JP2012162801A - Method for producing taper plate - Google Patents

Method for producing taper plate Download PDF

Info

Publication number
JP2012162801A
JP2012162801A JP2012007765A JP2012007765A JP2012162801A JP 2012162801 A JP2012162801 A JP 2012162801A JP 2012007765 A JP2012007765 A JP 2012007765A JP 2012007765 A JP2012007765 A JP 2012007765A JP 2012162801 A JP2012162801 A JP 2012162801A
Authority
JP
Japan
Prior art keywords
thickness
plate
less
toughness
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012007765A
Other languages
Japanese (ja)
Other versions
JP5772620B2 (en
Inventor
Kazukuni Hase
和邦 長谷
Tomoyuki Yokota
智之 横田
Masami Nakamura
雅美 中村
Shinji Mitao
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012007765A priority Critical patent/JP5772620B2/en
Priority to KR1020147022106A priority patent/KR101612660B1/en
Priority to EP12865903.4A priority patent/EP2806042B1/en
Priority to PCT/JP2012/061156 priority patent/WO2013108419A1/en
Priority to CN201280067544.9A priority patent/CN104066858B/en
Publication of JP2012162801A publication Critical patent/JP2012162801A/en
Application granted granted Critical
Publication of JP5772620B2 publication Critical patent/JP5772620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a taper plate having a tensile strength of 570 MPa or more, to which high heat input welding having a welding heat input exceeding 300 kJ/cm can be applied.SOLUTION: A steel slab contains, by mass, 0.03 to 0.12% C, 0.03 to 0.5% Si, 0.8 to 2.2% Mn, 0.015% or less P, 0.0005 to 0.0050% S, 0.005 to 0.1% Al, 0.003 to 0.014% Nb, 0.003 to 0.02% Ti, 0.0003 to 0.0025% B, 0.0030 to 0.0070% N, 0.0005 to 0.005% Ca, satisfies formula (1), with the balance consisting of Fe and unavoidable impurities. The steel slab is heated to 1000°C to 1200°C and then subjected to hot rolling in which the plate thickness varies in a tapered shape in the longitudinal direction at a rolling finish temperature of 900°C or less and an Arpoint or above, followed by accelerated cooling to 500°C or less. Formula (1): 0≤N-Ti/3.42≤0.0025, wherein N and Ti are the content (mass%) of each component.

Description

本発明は、造船、建築などに好適な、長手方向に板厚が連続して変化するテーパプレート(テーパ付き鋼板、LP鋼板とも言う)の製造方法に関し、鋼板内の強度差が少なく、かつ溶接入熱量が300kJ/cmを超える大入熱溶接が適用可能な、引張強さ570MPa以上で長手方向に10mm以上の厚部厚と薄部厚の差(板厚差)を有するテーパプレートの製造方法に関する。   The present invention relates to a method for manufacturing a tapered plate (also referred to as a tapered steel plate or LP steel plate) whose thickness changes continuously in the longitudinal direction, which is suitable for shipbuilding, construction, and the like. A method for producing a taper plate having a difference in thickness (thickness difference) between a thickness of 10 mm or more and a thickness of 10 mm or more in the longitudinal direction with a tensile strength of 570 MPa or more applicable to large heat input welding with a heat input exceeding 300 kJ / cm About.

厚鋼板の形状は、幅方向および長手方向にいずれも均一であるのが一般的である。しかし、長手方向に板厚を連続的に変化させると、素材重量の軽減、溶接工数の削減に大きな効果を有する場合がある。このような厚鋼板は、テーパプレート、テーパ付き鋼板、またはLP鋼板などと呼ばれ、その製造方法について、特許文献1、特許文献2および特許文献3など多くの提案がある。これらの提案は、テーパプレートをいかに寸法精度高く製造するかを目的にしたものである。しかし、寸法精度に加え、鋼板の材質特性および材質の均一性が満足されないと、実用に耐えられない。   The shape of the thick steel plate is generally uniform in both the width direction and the longitudinal direction. However, when the plate thickness is continuously changed in the longitudinal direction, it may have a great effect in reducing the weight of the material and reducing the number of welding processes. Such a thick steel plate is called a tapered plate, a tapered steel plate, an LP steel plate, or the like, and there are many proposals such as Patent Document 1, Patent Document 2, and Patent Document 3 for its manufacturing method. These proposals are aimed at how to produce a taper plate with high dimensional accuracy. However, unless the material characteristics and material uniformity of the steel sheet are satisfied in addition to the dimensional accuracy, it cannot be put into practical use.

最近は、厚鋼板に対する品質要求が厳格化し、とくに高張力化の要求や溶接性の向上要求が強くなっている。このような要求に対し、制御圧延や制御冷却といったTMCP法が採用されている。この方法は、オーステナイト未再結晶域や(オーステナイト+フェライト)2相域における強加工とそれに続くオーステナイト→フェライト変態により、フェライト結晶粒の微細化をはかり、さらに必要に応じて冷却を行ってさらに高強度化、高靱性化を図ろうとするものである。   Recently, the quality requirements for thick steel plates have become stricter, and in particular, the demand for higher tension and the demand for improved weldability have become stronger. In response to such demands, TMCP methods such as controlled rolling and controlled cooling are employed. In this method, ferrite grains are refined by strong processing in the austenite non-recrystallized region and (austenite + ferrite) two-phase region, followed by austenite → ferrite transformation, and further cooling is performed as necessary. It is intended to increase strength and toughness.

しかし、この方法をテーパプレートに応用すると、温度管理が極めて困難になり、材質変動が大きくなる。   However, when this method is applied to a taper plate, temperature management becomes extremely difficult and material fluctuations increase.

特に、制御圧延が、オーステナイト未再結晶域圧延や(オーステナイト+フェライト)2相域圧延のような低温における強加工の場合、テーパプレートのように板厚方向で肉厚が異なるときは、薄部と厚部の鋼板温度の温度差が大きくなりすぎ、強度の相異が大きくなるという問題を残していた。このような材質の不均一をなくし、均質なテーパプレートを製造するために、いくつかの提案がなされている。   In particular, when the control rolling is strong processing at a low temperature such as austenite non-recrystallization zone rolling or (austenite + ferrite) two-phase zone rolling, when the thickness is different in the plate thickness direction like a taper plate, And the temperature difference of the steel plate temperature of the thick part becomes too large, and there remains a problem that the difference in strength becomes large. Several proposals have been made to eliminate such material non-uniformity and to produce a uniform tapered plate.

例えば、特許文献4には、均一な材質を得るために、冷却前の長手方向の温度を実測し、この実測値に基づいて、各点の最適冷却条件を演算し、板厚に応じて冷却時の通板速度を修正するテーパプレートの冷却方法が示されている。特許文献5には、冷却開始は鋼板の薄部と厚部で同時に行い、冷却装置を出る時期を変えるテーパプレートの冷却方法が、あるいは冷却は鋼板長手方向に順次開始しながら、冷却終了を同時に行うテーパプレートの冷却方法が示されている。いずれも、加速冷却を行った際に、鋼板内の材質のバラつきを少なくしようとする提案である。   For example, in Patent Document 4, in order to obtain a uniform material, the temperature in the longitudinal direction before cooling is measured, and the optimum cooling condition at each point is calculated based on this measured value, and cooling is performed according to the plate thickness. A method of cooling the tapered plate to correct the plate passing speed is shown. In Patent Document 5, the cooling is started at the thin part and the thick part of the steel sheet at the same time, and the taper plate cooling method for changing the timing of exiting the cooling device, or the cooling is started sequentially in the longitudinal direction of the steel sheet, and the cooling is finished at the same time. A taper plate cooling method is shown. Both are proposals to reduce the variation of the material in the steel plate when accelerated cooling is performed.

一方、鋼板の成分組成の工夫でこのような課題の解決を試みた例として、特許文献6がある。この技術では、Nb添加量を0.015%〜0.06%と高めることで強度ばらつきを減らせることを開示している。   On the other hand, Patent Document 6 is an example of trying to solve such a problem by devising the component composition of the steel sheet. This technique discloses that the intensity variation can be reduced by increasing the Nb addition amount to 0.015% to 0.06%.

また、特許文献7では、Hv20−50 =−110+460C+44Si+39Mn−31Cu−9Ni+11Cr+22Mo+180V+9600B−23000Mo×Bで表されるHv20−50値(板厚が20mm及び50mmの鋼板の800〜500℃における空冷速度に相当する冷却速度で常温まで冷却した場合のHv硬さの差)を15以下にすれば、強度ばらつきを減らせることを開示している。 Further, corresponding to the air-cooling rate in the 800 to 500 ° C. of the steel sheet of Patent In Document 7, Hv 20-50 = -110 + 460C + 44Si + 39Mn-31Cu-9Ni + 11Cr + 22Mo + 180V + 9600B-23000Mo × Hv 20-50 value represented by B (plate thickness 20mm and 50mm It is disclosed that variation in strength can be reduced by setting the difference in Hv hardness when cooled to room temperature at a cooling rate to 15 or less.

しかしながら、近年そのニーズが高まっている大入熱溶接の適用が可能な鋼材においては、溶接部の靭性を確保するため種々の成分設計上の制約があるため、テーパプレートとして強度ばらつきの低減の観点からの成分設計が容易でなく、特にBを含有する大入熱溶接用の鋼材の場合には、板厚や仕上温度の変化により強度のばらつき傾向が顕著になるという問題があった。   However, steel materials that can be applied to high heat input welding, whose needs have been increasing in recent years, have various component design restrictions to ensure the toughness of the welded part, so that a taper plate can reduce strength variation. In particular, in the case of a steel material for high heat input welding containing B, there is a problem that the tendency of variation in strength becomes conspicuous due to changes in plate thickness and finishing temperature.

特公昭50−36826号公報Japanese Patent Publication No. 50-36826 特公昭60−124号公報Japanese Patent Publication No. 60-124 特開平5−49361号公報JP-A-5-49361 特開昭62−166013号公報JP-A-62-166013 特開平7−68309号公報JP 7-68309 A 特許第3180944号公報Japanese Patent No. 3180944 特許第3972553号公報Japanese Patent No. 3972553

本発明は、上記問題点を有利に解決し、引張強さが570MPa以上で強度ばらつきの小さく、なおかつ溶接入熱量が300kJ/cmを超える大入熱溶接部靭性に優れる、長手方向の厚部厚と薄部厚の差(テーパ量)が10mm以上を有するテーパプレートの製造方法を提供することを目的とする。   The present invention advantageously solves the above-mentioned problems, has a tensile strength of 570 MPa or more with small variation in strength, and has a high heat input weld toughness exceeding 300 kJ / cm, and is excellent in toughness in the longitudinal direction. It is an object of the present invention to provide a method of manufacturing a tapered plate having a difference in thickness (taper amount) of 10 mm or more.

本発明者らは、上記課題を解決するためTi、N含有量の異なるB含有テーパプレートの厚部と薄部の強度差に及ぼすTi、N含有量の影響を調査し、Ti、N含有量が、0≦N−Ti/3.42≦0.0025を満たすと、適正量の固溶Bを安定的に確保することができ、厚部と薄部の強度差が小さくなるという知見を得た。   In order to solve the above-mentioned problems, the present inventors investigated the influence of Ti and N contents on the strength difference between the thick part and thin part of B-containing taper plates having different Ti and N contents, and Ti and N contents. However, when 0 ≦ N—Ti / 3.42 ≦ 0.0025 is satisfied, an appropriate amount of the solid solution B can be stably secured, and the knowledge that the strength difference between the thick part and the thin part becomes small is obtained. It was.

本発明は上記知見をもとに更に検討を加えてなされたもので、すなわち、本発明は、
1.
質量%で、
C:0.03〜0.12%、
Si:0.03〜0.5%、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.0005〜0.0050%、
Al:0.005〜0.1%、
Nb:0.003〜0.014%、
Ti:0.003〜0.02%、
B:0.0003〜0.0025%、
N:0.0030〜0.0070%、
Ca:0.0005〜0.0050%、
且つ、(1)式を満たし、
残部Feおよび不可避的不純物からなる鋼スラブを1000℃〜1200℃に加熱したのち、板厚が長手方向にテーパ状に変化する熱間圧延を圧延仕上温度を900℃以下Ar点以上で行い、その後、500℃以下まで加速冷却することを特徴とする引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。
0≦N−Ti/3.42≦0.0025 ・・・・(1)
ただし、N、Tiは各成分の含有量(質量%)。
2. 前記鋼スラブの成分組成が更に質量%で、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
Cr:0.05〜0.5%、
Mo:0.05〜0.5%、
V:0.02〜0.1%、
のうちから選ばれた1種又は2種以上を含有することを特徴とする1記載の引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。
3. 前記鋼スラブの成分組成が更に質量%で
Mg:0.0005〜0.005%、
Zr:0.003〜0.02%、
REM:0.003〜0.02%、
のうちから選ばれる1種または2種以上を含有することを特徴とする1または2に記載の引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。
4.前記鋼スラブの成分組成が更に質量%で
O:0.0030%以下
を含有し、さらに、Ca、O、Sの各含有量が、下記(2)式を満たすことを特徴とする1乃至3のいずれか一つに記載の引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。

0.3≦ACR≦0.8・・・・・(2)
ここで、ACR=(Ca−(0.18+130×Ca)×O)/1.25/S
また、Ca、O、Sは各成分の含有量(質量%)を表す。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
1.
% By mass
C: 0.03-0.12%,
Si: 0.03 to 0.5%,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.0005 to 0.0050%,
Al: 0.005 to 0.1%,
Nb: 0.003 to 0.014%,
Ti: 0.003 to 0.02%,
B: 0.0003 to 0.0025%,
N: 0.0030 to 0.0070%,
Ca: 0.0005 to 0.0050%,
And satisfies the formula (1),
After heating the steel slab composed of the remaining Fe and inevitable impurities to 1000 ° C to 1200 ° C, hot rolling in which the plate thickness changes in a taper shape in the longitudinal direction is performed at a rolling finishing temperature of 900 ° C or less at Ar 3 points or more, Thereafter, accelerated cooling to 500 ° C. or lower, and a method for producing a tapered plate having a tensile strength of 570 MPa or more and a difference between the thickness of the thick part and the thickness of the thin part of 10 mm or more.
0 ≦ N-Ti / 3.42 ≦ 0.0025 (1)
However, N and Ti are content (mass%) of each component.
2. The component composition of the steel slab is further mass%,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
Cr: 0.05 to 0.5%,
Mo: 0.05-0.5%
V: 0.02-0.1%,
2. A method for producing a taper plate having a tensile strength of 570 MPa or more according to 1, wherein the difference between the thickness of the thick part and the thickness of the thin part is 10 mm or more.
3. The component composition of the steel slab is further mass%, Mg: 0.0005 to 0.005%,
Zr: 0.003 to 0.02%,
REM: 0.003-0.02%,
A method for producing a taper plate having a tensile strength of 570 MPa or more according to 1 or 2, wherein the difference between the thickness of the thick part and the thickness of the thin part is 10 mm or more .
4). The component composition of the steel slab is further mass%.
O: 0.0030% or less, and further, each content of Ca, O, and S satisfies the following formula (2): Tensile strength according to any one of 1 to 3 A method of manufacturing a taper plate having a thickness of 570 MPa or more and a difference in thickness between the thick part and the thin part of 10 mm or more.
0.3 ≦ ACR ≦ 0.8 (2)
Here, ACR = (Ca− (0.18 + 130 × Ca) × O) /1.25/S
Moreover, Ca, O, and S represent content (mass%) of each component.

本発明によれば、引張強さ570MPa以上で厚部、薄部の強度差が少なく、サブマージアーク溶接、エレクトロガス溶接、エレクトロスラグ溶接などの大入熱溶接用途にも適用できる、厚部厚と薄部厚の差(テーパ量)が10mm以上のテーパプレートを製造することができ、産業上極めて有用である。   According to the present invention, the tensile strength is 570 MPa or more, the difference in strength between the thick part and the thin part is small, and the thick part thickness is applicable to large heat input welding applications such as submerged arc welding, electrogas welding, and electroslag welding. A taper plate having a thickness difference (taper amount) of 10 mm or more can be manufactured, which is extremely useful industrially.

本発明では成分組成、製造条件を規定する。説明において%は質量%とする。
[成分組成]
C:0.03〜0.12%
Cは、構造用鋼として必要な強度を得るため0.03%以上添加する。一方、0.12%を超えて添加すると、溶接熱影響部靭性を低下させるので、0.03%〜0.12%とする。好ましくは0.04〜0.09%とする。
In this invention, a component composition and manufacturing conditions are prescribed | regulated. In the description,% is mass%.
[Ingredient composition]
C: 0.03-0.12%
C is added in an amount of 0.03% or more in order to obtain the strength required for structural steel. On the other hand, if added over 0.12%, the weld heat affected zone toughness is lowered, so the content is made 0.03% to 0.12%. Preferably it is 0.04 to 0.09%.

Si:0.03〜0.5%
Siは、脱酸と強度を確保するため0.03%以上添加する。0.5%を超えて添加すると、大入熱溶接の場合、溶接熱影響部に島状マルテンサイトが生成して靭性を劣化させるので、0.5%以下とする。好ましくは0.4%以下とする。
Si: 0.03-0.5%
Si is added in an amount of 0.03% or more to ensure deoxidation and strength. If added over 0.5%, in the case of high heat input welding, island martensite is generated in the weld heat affected zone and the toughness is deteriorated, so the content is made 0.5% or less. Preferably it is 0.4% or less.

Mn:0.8〜2.2%
Mnは、母材の強度を確保するために、0.8%以上添加する。一方、2.2%を超えると溶接部の靭性を著しく劣化させるため、0.8〜2.2%、好ましくは1.2〜2.1%、より好ましくは1.2〜2.0%とする。
Mn: 0.8 to 2.2%
Mn is added in an amount of 0.8% or more in order to ensure the strength of the base material. On the other hand, if it exceeds 2.2%, the toughness of the welded portion is remarkably deteriorated, so 0.8 to 2.2%, preferably 1.2 to 2.1%, more preferably 1.2 to 2.0%. And

P:0.015%以下
Pは本発明では不可避的不純物で、0.015%を超えて含有されると、大入熱溶接によって熱影響部に島状マルテンサイトを生成して靭性、特にCTOD特性を低下させるため、0.015%以下とする。好ましくは0.012%以下とする。
P: 0.015% or less P is an unavoidable impurity in the present invention. When P is contained in an amount exceeding 0.015%, island-like martensite is generated in the heat-affected zone by high heat input welding, and in particular, CTOD. In order to reduce the characteristics, the content is made 0.015% or less. Preferably it is 0.012% or less.

S:0.0005〜0.0050%
Sは、CaS、MnSを生成させるため0.0005%以上とする。一方、0.0050
%をこえると母材の靭性を低下させるため、0.0005〜0.0050%とする。
S: 0.0005 to 0.0050%
S is made to be 0.0005% or more in order to generate CaS and MnS. On the other hand, 0.0050
If it exceeds 50%, the toughness of the base material is reduced, so 0.0005 to 0.0050%.

Al:0.005〜0.1%
Alは、鋼を脱酸するため0.005%以上とする。一方、0.1%を超えると母材の靭性を低下させ、溶接金属の靭性も低下させるので、0.005〜0.1%、好ましくは0.01〜0.06%とする。
Al: 0.005 to 0.1%
Al is made 0.005% or more in order to deoxidize steel. On the other hand, if it exceeds 0.1%, the toughness of the base metal is lowered and the toughness of the weld metal is also lowered, so 0.005 to 0.1%, preferably 0.01 to 0.06%.

Nb:0.003〜0.014%
Nbは、母材の強度、靭性および溶接継手強度を確保するために有効であり、その効果を得るため0.003%以上必要であるが、0.014%を超えると大入熱溶接をした際、溶接熱影響部の靭性が低下するため、0.003〜0.014%とする。好ましくは0.005〜0.013%とする。
Nb: 0.003 to 0.014%
Nb is effective to ensure the strength, toughness and weld joint strength of the base metal, and is required to be 0.003% or more to obtain the effect, but when it exceeds 0.014%, large heat input welding was performed. At this time, the toughness of the weld heat affected zone is lowered, so 0.003 to 0.014%. Preferably it is 0.005 to 0.013%.

Ti:0.003〜0.02%
Tiは、凝固時にTiNを生成して析出し、溶接熱影響部でのオーステナイト粒の粗大化を抑制し、フェライト変態核となってフェライトを析出させ、靭性を向上させるため、0.003%以上を添加する。一方、0.02%を超えると、TiN粒子が粗大化し、靭性を低下させるようになるので、0.003〜0.02%とする。好ましくは0.005〜0.018%とする。
Ti: 0.003-0.02%
Ti forms and precipitates TiN during solidification, suppresses coarsening of austenite grains in the weld heat-affected zone, precipitates ferrite as a ferrite transformation nucleus, and improves toughness, so 0.003% or more Add. On the other hand, if it exceeds 0.02%, TiN particles become coarse and lower toughness, so 0.003 to 0.02%. Preferably it is 0.005 to 0.018%.

B:0.0003〜0.0025%
Bは、鋼板製造時、固溶Bとして焼入れ性に寄与して母材強度を向上させるとともに、大入熱溶接をした際、溶接熱影響部でBNを生成して、固溶Nを低減し、また、フェライト変態核となりフェライトを生成して靭性を向上させるため、0.0003%以上添加する。
B: 0.0003 to 0.0025%
B contributes to hardenability as solid solution B during steel plate production and improves the strength of the base metal. When large heat input welding is performed, BN is generated in the heat affected zone to reduce solid solution N. Further, 0.0003% or more is added in order to become ferrite transformation nuclei and generate ferrite to improve toughness.

一方、0.0025%を超えると焼入れ性が増大して靭性が低下するため、0.0003〜0.0025%とする。好ましくは0.005〜0.0022%とする。   On the other hand, if it exceeds 0.0025%, the hardenability increases and the toughness decreases, so the content is made 0.0003 to 0.0025%. Preferably it is 0.005 to 0.0022%.

N:0.0030〜0.0070%
Nは、靭性向上に有効なTiNを生成するため、0.0030%以上とする。一方、0.0070%を超えると、鋼板製造時、焼入れ性に寄与する固溶Bが確保できなくなる場合があるとともに、大入熱溶接をした際、ボンド部近傍のTiNが溶解し、溶接金属中の固溶Nが増大してその靭性を劣化させるため、0.0030〜0.0070%とする。
N: 0.0030 to 0.0070%
N generates 0.0030% or more in order to generate TiN effective for improving toughness. On the other hand, if it exceeds 0.0070%, solid solution B that contributes to hardenability may not be ensured at the time of manufacturing the steel sheet, and TiN in the vicinity of the bond portion melts when high heat input welding is performed, and the weld metal In order to increase the solid solution N in the steel and deteriorate its toughness, the content is made 0.0030 to 0.0070%.

0≦N−Ti/3.42≦0.0025
本発明では、引張強さが570MPa以上で強度ばらつきの小さく、なおかつ溶接入熱量が300kJ/cmを超える大入熱溶接部靭性に優れることが要求され、そのために上記成分組成において本パラメータ式を規定する。Ti、N含有量が、N−Ti/3.42>0.0025となると、適正量の固溶Bを安定的に確保することができず、板厚や圧延条件の変化に対して強度のばらつきが大きくなる。一方、N−Ti/3.42<0の場合、大入熱溶接をした際、溶接熱影響部の靭性が顕著に劣化する。従って、0≦N−Ti/3.42≦0.0025とする。
0 ≦ N-Ti / 3.42 ≦ 0.0025
In the present invention, it is required that the tensile strength is 570 MPa or more, the strength variation is small, and the high heat input weld toughness exceeds 300 kJ / cm, and the parameter composition is defined in the above component composition. To do. When the content of Ti and N is N-Ti / 3.42> 0.0025, an appropriate amount of solid solution B cannot be stably secured, and the strength against the change in the plate thickness and rolling conditions The variation becomes large. On the other hand, in the case of N-Ti / 3.42 <0, the toughness of the weld heat-affected zone significantly deteriorates when high heat input welding is performed. Therefore, 0 ≦ N−Ti / 3.42 ≦ 0.0025.

Ca:0.0005〜0.0050%
Caは、大入熱溶接した際、溶接熱影響部の靭性を良好たらしめるもので、CaS上にMnSやTiN、BNが析出し、フェライトの核生成頻度を高めることで溶接熱影響部の靭性を向上させる。その効果を得るため0.0005%以上とする。一方、0.0050%を超えると効果が飽和するため、0.0005〜0.0050%とする。好ましくは0.0005〜0.0030%とし、より好ましくは0.0007〜0.0030%とする。
Ca: 0.0005 to 0.0050%
Ca makes the toughness of the weld heat-affected zone good when subjected to high heat input welding. MnS, TiN, BN precipitates on CaS, and the toughness of the weld heat-affected zone is increased by increasing the nucleation frequency of ferrite. To improve. In order to obtain the effect, the content is made 0.0005% or more. On the other hand, if it exceeds 0.0050%, the effect is saturated, so 0.0005 to 0.0050%. Preferably it is 0.0005 to 0.0030%, More preferably, it is 0.0007 to 0.0030%.

以上が本発明の基本成分で、十分な作用効果が得られるが、更に特性を向上させる場合、Cu、Ni、Cr、Mo、V、Mg、Zr、REMの一種または二種以上を含有させることが可能である。   The above is the basic component of the present invention, and sufficient effects can be obtained. However, when further improving the characteristics, one or more of Cu, Ni, Cr, Mo, V, Mg, Zr, and REM should be included. Is possible.

Cu:0.05〜1.0%
Cuは、母材の高強度化に有効であり、その効果を得るため0.05%以上含有することが好ましいが、1.0%を超えると熱間脆性を生じて、鋼板表面性状を悪化させるので、含有する場合は1.0%以下とすることが好ましい。より好ましくは0.1〜0.8%とする。
Cu: 0.05 to 1.0%
Cu is effective for increasing the strength of the base material, and it is preferable to contain 0.05% or more in order to obtain the effect. However, if it exceeds 1.0%, hot brittleness occurs, and the steel sheet surface properties deteriorate. Therefore, when it contains, it is preferable to set it as 1.0% or less. More preferably, it is 0.1 to 0.8%.

Ni:0.05〜1.0%
Niは、母材を高靭性に保ちつつ、強度を上昇させるので、その効果を得るため0.05%以上含有することが好ましい。一方、1.0%を超えるとその効果が飽和するため、含有する場合は0.05〜1.0%とすることが好ましい。より好ましくは0.1〜0.9%とする。
Ni: 0.05-1.0%
Ni increases the strength while maintaining the base material with high toughness, so it is preferable to contain 0.05% or more in order to obtain the effect. On the other hand, since the effect will be saturated when it exceeds 1.0%, when it contains, it is preferable to set it as 0.05 to 1.0%. More preferably, the content is 0.1 to 0.9%.

Cr:0.05〜0.5%
Crは、母材の高強度化に有効であり、その効果を得るため0.05%以上含有することが好ましいが、多量に添加すると靭性を劣化させるようになるので、含有する場合は0.5%以下とすることが好ましい。より好ましくは0.1〜0.4%とする。
Cr: 0.05-0.5%
Cr is effective for increasing the strength of the base material, and is preferably contained in an amount of 0.05% or more in order to obtain the effect. However, when added in a large amount, the toughness is deteriorated. It is preferable to make it 5% or less. More preferably, the content is 0.1 to 0.4%.

Mo:0.05〜0.5%
Moは、母材の高強度化に有効であり、その効果を得るため0.05%以上含有することが好ましいが、多量に添加すると靭性を劣化させるようになるので、含有する場合は0.5%以下とすることが好ましい。より好ましくは0.07〜0.4%とする。
Mo: 0.05-0.5%
Mo is effective for increasing the strength of the base material and is preferably contained in an amount of 0.05% or more in order to obtain the effect. However, if added in a large amount, the toughness deteriorates. It is preferable to set it to 5% or less. More preferably, the content is 0.07 to 0.4%.

V:0.02〜0.1%
Vは、母材の高強度化に有効であり、その効果を得るため0.02%以上含有することが好ましいが、0.1%を超えると靭性を低下させるようになるので、含有する場合は0.1%以下とすることが好ましい。より好ましくは0.04〜0.08%とする。
V: 0.02-0.1%
V is effective for increasing the strength of the base material, and is preferably contained in an amount of 0.02% or more in order to obtain the effect. However, if it exceeds 0.1%, the toughness will be lowered. Is preferably 0.1% or less. More preferably, the content is 0.04 to 0.08%.

Mg:0.0005〜0.005%
Mgは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005%以上含有することが好ましいが、0.005%を超えて含有しても効果が飽和するので、含有する場合には0.005%以下とすることが好ましい。
Mg: 0.0005 to 0.005%
Mg is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is preferable to contain at least 0.0005% or more, but even if it contains more than 0.005%, the effect is saturated. It is preferable to do.

Zr:0.003〜0.02%
Zrは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.003%以上含有することが好ましいが、0.02%を超えて含有しても効果が飽和するので、含有する場合には0.02%以下とすることが好ましい。より好ましくは0.004〜0.018%とする。
Zr: 0.003 to 0.02%
Zr is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is preferable to contain at least 0.003% or more, but even if it exceeds 0.02%, the effect is saturated. It is preferable to do. More preferably, it is 0.004 to 0.018%.

REM:0.003〜0.02%
REMは、酸化物の分散による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.003%以上含有することが好ましいが、0.02%を超えて含有しても効果が飽和するので、含有する場合には0.02%以下とすることが好ましい。より好ましくは0.004〜0.018%とする。
REM: 0.003-0.02%
REM is an element having an effect of improving toughness due to dispersion of oxides. In order to exert such an effect, it is preferable to contain at least 0.003% or more, but even if it exceeds 0.02%, the effect is saturated. It is preferable to do. More preferably, it is 0.004 to 0.018%.

O:0.0030%以下
Oは、不可避的不純物として含有され、鋼中では酸化物として存在し、清浄度を低下させ
る。このため、本発明ではできるだけ低減することが好ましい。O 含有量が0.0030%を超えるとCaO系介在物が粗大化して、靭性に悪影響を及ぼす。また、本発明では、CaをCaSとして晶出させるために、Caとの結合力が強いOはCa添加前に、脱ガスを強化するか、脱酸剤を投入するかして、溶鋼中のOを0.0030%以下に低減しておくことが好ましい。
O: 0.0030% or less O is contained as an unavoidable impurity, and exists as an oxide in the steel, which reduces cleanliness. For this reason, it is preferable to reduce as much as possible in the present invention. If the O content exceeds 0.0030%, CaO inclusions are coarsened, which adversely affects toughness. Further, in the present invention, in order to crystallize Ca as CaS, O having a strong binding force with Ca strengthens degassing or introduces a deoxidizer before adding Ca, It is preferable to reduce O to 0.0030% or less.

0.3≦ACR≦0.8
ここで、ACR=(Ca−(0.18+130×Ca)×O)/1.25/S
Ca、O、Sは各成分の含有量(質量%)を表す。
大入熱溶接時の高温下でも溶解しないフェライト変態生成核を微細に分散させることができ、溶接熱影響部の組織を微細なフェライト+パーライトの組織として高靱性化を達成するためには、CaおよびSは、0.3≦ACR≦0.8の関係を満足するように含有させる必要がある。
0.3 ≦ ACR ≦ 0.8
Here, ACR = (Ca− (0.18 + 130 × Ca) × O) /1.25/S
Ca, O, and S represent the content (% by mass) of each component.
In order to achieve high toughness by making it possible to finely disperse the ferrite transformation nuclei that do not dissolve even at high temperatures during high heat input welding, and to make the structure of the heat affected zone of the weld a fine ferrite + pearlite structure. And S must be contained so as to satisfy the relationship of 0.3 ≦ ACR ≦ 0.8.

ACRの値を0.3以上0.8以下にすることにより、フェライト生成核として働くMnSがCaS上に析出して微細に分散するので、大入熱溶接時の溶接熱影響部の組織を微細なフェライト+パーライトの組織として高靱性化を達成することができる。   By setting the value of ACR to 0.3 or more and 0.8 or less, MnS that acts as ferrite nuclei precipitates on CaS and finely disperses, so the structure of the heat affected zone during high heat input welding is fine. High toughness can be achieved as a simple ferrite + pearlite structure.

ACRの値が0.3に満たないと、CaSが晶出しないためにSはMnS単独の形態で析出する。このMnSは鋼板製造時の圧延で伸長されて母材の靱性の低下を引き起こすとともに、本発明の主眼である溶接熱影響部でMnSが溶融するために微細分散が達成されない。   If the value of ACR is less than 0.3, since CaS does not crystallize, S precipitates in the form of MnS alone. This MnS is elongated by rolling at the time of manufacturing the steel sheet to cause a decrease in the toughness of the base material, and MnS melts in the weld heat affected zone which is the main point of the present invention, so that fine dispersion is not achieved.

一方、ACRの値が0.8を超えると、ほとんどのSがCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しないために十分な機能が発揮されない。   On the other hand, when the value of ACR exceeds 0.8, most of S is fixed by Ca, and MnS acting as a ferrite formation nucleus does not precipitate on CaS, so that a sufficient function is not exhibited.

[製造条件]
本発明では、上述した成分組成とすることにより、適正量の固溶Bを安定的に確保することができるので、板厚や圧延条件の変化に対して強度のばらつきを小さくすることができる。このため、従来、テーパプレートを高強度化するために加速冷却を適用すると、板厚が厚部から薄部へと変化するにつれて鋼板強度の変動が不可避であったところ、本発明では、加速冷却を適用しても厚部と薄部との強度差が小さい高強度テーパプレートを得ることができる。
[Production conditions]
In the present invention, by using the above-described component composition, an appropriate amount of the solid solution B can be stably ensured, so that variations in strength can be reduced with respect to changes in sheet thickness and rolling conditions. For this reason, conventionally, when accelerated cooling is applied in order to increase the strength of the taper plate, fluctuations in the steel plate strength are inevitable as the plate thickness changes from the thick part to the thin part. Even if is applied, a high-strength taper plate with a small strength difference between the thick part and the thin part can be obtained.

本発明のテーパプレートの素材となる鋼スラブは、上記した成分組成の鋼を、例えば、転炉、電気炉、真空溶解炉等の通常の製錬プロセスで溶製した後、連続鋳造法あるいは造塊−分塊圧延法等の常法を用いて製造することができ、特に制限はない。   The steel slab used as the material of the taper plate of the present invention is obtained by melting a steel having the above-described composition by a normal smelting process such as a converter, an electric furnace, a vacuum melting furnace, etc. It can be produced using a conventional method such as a lump-slab rolling method, and is not particularly limited.

本発明では、スラブ加熱温度、熱間圧延条件、冷却条件を以下のように規定する。   In the present invention, the slab heating temperature, hot rolling conditions, and cooling conditions are defined as follows.

スラブ加熱温度:1000〜1200℃
スラブ加熱温度が1000℃未満では添加成分が十分に固溶しない。一方1200℃を超えるとオーステナイト粒が粗大化してその後の圧延によっても細粒化が進まず靱性が劣化する。このため、スラブ加熱温度は1000〜1200℃の範囲とする。好ましくは1030〜1180℃の範囲とする。
Slab heating temperature: 1000-1200 ° C
When the slab heating temperature is less than 1000 ° C., the additive components are not sufficiently dissolved. On the other hand, when the temperature exceeds 1200 ° C., the austenite grains become coarse, and even after rolling, the fineness does not advance and the toughness deteriorates. For this reason, slab heating temperature shall be 1000-1200 degreeC. Preferably it is set as the range of 1030-1180 degreeC.

熱間圧延条件
鋼スラブを加熱した後、熱間圧延を行う。熱間圧延では長手方向に板厚の異なるテーパを付与する。テーパプレートにおける長手方向の板厚の変化は、鋼板をかみ込んだのち、あらかじめ設定したパスにおいてロール開度を変化させて熱間圧延することにより達成できる。
Hot rolling conditions After the steel slab is heated, hot rolling is performed. In hot rolling, tapers with different plate thicknesses are provided in the longitudinal direction. The change in the plate thickness in the longitudinal direction of the taper plate can be achieved by biting the steel plate and then hot rolling by changing the roll opening degree in a preset pass.

本発明ではパスごとの圧下量については特に限定しない。熱間圧延の圧延仕上温度は鋼板表面温度で900℃以下、Ar点以上とする。仕上温度がAr点未満では、所定の強度が得られず、また、900℃を超えると靱性が劣化するため、仕上温度は900℃以下Ar点以上とする。好ましくは(Ar+10℃)〜880℃の範囲とする。 In the present invention, the reduction amount for each pass is not particularly limited. The rolling finishing temperature of the hot rolling is set to 900 ° C. or less and Ar 3 points or more at the steel sheet surface temperature. If the finishing temperature is less than 3 points of Ar, a predetermined strength cannot be obtained, and if it exceeds 900 ° C., the toughness deteriorates, so the finishing temperature is 900 ° C. or less and Ar 3 points or more. Preferably, it is in the range of (Ar 3 + 10 ° C.) to 880 ° C.

冷却条件
熱間圧延終了後は加速冷却を行う。冷却停止温度が500℃を超えると引張強さ570MPa以上の鋼板強度が得られないため、鋼板表面温度で500℃以下まで加速冷却を行う。好ましくは490℃以下の範囲とする。
Cooling conditions After the hot rolling, accelerated cooling is performed. If the cooling stop temperature exceeds 500 ° C., a steel plate strength with a tensile strength of 570 MPa or more cannot be obtained, so accelerated cooling is performed to a temperature of 500 ° C. or less at the steel plate surface temperature. Preferably it is set as the range of 490 degrees C or less.

なお、熱間圧延条件、冷却条件を規定する鋼板表面温度は、例えば、放射温度計を用いて測定することができる。
本発明は上述した成分組成と製造条件の組み合わせにより、適正量の固溶Bを安定的に確保することができ、焼入れ性向上効果と大入熱溶接の溶接熱影響部の靭性向上効果が得られるため、テーパプレートの厚部厚と薄部厚の差(テーパ量)が鋼板内で10mm以上あっても、引張強さ570MPa以上で優れた大入熱溶接の溶接熱影響部の靭性を有するテーパプレートが得られる。
In addition, the steel plate surface temperature which prescribes | regulates hot rolling conditions and cooling conditions can be measured using a radiation thermometer, for example.
In the present invention, an appropriate amount of solid solution B can be stably secured by the combination of the above-described component composition and manufacturing conditions, and the effect of improving the hardenability and the effect of improving the toughness of the weld heat affected zone of high heat input welding are obtained. Therefore, even if the difference between the thick part thickness and the thin part thickness (taper amount) of the taper plate is 10 mm or more in the steel plate, the tensile strength is 570 MPa or more and the toughness of the welding heat affected zone of the high heat input welding is excellent. A taper plate is obtained.

表1に示す化学組成を有する鋼スラブを、表2に示す条件で熱間圧延を行い、厚部60mm、薄部50mm、テーパ量(厚部厚と薄部厚の差)10mmのテーパプレートを製造した。   A steel slab having the chemical composition shown in Table 1 is hot-rolled under the conditions shown in Table 2, and a taper plate having a thickness of 60 mm, a thin part of 50 mm, and a taper amount (difference between the thickness of the thick part and the thin part) of 10 mm is obtained. Manufactured.

テーパプレートの厚部と薄部それぞれの板厚1/4位置より、平行部14φ×85mm、標点間距離70mmの丸棒引張試験片を圧延方向と垂直方向に、2mmVノッチシャルピー試験片を圧延方向と平行方向に採取し、母材の強度と−40℃における吸収エネルギーを評価した。−40℃における吸収エネルギーは、3本の値の平均値とした。   Rolling a 2mm V notch Charpy test piece in a direction perpendicular to the rolling direction from a round bar tensile test piece having a parallel part of 14φ x 85mm and a distance of 70mm between the thick part and thin part of the taper plate. The sample was taken in a direction parallel to the direction, and the strength of the base material and the absorbed energy at −40 ° C. were evaluated. The absorbed energy at −40 ° C. was an average value of three values.

さらに、溶接熱影響部(以下、HAZとも称する)の靱性を評価するため、これらの鋼板から溶接熱サイクル用に、幅80mm×長さ80mm×厚み15mmの試験片を採取し、1450℃に加熱後800〜500℃を270sで冷却(板厚55mmの鋼板におけるエレクトロガス溶接での入熱量400kJ/cmの溶接熱影響部の熱サイクルに相当)する溶接熱サイクルを付与した試験片について2mmVノッチシャルピー試験を実施し、再現HAZ靱性を評価した。   Further, in order to evaluate the toughness of the weld heat affected zone (hereinafter also referred to as HAZ), a test piece having a width of 80 mm, a length of 80 mm and a thickness of 15 mm was taken from these steel sheets for heating and heat cycle and heated to 1450 ° C. 2 mm V notch Charpy for a test piece provided with a welding heat cycle after cooling at 800 to 500 ° C. at 270 s (corresponding to the heat cycle of the weld heat-affected zone with heat input of 400 kJ / cm in electrogas welding on a steel plate having a thickness of 55 mm) Tests were performed to evaluate reproducible HAZ toughness.

テーパプレートの厚部、薄部の機械的性質と溶接熱サイクル後の靭性を表2に示す。本発明例のNo.1〜No.8は、いずれもYS:460MPa以上、TS:570MPa以上、−40℃における吸収エネルギー:300J以上(3本の平均)を満足し、厚部、薄部の強度差がTSについては20MPa未満、YSについては30MPa未満といずれも小さく、また、再現HAZ靭性もvTrs:−40℃以下と優れている。   Table 2 shows the mechanical properties of the thick and thin portions of the taper plate and the toughness after the welding heat cycle. No. of the example of the present invention. 1-No. No. 8 satisfies YS: 460 MPa or more, TS: 570 MPa or more, absorbed energy at −40 ° C .: 300 J or more (average of three), and the strength difference between the thick part and the thin part is less than 20 MPa for TS, YS Is less than 30 MPa, and the reproduced HAZ toughness is excellent at vTrs: −40 ° C. or lower.

一方、N−Ti/3.42>0.0025となっているNo.11、No.14は厚部、薄部の強度差が大きい。また、このほか、適正な成分あるいは製造条件を外れたものは、YS:460MPa以上、TS:570MPa以上、吸収エネルギー:300J以上、再現HAZ靭性vTrs:−40℃以下のいずれか1以上を満足できない結果となっている。   On the other hand, No. 2 satisfying N-Ti / 3.42> 0.0025. 11, no. No. 14 has a large strength difference between the thick part and the thin part. In addition, those that are outside the proper components or production conditions cannot satisfy any one or more of YS: 460 MPa or more, TS: 570 MPa or more, absorbed energy: 300 J or more, and reproduced HAZ toughness vTrs: −40 ° C. or less. It is the result.

Figure 2012162801
Figure 2012162801

Figure 2012162801
Figure 2012162801

表3に示す化学組成を有する鋼スラブを、表4に示す条件で熱間圧延を行い、厚部60mm、薄部50mm、テーパ量(厚部厚と薄部厚の差)10mmのテーパプレートを製造した。   A steel slab having the chemical composition shown in Table 3 is hot-rolled under the conditions shown in Table 4, and a taper plate having a thickness of 60 mm, a thickness of 50 mm, and a taper amount (difference between the thickness of the thickness and the thickness of the thin part) of 10 mm is obtained. Manufactured.

テーパプレートの厚部と薄部それぞれの板厚1/4位置より、平行部14φ×85mm、標点間距離70mmの丸棒引張試験片を圧延方向と垂直方向に、2mmVノッチシャルピー試験片を圧延方向と平行方向に採取し、母材の強度と−40℃における吸収エネルギーを評価した。−40℃における吸収エネルギーは、3本の値の平均値とした。   Rolling a 2mm V notch Charpy test piece in a direction perpendicular to the rolling direction from a round bar tensile test piece having a parallel part of 14φ x 85mm and a distance of 70mm between the thick part and thin part of the taper plate. The sample was taken in a direction parallel to the direction, and the strength of the base material and the absorbed energy at −40 ° C. were evaluated. The absorbed energy at −40 ° C. was an average value of three values.

さらに、溶接熱影響部(以下、HAZとも称する)の靱性を評価するため、これらの鋼板から溶接熱サイクル用に、幅80mm×長さ80mm×厚み15mmの試験片を採取し、1450℃に加熱後800〜500℃を270sで冷却(板厚55mmの鋼板におけるエレクトロガス溶接での入熱量400kJ/cmの溶接熱影響部の熱サイクルに相当)する溶接熱サイクルを付与した試験片について2mmVノッチシャルピー試験を実施し、再現HAZ靱性を評価した。   Further, in order to evaluate the toughness of the weld heat affected zone (hereinafter also referred to as HAZ), a test piece having a width of 80 mm, a length of 80 mm and a thickness of 15 mm was taken from these steel sheets for heating and heat cycle and heated to 1450 ° C. 2 mm V notch Charpy for a test piece provided with a welding heat cycle after cooling at 800 to 500 ° C. at 270 s (corresponding to the heat cycle of the weld heat-affected zone with heat input of 400 kJ / cm in electrogas welding on a steel plate having a thickness of 55 mm) Tests were performed to evaluate reproducible HAZ toughness.

テーパプレートの厚部、薄部の機械的性質と溶接熱サイクル後の靭性を表4に示す。ACRの規定を満足する本発明例のNo.21とNo.22は、いずれもYS:460MPa以上、TS:570MPa以上、−40℃における吸収エネルギー:300J以上(3本の平均)を満足し、厚部、薄部の強度差がTSについては20MPa未満、YSについては30MPa未満といずれも小さく、また、再現HAZ靭性もvTrs:−65℃以下と優れている。   Table 4 shows the mechanical properties of the thick and thin portions of the taper plate and the toughness after the welding heat cycle. No. of the present invention example satisfying the ACR regulations 21 and no. No. 22 satisfies YS: 460 MPa or more, TS: 570 MPa or more, absorbed energy at −40 ° C .: 300 J or more (average of three), and the strength difference between the thick part and the thin part is less than 20 MPa for TS, YS Is less than 30 MPa, and the reproduced HAZ toughness is excellent at vTrs: −65 ° C. or less.

Figure 2012162801
Figure 2012162801

Figure 2012162801
Figure 2012162801

Claims (4)

質量%で、
C:0.03〜0.12%、
Si:0.03〜0.5%、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.0005〜0.0050%、
Al:0.005〜0.1%、
Nb:0.003〜0.014%、
Ti:0.003〜0.02%、
B:0.0003〜0.0025%、
N:0.0030〜0.0070%、
Ca:0.0005〜0.0050%、
且つ、(1)式を満たし、
残部Feおよび不可避的不純物からなる鋼スラブを1000℃〜1200℃に加熱したのち、板厚が長手方向にテーパ状に変化する熱間圧延を圧延仕上温度を900℃以下Ar点以上で行い、その後、500℃以下まで加速冷却することを特徴とする引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。
0≦N−Ti/3.42≦0.0025 ・・・・(1)
ただし、N、Tiは各成分の含有量(質量%)。
% By mass
C: 0.03-0.12%,
Si: 0.03 to 0.5%,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.0005 to 0.0050%,
Al: 0.005 to 0.1%,
Nb: 0.003 to 0.014%,
Ti: 0.003 to 0.02%,
B: 0.0003 to 0.0025%,
N: 0.0030 to 0.0070%,
Ca: 0.0005 to 0.0050%,
And satisfies the formula (1),
After heating the steel slab composed of the remaining Fe and inevitable impurities to 1000 ° C to 1200 ° C, hot rolling in which the plate thickness changes in a taper shape in the longitudinal direction is performed at a rolling finishing temperature of 900 ° C or less at Ar 3 points or more, Thereafter, accelerated cooling to 500 ° C. or lower, and a method for producing a tapered plate having a tensile strength of 570 MPa or more and a difference between the thickness of the thick part and the thickness of the thin part of 10 mm or more.
0 ≦ N-Ti / 3.42 ≦ 0.0025 (1)
However, N and Ti are content (mass%) of each component.
前記鋼スラブの成分組成が更に質量%で、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
Cr:0.05〜0.5%、
Mo:0.05〜0.5%、
V:0.02〜0.1%、
のうちから選ばれた1種又は2種以上を含有することを特徴とする請求項1記載の引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。
The component composition of the steel slab is further mass%,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
Cr: 0.05 to 0.5%,
Mo: 0.05-0.5%
V: 0.02-0.1%,
The method for producing a taper plate having a tensile strength of 570 MPa or more and a difference between the thickness of the thick part and the thickness of the thin part of 10 mm or more, comprising at least one selected from among .
前記鋼スラブの成分組成が更に質量%で
Mg:0.0005〜0.005%、
Zr:0.003〜0.02%、
REM:0.003〜0.02%、
のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。
The component composition of the steel slab is further mass%, Mg: 0.0005 to 0.005%,
Zr: 0.003 to 0.02%,
REM: 0.003-0.02%,
A taper plate having a tensile strength of 570 MPa or more according to claim 1 or 2, wherein the difference between the thickness of the thick part and the thickness of the thin part is 10 mm or more. Production method.
前記鋼スラブの成分組成が更に質量%で
O:0.0030%以下、
を含有し、さらに、Ca、O、Sの各含有量が、下記(2)式を満たすことを特徴とする請求項1乃至3のいずれか一つに記載の引張強さ570MPa以上で、厚部厚と薄部厚の差が10mm以上のテーパプレートの製造方法。

0.3≦ACR≦0.8・・・・・(2)
ここで、ACR=(Ca−(0.18+130×Ca)×O)/1.25/S
また、Ca、O、Sは各成分の含有量(質量%)を表す。
The component composition of the steel slab is further mass% O: 0.0030% or less,
Furthermore, each content of Ca, O, and S satisfies the following formula (2), and the tensile strength is 570 MPa or more according to any one of claims 1 to 3, A method of manufacturing a tapered plate having a difference between the thickness of the part and the thickness of the thin part of 10 mm or more.
0.3 ≦ ACR ≦ 0.8 (2)
Here, ACR = (Ca− (0.18 + 130 × Ca) × O) /1.25/S
Moreover, Ca, O, and S represent content (mass%) of each component.
JP2012007765A 2011-01-18 2012-01-18 Tapered plate manufacturing method Active JP5772620B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012007765A JP5772620B2 (en) 2011-01-18 2012-01-18 Tapered plate manufacturing method
KR1020147022106A KR101612660B1 (en) 2012-01-18 2012-04-19 Process for producing tapered plate
EP12865903.4A EP2806042B1 (en) 2012-01-18 2012-04-19 Process for producing tapered plate
PCT/JP2012/061156 WO2013108419A1 (en) 2012-01-18 2012-04-19 Process for producing tapered plate
CN201280067544.9A CN104066858B (en) 2012-01-18 2012-04-19 The manufacture method of taper plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011007404 2011-01-18
JP2011007404 2011-01-18
JP2012007765A JP5772620B2 (en) 2011-01-18 2012-01-18 Tapered plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2012162801A true JP2012162801A (en) 2012-08-30
JP5772620B2 JP5772620B2 (en) 2015-09-02

Family

ID=46842464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007765A Active JP5772620B2 (en) 2011-01-18 2012-01-18 Tapered plate manufacturing method

Country Status (1)

Country Link
JP (1) JP5772620B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124388A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp METHOD OF MANUFACTURING THICK TAPER PLATE WITH 510 MPa OR HIGHER TENSILE STRENGTH AND 60 mm OR THICKER THICK PORTION
WO2015141203A1 (en) * 2014-03-17 2015-09-24 Jfeスチール株式会社 Steel material for welding
WO2016009595A1 (en) * 2014-07-15 2016-01-21 Jfeスチール株式会社 Method of manufacturing steel plate for high-heat input welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232016A (en) * 1994-12-28 1996-09-10 Kawasaki Steel Corp Production of high tensile strength steel plate
JP2000303147A (en) * 1999-02-15 2000-10-31 Sumitomo Metal Ind Ltd Tapered steel sheet and its production
JP2007051321A (en) * 2005-08-17 2007-03-01 Nippon Steel Corp 490 MPa CLASS THICK HIGH-TENSILE STRENGTH FIRE-RESISTANT STEEL FOR WELDED STRUCTURE HAVING EXCELLENT WELDABILITY AND GAS CUTTING PROPERTY, AND ITS MANUFACTURING METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232016A (en) * 1994-12-28 1996-09-10 Kawasaki Steel Corp Production of high tensile strength steel plate
JP2000303147A (en) * 1999-02-15 2000-10-31 Sumitomo Metal Ind Ltd Tapered steel sheet and its production
JP2007051321A (en) * 2005-08-17 2007-03-01 Nippon Steel Corp 490 MPa CLASS THICK HIGH-TENSILE STRENGTH FIRE-RESISTANT STEEL FOR WELDED STRUCTURE HAVING EXCELLENT WELDABILITY AND GAS CUTTING PROPERTY, AND ITS MANUFACTURING METHOD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124388A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp METHOD OF MANUFACTURING THICK TAPER PLATE WITH 510 MPa OR HIGHER TENSILE STRENGTH AND 60 mm OR THICKER THICK PORTION
WO2015141203A1 (en) * 2014-03-17 2015-09-24 Jfeスチール株式会社 Steel material for welding
JPWO2015141203A1 (en) * 2014-03-17 2017-04-06 Jfeスチール株式会社 Steel for welding
WO2016009595A1 (en) * 2014-07-15 2016-01-21 Jfeスチール株式会社 Method of manufacturing steel plate for high-heat input welding
JP6048627B2 (en) * 2014-07-15 2016-12-21 Jfeスチール株式会社 Manufacturing method of steel plates for high heat input welding
JPWO2016009595A1 (en) * 2014-07-15 2017-04-27 Jfeスチール株式会社 Manufacturing method of steel plates for high heat input welding

Also Published As

Publication number Publication date
JP5772620B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
JP5076658B2 (en) Steel material for large heat input welding
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP2012184500A (en) High tensile strength steel sheet having excellent low temperature toughness in weld heat-affected zone, and method for producing the same
KR101612660B1 (en) Process for producing tapered plate
KR100622888B1 (en) Steel product for high heat input welding and method for production thereof
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP5842574B2 (en) Manufacturing method of steel for large heat input welding
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5958428B2 (en) Manufacturing method of steel plates for high heat input welding
KR101930181B1 (en) Steel material for high heat input welding
JP5772620B2 (en) Tapered plate manufacturing method
JP5233365B2 (en) Steel material for large heat input welding
JP5233364B2 (en) Steel material for large heat input welding
JP2014031544A (en) Steel material for large heat input welding
JP5126375B2 (en) Steel material for large heat input welding
WO2013128650A1 (en) Steel material for high-heat-input welding
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JP5343486B2 (en) Steel material for large heat input welding
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JP5831196B2 (en) Manufacturing method of thick taper plate with tensile strength of 510 MPa or more and thickness part of 60 mm or more
JP6579135B2 (en) Low yield ratio steel sheet for construction and manufacturing method thereof
JP2016180171A (en) Non-heat treated low yield ratio high tensile strength thick steel sheet and manufacturing method therefor
JP2013053368A (en) Steel product for high heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250