JPS61139648A - Low carbon extremely thick steel plate superior in strength and weldability - Google Patents

Low carbon extremely thick steel plate superior in strength and weldability

Info

Publication number
JPS61139648A
JPS61139648A JP26102384A JP26102384A JPS61139648A JP S61139648 A JPS61139648 A JP S61139648A JP 26102384 A JP26102384 A JP 26102384A JP 26102384 A JP26102384 A JP 26102384A JP S61139648 A JPS61139648 A JP S61139648A
Authority
JP
Japan
Prior art keywords
steel plate
strength
less
thick steel
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26102384A
Other languages
Japanese (ja)
Other versions
JPH0532461B2 (en
Inventor
Ryuji Okabe
龍二 岡部
Yasuhiro Tanaka
康浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26102384A priority Critical patent/JPS61139648A/en
Publication of JPS61139648A publication Critical patent/JPS61139648A/en
Publication of JPH0532461B2 publication Critical patent/JPH0532461B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve base wetal strength, still more, to lower preheating temp. for welding, and to improve toughness at large heat input welded zone, by using Cr together with B or V, further adding a suitable quantity of Nb in low C extremely thick steel plate for boiler, etc. CONSTITUTION:Extremely thick steel plate is composed of, by weight %, 0.12-0.22 C, <=0.40 Si, 0.8-1.50 Mn, 0.01-0.10 Al, 0.4-0.8 Cr, 0.1-0.3 Mo, 0.005-0.040 Nb, further 0.03-0.1 V, and or 0.0003-0.0015 B, if necessary >=one kind of <=0.5 Cu, <=0.5 Ni and or >= one kind among 0.002-0.020 Ti, 0.003-0.050 rare earth element, 0.0001-0.0100 Ca, and the balance Fe, under <=0.33%PCM value prescribed by a formula. The steel plate has superior weldability and toughness at large heat input weld zone, further higher strength still more than usual, in extremely thick steel plate in which average cooling rate between 800-400 deg.C at center part in plate thickness at normalizing time is <=10 deg.C/min.

Description

【発明の詳細な説明】 所業上の利用分野 この発明はボイラーなどの圧力容器などに使用される極
厚鋼板に関し、特に焼ならし時の板厚中心部の800〜
400℃間の平均冷却速度が103−以下となるような
厚みを有する極厚鋼板において強度と溶接性とを同時に
改善する技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to extra-thick steel plates used for pressure vessels such as boilers, etc., and particularly relates to extra-thick steel plates used for pressure vessels such as boilers.
The present invention relates to a technique for simultaneously improving the strength and weldability of an extremely thick steel plate having a thickness such that the average cooling rate over 400° C. is 10 3 - or less.

従来の技術 周知のようにボイラー等の圧力容器は極厚鋼板を溶接し
て得られる。このような極厚鋼板は、薄肉の鋼板と比較
して焼ならし後の冷却速度が遅くなり、特に板厚の中心
部では冷却速度が著しく小さくなり、そのため所要の強
度を得にくいのが通常である。そこでこのような極厚鋼
板において所要の強度を確保し、また焼もどし処理やS
R(応力除去焼鈍)処理後でも所要の強度を確保するた
め、従来のボイラー用極厚鋼板は多量のC(炭素)を含
有させておくのが一般的であった。
As is well known in the art, pressure vessels such as boilers are obtained by welding extra-thick steel plates. The cooling rate of such extra-thick steel plates after normalization is slower than that of thin-walled steel plates, and the cooling rate is particularly slow at the center of the plate thickness, so it is usually difficult to obtain the required strength. It is. Therefore, in order to ensure the required strength for such extra-thick steel plates, we also
In order to ensure the required strength even after R (stress relief annealing) treatment, conventional extra-thick steel plates for boilers generally contain a large amount of C (carbon).

ところで厚板の溶接においては、溶接割れ防止のために
溶接前に予熱作業を必要とするが、特にボイラー等の製
造の際には使用される鋼材が極厚であるため予熱作業に
多大な労力と時間およびエネルギーを消費する。そして
特に前述のととくC含有量の高い極厚鋼板では高い予熱
温度を必要とするため、予熱作業に要するエネルギーコ
ストが著しく高くなる問題があった。また前述のよりな
C含有量の高い極厚鋼板の場合、充分と思われる程度の
予熱を行っても、往々にして溶接割れが発生し、その手
直し作業を行なわざるを得ない場合があった。さらに、
C含有量の高い従来の極厚鋼板の場合、溶接部の充分な
延性、靭性が得難く、特に大入熱溶接の場合には靭性の
劣化が大きい欠点があり、そこで溶接能率向上のために
入熱量50 kJ/rrn以上のサブマージアーク溶接
やエレクトロスラグ溶接などの大入熱溶接を行なっても
充分な溶接部靭性を確保できる材料が望まれ゛る。
By the way, when welding thick plates, preheating work is required before welding to prevent weld cracking, but especially when manufacturing boilers, etc., the steel used is extremely thick, so preheating work requires a lot of effort. and consumes time and energy. In particular, the above-mentioned extremely thick steel plate with a particularly high C content requires a high preheating temperature, which poses a problem in that the energy cost required for preheating work becomes extremely high. Furthermore, in the case of extra-thick steel plates with a high C content, even if preheating is considered sufficient, weld cracks often occur, and rework is sometimes necessary. . moreover,
In the case of conventional extra-thick steel plates with a high C content, it is difficult to obtain sufficient ductility and toughness of the welded part, and especially in the case of high heat input welding, there is a drawback that the toughness deteriorates significantly, so in order to improve welding efficiency A material that can ensure sufficient weld toughness even when high heat input welding such as submerged arc welding or electroslag welding with a heat input of 50 kJ/rrn or more is performed is desired.

上述のようなC含有量の高い従来のボイラー月極厚肉鋼
板の欠点を解消するため、C含有量を低くすると同時に
、低C化による強度低下を補なうために析出強化やBお
よびAlの複合添加(例えば特公昭57−19731号
、あるいは特公昭57−23739号)により強度向上
を図る方法が提案されている。
In order to eliminate the above-mentioned drawbacks of conventional boiler thick-walled steel plates with high C content, we lowered the C content and at the same time introduced precipitation strengthening and B and Al reinforcement to compensate for the decrease in strength due to the lower C content. A method of improving strength by compound addition (for example, Japanese Patent Publication No. 57-19731 or Japanese Patent Publication No. 57-23739) has been proposed.

発明が解決すべき問題点 前述のようにC含有量を少なくすること自体は、確かに
溶接前の予熱温度の低下に効果があり、捷た溶接部靭性
の確保に効果があるが、それらの効果を充分に発揮させ
るためには、C含有量を従来の通常のボイラー用極厚鋼
板の場合よりも著しく低下させる必要があり、その場合
低C化に伴なう強度低下は著しく大きくなる。しかるに
前記提案の如(B−Alの添加などによって強度低下を
補なう方法では、C量低域による強度低下に見合う程度
の強度向上を図ることは実際には困難であった。
Problems to be Solved by the Invention As mentioned above, reducing the C content itself is certainly effective in lowering the preheating temperature before welding, and is effective in ensuring the toughness of the welded joint. In order to fully exhibit the effect, it is necessary to significantly lower the C content than in the case of conventional ordinary extra-thick steel plates for boilers, and in this case, the decrease in strength associated with the lower C content will be significantly greater. However, with the method proposed above (which compensates for the decrease in strength by adding B-Al, etc.), it is actually difficult to improve the strength to an extent commensurate with the decrease in strength due to the low C content.

すなわちこの種の極厚鋼板の場合、co、ot重量%あ
たりの強度増加分は1.2〜1.3 kgf/mdにも
達するから、低C化による強度低下分をB−Al添加に
よって補なおうとする場合、得るべき強度との兼ね合い
から、実際には低下させ得るC量に限界があり、したが
って予熱温度の低下などの溶接性改善にも限界があるの
が実情であり、また大入熱溶接時における溶接部靭性の
改善にも限界があった。
In other words, in the case of this type of extra-thick steel plate, the increase in strength per weight percent of CO and Ot reaches 1.2 to 1.3 kgf/md, so the decrease in strength due to lower C can be compensated for by adding B-Al. In reality, there is a limit to the amount of C that can be reduced due to the strength that should be obtained, and therefore there is also a limit to improving weldability by lowering the preheating temperature. There was also a limit to the improvement of weld toughness during heat welding.

さらに、近年ますます高温高圧力化の傾向にあるボイラ
ーに対しては、設計上、より高強度の鋼板を使用するこ
とが望まれているが、現状では従来よりも一層高強度化
を図ると同時に溶接性も満たすことは困難な状況にある
Furthermore, in recent years, boilers have become increasingly hot and pressurized, so it is desirable to use higher-strength steel plates in their design. At the same time, it is difficult to meet requirements for weldability.

この発明は以上の事情に鑑みてなされたもので、母材強
度を従来鋼よりも一層高めると同時に、溶接性を改善し
て溶接前の予熱温度を充分に低下させ得るようになし、
しかも大入熱溶接時における溶接部靭性も充分に改善し
た極厚向の鋼板を提供することを目的とするものである
This invention was made in view of the above circumstances, and it is possible to further increase the strength of the base material compared to conventional steels, and at the same time improve weldability and sufficiently lower the preheating temperature before welding.
Moreover, it is an object of the present invention to provide an extra-thick steel plate that has sufficiently improved weld toughness during high heat input welding.

問題点を解決するための手段 本発明者等は前述のよ゛うな従来の極厚鋼板の欠点を解
消するべく、種々実験を繰返した結果、焼ならし時の板
厚中心部の800〜400℃間の平均冷却速度がlOシ
ル−下となるような板厚を有する極厚鋼板においては、
CrとBもしくはVとを併用し、さらに適量のNbを添
加することによって、母材強度を従来鋼以上に高めるこ
とおよび予熱温度の低下という相反する課題を達成し得
ることを見出した。そしてまた、適量のTi 、もしく
はREV(希土類元素)、するいはCaを添加すること
によって、前記特性に加うるに大入熱溶接部靭性の向上
をも図り得ることを見出し、この発明の完成に至ったの
である。
Means for Solving the Problems The inventors of the present invention have repeatedly conducted various experiments in order to eliminate the above-mentioned drawbacks of conventional extra-thick steel plates. In an extra-thick steel plate having a thickness such that the average cooling rate between degrees Celsius is below lOsill,
It has been found that by using Cr and B or V in combination, and further adding an appropriate amount of Nb, it is possible to achieve the contradictory goals of increasing the strength of the base material to a level higher than that of conventional steels and lowering the preheating temperature. They also discovered that by adding an appropriate amount of Ti, REV (rare earth element), or Ca, it was possible to improve the toughness of high heat input welds in addition to the above characteristics, and completed the present invention. It has come to this.

具体的には、本願の第1発明の極厚鋼板は、C0012
〜0.22チ(重量%、以下同じ)、Si0、40 %
以下、Mn 0.8〜1.50 To s Al0.O
l〜0.10%、Cr  0.4〜0.8%、Mo  
0.l=0.3チ、Nb0.005〜0.040チを含
み、かつ0.03〜Olチの■もしくは0.0003〜
0.0015チのBのうちの少なくとも1種を含有し、
残部がFeおよび不可避的不純物よりなり、さらに下記
式で規定されるPCMの値が0.33 %以下であるこ
とを特徴とするものである。
Specifically, the extra-thick steel plate of the first invention of the present application is C0012
~0.22 inch (weight%, same below), Si0, 40%
Hereinafter, Mn 0.8 to 1.50 Tos Al0. O
l~0.10%, Cr 0.4~0.8%, Mo
0. l=0.3chi, including Nb0.005~0.040chi, and 0.03~Olchi ■ or 0.0003~
Contains at least one kind of B of 0.0015
The remainder is Fe and unavoidable impurities, and the PCM value defined by the following formula is 0.33% or less.

Pcw = (% C) +]賃「[%Si)+−7(
%Mn:]+−、5−(%Cu)また本願の第2発明の
極厚鋼板は、前記第1発明で規定する成分のほか、0.
5%以下のCu 。
Pcw = (% C) +] Wage "[%Si) + - 7 (
%Mn:]+-, 5-(%Cu) In addition to the components specified in the first invention, the extra-thick steel plate of the second invention of the present application also contains 0.
5% or less Cu.

0.5%以下のNiのうちの少なくとも1mを含有する
ものである。
It contains at least 1m of 0.5% or less Ni.

さらに本願の第3発明の極厚鋼板は、前記第1発明で規
定する成分のほか、 Ti  0.002〜0.020
%、希土類元素0.0 O3〜0.050%、、Ca 
 0.、OO01〜0.0100 %のうちから選ばれ
た1種または2種以上を含有するものである。
Furthermore, the extra-thick steel plate of the third invention of the present application contains, in addition to the components specified in the first invention, Ti 0.002 to 0.020.
%, rare earth elements 0.0 O3~0.050%, Ca
0. , 001 to 0.0100%.

そしてまた本願の第4発明の極厚鋼板は、前記第2発明
で規定する成分のほか、Ti 、希土類元素、Caのう
ちの1種または2種以上を第3発明の場合と同様に含有
するものである。
Furthermore, the extra-thick steel plate of the fourth invention of the present application contains, in addition to the components specified in the second invention, one or more of Ti, rare earth elements, and Ca, as in the case of the third invention. It is something.

発明の詳細な説明 以下この発明の低炭素極厚鋼板についてさらに詳細に説
明する。
DETAILED DESCRIPTION OF THE INVENTION The low carbon extra-thick steel plate of the present invention will be described in further detail below.

この発明において対象とする鋼板は、焼ならし時、にお
ける板厚中心部の800〜400℃間における冷却速度
がlO°Φ−以下となるような板厚の極厚鋼板である。
The steel sheet targeted in this invention is an extremely thick steel sheet having a thickness such that the cooling rate at the center of the sheet thickness between 800 and 400° C. during normalization is 10° Φ- or less.

具体的には、例えば約601111程度以上のものが対
象となる。このように板厚中心部の800〜400℃間
の平均冷却速度が10′ウー以下の場合、従来鋼ではフ
ェライト+パーラ(lO) イトの組織となるかあるいは4部ペイナイトの混在する
組織となるのに対し、CrとVもしくはBを併用し、さ
らにNbを添加したこの発明の鋼では、炭化物が微細に
分散したベイナイト□主体の組織が得られ、その結果従
来鋼よりも低C化しても従来鋼より高い母材強度が得ら
れるのである。さらにこの発明の鋼では、炭素当債は従
来鋼とほぼ同程度であるにもかかわらず、低温割れの発
生し易い小人熱溶接時におけるボンド部および溶接熱影
響部の硬さが従来鋼より低くなるという特徴を有し、そ
の結果溶接施工時の予熱温度を従来鋼より低くしても溶
接割れの発生を防止できるのである。そしてまた、Ti
 、 REV 、 Caの1種以上の添加によって大入
熱溶接時の溶接ポンド部のオーステナイト粒の成長を抑
制し、ボンド部の組織を細粒化して溶接部靭性を向上さ
せることができるのである。
Specifically, the target is, for example, about 601111 or more. In this way, when the average cooling rate between 800 and 400°C at the center of the plate thickness is less than 10'W, conventional steel has a structure of ferrite + pearlite (lO) or a structure with a mixture of 4 parts payinite. On the other hand, the steel of this invention, in which Cr and V or B are used together, and Nb is added, has a structure mainly composed of bainite □ in which carbides are finely dispersed, and as a result, even though the carbon content is lower than that of conventional steels, Higher base material strength than conventional steel can be obtained. Furthermore, although the carbon bond of the steel of this invention is almost the same as that of conventional steel, the hardness of the bond part and weld heat-affected zone during dwarf heat welding, where low-temperature cracking is likely to occur, is lower than that of conventional steel. As a result, it is possible to prevent weld cracking even if the preheating temperature during welding is lower than that of conventional steel. And again, Ti
By adding one or more of , REV, and Ca, it is possible to suppress the growth of austenite grains in the weld pound during high heat input welding, refine the grain structure of the bond, and improve the toughness of the weld.

次にこの発明の鋼の成分限定理由を説明する。Next, the reason for limiting the composition of the steel of this invention will be explained.

C:C含有量が0.22%を越えれば、従来鋼より溶接
時の予熱温度を低下させることが不可能となり、一方C
含有量が0.124未満となれば所定の強度を確保する
ことが困難となる。したがってCは0.12〜0.22
 %の範囲内とした。
C: If the C content exceeds 0.22%, it becomes impossible to lower the preheating temperature during welding compared to conventional steel;
If the content is less than 0.124, it will be difficult to secure a predetermined strength. Therefore, C is 0.12 to 0.22
It was set within the range of %.

Si : Siは一般に強度を保持するために必要であ
るが、0.4%を越えれば靭性を劣化させるから、0.
4チ以下に限定した。
Si: Si is generally necessary to maintain strength, but if it exceeds 0.4%, toughness deteriorates, so 0.4% is necessary.
Limited to 4 inches or less.

Mn : Mnは溶接性を害さずに強度を向上させるの
に有効であるが、08チ未満の場合は強度確保が不充分
であり、逆に1.50%を越えれば靭性が低下して好ま
しくなく、シたがって0.8〜1.50チの範囲とした
Mn: Mn is effective in improving strength without impairing weldability, but if it is less than 0.8%, it is insufficient to ensure strength, and on the other hand, if it exceeds 1.50%, toughness decreases and is not preferred. Therefore, it was set in the range of 0.8 to 1.50 inches.

ht : htは通常の製鋼過程において脱酸剤として
有効な元素であり、また組織を微細化して靭性を向上さ
せる作用を果たす。このような作用はo、oz%未満で
は顕著ではなく、一方0.1 %を越えれば逆に靭性を
害するから0.01〜0.10 %の範囲に限定した。
ht: ht is an effective element as a deoxidizing agent in the normal steelmaking process, and also functions to refine the structure and improve toughness. Such an effect is not noticeable when the content is less than 0.0 oz.%, while if it exceeds 0.1%, the toughness is adversely affected, so the content was limited to a range of 0.01 to 0.10%.

Cr : Crはこの発明の鋼において重要な元素であ
って、BもしくはVと併せて添加することにより低C化
による強度低下を補うことができる。すなわち、B添加
処理あるいはV添加処理だけでは、溶接性を充分に改善
するだけの低C化による強度低下を補うことが困難であ
り、BもしくはVとCrとを併用することによってはじ
めて充分に強度低下を補うことができるのである。この
ようなCrの効果は、04チ未満では不充分であり、逆
に0.8チを越えれば溶接性を害することとなるから、
0、4〜0.8チの範囲に限定した。
Cr: Cr is an important element in the steel of the present invention, and by adding it together with B or V, it is possible to compensate for the decrease in strength due to lower carbon content. In other words, it is difficult to compensate for the decrease in strength due to a reduction in C that is sufficient to sufficiently improve weldability with B or V addition treatment alone, and sufficient strength cannot be achieved until B or V is used in combination with Cr. It is possible to compensate for the decline. The effect of Cr is insufficient if it is less than 0.4 inch, and conversely if it exceeds 0.8 inch, weldability will be impaired.
It was limited to a range of 0.4 to 0.8 inches.

Mo : Moは強度確保に必要な元素であるが、0.
1%未満ではその効果が顕著ではなく、逆に0.3チを
越えて添加すれば靭性を害するから、0.1〜0,3チ
の範囲に限定した。
Mo: Mo is an element necessary to ensure strength, but 0.
If the amount is less than 1%, the effect is not significant, and if it is added in excess of 0.3 inches, the toughness will be impaired, so the content was limited to a range of 0.1 to 0.3 inches.

Nb:Nbは鋼組織を細粒化する作用および析出硬化作
用によって母材強度を従来鋼以上に高めるために添加す
るものであり、Nb添加によってボイラー設計時に許容
応力をより高くすることが可能となる。゛シ゛かしなが
らNbがo、ooss’未満ではその効果が少なく、一
方0.040 Sを越えて添加すれば溶接性を害するか
ら、0.005〜o、 040−の範囲内に限定した。
Nb: Nb is added to increase the strength of the base material beyond that of conventional steel by refining the steel structure and precipitation hardening, and the addition of Nb makes it possible to increase the allowable stress during boiler design. Become. However, if the Nb content is less than 0.000S, the effect will be small, whereas if it is added in excess of 0.040S, weldability will be impaired.

■およびB:これらはこの発明の鋼において重要な元素
であって、いずれか一方または双方をCrと併せて添加
することによυ、低C化による強度低下を補う。■が強
度に及ぼす影響は0.034未満では顕著でなく、一方
VがO31チを越えれば溶接性に悪影響を及ぼすから、
■の添加量は0.03〜0゜lチの範囲に限定した。ま
たBはその添加量が0. OOO3%未満では強度上昇
の効果が充分に発揮されず、一方Bが0.0015%を
越えれば溶接性に悪影響を及ぼすから、Bの添加量は0
.0003〜0.0015%の範囲に限定した。
(2) and B: These are important elements in the steel of the present invention, and by adding one or both of them together with Cr, the decrease in strength due to the lowering of C can be compensated for. The influence of ■ on the strength is not significant when it is less than 0.034, while on the other hand, when V exceeds O31, it has a negative effect on weldability.
The amount added in (2) was limited to a range of 0.03 to 0.1 degrees. Moreover, the amount of B added is 0. If OOO is less than 3%, the effect of increasing strength will not be sufficiently exhibited, while if B exceeds 0.0015%, it will have a negative effect on weldability, so the amount of B added is 0.
.. It was limited to a range of 0.0003% to 0.0015%.

第1発明の合金成分元素は以上の通りであって、その残
部はFeおよび不可避的不純物とすれば良いが、第2発
明の場合は前記各成分のほかCu″!!、たは/および
Niを添加し、一方策3亮明の場合は前□記各成分のほ
かTi 、 REM 、 Caの1種以上を添加し、さ
らに第4発明ではこれらの両者を添加する。次にこれら
の成分元素の限定理由について説明する。
The alloy component elements of the first invention are as described above, and the remainder may be Fe and unavoidable impurities, but in the case of the second invention, in addition to the above-mentioned components, Cu''!!, or/and Ni In the case of solution 3 brightness, one or more of Ti, REM, and Ca is added in addition to each of the above components, and in the fourth invention, both of these are added.Next, these component elements The reason for this limitation will be explained.

Cu 、 Ni : CuおよびNi′はそれぞれ焼入
性増大作用と固溶強化作用に基づき、靭性を害さずに強
度を向上させるのに有効であシ、シたがって本願の第2
発明および第4発明においていずれか一方もしくは双方
を必須成分として添加する。但しCuは0.5 %を越
えれば熱間加工性を害するとともに溶接割れ感受性を高
めるので、0.5%以下に限定した。またNiは高価な
元素であるから、との種の鋼材におけるコストの面から
0.5 %以下に限定した。
Cu, Ni: Cu and Ni' are effective for improving strength without impairing toughness based on hardenability increasing effect and solid solution strengthening effect, respectively.
In the invention and the fourth invention, either one or both are added as essential components. However, if Cu exceeds 0.5%, it impairs hot workability and increases susceptibility to weld cracking, so it was limited to 0.5% or less. Furthermore, since Ni is an expensive element, it was limited to 0.5% or less from the cost perspective in steel materials of this type.

Ti : Tiは前述のように溶接部靭性の改善に有効
な元素であり、その効果を発揮させるために最適なTi
量は鋼中N量に影響され、Ti量)J比で約1.5〜3
.5の範囲内が適切である。通常の素意的規模での製鋼
におけるN量の最低値は0.0O15%程度であるから
T1の下限値は0.002%とした。また過大なN量は
溶接金属や溶接ボンド部の靭性に悪影響を及ぼすことか
らNtは0.007(l程度以下に抑える必要があり、
そのN量との関係からTi量の上限は0.02チとした
Ti: As mentioned above, Ti is an effective element for improving weld toughness, and the optimum Ti
The amount is affected by the N content in the steel, and the Ti content) J ratio is approximately 1.5 to 3.
.. A value within the range of 5 is appropriate. Since the minimum value of the amount of N in steel manufacturing on a normal scale is about 0.0O15%, the lower limit value of T1 was set to 0.002%. In addition, an excessive amount of N has a negative effect on the toughness of the weld metal and weld bond, so it is necessary to suppress Nt to about 0.007 (l) or less.
In view of the relationship with the N amount, the upper limit of the Ti amount was set to 0.02 inches.

REM : REMは硫−酸化物を形成してそれが微細
に分散し、大入熱溶接時に熱影響部の粗粒化を抑制する
作用があるが、この効果は0.0031未満では不充分
であり、一方0.050%を越えれば鋼材の内部性状を
害するから、0.003〜0.050%の範囲に限定し
た。
REM: REM forms sulfur-oxides that are finely dispersed and has the effect of suppressing coarse graining of the heat affected zone during high heat input welding, but this effect is insufficient if it is less than 0.0031. On the other hand, if it exceeds 0.050%, it will damage the internal properties of the steel material, so it is limited to a range of 0.003 to 0.050%.

Ca : Caも硫−酸化物を形成して大入熱溶接時に
熱影響部の粗粒化を抑制する作用があるが、この効果は
o、ooot96未満では不充分であり、一方0.0I
O%を越えれば鋼材の内部性状を害するから、o、o 
o o t−o、o t o%の範囲に限定した。
Ca: Ca also forms sulfur-oxides and has the effect of suppressing coarse graining of the heat-affected zone during large heat input welding, but this effect is insufficient when o,ooot is less than 96;
If it exceeds O%, it will damage the internal properties of the steel, so o, o
It was limited to the range o o to o, o to %.

なおTi 、 REM 、 Caはいずれか1種を単独
添加しても溶接部靭性向上に効果があるが、単独添加の
場合Tiの添加が最も効果があり、さらにTiとREM
または/およびCaを複合添加すればより一層その効果
が大きくなる。
It should be noted that even if any one of Ti, REM, and Ca is added alone, it is effective in improving the weld toughness, but when added alone, the addition of Ti is the most effective.
If or/and Ca are added in combination, the effect will be even greater.

この発明の索においては、上述のように各元素の成分範
囲を限定するとともに、従来鋼よりも溶接施工時の予熱
温度を低下させるために溶接割れ感受性組成として知ら
れるPCM値を0.33 %以下とする必要がある。
In the cable of this invention, the composition range of each element is limited as mentioned above, and the PCM value, which is known as the weld cracking susceptibility composition, is set to 0.33% in order to lower the preheating temperature during welding than conventional steel. It is necessary to do the following.

実   施   例 以下にこの発明の実施例を従来鋼と比較して記す。Example Examples of the present invention will be described below in comparison with conventional steel.

第1表に示す本発明組成範囲内の鋼A−Uおよび従来鋼
V−Xについて、焼ならし4焼もどし一応力除去焼鈍処
理を行ない、引張試験およびシャルピー衝撃試験を実施
して引張り強さくTS)および0℃における吸収エネル
ギー値(vEo )を調べた。また同様に焼ならし4焼
もどし処理を行った同じ鋼A−U:V−Xの板厚201
filの試験片について、低水素系溶接棒を用いて斜め
Y型溶接割れ試験を行ない、割れ阻止温度を調べた。さ
らに同様な焼ならし4焼もどし処理を行った同じ鋼A〜
U;v−Xについて、溶接入熱量1000kJ/fW1
のエレクトロスラグ溶接のボンド部に相当する再現熱サ
イクルを与えた後、そのままの状態のもの、および62
5℃X 21 hrの応力除去焼鈍(SR)を行なった
ものに対し、それ・ぞれシャルピー衝撃試験を行なって
0℃における衝撃吸収エネルギー(vEo )を調べた
。それらの結果を第1.表中に併せて示す。なお第1表
中に示すように焼ならし時における板厚中心部における
800〜400℃間の冷却速度はいずれもlO′い以下
である。また第1表に示される名調のうち、A−Qおよ
びT。
Steel A-U and conventional steel V-X within the composition range of the present invention shown in Table 1 were subjected to normalizing, tempering, and stress-relieving annealing treatments, and were subjected to a tensile test and a Charpy impact test to determine their tensile strength. TS) and the absorbed energy value (vEo) at 0°C. Also, the plate thickness of the same steel A-U:V-X, which was similarly subjected to normalizing and 4-tempering treatment, was 201
A diagonal Y-type welding cracking test was performed on the fil test piece using a low-hydrogen welding rod, and the cracking inhibition temperature was investigated. The same steel A~ which was further subjected to similar normalizing and 4 tempering treatments
U; For v-X, welding heat input 1000kJ/fW1
after being subjected to a simulated thermal cycle corresponding to the electroslag welding bond of 62
A Charpy impact test was performed on each of the specimens that had been subjected to stress relief annealing (SR) at 5°C for 21 hours to examine the impact absorbed energy (vEo) at 0°C. Those results are the first. They are also shown in the table. As shown in Table 1, the cooling rate at the center of the sheet thickness during normalization between 800 and 400°C is less than lO'. Also, among the famous tones shown in Table 1, A-Q and T.

U Fi、A8TM規格のA299に準する本発明鋼で
あり、鋼V、Wはそれに対応する従来鋼、また鋼R,S
はJIS規格の5B49に準する本発明鋼であり、鋼X
はそれに対応する従来鋼である。
U Fi, this invention steel conforms to A299 of the A8TM standard, steels V and W are corresponding conventional steels, and steels R and S
is the invention steel conforming to JIS standard 5B49, and steel
is the corresponding conventional steel.

第1表から明らかなように本発明鋼のA−QおよびT、
Uは従来鋼のV、Wと比較して、また本発明鋼のR,S
は従来鋼のXと比較していずれも強度が向上しており、
また母材靭性も優れている。
As is clear from Table 1, A-Q and T of the steel of the present invention,
U is compared with V and W of the conventional steel, and R and S of the inventive steel.
Both have improved strength compared to the conventional steel X,
It also has excellent base material toughness.

しかも斜めY型溶接割れ試験における割れ阻止温度、し
たがって溶接割れを防止するために必要な予熱温度も、
本発明鋼では従来鋼と比較して50〜100℃低丁して
いることが明らかである。さらに大入熱溶接部の靭性も
、従来鋼の場合には溶接のまま相当の場合はもちろんの
こと、溶接後SR処理相当の場合も低い値しか示さず、
そのため従来鋼では、エレクトロスラグ溶接等の大入熱
溶接を行なった場合溶接部の靭性を良好にするためには
焼ならし処理を必要とすることとなる。これに対し本発
明鋼では、溶接後SR処理相当のものでは溶接の一!ま
相当のものと比較して著しく靭性が向上しており、した
がって大入熱溶接の場合も焼ならし処理は不要であゆ、
通常の50 kJ/4−rn程度までの溶接入熱量の場
合と同様な応力除去焼鈍だけで足りることが明らかであ
る。
Moreover, the cracking inhibition temperature in the diagonal Y-type weld cracking test, and therefore the preheating temperature required to prevent weld cracking,
It is clear that the temperature of the steel of the present invention is 50 to 100°C lower than that of conventional steel. Furthermore, the toughness of high heat input welds shows only low values not only when conventional steel is equivalent to welding, but also when it is equivalent to SR treatment after welding.
Therefore, with conventional steel, when high heat input welding such as electroslag welding is performed, normalizing treatment is required to improve the toughness of the welded part. On the other hand, the steel of the present invention, which is equivalent to SR treatment after welding, is the best in welding! The toughness is significantly improved compared to the equivalent material, so no normalizing treatment is required even in high heat input welding.
It is clear that stress relief annealing, similar to that used for conventional welding heat inputs of up to about 50 kJ/4-rn, is sufficient.

発明の効果 以上の説明で明らかなようにこの発明の極厚鋼板は、溶
接性が優れていて、溶接割れ防止のために必要な予熱の
温度を従来よりも格段に低くすることができ、その結果
予熱作業に要するエネルギーコストや時間を従来よりも
大幅に削減でき、しかも強度は従来の極厚鋼板より優れ
ているため、ボイラー等の設計時における許容応力を高
くすることが可能である。さらにこの発明の極厚鋼板は
大入熱溶接の場合の溶接部の靭性、延性にも優れるため
、大入熱溶接の適用によって溶接の高能率化を図り得る
など、従来の極厚鋼板と比較して格段に優れた長所を有
するものである。
Effects of the Invention As is clear from the above explanation, the extra-thick steel plate of the present invention has excellent weldability, and the preheating temperature required to prevent weld cracking can be made much lower than before. As a result, the energy cost and time required for preheating work can be significantly reduced compared to conventional methods, and since the strength is superior to conventional extra-thick steel plates, it is possible to increase the allowable stress when designing boilers, etc. In addition, the extra-thick steel plate of this invention has excellent toughness and ductility of the welded part in the case of high heat input welding, so it is possible to improve welding efficiency by applying large heat input welding, compared to conventional extra-thick steel plates. It has extremely superior advantages.

Claims (4)

【特許請求の範囲】[Claims] (1)C0.12〜0.22%(重量%、以下同じ)、
Si0.40%以下、Mn0.8〜1.50%、Al0
.01〜0.10%、Cr0.4〜0.8%、Mo0.
1〜0.3%、Nb0.005〜0.040%を含み、
かつ0.03〜0.1%のVもしくは0.0003〜0
.0015%のBのうちの少なくとも1種を含有し、残
部がFeおよび不可避的不純物よりなり、さらに下記式
で規定されるP_C_Mの値が0.33%以下であるこ
とを特徴とする強度及び溶接性に優れた低炭素極厚鋼板
。 P_C_M=〔%C〕+1/30〔%Si〕+1/20
〔%Mn〕+1/20〔%Cu〕+1/60〔%Ni〕
+1/20〔%Cr〕+1/15〔%Mo〕+1/10
〔%V〕+5〔%B〕
(1) C0.12-0.22% (weight%, same below),
Si 0.40% or less, Mn 0.8-1.50%, Al0
.. 01-0.10%, Cr0.4-0.8%, Mo0.
Contains 1-0.3%, Nb0.005-0.040%,
and 0.03-0.1% V or 0.0003-0
.. Strength and welding characterized by containing at least one kind of 0.0015% B, the remainder consisting of Fe and inevitable impurities, and further having a value of P_C_M defined by the following formula of 0.33% or less Low carbon extra-thick steel plate with excellent properties. P_C_M=[%C]+1/30[%Si]+1/20
[%Mn] + 1/20 [%Cu] + 1/60 [%Ni]
+1/20 [%Cr] +1/15 [%Mo] +1/10
[%V]+5[%B]
(2)C0.12〜0.22%、Si0.40%以下、
Mn0.8〜1.50%、Al0.01〜0.10%、
Cr0.4〜0.8%、Mo0.1〜0.3%、Nb0
.005〜0.040%を含み、かつ0.03〜0.1
%のVもしくは0.0003〜0.0015%のBのう
ちの少なくとも1種と、0.5%以下のCuもしくは0
.5%以下のNiのうちの少なくとも1種とを含有し、
残部がFeおよび不可避的不純物よりなり、さらに下記
式で規定されるP_C_Mの値が0.33%以下である
ことを特徴とする強度及び溶接性に優れた低炭素極厚鋼
板。 P_C_M=〔%C〕+1/30〔%Si〕+1/20
〔%Mn〕+1/20〔%Cu〕+1/60〔%Ni〕
+1/20〔%Cr〕+1/15〔%Mo〕+1/10
〔%V〕+5〔%B〕
(2) C0.12-0.22%, Si0.40% or less,
Mn0.8-1.50%, Al0.01-0.10%,
Cr0.4-0.8%, Mo0.1-0.3%, Nb0
.. 005-0.040%, and 0.03-0.1
% of V or 0.0003 to 0.0015% of B, and 0.5% or less of Cu or 0
.. Containing at least one kind of Ni of 5% or less,
A low carbon extra-thick steel plate with excellent strength and weldability, characterized in that the remainder consists of Fe and unavoidable impurities, and the value of P_C_M defined by the following formula is 0.33% or less. P_C_M=[%C]+1/30[%Si]+1/20
[%Mn] + 1/20 [%Cu] + 1/60 [%Ni]
+1/20 [%Cr] +1/15 [%Mo] +1/10
[%V]+5[%B]
(3)C0.12〜0.22%、Si0.40%以下、
Mn0.8〜1.50%、Al0.01〜0.10%、
Cr0.4〜0.8%、Mo0.1〜0.3%、Nb0
.005〜0.040%を含み、かつ0.03〜0.1
%のVもしくは0.0003〜0.0015%のBのう
ちの少なくとも1種と、Ti0.002〜0.020%
、希土類元素0.003〜0.050%、Ca0.00
01〜0.0100%のうちの1種または2種以上とを
含有し、残部がFeおよび不可避的不純物よりなり、さ
らに下記式で規定されるP_C_Mの値が0.33%以
下であることを特徴とする強度及び溶接性に優れた低炭
素極厚鋼板。 P_C_M=〔%C〕+1/30〔%Si〕+1/20
〔%Mn〕+1/20〔%Cu〕+1/60〔%Ni〕
+1/20〔%Cr〕+1/15〔%Mo〕+1/10
〔%V〕+5〔%B〕
(3) C0.12-0.22%, Si0.40% or less,
Mn0.8-1.50%, Al0.01-0.10%,
Cr0.4-0.8%, Mo0.1-0.3%, Nb0
.. 005-0.040%, and 0.03-0.1
% of V or 0.0003 to 0.0015% of B, and 0.002 to 0.020% of Ti.
, rare earth elements 0.003-0.050%, Ca0.00
01 to 0.0100%, the remainder is Fe and unavoidable impurities, and the value of P_C_M defined by the following formula is 0.33% or less. Low carbon extra thick steel plate with excellent strength and weldability. P_C_M=[%C]+1/30[%Si]+1/20
[%Mn] + 1/20 [%Cu] + 1/60 [%Ni]
+1/20 [%Cr] +1/15 [%Mo] +1/10
[%V]+5[%B]
(4)C0.12〜0.22%、Si0.40%以下、
Mn0.8〜1.50%、Al0.01〜0.10%、
Cr0.4〜0.8%、Mo0.1〜0.3%、Nb0
.005〜0、040%を含み、かつ0.03〜0.1
%のVもしくは0.0003〜0.0015%のBのう
ちの少なくとも1種と、0.5%以下のCuもしくは0
.5%以下のNiのうちの少なくとも1種と、Ti0.
002〜0.020%、希土類元素0.003〜0.0
50%、Ca0.0001〜0.0100%のうちの1
種または2種以上とを含有し、残部がFeおよび不可避
的不純物よりなり、さらに下記式で規定されるP_C_
Mの値が0.33%以下であることを特徴とする強度及
び溶接性に優れた低炭素極厚鋼板。 P_C_M=〔%C〕+1/30〔%Si〕+1/20
〔%Mn〕+1/20〔%Cu〕+1/60〔%Ni〕
+1/20〔%Cr〕+1/15〔%Mo〕+1/10
〔%V〕+5〔%B〕
(4) C0.12-0.22%, Si0.40% or less,
Mn0.8-1.50%, Al0.01-0.10%,
Cr0.4-0.8%, Mo0.1-0.3%, Nb0
.. 005-0, including 040%, and 0.03-0.1
% of V or 0.0003 to 0.0015% of B, and 0.5% or less of Cu or 0
.. At least one of 5% or less Ni and 0.
002-0.020%, rare earth elements 0.003-0.0
50%, 1 of Ca0.0001-0.0100%
P_C_ containing one or more species, the remainder consisting of Fe and unavoidable impurities, and further defined by the following formula:
A low carbon extra-thick steel plate with excellent strength and weldability, characterized by an M value of 0.33% or less. P_C_M=[%C]+1/30[%Si]+1/20
[%Mn] + 1/20 [%Cu] + 1/60 [%Ni]
+1/20 [%Cr] +1/15 [%Mo] +1/10
[%V]+5[%B]
JP26102384A 1984-12-11 1984-12-11 Low carbon extremely thick steel plate superior in strength and weldability Granted JPS61139648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26102384A JPS61139648A (en) 1984-12-11 1984-12-11 Low carbon extremely thick steel plate superior in strength and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26102384A JPS61139648A (en) 1984-12-11 1984-12-11 Low carbon extremely thick steel plate superior in strength and weldability

Publications (2)

Publication Number Publication Date
JPS61139648A true JPS61139648A (en) 1986-06-26
JPH0532461B2 JPH0532461B2 (en) 1993-05-17

Family

ID=17355969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26102384A Granted JPS61139648A (en) 1984-12-11 1984-12-11 Low carbon extremely thick steel plate superior in strength and weldability

Country Status (1)

Country Link
JP (1) JPS61139648A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261035A (en) * 1988-08-26 1990-03-01 Kobe Steel Ltd Low-carbon cr-mo steel sheet excellent in welding crack resistance
WO1996014445A1 (en) * 1994-11-04 1996-05-17 Nippon Steel Corporation Ferritic heat-resistant steel having excellent high temperature strength and process for producing the same
CN106521319A (en) * 2016-11-26 2017-03-22 江阴兴澄特种钢铁有限公司 Super-thick EH36 steel for offshore wind power pipe pile and preparation method thereof
CN111020399A (en) * 2019-12-12 2020-04-17 舞阳钢铁有限责任公司 Normalized air-cooled steel plate with long-time die welding performance and production method thereof
CN111074154A (en) * 2019-12-23 2020-04-28 舞阳钢铁有限责任公司 Large-thickness high-strength heat-resistant steel plate and production method thereof
CN111139400A (en) * 2019-12-25 2020-05-12 舞阳钢铁有限责任公司 Low-carbon equivalent SA537CL1 steel plate and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261035A (en) * 1988-08-26 1990-03-01 Kobe Steel Ltd Low-carbon cr-mo steel sheet excellent in welding crack resistance
WO1996014445A1 (en) * 1994-11-04 1996-05-17 Nippon Steel Corporation Ferritic heat-resistant steel having excellent high temperature strength and process for producing the same
CN106521319A (en) * 2016-11-26 2017-03-22 江阴兴澄特种钢铁有限公司 Super-thick EH36 steel for offshore wind power pipe pile and preparation method thereof
CN106521319B (en) * 2016-11-26 2018-08-31 江阴兴澄特种钢铁有限公司 A kind of offshore wind farm pile pile special thickness EH36 steel and preparation method thereof
CN111020399A (en) * 2019-12-12 2020-04-17 舞阳钢铁有限责任公司 Normalized air-cooled steel plate with long-time die welding performance and production method thereof
CN111074154A (en) * 2019-12-23 2020-04-28 舞阳钢铁有限责任公司 Large-thickness high-strength heat-resistant steel plate and production method thereof
CN111139400A (en) * 2019-12-25 2020-05-12 舞阳钢铁有限责任公司 Low-carbon equivalent SA537CL1 steel plate and production method thereof

Also Published As

Publication number Publication date
JPH0532461B2 (en) 1993-05-17

Similar Documents

Publication Publication Date Title
JPS629646B2 (en)
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPS61139648A (en) Low carbon extremely thick steel plate superior in strength and weldability
JPS626730B2 (en)
JPS6043433A (en) Manufacture of clad steel plate with superior corrosion resistance and toughness
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JPH06235044A (en) High tensile strength steel for welding structure excellent in fatigue strength and toughness at weld heat-affected zone
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JPS5831065A (en) Steel for welded structure
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPS6033340A (en) Extremely thick low carbon steel plate with excellent weldability
JP2001064749A (en) Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
JPS6393845A (en) High-tensile steel excellent in cod characteristic in weld zone
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JPS5953653A (en) Very thick steel for low temperature use with superior toughness at weld zone
KR102100050B1 (en) Steel plate and method of manufacturing the same
JPS61139647A (en) Low carbon and extremely thick steel plate superior in weldability
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH0543765B2 (en)
JPH05163527A (en) Manufacture of high tension steel superior in weldability
JPH0555584B2 (en)
JPS6286119A (en) Production of structural steel having excellent weld cracking resistance for large heat input welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees