and the like.

本発明の建築構造物は、角部と平板部の強度差が小さい本発明の角形鋼管11を使用するため、角形鋼管11とダイアフラム16とを溶接する溶接材料の選定が容易となり、アンダーマッチなどの溶接材料との強度差が生じにくい。アンダーマッチが生じにくいことにより、溶接部における破断などのトラブルを抑止できる。また、角形鋼管11の角R(角部のR)が適切な大きさに制御されているため、断面が直角である他の構造部材との組み合わせが容易である。また、角形鋼管11の角Rが適切な大きさに制御されていることにより、より大きな外力に耐えることができ、耐震性などが向上する。 Since the building structure of the present invention uses the square steel pipe 11 of the present invention in which the strength difference between the square portion and the flat plate portion is small, it becomes easy to select a welding material for welding the square steel pipe 11 and the diaphragm 16, and undermatch or the like. It is unlikely that there will be a difference in strength with the welding material of. Since undermatch is unlikely to occur, troubles such as breakage at the welded portion can be suppressed. Further, since the corner R (R of the corner portion) of the square steel pipe 11 is controlled to an appropriate size, it is easy to combine with other structural members having a right-angled cross section. Further, since the angle R of the square steel pipe 11 is controlled to an appropriate size, it can withstand a larger external force and improves earthquake resistance and the like.

以下、実施例に基づいてさらに本発明を詳細に説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail based on Examples. The present invention is not limited to the following examples.

溶鋼を転炉で溶製し、連続鋳造法で表1に示す成分組成のスラブ(鋼素材:肉厚250mm)とした。それらスラブ(鋼素材)を、表2に示す加熱温度に加熱した後、表2に示す条件の熱間圧延工程、冷却工程、巻取工程を施した後、放冷することにより、板厚:16〜28mmの鋼板(熱延鋼板)とした。なお、仕上圧延終了後、直ちに(5秒以内に)冷却工程を開始した。冷却は水冷で行った。初期冷却工程中の放冷工程は、冷却開始から10s間である初期冷却工程中に、水冷を行わない放冷区間を設けることで行った。その後、得られた熱延鋼板を素材として、表2に示す条件で冷間でのロール成形により丸形鋼管とし、次いで、冷間でロール成形により角形鋼管(400〜550mm角)とした。 The molten steel was melted in a converter to obtain a slab (steel material: wall thickness 250 mm) having the composition shown in Table 1 by a continuous casting method. The slabs (steel materials) are heated to the heating temperatures shown in Table 2, then subjected to a hot rolling step, a cooling step, and a winding step under the conditions shown in Table 2, and then allowed to cool. A steel plate of 16 to 28 mm (hot-rolled steel plate) was used. The cooling process was started immediately (within 5 seconds) after the finish rolling was completed. Cooling was done by water cooling. The cooling step during the initial cooling step was performed by providing a cooling section in which water cooling was not performed during the initial cooling step, which was 10 seconds after the start of cooling. Then, using the obtained hot-rolled steel sheet as a material, a round steel pipe was formed by cold roll forming under the conditions shown in Table 2, and then a square steel pipe (400 to 550 mm square) was formed by cold roll forming.

本発明の実施例では、得られた角形鋼管から試験片を採取して、組織観察、引張試験、シャルピー衝撃試験、角部のRの測定をそれぞれ実施した。なお、組織観察は上記の方法で観察し、測定した。また、引張試験、シャルピー衝撃試験の試験方法、および角部のRの測定方法は、次の通りとした。 In the examples of the present invention, test pieces were collected from the obtained square steel pipe, and microstructure observation, tensile test, Charpy impact test, and measurement of corner radius were carried out, respectively. The tissue was observed and measured by the above method. The test method of the tensile test, the Charpy impact test, and the method of measuring the radius of the corner are as follows.

(1)角形鋼管引張試験
得られた角形鋼管の平板部および角部から、引張方向が管長手方向となるように、JIS5号引張試験片を採取した。次いで、JIS Z 2241(2011)の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTSを測定した。得られた測定値を用いて、(降伏強さ)/(引張強さ)×100(%)で定義される降伏比YR(%)を算出した。
(1) Tensile test of square steel pipe From the flat plate portion and the corner portion of the obtained square steel pipe, JIS No. 5 tensile test pieces were collected so that the tensile direction was the longitudinal direction of the pipe. Next, a tensile test was carried out in accordance with the provisions of JIS Z 2241 (2011), and the yield strength YS and the tensile strength TS were measured. Using the obtained measured values, the yield ratio YR (%) defined by (yield strength) / (tensile strength) × 100 (%) was calculated.

(2)角形鋼管衝撃試験
得られた角形鋼管の平板部の板厚1/4t位置から、試験片長手方向が管周方向となるように、Vノッチ試験片を採取した。次いで、JIS Z 2242(2011)の規定に準拠して、試験温度:−40℃で、シャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片の本数は各3本とし、各3本の平均値を表3−2に示す衝撃試験結果の値とした。
(2) Impact Test of Square Steel Pipe A V-notch test piece was taken from the plate thickness 1 / 4t position of the flat plate portion of the obtained square steel pipe so that the longitudinal direction of the test piece was the pipe circumferential direction. Then, in accordance with the provisions of JIS Z 2242 (2011), a Charpy impact test was carried out at a test temperature of −40 ° C. to determine the absorbed energy (J). The number of test pieces was 3 each, and the average value of each 3 pieces was taken as the value of the impact test result shown in Table 3-2.

(3)角部のR(角R)の測定方法
得られた角形鋼管から、管軸方向に対して垂直な断面10箇所を任意で切出し、垂直断面の4隅にある角部の曲率半径を測定し、その平均値を角部のRとした。具体的には、図4に示すように、鋼管の溶接部(シーム部)を0°とし、この0°を基準として、45°、135°、225°、315°の位置をそれぞれ角部中央とした場合、角部の曲率半径とは、管の中心を起点とし隣り合う辺と45°をなす線(L)と、角部外側(角部の管外表面側)との交点での曲率半径をいう。角部の曲率半径は、上記L上に中心を置き、角形鋼管の平坦部と円弧部との接続点(A、A’)に向かって引かれる線で定まる中心角が65°となるような扇形の半径とする。なお、図4に示した「t」は板厚であり、「H」は外形の辺の長さを指す。曲率半径の算出方法としては、例えば、3点(角部外側の交点、および、平坦部と円弧部との接続点である2点)の距離関係の測定結果から正弦定理を用いて曲率半径を算出する方法や、前記3点の領域内のコーナー部とよく一致するラジアルゲージから曲率半径を計測する方法などがあるが、この限りではない。本実施例では、角部の曲率半径の測定にはラジアルゲージを使用した。なお、角Rは、上記したように管軸方向に対して垂直な断面10箇所の平均値とした。
(3) Method for measuring R (angle R) of corners From the obtained square steel pipe, 10 cross sections perpendicular to the pipe axis direction are arbitrarily cut out, and the radii of curvature of the corners at the four corners of the vertical cross section are obtained. The measurement was performed, and the average value was taken as the radius of the corner. Specifically, as shown in FIG. 4, the welded portion (seam portion) of the steel pipe is set to 0 °, and the positions of 45 °, 135 °, 225 °, and 315 ° are set at the center of each corner based on this 0 °. If, the radius of curvature of the corner is the curvature at the intersection of the line (L) that starts at the center of the pipe and forms 45 ° with the adjacent sides and the outside of the corner (the outer surface side of the pipe). Refers to the radius. The radius of curvature of the corner is centered on the above L, and the central angle determined by the line drawn toward the connection point (A, A') between the flat portion and the arc portion of the square steel pipe is 65 °. Use a fan-shaped radius. In addition, "t" shown in FIG. 4 is a plate thickness, and "H" indicates the length of the side of the outer shape. As a method of calculating the radius of curvature, for example, the radius of curvature is calculated using the law of sines from the measurement results of the distance relationship of three points (the intersection on the outside of the corner and the two points that are the connection points between the flat portion and the arc portion). There are a method of calculating and a method of measuring the radius of curvature from a radial gauge that matches well with the corners in the three points, but the present invention is not limited to this. In this example, a radial gauge was used to measure the radius of curvature of the corner. The angle R is an average value of 10 cross sections perpendicular to the pipe axis direction as described above.

得られた結果を表3−1および表3−2に示す。 The results obtained are shown in Table 3-1 and Table 3-2.

Figure 2020170774
Figure 2020170774

Figure 2020170774
Figure 2020170774

Figure 2020170774
Figure 2020170774

Figure 2020170774
Figure 2020170774

本発明範囲であった発明例では、いずれも本発明の特性(平板部のYSが350MPa以上、TSが520MPa以上、角部に対する平板部のYSの比が0.80以上0.90以下、角部に対する平板部のTSの比が0.90以上1.00以下、平板部の−40℃のシャルピー吸収エネルギーが100J以上、角部のRが(2.3×t)以上(2.9×t以下)(ここで、tは板厚である。)を得られた。一方、本発明範囲を外れる比較例では、本発明の特性を得られなかった。 In the examples of the invention that were within the scope of the present invention, the characteristics of the present invention (YS of the flat plate portion is 350 MPa or more, TS is 520 MPa or more, the ratio of YS of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less, angle. The ratio of TS of the flat plate portion to the portion is 0.90 or more and 1.00 or less, the Charpy absorption energy of -40 ° C of the flat plate portion is 100 J or more, and the R of the corner portion is (2.3 × t) or more (2.9 ×). (T or less) (where t is the plate thickness) was obtained. On the other hand, in the comparative example outside the scope of the present invention, the characteristics of the present invention could not be obtained.

1 鋼帯
2 レベラー
3 ケージロール群
4 フィンパスロール群
5 スクイズロール
6 溶接機
7 電縫鋼管
8 サイジングロール群
9 角成形ロール群
10 角形鋼管
11 角形鋼管
14 大梁
15 小梁
16 ダイアフラム
17 間柱
1 Steel strip 2 Leveler 3 Cage roll group 4 Finpass roll group 5 Squeeze roll 6 Welder 7 Electric resistance steel pipe 8 Sizing roll group 9 Square forming roll group 10 Square steel pipe 11 Square steel pipe 14 Large beam 15 Small beam 16 Diaphragm 17 Stud

Claims (7)

平板部と角部を有する角形鋼管であって、
成分組成は、質量%で、
C:0.07〜0.20%、
Si:1.0%以下、
Mn:0.5〜2.0%、
P:0.030%以下、
S:0.015%以下、
Al:0.01〜0.06%、
N:0.006%以下
を含有し、残部がFeおよび不可避的不純物からなり、
鋼管の外表面から板厚tの1/4深さ位置における鋼組織は、フェライトが面積率で55%以上80%以下であり、硬質相の平均アスペクト比が0.1〜0.8であり、
前記平板部は、YSが350MPa以上、TSが520MPa以上であり、
前記角部に対する前記平板部のYSの比は0.80以上0.90以下、前記角部に対する前記平板部のTSの比は0.90以上1.00以下であり、
前記平板部の−40℃のシャルピー吸収エネルギーが100J以上であり、
前記角部のRは(2.3×t)以上(2.9×t)以下
である角形鋼管。
A square steel pipe having a flat plate and corners,
Ingredient composition is mass%,
C: 0.07 to 0.20%,
Si: 1.0% or less,
Mn: 0.5-2.0%,
P: 0.030% or less,
S: 0.015% or less,
Al: 0.01-0.06%,
N: Contains 0.006% or less, the balance consists of Fe and unavoidable impurities,
In the steel structure at a depth of 1/4 of the plate thickness t from the outer surface of the steel pipe, ferrite has an area ratio of 55% or more and 80% or less, and the average aspect ratio of the hard phase is 0.1 to 0.8. ,
The flat plate portion has a YS of 350 MPa or more and a TS of 520 MPa or more.
The ratio of YS of the flat plate portion to the corner portion is 0.80 or more and 0.90 or less, and the ratio of TS of the flat plate portion to the corner portion is 0.90 or more and 1.00 or less.
The Charpy absorption energy at −40 ° C. of the flat plate portion is 100 J or more.
A square steel pipe having an R of the corner portion of (2.3 × t) or more and (2.9 × t) or less.
前記成分組成に加えてさらに、質量%で、下記A群〜C群のうちから選ばれた1群または2群以上を含有する請求項1に記載の角形鋼管。

A群:Nb:0.05%以下、Ti:0.05%以下、V:0.10%以下のうちから選ばれた1種または2種以上
B群:B:0.008%以下
C群:Cr:0.01〜1.0%、Mo:0.01〜1.0%、Cu:0.01〜0.50%、Ni:0.01〜0.30%、Ca:0.001〜0.010%のうちから選ばれた1種または2種以上
The square steel pipe according to claim 1, further containing one group or two or more groups selected from the following groups A to C in mass% in addition to the component composition.
Group A: Nb: 0.05% or less, Ti: 0.05% or less, V: 0.10% or less, one or more selected from Group B: B: 0.008% or less C Group: Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.30%, Ca: 0. One or more selected from 001 to 0.010%
前記鋼組織は、さらに、前記硬質相の平均円相当径が20μm以下である請求項1または2に記載の角形鋼管。 The square steel pipe according to claim 1 or 2, wherein the steel structure further has an average circle-equivalent diameter of the hard phase of 20 μm or less. 請求項1〜3のいずれか1項に記載の角形鋼管の製造方法であって、
鋼板を冷間でロール成形して円筒状にした端面を溶接し、縦径/横径の比で0.99以上1.01以下の円筒状に成形した後、角状に成形する造管工程を施す角形鋼管の製造方法。
The method for manufacturing a square steel pipe according to any one of claims 1 to 3.
A pipe-making process in which a steel plate is cold-rolled to form a cylindrical end face, welded, formed into a cylindrical shape with a vertical / horizontal diameter ratio of 0.99 or more and 1.01 or less, and then formed into a square shape. A method of manufacturing a square steel pipe.
請求項1〜3のいずれか1項に記載の角形鋼管の製造方法であって、
鋼素材に、熱間圧延工程、冷却工程、巻取工程および造管工程をこの順に施して角形鋼管を製造するに際し、
前記鋼素材を加熱温度:1100〜1300℃に加熱した後、
板厚中心温度が1000℃以上での粗圧延時間:200秒以上400秒以内、粗圧延終了温度:1000〜800℃、
仕上圧延開始温度:1000〜800℃、仕上圧延終了温度:900〜750℃とする熱間圧延工程を施して熱延板とし、
次いで、前記熱延板に、冷却開始から10s間の初期冷却工程における0.2s以上3.0s未満の放冷を1回以上有し、板厚中心温度での平均冷却速度:4〜25℃/sとする冷却工程を施し、
次いで、前記熱延板を巻取温度:580℃以下で巻取る巻取工程を施して鋼板とし、
次いで、前記鋼板を冷間でロール成形して円筒状にした端面を溶接し、縦径/横径の比で0.99以上1.01以下の円筒状に成形した後、角状に成形する造管工程を施す角形鋼管の製造方法。
The method for manufacturing a square steel pipe according to any one of claims 1 to 3.
When manufacturing a square steel pipe by subjecting a steel material to a hot rolling process, a cooling process, a winding process, and a pipe making process in this order.
After heating the steel material to a heating temperature: 1100 to 1300 ° C.
Rough rolling time when the center temperature of the plate thickness is 1000 ° C or higher: 200 seconds or more and 400 seconds or less, rough rolling end temperature: 1000 to 800 ° C,
A hot rolling process of finishing rolling start temperature: 1000 to 800 ° C. and finish rolling end temperature: 900 to 750 ° C. is performed to obtain a hot-rolled plate.
Next, the hot-rolled plate has one or more cooling releases of 0.2 s or more and less than 3.0 s in the initial cooling step from the start of cooling to 10 s, and the average cooling rate at the plate thickness center temperature: 4 to 25 ° C. A cooling process of / s is performed, and
Next, the hot-rolled plate is subjected to a winding step of winding at a winding temperature of 580 ° C. or lower to obtain a steel sheet.
Next, the steel plate is cold-rolled to form a cylindrical end face, and the end face is welded to form a cylindrical shape having a vertical diameter / horizontal diameter ratio of 0.99 or more and 1.01 or less, and then formed into a square shape. A method for manufacturing a square steel pipe to be subjected to a pipe making process.
前記冷却工程の冷却停止温度を580℃以下とする請求項5に記載の角形鋼管の製造方法。 The method for manufacturing a square steel pipe according to claim 5, wherein the cooling stop temperature in the cooling step is 580 ° C. or lower. 請求項1〜3のいずれか1項に記載の角形鋼管を使用した建築構造物。 A building structure using the square steel pipe according to any one of claims 1 to 3.
JP2020543115A 2019-02-20 2020-02-03 Square steel pipe and its manufacturing method, and building structures Active JP6813140B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019028029 2019-02-20
JP2019028029 2019-02-20
PCT/JP2020/003841 WO2020170774A1 (en) 2019-02-20 2020-02-03 Rectangular steel tube and method for manufacturing same, and building structure

Publications (2)

Publication Number Publication Date
JP6813140B1 JP6813140B1 (en) 2021-01-13
JPWO2020170774A1 true JPWO2020170774A1 (en) 2021-03-11

Family

ID=72144658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543115A Active JP6813140B1 (en) 2019-02-20 2020-02-03 Square steel pipe and its manufacturing method, and building structures

Country Status (5)

Country Link
JP (1) JP6813140B1 (en)
KR (1) KR102610377B1 (en)
CN (1) CN113453817B (en)
TW (1) TWI724782B (en)
WO (1) WO2020170774A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323065A (en) * 2020-10-05 2023-06-23 杰富意钢铁株式会社 Square steel pipe, method for manufacturing same, and building structure
JP7375946B2 (en) * 2021-07-02 2023-11-08 Jfeスチール株式会社 Square steel pipes, their manufacturing methods, and architectural structures
CN117531864B (en) * 2024-01-09 2024-03-29 太原理工大学 High-efficiency preparation method of bimetal seamless composite pipe

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569039A (en) * 1991-09-13 1993-03-23 Nkk Corp Manufacture of large diameter square steel tube
JPH08243646A (en) * 1995-03-07 1996-09-24 Kawasaki Steel Corp Manufacture of square steel tube
JP2001138066A (en) * 1999-11-17 2001-05-22 Sumitomo Metal Ind Ltd Method for producing high workability carbon steel pipe for hydroforming
JP5069863B2 (en) * 2005-09-28 2012-11-07 株式会社神戸製鋼所 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
IT1394852B1 (en) * 2009-07-21 2012-07-20 Olimpia 80 Srl VARIABLE LINEAR GEOMETRY MACHINE TO FORM SQUARE TUBES CONTINUOUSLY
JP5385760B2 (en) 2009-10-30 2014-01-08 株式会社神戸製鋼所 Cold-formed square steel pipe with excellent earthquake resistance
RU2518830C1 (en) * 2010-06-30 2014-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-rolled steel sheet and method of its production
CN103189537B (en) * 2010-11-05 2016-01-20 新日铁住金株式会社 High tensile steel plate and manufacture method thereof
JP5594165B2 (en) * 2011-01-28 2014-09-24 Jfeスチール株式会社 Manufacturing method of thick hot rolled steel sheet for square steel pipes for building structural members
WO2013153679A1 (en) * 2012-04-12 2013-10-17 Jfeスチール株式会社 Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same
JP5910400B2 (en) * 2012-08-03 2016-04-27 Jfeスチール株式会社 Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
EP2891725B1 (en) * 2012-08-29 2018-01-17 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe and method for producing same
TWI480386B (en) * 2012-12-24 2015-04-11 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet and method of manufacturing the same
KR20140118313A (en) * 2013-03-28 2014-10-08 현대제철 주식회사 Hot-rolled steel and method of manufacturing the same
JP6435122B2 (en) * 2014-06-27 2018-12-05 新日鐵住金株式会社 Thick steel plate for cold-pressed square steel pipe, cold-pressed square steel pipe, and welding method
CA2967906C (en) * 2014-12-25 2020-12-29 Jfe Steel Corporation High-strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells
US11555233B2 (en) * 2015-03-26 2023-01-17 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP6807690B2 (en) * 2016-09-27 2021-01-06 日本製鉄株式会社 Square steel pipe
JP6565887B2 (en) * 2016-12-12 2019-08-28 Jfeスチール株式会社 Method for producing hot rolled steel sheet for low yield ratio square steel pipe and method for producing low yield ratio square steel pipe
CN110073018B (en) * 2016-12-12 2021-08-27 杰富意钢铁株式会社 Hot-rolled steel sheet for low yield ratio steel pipe, method for producing same, low yield ratio square steel pipe, and method for producing same
CN107583969A (en) * 2017-04-21 2018-01-16 苏州飞托克金属制品有限公司 A kind of manufacture method of modified form ferrite seamless stainless-steel pipe

Also Published As

Publication number Publication date
KR102610377B1 (en) 2023-12-06
KR20210114041A (en) 2021-09-17
TW202045745A (en) 2020-12-16
JP6813140B1 (en) 2021-01-13
CN113453817B (en) 2023-06-30
TWI724782B (en) 2021-04-11
CN113453817A (en) 2021-09-28
WO2020170774A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
KR102256983B1 (en) Hot-rolled steel sheet for rectangular steel pipe with resistance ratio and manufacturing method thereof, and rectangular steel pipe with resistance recovery ratio and manufacturing method thereof
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
JP4897127B2 (en) Manufacturing method of high strength steel sheet for welded structure
JP6813140B1 (en) Square steel pipe and its manufacturing method, and building structures
WO2020039980A1 (en) Square steel pipe, manufacturing method thereof, and building structure
JP7088417B2 (en) Electric pipe and its manufacturing method
JP6947333B2 (en) Electric resistance steel pipe and its manufacturing method, line pipe and building structure
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JP6813141B1 (en) Square steel pipe and its manufacturing method and building structure
JP6569745B2 (en) Hot rolled steel sheet for coiled tubing and method for producing the same
JP2007277629A (en) Extra-thick steel material and manufacturing method therefor
CN110546295A (en) Rolled H-section steel and method for producing same
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same
CN114729426B (en) Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200824

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6813140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250