JP3559073B2 - Ferrite thick steel plate with less material variation and method of manufacturing the same - Google Patents

Ferrite thick steel plate with less material variation and method of manufacturing the same Download PDF

Info

Publication number
JP3559073B2
JP3559073B2 JP22492194A JP22492194A JP3559073B2 JP 3559073 B2 JP3559073 B2 JP 3559073B2 JP 22492194 A JP22492194 A JP 22492194A JP 22492194 A JP22492194 A JP 22492194A JP 3559073 B2 JP3559073 B2 JP 3559073B2
Authority
JP
Japan
Prior art keywords
less
strength
cooling
thick steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22492194A
Other languages
Japanese (ja)
Other versions
JPH0885842A (en
Inventor
透 林
虔一 天野
智也 小関
教次 板倉
裕樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP22492194A priority Critical patent/JP3559073B2/en
Publication of JPH0885842A publication Critical patent/JPH0885842A/en
Application granted granted Critical
Publication of JP3559073B2 publication Critical patent/JP3559073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、建築、海洋構造物、パイプ、造船、貯槽、土木、建設機械等の分野で使用される、厚みが30mm以上の厚鋼板、特に厚み方向の材質ばらつきの少ない厚鋼板の製造方法に関する。
【0002】
【従来の技術】
厚鋼板は、上記のように、様々な分野で使用され、高強度化や高じん性化などの特性の改善がはかられているが、近年では、さらに厚み方向において均一であり、かつ鋼材間でのばらつきも小さいことが要求されている。
【0003】
例えば、「鉄と鋼 第74年(1988)第6号」の第11〜21頁には、建築物の高層化が進むにつれ、巨大地震に対して建築物の変形により振動エネルギーを吸収し倒壊を防ぐ設計がとられるようになってきたことが報告されている。具体的には、地震発生時に建築物の骨組みを所定形状で崩壊させ、この骨組み材の塑性化によって建物の倒壊を防ぐものである。すなわち、地震発生時に建築物の骨組みが、設計者の意図した挙動を示すことが前提になり、建築物の柱や梁などの鋼材の耐力比を設計者が完全に把握していることが必要である。従って、柱や梁などに用いる鋼材は均質であることが不可欠であり、鋼材の強度ばらつきは大きな問題となる。
【0004】
ここで、建築や造船などに供する鋼材には高張力かつ高じん性が要求され、この種の鋼板は、制御圧延制御冷却法、いわゆるTMCP法に従って製造されるのが通例である。しかし、このTMCP法によって厚鋼材を製造すると、冷却速度が厚み方向あるいは各鋼材間で異なって組織が変化するため、得られた鋼材の厚み方向あるいは各鋼材間で材質のばらつきが発生するのである。
【0005】
これに対して、特開昭63−179020号公報では、成分、圧下量、冷却速度および冷却終了温度を制御することにより板厚方向の断面硬度差を小さくしているが、板厚が50mmを超える厚鋼板の製造では、板厚方向の冷却速度分布が必然的に生じるため断面硬度差の抑制は極めて難しいところに問題が残る。
【0006】
【発明が解決しようとする問題点】
この発明は、上記の問題を解消した、厚み方向および鋼材間の材質ばらつきの少ない厚鋼板の製造方法について提案することを、それぞれ目的とする。
【0007】
【問題を解決するための手段】
厚鋼板の材質ばらつきは、冷却工程における、鋼材表面から中心部までの厚み方向冷却速度の大幅な変化あるいは製造条件のばらつきによる冷却速度の変化から、組織変動が発生することに起因している。この組織変動を回避するには、広い冷却速度範囲で均質の組織を得ることが肝要である。
そこで、発明者らは、製造条件が変化しても均質の組織を得る手法に関して、原点に立ち戻って検討を重ねたところ、成分組成を新たに設計し直すことによって、冷却速度の変化にかかわらず厚み方向の組織を一定とした、材質ばらつきの少ない鋼材が得られることを知見するに至った。
【0008】
すなわち、この発明は、
C:0.04wt%未満、
Si:0.60wt%以下、
Mn:0.2 〜0.5 wt%および
Al:0.100 wt%以下
を含み、さらに
Cu:0.7 〜2.0 wt%、
Ti:0.01〜0.20wt%、
Nb:0.005 〜0.20wt%および
V:0.005 〜0.20wt%
のうちから選んだ1種または2種以上を含有し、残部はFeおよび不可避不純物の組成になる鋼スラブ熱間圧延を施し厚さが 30mm 以上の厚鋼板を製造するに際し、Ac3〜1350℃の温度に加熱後、Ar3以上の温度で圧延を終了し、ついで析出処理温度域である 500℃以上Ar3未満の所定温度まで2℃/s以上50℃/s以下の冷却速度で加速冷却したのち、該所定温度において30s以上等温保持するかまたは当該温度域内において1℃/s 以下の冷却速度で30s以上冷却する析出処理を行い、その後冷却を行うことを特徴とする、引張強さが 462MPa 以上かつ厚み方向の材質ばらつきの少ないフェライト組織厚鋼板の製造方法。
【0009】
【作用】
次に、この発明の厚鋼材の各化学成分の限定理由について説明する。
C:0.04wt%未満
冷却速度に依存せずに鋼材の組織をフェライト主体あるいはフェライト単相とするためには、C量を0.04 wt%未満、好ましくは 0.02 wt%以下に抑制する必要がある。すなわち、フェライトでのCの固溶限はおよそ0.02wt%であり、フェライト単相組織とするためには、好ましくは0.02wt%以下に抑制する必要があるが、フェライト体積率90%以上でも、フェライト単相組織と同等の特性・効果を有するため、C量を0.04wt%未満とした。
【0010】
Si:0.60wt%以下
Siは、0.6 wt%をこえると、溶接部靭性が劣化するため、0.60wt%以下の範囲とする。なお、脱酸および強度確保のため0.02wt%以上添加することが好ましい。
【0011】
Mn:0.2 〜0.5 wt%
Mnは、強度確保のため0.2 wt%以上必要であり、一方0.5 wt%を超えると板厚30mm以上の鋼板で板厚全域にわたってフェライト主体組織となりにくいため0.2〜0.5 wt%の範囲に限定する。
【0012】
Al:0.100 wt%以下
Alは、0.100 wt%を超えると溶接性が損なわれるため、0.100 wt%以下とする。なお、脱酸のためには、0.010 wt%以上添加することが好ましい。
【0013】
この発明は、上記の基本組成に成分調整をすることによって、製造条件、特に冷却速度にほとんど依存しないで、均質な組織、具体的には90%以上がフェライトの組織が得られるところに特徴がある。この特徴は、図1に結果を示す実験から、明らかである。
【0014】
すなわち、この発明に従う成分に調整した鋼(発明例)と、建築材料に用いられる在来の鋼(従来例)とに関して、製造工程における冷却速度を種々に変化して得た鋼材の引張り強さを調査した結果について、図1に示す。同図から、この発明に従う成分に調整することによって、冷却速度に依存しないで安定した強度が得られることがわかる。従って、厚鋼板の厚み方向で冷却速度が変化しても、冷却速度に依存して強度が変化することがなく、厚み方向に材質ばらつきの少ない厚鋼板が得られるのである。
【0015】
なお、発明例は、C:0.019wt%、Si:0.049wt%、Mn:0.4wt%、Cu:1.01wt%およびAl:0.024 wt%を含み、残部鉄および不可避的不純物になる成分組成になり、一方、従来例は、C:0.14wt%、Si:0.4 wt%、Mn:1.31wt%、Al:0.024wt%、Nb:0.015wt%およびTi:0.013 wt%を含み、残部鉄および不可避的不純物になる成分組成であった。そして、同じ製造工程における、冷却速度を変化させて、厚み:15mmの厚鋼板を多数製造して、それぞれの厚鋼板から採取した試験片にて引張り強さを測定した。
【0016】
また、この発明においては、上記基本成分に、所定の化学成分を添加することによって、強度やじん性のレベルを制御する。このとき、既に獲得した均質な組織は、新たな成分の添加に影響されることはないため、材質ばらつきの少ない高強度および/または高じん性の厚鋼板が容易に得られるのである。
【0017】
まず、強度向上をはかるために、析出強化成分として、Cu:0.7 〜2.0 wt%、Ti:0.005 〜0.20wt%、Nb:0.005 〜0.20wt%およびV:0.005 〜0.20wt%のうちから選んだ1種または2種以上を添加する。なお、これらの析出強化成分を添加した上で、後述する析出強化処理を施すことが必要になる。
【0018】
Cu:0.7 〜2.0 wt%
Cuは、析出強化をはかるために添加するが、2.0 wt%をこえるとじん性が急激に劣化し、一方、0.7 wt%未満では析出強化の効果が少ないため、0.7 〜2.0 wt%とする。
【0019】
Ti:0.005 〜0.20wt%
Tiは、析出強化に加えて、過剰のCを固定し、またTiN として存在して溶接熱影響部(HAZ)じん性を向上させるために0.005wt%以上は添加する。一方、0.20wt%をこえて添加すると、フェライト単相とすることが困難になるため、0.20wt%を上限とする。
【0020】
Nb:0.005 〜0.20wt%
Nbは、析出強化に加えて、じん性の向上および過剰のCを固定するために0.005 wt%以上は添加する。一方、0.20wt%をこえて添加すると、フェライト単相とすることが困難になるため、0.20wt%を上限とする。
【0021】
V:0.005 〜0.20wt%
Vは、析出強化に加えて、過剰のCを固定するために0.005 wt%以上は添加するが、0.20wt%をこえて添加すると、フェライト単相とすることが困難になるため、0.20wt%を上限とする。
【0022】
さらに、強度向上をはかるために、Ni:2.0 wt%以下、Cr:0.5 wt%以下、Mo:0.5 wt%以下およびW:0.5 wt%以下のうちから選んだ1種または2種以上を添加することができる。なお、これらの成分は、微量でも効果があるため、下限については適宜設定することができる。
【0023】
Ni:2.0 wt%以下
Niは、強度および靭性を向上し、またCuを添加した場合には圧延時のCu割れを防止するのに有効であるが、高価である上、過剰に添加するとその効果が飽和するため、2.0 wt%以下の範囲で添加する。なお、0.05%未満の添加では上記の効果が不充分であるため、添加量は0.05wt%以上とすることが好ましい。
【0024】
Cr:0.5 wt%以下
Crは、強度を上昇する効果があるが、0.5 wt%をこえて添加すると、フェライト単相とすることが困難となり、また溶接部靭性が劣化するため、0.5 wt%以下の範囲で添加する。
なお、0.05wt%未満の添加では、強度上昇効果が不充分であるため、添加量は0.05wt%以上とすることが好ましい。
【0025】
Mo:0.5 wt%以下
Moは、常温および高温での強度を上昇する効果があるが、0.5 wt%をこえると、フェライト単相とすることが困難になり、また溶接部靭性が劣化するため、0.5 wt%以下の範囲で添加する。
なお、0.05wt%未満の添加では、強度上昇効果が不充分であるため添加量は、0.05wt%以上とすることが好ましい。
【0026】
W:0.5 wt%以下
Wは、高温強度を上昇する効果があるが、高価である上、0.5 wt%をこえると、じん性が劣化するため、0.5 wt%以下の範囲で添加する。
なお、0.05wt%未満の添加では、強度上昇効果が不充分であるため添加量は0.05wt%以上とすることが好ましい。
【0027】
また、HAZ のじん性向上をはかるために、 REMおよびCaのうちから選んだ少なくとも1種を0.02wt%以下で添加することができる。
REM は、フェライト析出核の形成に役立ち、かつオキシサルファイドとなってオーステナイト粒の粒成長を抑制してHAZ のじん性を向上するが、0.02wt%をこえて添加すると鋼の清浄度を損なうため、0.02wt%以下とする。なお、0.001 wt%未満の添加では、上記HAZ 靭性向上効果が不充分であるため、添加量は、0.001 wt%以上とすることが好ましい。
【0028】
Caは、HAZ のじん性向上に有効である上、鋼中硫化物の形態制御により板厚方向の材質改善にも有効であるが、0.02wt%をこえて添加すると、非金属介在物量を増大させ内部欠陥の原因となるため0.02wt%以下とする。おな、0.0005wt%未満の添加では、上記効果が不充分であるため添加量は0.0005wt%以上とすることが好ましい。
【0029】
次に、上述した基本組成に成分調整した鋼スラブを、 Ac3〜1350℃の温度に加熱後、 Ar3以上の温度で圧延を終了し、その後冷却を施す。
【0030】
すなわち、加熱温度は、Ac3 未満では完全にオーステナイト化することができずに均質化が不十分となり、一方、1350℃をこえると表面酸化が激しくなるため、Ac3 〜1350℃の温度域に加熱することが好ましい。圧延仕上げ温度は、Ar3 以上とすることで組織が微細化し、母材のじん性が良好になる。
【0031】
ここで、析出強化成分として、Cu:0.7 〜2.0 wt%、Ti:0.005 〜0.20wt%、Nb:0.005 〜0.20wt%およびV:0.005 〜0.20wt%のうちから選んだ1種または2種以上を添加した上で、圧延を終了したのち、析出処理温度域である 500℃以上 Ar3未満の所定温度まで50℃/s以下の冷却速度で加速冷却したのち、該所定温度において30s以上等温保持するかまたは当該温度域内において1℃/s 以下の冷却速度で30s以上冷却する析出処理を行って、強度向上することが肝要である。
【0032】
すなわち、圧延終了から析出処理温度までの冷却における速度を、50℃/s以下とし、ベイナイト相の析出を抑制する必要がある。
次いで、この加速冷却後、500 ℃以上Ar3 未満の温度範囲で30s以上の等温保持または当該温度域内において1℃/s以下の冷却速度で30s以上冷却する析出処理を行うことにより、Cu, Nb(CN), Ti(CN)およびV(CN) のいずれか1種または2種以上を析出させ、強度上昇が図れる。また、この析出処理により組織の均一化がはかられ、板厚方向の材質ばらつきもさらに軽減される。
【0033】
ここで、Ar3 以上のオーステナイト域で生成した析出物は低温で変態するフェライト相とは整合しないため析出強化量が小さく、従って十分な強化を得るにはAr3 温度未満で析出処理を行う必要がある。一方、500 ℃未満では析出反応および組織の均一化がともに起こりにくいため、温度範囲を500 ℃以上Ar3 未満とした。また、保持時間を30s以上としたのは、30s未満では十分な析出強化ができないためである。そして、当該温度範囲内で1℃/s以下の冷却速度で30s以上保持することによっても析出強化が得られ、1℃/sをこえた冷却速度では十分な析出強化が得られないばかりでなく厚さ方向の均質性も損なわれる。なお、十分に析出強化をさせるためには、0.1 ℃/s以下の冷却速度が望ましい。
【0034】
その後の冷却は、従来のように厳密に管理する必要はなく、空冷または加速冷却のいずれでも可能であるが、50℃/sを超える冷却速度で冷却を行うと、ベイナイト相が生成するため、フェライト主体組織とすることができず、一方、0.5 ℃/s未満の冷却速度では、粒径が粗大となり靭性が劣化するため0.5 〜50℃/sの範囲で行うことが好ましい。
【0035】
【実施例】
に示す種々の成分組成に調整した鋼スラブを、表に示す各条件に従う処理を施して、厚さ80mmの厚鋼板を製造した。
かくして得られた各厚鋼板について、引張試験およびシャルピー試験を行って、その機械的性質を調査するとともに、厚み方向の強度のばらつきを評価するため、鋼板断面の硬さを表面より2 mm ピッチにて測定して板厚方向の硬さ分布を調査した。さらに、 HAZ の靭性を評価するため、鋼板を 1350 ℃に加熱後 800 ℃から 500 ℃まで 300 sで冷却する熱サイクル( 500 kJ cm の入熱量で溶接したときの HAZ の熱履歴に相当)を施してから、シャルピー試験片を採取し、0℃でのシャルピー吸収エネルギーを測定した。なお、フェライト組織の体積率は、 400 倍で撮影した光学顕微鏡写真より点算法により測定した。これらの調査結果を、表2に併記するように、この発明に従う厚鋼板は、462 MPa 以上の引張強さを有しかつ組織が均一になるため、厚み方向の硬さのばらつきが比較例に比べて、極めて小さいことがわかる。また、析出強化元素を添加し析出強化処理を施すことによって、強度上昇が実現されることもわかる。
【0036】
【表1】

Figure 0003559073
【0037】
【表2】
Figure 0003559073
【0038】
【発明の効果】
この発明の厚鋼板は、工業的規模での生産における冷却工程で用いられる、いずれの冷却速度によっても、フェライト単相組織となる。従って、今後需要増が予想される、厚み方向の材質ばらつきの極めて少ない厚鋼板を、工業的に安定して供給できる。なお、この発明は形鋼の分野にも有利に適合する。
【図面の簡単な説明】
【図1】厚鋼材における冷却速度と強度との関係を示す図である。[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a thick steel plate having a thickness of 30 mm or more, particularly a thick steel plate with less material variation in the thickness direction , which is used in the fields of architecture, marine structures, pipes, shipbuilding, storage tanks, civil engineering, construction machinery, and the like. .
[0002]
[Prior art]
Thick steel sheets are used in various fields as described above, and properties such as high strength and high toughness have been improved.However, in recent years, steel sheets are more uniform in the thickness direction, It is required that the variation between them is small.
[0003]
For example, on pages 11 to 21 of “Iron and Steel No. 74 (1988) No. 6,” as buildings become taller, they absorb vibration energy due to the deformation of the building in response to a huge earthquake and collapse. It has been reported that designs have been adopted to prevent this. Specifically, when an earthquake occurs, the framework of the building is collapsed in a predetermined shape, and the collapse of the building is prevented by plasticizing the framework. In other words, it is premised that the framework of the building behaves as intended by the designer when an earthquake occurs, and that the designer must fully understand the strength ratio of steel materials such as columns and beams of the building. It is. Therefore, it is indispensable that the steel materials used for the columns, beams, and the like are homogeneous, and the variation in the strength of the steel materials becomes a serious problem.
[0004]
Here, high tensile strength and high toughness are required for steel materials used for construction and shipbuilding, and this type of steel sheet is generally manufactured according to a controlled rolling control cooling method, a so-called TMCP method. However, when a thick steel material is manufactured by this TMCP method, the cooling rate changes in the thickness direction or between the steel materials, and the structure changes, so that the material varies in the thickness direction of the obtained steel material or between the steel materials. .
[0005]
On the other hand, in JP-A-63-179020, the difference in cross-sectional hardness in the plate thickness direction is reduced by controlling the components, the reduction amount, the cooling rate, and the cooling end temperature. In the production of thick steel plates exceeding this, a problem remains in that it is extremely difficult to suppress the difference in cross-sectional hardness because a cooling rate distribution in the thickness direction is inevitable.
[0006]
[Problems to be solved by the invention]
The present invention has solved the above problem, to propose a method of manufacturing the material with less variation thick steel plate between the thickness direction and steel, respectively of interest.
[0007]
[Means to solve the problem]
The variation in the quality of the steel plate is caused by a change in the structure due to a significant change in the cooling rate in the thickness direction from the surface of the steel material to the center in the cooling step or a change in the cooling rate due to a variation in manufacturing conditions. In order to avoid such a structure variation, it is important to obtain a homogeneous structure in a wide cooling rate range.
Therefore, the inventors returned to the origin and repeated the study on a method of obtaining a homogeneous structure even when manufacturing conditions changed, and by redesigning the component composition, regardless of the change in cooling rate, It has been found that a steel material having a uniform structure in the thickness direction and a small material variation can be obtained.
[0008]
That is, the present invention
C: less than 0.04 wt%,
Si: 0.60 wt% or less,
Mn: 0.2-0.5 wt% and
Al: contains 0.100 wt% or less, and
Cu: 0.7 to 2.0 wt%,
Ti: 0.01 ~ 0.20wt%,
Nb: 0.005 to 0.20 wt% and V: 0.005 to 0.20 wt%
Selected from among the one or comprise two or more, the balance Saishi the hot thickness subjected to rolling a steel slab comprising the composition of Fe and unavoidable impurities to produce a more steel plates 30 mm, Ac 3 after heating to a temperature of to 1350 ° C., Ar 3 or more finished rolling temperature, then precipitation treatment temperature range cooling rate of 500 ° C. or more predetermined temperature below Ar 3 to 2 ° C. / s or higher 50 ° C. / s or less is in After accelerated cooling, subjected to precipitation treatment to cool 1 ° C. / s 30s or more of the following cooling rates in or the temperature range for 30s or more isothermal holding at the predetermined temperature, and performing the subsequent cooling, the tensile A method for producing a ferritic thick steel plate having a strength of at least 462 MPa and a small variation in the material in the thickness direction .
[0009]
[Action]
Next, the reasons for limiting the respective chemical components of the thick steel material of the present invention will be described.
C: less than 0.04 wt% In order to make the structure of the steel material mainly composed of ferrite or a ferrite single phase without depending on the cooling rate, it is necessary to suppress the amount of C to less than 0.04 wt%, preferably to 0.02 wt% or less. That is, the solid solubility limit of C in ferrite is approximately 0.02 wt%, and to obtain a ferrite single phase structure, it is necessary to suppress the content to preferably 0.02 wt% or less. Since it has the same characteristics and effects as the ferrite single phase structure, the C content is set to less than 0.04 wt%.
[0010]
Si: 0.60wt% or less
If the content of Si exceeds 0.6 wt%, the toughness of the welded portion deteriorates, so the content is set to 0.60 wt% or less. In addition, it is preferable to add 0.02 wt% or more in order to secure deoxidation and strength.
[0011]
Mn: 0.2 to 0.5 wt%
Mn is required to be 0.2 wt% or more to secure the strength. On the other hand, if it exceeds 0.5 wt%, it is difficult for the steel sheet having a thickness of 30 mm or more to form a ferrite-based structure over the entire thickness of the steel sheet, so the Mn content is limited to the range of 0.2 to 0.5 wt%.
[0012]
Al: 0.100 wt% or less
If the content of Al exceeds 0.100 wt%, the weldability is impaired. In addition, for deoxidation, it is preferable to add 0.010 wt% or more.
[0013]
The present invention is characterized in that by adjusting the components to the above-mentioned basic composition, a homogeneous structure, specifically, a ferrite structure of 90% or more can be obtained, which hardly depends on the production conditions, particularly the cooling rate. is there. This feature is evident from the experiment whose results are shown in FIG.
[0014]
That is, regarding the steel adjusted to the component according to the present invention (invention example) and the conventional steel used for building materials (conventional example), the tensile strength of the steel material obtained by variously changing the cooling rate in the manufacturing process. FIG. 1 shows the results of the investigation. It can be seen from the figure that by adjusting the components according to the present invention, a stable strength can be obtained independent of the cooling rate. Therefore, even if the cooling rate changes in the thickness direction of the thick steel sheet, the strength does not change depending on the cooling rate, and a thick steel sheet with less material variation in the thickness direction can be obtained.
[0015]
The invention example contains C: 0.019% by weight, Si: 0.049% by weight, Mn: 0.4% by weight, Cu: 1.01% by weight and Al: 0.024% by weight. On the other hand, the conventional example contains 0.14 wt% of C, 0.4 wt% of Si, 1.31 wt% of Mn, 0.024 wt% of Al, 0.015 wt% of Nb and 0.013 wt% of Ti, and the balance of iron and unavoidable The composition of the component became an impurity. Then, in the same manufacturing process, a large number of thick steel plates having a thickness of 15 mm were manufactured by changing the cooling rate, and the tensile strength was measured with a test piece taken from each thick steel plate.
[0016]
Further, in the present invention, the strength and the toughness level are controlled by adding a predetermined chemical component to the basic component. At this time, the already obtained homogeneous structure is not affected by the addition of a new component, so that a high-strength and / or high-toughness thick steel plate with little material variation can be easily obtained.
[0017]
First, in order to improve the strength, a precipitation strengthening component was selected from Cu: 0.7 to 2.0 wt%, Ti: 0.005 to 0.20 wt%, Nb: 0.005 to 0.20 wt%, and V: 0.005 to 0.20 wt%. One or more are added. Incidentally, after the addition of these precipitation strengthening components, it is necessary to perform the precipitation hardening process to be described later.
[0018]
Cu: 0.7 to 2.0 wt%
Cu is added to enhance precipitation strengthening, but if it exceeds 2.0 wt%, the toughness is rapidly deteriorated, whereas if it is less than 0.7 wt%, the effect of precipitation strengthening is small, so Cu is set to 0.7 to 2.0 wt%.
[0019]
Ti: 0.005 to 0.20wt%
Ti is added in an amount of 0.005 wt% or more to fix excess C in addition to precipitation strengthening and to improve the toughness of HAZ by existing as TiN. On the other hand, if it is added in excess of 0.20 wt%, it becomes difficult to form a ferrite single phase, so the upper limit is 0.20 wt%.
[0020]
Nb: 0.005 to 0.20wt%
Nb is added in an amount of 0.005 wt% or more in order to improve toughness and fix excess C in addition to precipitation strengthening. On the other hand, if it is added in excess of 0.20 wt%, it becomes difficult to form a ferrite single phase, so the upper limit is 0.20 wt%.
[0021]
V: 0.005 to 0.20 wt%
V is added in an amount of 0.005 wt% or more to fix excess C in addition to precipitation strengthening. However, if it is added in excess of 0.20 wt%, it becomes difficult to form a ferrite single phase. Is the upper limit.
[0022]
Further, in order to improve the strength, one or more selected from among Ni: 2.0 wt% or less, Cr: 0.5 wt% or less, Mo: 0.5 wt% or less, and W: 0.5 wt% or less are added. be able to. Since these components are effective even in a very small amount, the lower limit can be appropriately set.
[0023]
Ni: 2.0 wt% or less
Ni is effective in improving strength and toughness, and is effective in preventing Cu cracking during rolling when Cu is added, but is expensive and saturates its effect when added in excess, so 2.0 Add in the range of wt% or less. Note that if the addition is less than 0.05%, the above effect is insufficient, so the addition amount is preferably 0.05 wt% or more.
[0024]
Cr: 0.5 wt% or less
Cr has the effect of increasing the strength, but if added in excess of 0.5 wt%, it becomes difficult to form a ferrite single phase, and the weld toughness deteriorates, so Cr is added in a range of 0.5 wt% or less.
If the addition is less than 0.05 wt%, the effect of increasing the strength is insufficient, so the addition amount is preferably set to 0.05 wt% or more.
[0025]
Mo: 0.5 wt% or less
Mo has the effect of increasing the strength at ordinary and high temperatures, but if it exceeds 0.5 wt%, it becomes difficult to form a ferrite single phase, and the weld toughness deteriorates. Add in.
If the addition is less than 0.05 wt%, the effect of increasing the strength is insufficient, so the addition amount is preferably set to 0.05 wt% or more.
[0026]
W: 0.5 wt% or less W has the effect of increasing the high-temperature strength, but is expensive, and if it exceeds 0.5 wt%, the toughness deteriorates. Therefore, W is added in a range of 0.5 wt% or less.
If the addition is less than 0.05 wt%, the effect of increasing the strength is insufficient, so the addition amount is preferably set to 0.05 wt% or more.
[0027]
In order to improve the toughness of HAZ, at least one selected from REM and Ca can be added in an amount of 0.02 wt% or less.
REM contributes to the formation of ferrite precipitation nuclei and forms oxysulfide to suppress the growth of austenite grains to improve the toughness of HAZ. , 0.02 wt% or less. If the addition is less than 0.001 wt%, the above-mentioned effect of improving the HAZ toughness is insufficient, so that the addition amount is preferably 0.001 wt% or more.
[0028]
Ca is effective in improving the toughness of HAZ, and is also effective in improving the material quality in the sheet thickness direction by controlling the sulfide in steel, but adding more than 0.02 wt% increases the amount of nonmetallic inclusions. To 0.02 wt% or less because it causes internal defects. If the addition is less than 0.0005 wt%, the above effect is insufficient, so the addition amount is preferably 0.0005 wt% or more.
[0029]
Next , the steel slab adjusted to the above-described basic composition is heated to a temperature of Ac 3 to 1350 ° C., then the rolling is completed at a temperature of Ar 3 or more, and then cooled.
[0030]
That is, the heating temperature is, Ac completely becomes insufficient homogenization can not be austenitizing is less than 3, whereas, since the surface oxidation becomes severe exceeds 1350 ° C., the temperature range of Ac 3 to 1350 ° C. Heating is preferred. By setting the rolling finish temperature to Ar 3 or more, the structure becomes finer, and the toughness of the base material is improved.
[0031]
Here, as the precipitation strengthening component, one or more selected from Cu: 0.7 to 2.0 wt%, Ti: 0.005 to 0.20 wt%, Nb: 0.005 to 0.20 wt%, and V: 0.005 to 0.20 wt%. on the addition of, after the completion of the rolling, precipitation treatment temperature range in which to a predetermined temperature below 500 ° C. or higher Ar 3 50 ℃ / s After following accelerated cooling at a cooling rate, 30s or more isothermal holding at the predetermined temperature I or rows precipitation treatment of cooling 1 ° C. / s or less in the cooling rate at 30s or more in the temperature range to, it is important to improve the strength.
[0032]
That is, the rate of cooling from the end of rolling to the precipitation temperature must be 50 ° C./s or less to suppress the precipitation of the bainite phase.
Next, after the accelerated cooling, Cu, Nb is kept by isothermal holding for at least 30 s in a temperature range of 500 ° C. or more and less than Ar 3 or cooling for 30 s or more at a cooling rate of 1 ° C./s or less in the temperature range. One or more of (CN), Ti (CN) and V (CN) are precipitated to increase the strength. In addition, the precipitation treatment makes the structure uniform, and further reduces the material variation in the thickness direction.
[0033]
Here, the precipitates formed in the austenite region of Ar 3 or more do not match the ferrite phase that transforms at low temperatures, so the amount of precipitation strengthening is small, and therefore it is necessary to perform the precipitation treatment at a temperature lower than Ar 3 to obtain sufficient strengthening. There is. On the other hand, when the temperature is lower than 500 ° C., both the precipitation reaction and the structure homogenization are unlikely to occur, so the temperature range is set to 500 ° C. or more and less than Ar 3 . The reason for setting the holding time to 30 s or longer is that sufficient precipitation strengthening cannot be performed if the holding time is shorter than 30 s. Further, precipitation strengthening can be obtained by holding at a cooling rate of 1 ° C./s or less at a cooling rate of 1 ° C./s or less within the temperature range. At a cooling rate exceeding 1 ° C./s, not only sufficient precipitation strengthening cannot be obtained, but also Thickness homogeneity is also impaired. In order to sufficiently strengthen the precipitation, a cooling rate of 0.1 ° C./s or less is desirable.
[0034]
Cooling after its does not have to be strictly controlled as in the prior art, it is possible either air or accelerated cooling, when the cooling at a cooling rate exceeding 50 ° C. / s, since the bainite phase is generated On the other hand, when the cooling rate is less than 0.5 ° C./s, the grain size becomes coarse and the toughness is deteriorated. Therefore, the cooling is preferably performed in the range of 0.5 to 50 ° C./s.
[0035]
【Example】
The steel slabs adjusted to the various component compositions shown in Table 1 were processed according to the conditions shown in Table 2 to produce thick steel plates having a thickness of 80 mm.
A tensile test and a Charpy test are performed on each of the obtained thick steel plates to investigate their mechanical properties, and to evaluate the variation in strength in the thickness direction, the hardness of the steel plate cross section is set to a pitch of 2 mm from the surface. And the hardness distribution in the thickness direction was investigated. Furthermore, in order to evaluate the toughness of HAZ , a heat cycle in which the steel sheet is heated to 1350 ° C and then cooled from 800 ° C to 500 ° C in 300 seconds ( corresponding to the heat history of HAZ when welding with a heat input of 500 kJ / cm ) , A Charpy test piece was collected, and the Charpy absorbed energy at 0 ° C. was measured. The volume fraction of the ferrite structure was measured by a point calculation method from an optical microscope photograph taken at 400 times. As shown in Table 2, the results of these investigations show that the thick steel plate according to the present invention has a tensile strength of 462 MPa or more and has a uniform structure. In comparison, it turns out that it is extremely small. It can also be seen that an increase in strength is realized by adding a precipitation strengthening element and performing a precipitation strengthening treatment.
[0036]
[Table 1]
Figure 0003559073
[0037]
[Table 2]
Figure 0003559073
[0038]
【The invention's effect】
The steel plate of the present invention has a ferrite single phase structure at any cooling rate used in a cooling step in production on an industrial scale. Therefore, it is possible to industrially stably supply a thick steel plate, which is expected to increase in demand in the future, and has very little material variation in the thickness direction. It should be noted that the present invention is also advantageously applied to the field of shaped steel.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a cooling rate and a strength in a thick steel material.

Claims (1)

C:0.04wt%未満、
Si:0.60wt%以下、
Mn:0.2 〜0.5 wt%および
Al:0.100 wt%以下
を含み、さらに
Cu:0.7 〜2.0 wt%、
Ti:0.01〜0.20wt%、
Nb:0.005 〜0.20wt%および
V:0.005 〜0.20wt%
のうちから選んだ1種または2種以上を含有し、残部はFeおよび不可避不純物の組成になる鋼スラブ熱間圧延を施し厚さが 30mm 以上の厚鋼板を製造するに際し、Ac3〜1350℃の温度に加熱後、Ar3以上の温度で圧延を終了し、ついで析出処理温度域である 500℃以上Ar3未満の所定温度まで2℃/s以上50℃/s以下の冷却速度で加速冷却したのち、該所定温度において30s以上等温保持するかまたは当該温度域内において1℃/s 以下の冷却速度で30s以上冷却する析出処理を行い、その後冷却を行うことを特徴とする、引張強さが 462MPa 以上かつ厚み方向の材質ばらつきの少ないフェライト組織厚鋼板の製造方法。
C: less than 0.04 wt%,
Si: 0.60 wt% or less,
Mn: 0.2-0.5 wt% and
Al: contains 0.100 wt% or less, and
Cu: 0.7 to 2.0 wt%,
Ti: 0.01 ~ 0.20wt%,
Nb: 0.005 to 0.20 wt% and V: 0.005 to 0.20 wt%
Selected from among the one or comprise two or more, the balance Saishi the hot thickness subjected to rolling a steel slab comprising the composition of Fe and unavoidable impurities to produce a more steel plates 30 mm, Ac 3 after heating to a temperature of to 1350 ° C., Ar 3 or more finished rolling temperature, then precipitation treatment temperature range cooling rate of 500 ° C. or more predetermined temperature below Ar 3 to 2 ° C. / s or higher 50 ° C. / s or less is in After accelerated cooling, subjected to precipitation treatment to cool 1 ° C. / s 30s or more of the following cooling rates in or the temperature range for 30s or more isothermal holding at the predetermined temperature, and performing the subsequent cooling, the tensile A method for producing a ferritic thick steel plate having a strength of at least 462 MPa and a small variation in the material in the thickness direction .
JP22492194A 1994-09-20 1994-09-20 Ferrite thick steel plate with less material variation and method of manufacturing the same Expired - Fee Related JP3559073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22492194A JP3559073B2 (en) 1994-09-20 1994-09-20 Ferrite thick steel plate with less material variation and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22492194A JP3559073B2 (en) 1994-09-20 1994-09-20 Ferrite thick steel plate with less material variation and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0885842A JPH0885842A (en) 1996-04-02
JP3559073B2 true JP3559073B2 (en) 2004-08-25

Family

ID=16821261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22492194A Expired - Fee Related JP3559073B2 (en) 1994-09-20 1994-09-20 Ferrite thick steel plate with less material variation and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3559073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482527B2 (en) * 2005-05-17 2010-06-16 新日本製鐵株式会社 High-strength ultra-thick H-shaped steel with excellent fire resistance and method for producing the same
KR102322713B1 (en) * 2019-12-19 2021-11-04 주식회사 포스코 Cold-rolled steel sheet having excellent heat-resistance and formability and manufacturing method therof

Also Published As

Publication number Publication date
JPH0885842A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4464909B2 (en) High yield strength high tensile strength steel plate with excellent toughness of weld heat affected zone
KR100260655B1 (en) Method of manufacturing thick steel product of high strength and toughness having excellent weldability and minimal varlation of structure and physical properties
WO2011148754A1 (en) Process for production of thick steel sheet
JP5842574B2 (en) Manufacturing method of steel for large heat input welding
JP2005264208A (en) Low yield ratio wide flange beam having excellent earthquake resistance and its production method
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP3646512B2 (en) High strength and high toughness steel material with little material variation and excellent welded portion low temperature toughness, and method for producing the same
JP3873540B2 (en) Manufacturing method of high productivity and high strength rolled H-section steel
KR100266378B1 (en) Bainite steel material of little scatter of quality and method of manufactureing the same
JP3520619B2 (en) Bainite steel material with less material variation and method of manufacturing the same
JP3559073B2 (en) Ferrite thick steel plate with less material variation and method of manufacturing the same
JP3222695B2 (en) Ferrite-pearlite thick steel plate with less material variation and method for producing the same
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP4110652B2 (en) Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness
JP2005226080A (en) Method of producing high tensile strength thick steel plate having excellent weldability and low temperature toughness
JP3288572B2 (en) Manufacturing method of high toughness steel material with small material variation and excellent fatigue resistance
JP3598639B2 (en) Method for producing high-strength steel material with small material variation and small acoustic anisotropy
JP3598640B2 (en) Method of manufacturing steel with low material variation and low yield ratio
JP3376195B2 (en) Method for producing high-strength thick steel sheet with excellent in-plate homogeneity and having both brittle crack propagation arrestability and weldability
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP3500838B2 (en) High-strength steel material with small material variation and excellent weldability and method for producing the same
JP7473770B2 (en) High ductility steel plate for steel pipes having excellent toughness in welded heat affected zone and manufacturing method thereof, and structural steel pipes having excellent toughness in welded heat affected zone and manufacturing method thereof
JPH09157741A (en) High toughness bainitic steel small in dispersion in material
JPH09256047A (en) Production of thick steel small in dispersion of material and in welding residual stress

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees