JPH08232016A - Production of high tensile strength steel plate - Google Patents
Production of high tensile strength steel plateInfo
- Publication number
- JPH08232016A JPH08232016A JP4391395A JP4391395A JPH08232016A JP H08232016 A JPH08232016 A JP H08232016A JP 4391395 A JP4391395 A JP 4391395A JP 4391395 A JP4391395 A JP 4391395A JP H08232016 A JPH08232016 A JP H08232016A
- Authority
- JP
- Japan
- Prior art keywords
- temp
- steel
- tempering
- steel plate
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、橋梁、建築、造船、圧
力容器、タンク等に用いられる600Mpa級以上の引
張強度を有する板厚テーパ高張力鋼板や板厚の異なる高
張力鋼板の製造に好適な高張力鋼板の製造方法に関す
る。FIELD OF THE INVENTION The present invention is applied to the production of plate thickness taper high tensile steel plates having a tensile strength of 600 MPa or more used for bridges, construction, shipbuilding, pressure vessels, tanks, etc. The present invention relates to a suitable method for manufacturing a high-tensile steel plate.
【0002】[0002]
【従来の技術】従来から高張力を有する調質鋼を製造す
る技術が多数提案されている。これらの技術の例を挙げ
ると、特開昭57−89424号公報には、オーステナ
イト状態からの冷却条件を制限することにより、優れた
強度と靭性を有する調質鋼を製造する技術が開示されて
いる。また、特開昭58−120720号公報には、鋼
中に炭化物を分散析出させてこの炭化物を有効利用する
ことにより、高強度で一定品質の調質鋼を製造する技術
が開示されている。また、特開平2−141528号公
報には、細粒のオーステナイトをマルテンサイトに変態
させることにより、板厚が100mm以上の極厚材に板
厚方向にわたって優れた強度と靭性を与える技術が開示
されている。2. Description of the Related Art Conventionally, many techniques for producing heat-treated steel having high tensile strength have been proposed. As an example of these techniques, JP-A-57-89424 discloses a technique for producing a heat-treated steel having excellent strength and toughness by limiting cooling conditions from an austenitic state. There is. Further, Japanese Patent Application Laid-Open No. 58-120720 discloses a technique for producing a tempered steel of high strength and constant quality by dispersing and precipitating a carbide in the steel and effectively utilizing the carbide. Further, Japanese Patent Application Laid-Open No. 2-141528 discloses a technique of transforming fine-grained austenite into martensite to give an extremely thick material having a thickness of 100 mm or more excellent strength and toughness in the thickness direction. ing.
【0003】ところで、近年、鋼板の長手方向に板厚が
変化する板厚テーパ高張力鋼板が造船業界等で広く使用
されている。一般に、板厚テーパ調質高張力鋼板を製造
するに当たっては、板厚の異なる部分では焼入れ時の冷
却速度が異なるため、同じ化学成分で同じ強度を得るた
めには、例えば、 パラメータP=(T+273)(20+logt) (T:焼戻し温度(℃)、t:焼戻し保持時間(H
r)) を板厚に応じて変化させる必要がある。このため、上記
従来の高張力を有する調質鋼を製造する技術を、板厚テ
ーパ高張力鋼板の製造に適用すると、板厚の厚い部分と
薄い部分とでは強度差が発生する。この問題を解決する
技術として、特開昭62−166013号公報には、加
速冷却装置内で鋼板の先端及び尾端の冷却時間を変える
ことにより冷却停止温度を制御し、鋼板の長手方向の材
質変化を少なくする技術が開示されている。この技術で
は、冷却停止温度を所定の温度に制御することにより、
鋼板の厚みの差による材質の特性の差を少なくしようと
するものであるが、変化する板厚に起因する冷却速度の
差は依然として生じる。このため、材質の冷却速度依存
性が大きい材料においては、材質特性を一定に保つこと
が困難であるという問題がある。By the way, in recent years, a plate thickness taper high-tensile steel plate whose plate thickness changes in the longitudinal direction of the steel plate has been widely used in the shipbuilding industry and the like. In general, when manufacturing a high-strength steel plate with a tapered thickness, the cooling rate at the time of quenching is different between parts having different plate thicknesses. Therefore, in order to obtain the same strength with the same chemical composition, for example, the parameter P = (T + 273 ) (20 + logt) (T: tempering temperature (° C), t: tempering holding time (H
It is necessary to change r)) depending on the plate thickness. Therefore, when the conventional technique for producing heat-treated steel having high tensile strength is applied to the production of a taper taper high-strength steel sheet, a strength difference occurs between a thick portion and a thin portion. As a technique for solving this problem, Japanese Patent Laying-Open No. 62-166013 discloses that the cooling stop temperature is controlled by changing the cooling time of the front end and the tail end of the steel plate in the accelerated cooling device, and the material in the longitudinal direction of the steel plate is controlled. A technique for reducing the change is disclosed. In this technology, by controlling the cooling stop temperature to a predetermined temperature,
Although an attempt is made to reduce the difference in material characteristics due to the difference in steel plate thickness, the difference in cooling rate due to the changing plate thickness still occurs. Therefore, there is a problem that it is difficult to keep the material characteristics constant in a material having a large cooling rate dependency.
【0004】また、上述したように、板厚が異なると、
焼き戻しのパラメータPを板厚に応じて変化させる必要
がある。このため、異なる板厚の複数の鋼板を熱処理す
るに当っては、板厚に応じて熱処理条件を変えて熱処理
しなければならず、熱処理能率が低下することとなる。Further, as described above, when the plate thickness is different,
It is necessary to change the tempering parameter P according to the plate thickness. For this reason, when heat-treating a plurality of steel plates having different plate thicknesses, it is necessary to change the heat treatment conditions according to the plate thicknesses, and the heat treatment efficiency decreases.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記事情に
鑑み、板厚テーパ高張力鋼板の材質特性や同じロットで
熱処理された板厚の異なる複数の高張力鋼板の材質特性
を一定に保つことができる高張力鋼板の製造方法を提供
することを目的とする。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention keeps constant the material properties of a high-strength steel plate having a taper thickness and a plurality of high-strength steel plates having different thicknesses heat-treated in the same lot. An object of the present invention is to provide a method for producing a high-strength steel sheet that can be manufactured.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
の本発明の高張力鋼板の製造方法は、 C:0.03〜0.20wt% Si:0.05〜0.50wt% Mn:0.30〜2.50wt% Al:0.01〜0.10wt% N:0.007wt%以下 を含有し、さらに、 Cu:0.05〜1.30wt% Ni:0.10〜10.0wt% Cr:0.05〜1.50wt% Mo:0.03〜0.50wt% V:0.01〜0.15wt% Nb:0.005〜0.06wt% B:0.0003〜0.0020wt% Ca:0.0005〜0.0040wt% 希土類元素:0.001〜0.020wt% からなる群から選ばれた少なくとも1種の元素を含有
し、残部Fe及び不可避的不純物からなる鋼を、Ar3
点以上の仕上温度で熱間圧延し、Ar3 点以上の温度か
らマルテンサイト変態開始温度直上まで急冷して室温ま
で徐冷することによりベイナイト組織に変態させ、Ac
1 点以下の温度に焼き戻すことを特徴とするものであ
る。A method for producing a high-strength steel sheet according to the present invention for achieving the above object is C: 0.03 to 0.20 wt% Si: 0.05 to 0.50 wt% Mn: 0. 30 to 2.50 wt% Al: 0.01 to 0.10 wt% N: 0.007 wt% or less, and further Cu: 0.05 to 1.30 wt% Ni: 0.10 to 10.0 wt% Cr: 0.05 to 1.50 wt% Mo: 0.03 to 0.50 wt% V: 0.01 to 0.15 wt% Nb: 0.005 to 0.06 wt% B: 0.0003 to 0.0020 wt% Ca: 0.0005 to 0.0040 wt% Rare earth element: 0.001 to 0.020 wt% Steel containing at least one element selected from the group consisting of the balance Fe and unavoidable impurities, Ar 3
Hot rolling at a finishing temperature of not less than the point, rapid cooling from the temperature of the Ar 3 point or more to just above the martensite transformation start temperature and gradual cooling to room temperature to transform into a bainite structure, and Ac
It is characterized by tempering to a temperature of 1 point or less.
【0007】ここで、 C:0.05〜0.15wt% Si:0.10〜0.40wt% Mn:1.0〜2.0wt% Al:0.020〜0.050wt% にすることが好ましい。Here, C: 0.05 to 0.15 wt% Si: 0.10 to 0.40 wt% Mn: 1.0 to 2.0 wt% Al: 0.020 to 0.050 wt% preferable.
【0008】[0008]
【作用】先ず、化学成分の限定理由について説明する。
Cは、焼入れ性と強度を確保するために必要な元素であ
って、このためには0.03wt%以上を添加すること
が必要である。一方、添加量が0.20wt%を超える
と、母材靭性およびHAZ(溶接熱影響部)の靭性が劣
化するので、添加量は0.20wt%を上限とする。こ
こで、Cを0.05〜0.15wt%の範囲内にする
と、焼入れ性と強度がさらに向上し又、母材・HAZ靭
性がさらに向上する。First, the reasons for limiting the chemical components will be described.
C is an element necessary to secure hardenability and strength, and for this purpose, it is necessary to add 0.03 wt% or more. On the other hand, if the addition amount exceeds 0.20 wt%, the base material toughness and the HAZ (welding heat affected zone) toughness deteriorate, so the addition amount is made 0.20 wt% as the upper limit. Here, when C is in the range of 0.05 to 0.15 wt%, the hardenability and strength are further improved, and the base metal / HAZ toughness is further improved.
【0009】Siは、脱酸を促進しかつ強度向上に有効
な元素であるため、0.05wt%以上添加するが、過
度の添加は母材靭性およびHAZ靭性の劣化を招くの
で、添加量は0.50wt%を上限とする。ここで、S
iを0.10〜0.40wt%の範囲内にすると、いっ
そう脱酸が促進され強度が向上し、また、母材・HAZ
靭性がさらに向上する。Si is an element effective in promoting deoxidation and improving strength, so 0.05% by weight or more is added, but excessive addition causes deterioration of base material toughness and HAZ toughness, so the addition amount is Si. The upper limit is 0.50 wt%. Where S
When i is in the range of 0.10 to 0.40 wt%, deoxidation is further promoted to improve the strength, and the base metal / HAZ
The toughness is further improved.
【0010】Mnは、靭性を損なわせることなく強度を
向上させるために有効であり、このためには少なくとも
0.30wt%以上の添加が必要である。しかし過度の
添加は加工性を劣化させるため、2.50wt%以下に
限定した。ここで、Mnを1.00〜2.00wt%の
範囲内にすると、靭性の低下がいっそう防止され、強度
はいっそう向上する。Mn is effective for improving the strength without impairing the toughness, and for this purpose, it is necessary to add at least 0.30 wt% or more. However, excessive addition deteriorates workability, so the content was limited to 2.50 wt% or less. Here, when Mn is in the range of 1.00 to 2.00 wt%, the deterioration of toughness is further prevented and the strength is further improved.
【0011】Alは、鋼の脱酸と組織の微細化のため
に、少なくとも0.01wt%の添加を必要とするが、
必要以上に添加すると、鋼中に酸化物系介在物が多量に
生成して鋼の靭性を大幅に劣化させるので、その上限を
0.10wt%とした。ここで、Alを0.020〜
0.050wt%の範囲内にすると、鋼の脱酸がいっそ
う促進され、組織の微細化もいっそう促進される。Al needs to be added in an amount of at least 0.01 wt% for deoxidizing steel and refining the structure.
If added more than necessary, a large amount of oxide-based inclusions are generated in the steel and the toughness of the steel is significantly deteriorated, so the upper limit was made 0.10 wt%. Here, Al is 0.020 to
Within the range of 0.050 wt%, deoxidation of steel is further promoted, and refinement of the structure is further promoted.
【0012】Nは、Alと結合してAlNとなり、鋳片
加熱時の結晶粒の粗大化を防止する効果を有する。しか
し、Nを多量に含有するとHAZ靭性を劣化させるの
で、N含有量を0.007wt%以下とした。Cuは、
固溶強化及び析出強化に有効である。前者の効果を得る
ためには、0.05wt%以上の添加が必要であり、一
方、後者の効果を得るためには、0.5wt%以上の添
加が必要である。しかし、1.30wt%を超える場合
は、いずれの強化においても更なる効果が小さく、経済
的でない。[0012] N combines with Al to become AlN, which has an effect of preventing coarsening of crystal grains during heating of a slab. However, if a large amount of N is contained, the HAZ toughness deteriorates, so the N content was made 0.007 wt% or less. Cu is
It is effective for solid solution strengthening and precipitation strengthening. In order to obtain the former effect, addition of 0.05 wt% or more is necessary, while in order to obtain the latter effect, addition of 0.5 wt% or more is necessary. However, when it exceeds 1.30 wt%, the further effect is small in any strengthening and it is not economical.
【0013】Niは、靭性を大幅に改善する効果を有
し、延性・脆性遷移温度を低温側へ移行させるので低温
用鋼の製造に有効である。それらの効果を得るために
は、0.10wt%以上の添加が必要である。しかし1
0.0wt%を超える量を添加しても有用な低温用鋼は
得られない。Crは、焼入性向上に有用な元素であり、
このため0.05wt%以上の添加を必要とする。しか
し、1.50wt%を超える添加は溶接性の劣化を招
く。Ni has the effect of significantly improving toughness and shifts the ductile / brittle transition temperature to the low temperature side, and is therefore effective in the production of low temperature steel. In order to obtain those effects, it is necessary to add 0.10 wt% or more. But 1
A useful low temperature steel cannot be obtained even if an amount exceeding 0.0 wt% is added. Cr is an element useful for improving hardenability,
Therefore, it is necessary to add 0.05 wt% or more. However, addition of more than 1.50 wt% causes deterioration of weldability.
【0014】Moは、焼入性向上、焼戻し軟化抵抗を高
めるために有効な元素である。これらの効果を発揮させ
るためには0.03wt%以上の添加を必要とする。し
かし0.50wt%を超えて添加してもコスト増加が大
きく経済的でない。Vは、析出強化による強度上昇に有
効な元素である。この効果を発揮させるためには、0.
01wt%以上の添加を必要とする。しかし、0.15
wt%を超える添加は、溶接性及びHAZ靭性を劣化さ
せる。Mo is an element effective for improving hardenability and temper softening resistance. In order to exert these effects, it is necessary to add 0.03 wt% or more. However, even if added in excess of 0.50 wt%, the cost increases greatly and it is not economical. V is an element effective in increasing the strength by precipitation strengthening. In order to exert this effect, 0.
Addition of 01 wt% or more is required. But 0.15
Addition in excess of wt% deteriorates weldability and HAZ toughness.
【0015】Nbは、鋳片加熱時のオーステナイト粒の
粗大化を防止し、また圧延時の細粒化、焼戻し処理時の
析出強化等に有効な元素である。これらの効果を発揮す
るためには、0.005wt%以上の添加を必要とす
る。しかし、0.06wt%を超える添加はHAZ靭性
を劣化させる。Bは、微量の添加により焼入性を向上さ
せる効果を有する。この効果を発揮させるためには、
0.0003wt%以上の添加が必要であるが、0.0
020wt%を超える場合は、B化合物による靭性の劣
化を招く。Nb is an element effective in preventing coarsening of austenite grains during heating of a slab, refining grains during rolling, and strengthening precipitation during tempering. In order to exert these effects, addition of 0.005 wt% or more is required. However, addition of more than 0.06 wt% deteriorates HAZ toughness. B has the effect of improving the hardenability by adding a trace amount. In order to exert this effect,
It is necessary to add 0.0003 wt% or more, but 0.0
If it exceeds 020 wt%, the toughness is deteriorated by the B compound.
【0016】Caは、MnSを球状化することにより、
靭性を向上させる。この効果を発揮させるためには、
0.0005wt%以上の添加が必要であるが、0.0
040wt%を超える場合は、酸化系介在物の増大を招
き、靭性の劣化を来す。REM(希土類元素)は、Ca
と同様の機構により靭性を向上させる。この効果を発揮
させるためには、0.001wt%以上の添加が必要で
あるが、0.020wt%を超える場合は酸化系介在物
の増大を招き、靭性の劣化を来す。Ca is formed by spheroidizing MnS.
Improve toughness. In order to exert this effect,
It is necessary to add 0.0005 wt% or more, but 0.0
If it exceeds 040 wt%, an increase of oxidative inclusions is caused, resulting in deterioration of toughness. REM (rare earth element) is Ca
Improves toughness by a mechanism similar to. In order to exert this effect, it is necessary to add 0.001 wt% or more, but if it exceeds 0.020 wt%, oxidative inclusions are increased and toughness is deteriorated.
【0017】次に、熱処理条件等の限定理由について述
べる。スラブ加熱温度は、1000〜1300℃の温度
範囲にすることが好ましい。この理由は、添加成分を十
分に固溶するには1000℃以上の温度が必要であり、
一方、1300℃を超えるとオーステナイト粒が粗大化
し、その後の圧延によっても粗粒化が促進されずに靭性
が劣化するからである。このため、1000〜1300
℃の温度範囲内に加熱することが好ましい。Next, the reasons for limitation such as heat treatment conditions will be described. The slab heating temperature is preferably in the temperature range of 1000 to 1300 ° C. The reason for this is that a temperature of 1000 ° C. or higher is necessary to sufficiently form a solid solution with the added components,
On the other hand, if the temperature exceeds 1300 ° C., the austenite grains become coarse, and the coarsening is not promoted even in the subsequent rolling, and the toughness deteriorates. Therefore, 1000 to 1300
It is preferable to heat within the temperature range of ° C.
【0018】また、熱間圧延においては、高強度かつ高
靭性を得るために、加工歪を導入することが好ましい。
そこで、加工歪みを効果的に導入するために、好ましく
は、900℃以下Ar3 点以上での圧下率を40%以
上、かつ圧延仕上温度の上限を900℃とする。上記の
圧延工程を経た鋼板は、マルテンサイト変態開始温度
(Ms点)直上まで急冷して室温まで徐冷することによ
りベイナイト組織に変態される。この処理は、例えばM
s点直上まで水冷し、その後室温まで空冷することによ
り行う。Further, in hot rolling, it is preferable to introduce working strain in order to obtain high strength and high toughness.
Therefore, in order to effectively introduce the working strain, it is preferable that the rolling reduction at 900 ° C. or less and at Ar 3 point or more is 40% or more, and the upper limit of the rolling finishing temperature is 900 ° C. The steel sheet that has undergone the above rolling process is transformed into a bainite structure by being rapidly cooled to just above the martensite transformation start temperature (Ms point) and then gradually cooled to room temperature. This process is performed by, for example, M
It is performed by water cooling to just above the s point and then air cooling to room temperature.
【0019】本発明者らは、表1の化学成分を有する鋼
を用いて上記の条件で熱間圧延し、その後水冷を開始し
Ms点直上で水冷を停止した鋼板の焼戻し特性を調べ、
従来のMs点以下で水冷を停止したものに比べ、焼戻し
条件に対する強度の感受性が鈍いことを見いだした。そ
の例を図1,図2に示す。図1は、Ms点以下で水冷を
停止した鋼の焼戻し特性を示すグラフ、図2は、Ms点
直上で水冷を停止した鋼の焼戻し特性を示すグラフであ
る。図1,図2からわかるように、板厚テーパー鋼板に
おいては、Ms点直上で水冷を停止することにより、冷
却速度が速い、板厚の薄い部分の焼戻し特性を、板厚の
厚い部分の焼戻し特性に近づけることができ、板厚テー
パー鋼板の各部分の焼戻し後の引張強度をほぼ均一にす
ることが可能となる。また、板厚の異なる鋼板において
は、冷却速度が速い、薄い板厚の鋼板の焼戻し特性を、
厚い板厚の鋼板の焼戻し特性に近づけることができ、薄
い板厚の鋼板と厚い板厚の鋼板を同一熱処理条件で焼戻
ししても、焼戻し後の引張強度をほぼ等しくすることが
できる。ここで、冷却停止温度はマルテンサイト変態が
開始しない、Ms点の直上とすることが強度保証の面か
らも好ましいが、実操業での板温度の制御技術などを考
慮してMs点〜Ms点+(50〜100℃)の範囲内と
するのが望ましい。The inventors of the present invention investigated the tempering characteristics of a steel sheet which was hot-rolled under the above-mentioned conditions using a steel having the chemical composition shown in Table 1, after which water cooling was started and water cooling was stopped immediately above the Ms point.
It has been found that the strength is less sensitive to the tempering condition as compared with the conventional one in which water cooling is stopped below the Ms point. Examples thereof are shown in FIGS. FIG. 1 is a graph showing the tempering characteristics of the steel whose water cooling was stopped below the Ms point, and FIG. 2 is a graph showing the tempering characteristics of the steel whose water cooling was stopped just above the Ms point. As can be seen from FIGS. 1 and 2, by stopping the water cooling just above the Ms point in the taper steel plate, the tempering characteristics of the thin part having a high cooling rate and the tempering property of the thick part can be obtained. The properties can be made close to each other, and the tensile strength after tempering of each part of the tapered steel plate can be made substantially uniform. In addition, for steel plates with different plate thicknesses, the cooling rate is fast, and the tempering characteristics of thin steel plates are
It is possible to approximate the tempering characteristics of a thick steel plate, and even if the thin steel plate and the thick steel plate are tempered under the same heat treatment conditions, the tensile strength after tempering can be made substantially equal. Here, it is preferable that the cooling stop temperature is just above the Ms point at which the martensitic transformation does not start, from the viewpoint of the strength guarantee, but in consideration of the plate temperature control technique in the actual operation, the Ms point to the Ms point. It is desirable to set it within the range of + (50 to 100 ° C.).
【0020】[0020]
【表1】 [Table 1]
【0021】上述したように、本発明では、熱間圧延後
に高温に保持された鋼板を直接焼入れするにあたり、M
s点直上で急冷を停止することにより、ベイナイト変態
組織の状態で焼入れ処理を終了することになる。したが
って焼入れ処理後に行う焼戻し処理における条件(温度
や保持時間)を種々に変化させても焼戻し後の引張強度
の変化が小さくなり、板厚の厚い部分と薄い部分の焼戻
し特性をほぼ均一化することができる。そのため板厚テ
ーパー鋼板の焼戻し後の引張強度をほぼ均一にすること
が可能となる。また、上述したように、冷却速度が速
い、薄い板厚の鋼板の焼戻し特性を、厚い板厚の鋼板の
焼戻し特性に近づけることができるので、両者を同一熱
処理条件で焼戻しすることが可能となる。このため、板
厚の異なる同一化学成分の鋼板を同一ロットで焼戻し処
理することが可能となり、焼戻しの操業におけるチャン
スフリーが達成され熱処理能率が向上する。なお、通常
の焼戻し処理無し材(TMCP鋼)で適用している制御
技術、すなわち低温加熱や末再結晶域圧延+二層域圧延
の技術を利用することにより従来方法と同等以上の優れ
た靭性を得ることができる。As described above, according to the present invention, when directly quenching a steel sheet which is held at a high temperature after hot rolling, M
By stopping the quenching immediately above the s point, the quenching process is terminated in the state of the bainite transformation structure. Therefore, even if the conditions (temperature and holding time) in the tempering process after the quenching process are variously changed, the change in tensile strength after tempering will be small, and the tempering characteristics of thick and thin parts will be almost uniform. You can Therefore, it becomes possible to make the tensile strength of the tapered steel plate after tempering substantially uniform. Further, as described above, the tempering characteristics of the thin steel sheet having a high cooling rate can be brought close to the tempering characteristics of the thick steel sheet, so that both can be tempered under the same heat treatment condition. . For this reason, it becomes possible to temper the steel sheets having the same chemical composition and different thicknesses in the same lot, and chance-free in the tempering operation is achieved and the heat treatment efficiency is improved. The toughness equivalent to or better than the conventional method can be obtained by using the control technology applied to ordinary untempered material (TMCP steel), that is, the technology of low temperature heating or powder recrystallization zone rolling + double layer zone rolling. Can be obtained.
【0022】[0022]
【実施例】以下、本発明の高張力鋼板の製造方法の一実
施例を説明する。 [第1実施例]上記の表1に示す各成分組成の板厚テー
パ鋼板を、表2に示す各条件に従ってスラブ加熱、熱間
圧延および焼入れを行った。このようにして得られた各
板厚テーパ鋼板からそれぞれ試験片を採取して引張試験
に供した。その結果を表2に併記する。EXAMPLE An example of the method for producing a high-strength steel sheet according to the present invention will be described below. [First Example] Tapered steel plates having the respective component compositions shown in Table 1 above were subjected to slab heating, hot rolling and quenching according to the conditions shown in Table 2. Test pieces were taken from each of the thus obtained taper steel plates having different plate thicknesses and subjected to a tensile test. The results are also shown in Table 2.
【0023】[0023]
【表2】 [Table 2]
【0024】表2に示すように板厚が15mmの部分と
30mmの部分における引張強度は、比較例ではその偏
差が50〜80Mpaであるのに対し、本発明による鋼
板ではその偏差が30Mpaとなり極めて均一な特性が
得られた。このように、上記実施例では、化学成分が限
定された板厚テーパ鋼板に所定の熱処理を施したので、
焼入れ後に行う焼戻しの条件(温度や保持時間)を種々
に変化させても焼戻し後の強度変化が小さくなり、板厚
の厚い部分と薄い部分の焼戻し特性をほぼ均一化でき、
板厚が異なる部分の引張強度の差が少ない板厚テーパ高
張力鋼板を製造することができる。 [第2実施例]表1に示す各成分組成の鋼板を表3に示
す各条件に従ってスラブ加熱、熱間圧延および直接焼入
れを行い、その後、各鋼種各条件毎に同一熱処理条件に
て焼戻しを実施した。このようにして得られた各鋼板か
らそれぞれ試験片を採取し引張試験に供した。その結果
を表3に併記する。表3では、試験No.1と試験N
o.2の組み合わせ、試験No.3と試験No.4の組
み合わせのように、番号の若い順の組み合わせ毎に、冷
却速度と板厚が異なる組み合わせになっている。As shown in Table 2, the difference in tensile strength between the portions having a plate thickness of 15 mm and the portion having a plate thickness of 30 mm is 50 to 80 MPa in the comparative example, whereas the deviation is 30 MPa in the steel sheet according to the present invention. Uniform properties were obtained. As described above, in the above example, since the predetermined thickness heat treatment was applied to the plate thickness taper steel plate with limited chemical composition,
Even if the tempering conditions after tempering (temperature and holding time) are variously changed, the strength change after tempering is small, and the tempering characteristics of thick and thin parts can be made almost uniform.
It is possible to manufacture a high-strength steel plate having a taper of plate thickness with a small difference in tensile strength between portions having different plate thicknesses. [Second Example] A steel sheet having each component composition shown in Table 1 was subjected to slab heating, hot rolling and direct quenching according to each condition shown in Table 3, and then tempered under the same heat treatment condition for each steel type. Carried out. Test pieces were taken from each of the steel plates thus obtained and subjected to a tensile test. The results are also shown in Table 3. In Table 3, the test No. 1 and test N
o. 2 combination, test no. 3 and test No. Like the combination of 4, the cooling rate and the plate thickness are different for each combination in ascending order of the numbers.
【0025】[0025]
【表3】 [Table 3]
【0026】表3に示すように、比較例の板厚15mm
の鋼板と板厚30mmの鋼板の引張強度の差は50〜8
0Mpaであるのに対し、実施例の同じ条件の鋼板では
その差が30Mpaとなり、同一熱処理条件でも引張強
度の差が少ないことが判明した。このように、化学成分
が限定された板厚の異なる鋼板に所定の熱処理を施した
ので、焼戻し条件に対する各鋼板の引張強度の感受性を
鈍くすることができる。このため、薄い板厚の鋼板の焼
戻し特性を、厚い板厚の鋼板の焼戻し特性に近づけるこ
とができ、両者を同一熱処理条件で焼戻しすることが可
能となる。この結果、板厚の異なる同一成分の鋼板を、
同一ロットで焼戻し処理することが可能となり、焼戻し
の操業におけるチャンスフリーが達成され、熱処理能率
が向上する。As shown in Table 3, the plate thickness of the comparative example is 15 mm.
The difference in tensile strength between the steel plate of No. 3 and the steel plate of 30 mm thickness is 50 to 8
While the difference was 0 Mpa, the difference was 30 Mpa for the steel sheets under the same conditions in the examples, and it was found that the difference in tensile strength was small even under the same heat treatment conditions. As described above, since the predetermined heat treatment is applied to the steel plates having different chemical compositions and different thicknesses, the sensitivity of the tensile strength of each steel plate to the tempering condition can be made dull. For this reason, the tempering characteristics of the thin steel sheet can be made close to the tempering characteristics of the thick steel sheet, and both can be tempered under the same heat treatment conditions. As a result, steel plates of the same composition with different plate thickness,
It is possible to carry out tempering treatment in the same lot, a chance-free operation in tempering operation is achieved, and heat treatment efficiency is improved.
【0027】なお、上記実施例においては600Mpa
鋼の場合について説明したが、本発明はこれに限定され
るものではなく、700Mpa鋼や800Mpa鋼にも
適用できることは勿論である。In the above embodiment, 600 Mpa
Although the case of steel has been described, the present invention is not limited to this, and it goes without saying that the present invention can be applied to 700 Mpa steel and 800 Mpa steel.
【0028】[0028]
【発明の効果】以上説明したように本発明の高張力鋼板
の製造方法によれば、化学成分が限定された鋼に所定の
熱処理を施したので、焼入れ後に行う焼戻しの条件(温
度や保持時間)を種々に変化させても焼戻し後の引張強
度の変化が小さくなり、板厚が異なっても焼戻し特性を
ほぼ均一化でき、引張強度の差が小さい高張力鋼板を製
造できる。As described above, according to the method for producing a high-strength steel sheet of the present invention, since the steel having a limited chemical composition is subjected to the predetermined heat treatment, the tempering conditions (temperature and holding time after the quenching are performed. ), The change in tensile strength after tempering becomes small, and the tempering characteristics can be made almost uniform even if the sheet thickness differs, and a high-strength steel sheet with a small difference in tensile strength can be manufactured.
【図1】Ms点以下で水冷を停止した鋼の焼戻し特性を
示すグラフである。FIG. 1 is a graph showing the tempering characteristics of steel whose water cooling is stopped below the Ms point.
【図2】Ms点直上で水冷を停止した鋼の焼戻し特性を
示すグラフである。FIG. 2 is a graph showing the tempering characteristics of steel whose water cooling has been stopped immediately above the Ms point.
Claims (1)
し、残部Fe及び不可避的不純物からなる鋼を、 Ar3 点以上の仕上温度で熱間圧延し、 Ar3 点以上の温度からマルテンサイト変態開始温度直
上まで急冷して室温まで徐冷することによりベイナイト
組織に変態させ、 Ac1 点以下の温度に焼き戻すことを特徴とする高張力
鋼板の製造方法。1. C: 0.03 to 0.20 wt% Si: 0.05 to 0.50 wt% Mn: 0.30 to 2.50 wt% Al: 0.01 to 0.10 wt% N: 0.007 wt % Or less, and further, Cu: 0.05 to 1.30 wt% Ni: 0.10 to 10.0 wt% Cr: 0.05 to 1.50 wt% Mo: 0.03 to 0.50 wt% V: 0.01 to 0.15 wt% Nb: 0.005 to 0.06 wt% B: 0.0003 to 0.0020 wt% Ca: 0.0005 to 0.0040 wt% Rare earth element: 0.001 to 0.020 wt% made containing at least one element selected from the group, the steel and the balance Fe and unavoidable impurities, hot rolling at a temperature finish three or more points Ar, martensitic transformation starting from Ar 3 point or more temperature Quench immediately above temperature It is transformed into bainite structure gradually cooled to room temperature Te, the method of producing a high-tensile steel plate, characterized in that tempered to a temperature below a point Ac.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4391395A JPH08232016A (en) | 1994-12-28 | 1995-03-03 | Production of high tensile strength steel plate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32667894 | 1994-12-28 | ||
JP6-326678 | 1994-12-28 | ||
JP4391395A JPH08232016A (en) | 1994-12-28 | 1995-03-03 | Production of high tensile strength steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08232016A true JPH08232016A (en) | 1996-09-10 |
Family
ID=26383747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4391395A Pending JPH08232016A (en) | 1994-12-28 | 1995-03-03 | Production of high tensile strength steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08232016A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012162801A (en) * | 2011-01-18 | 2012-08-30 | Jfe Steel Corp | Method for producing taper plate |
WO2013108419A1 (en) * | 2012-01-18 | 2013-07-25 | Jfeスチール株式会社 | Process for producing tapered plate |
-
1995
- 1995-03-03 JP JP4391395A patent/JPH08232016A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012162801A (en) * | 2011-01-18 | 2012-08-30 | Jfe Steel Corp | Method for producing taper plate |
WO2013108419A1 (en) * | 2012-01-18 | 2013-07-25 | Jfeスチール株式会社 | Process for producing tapered plate |
CN104066858A (en) * | 2012-01-18 | 2014-09-24 | 杰富意钢铁株式会社 | Process for producing tapered plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4572748A (en) | Method of manufacturing high tensile strength steel plates | |
KR101222724B1 (en) | Method of producing high-strength steel plates with excellent ductility and plates thus produced | |
JP2008208454A (en) | High-strength steel excellent in delayed fracture resistance and its production method | |
JP2876968B2 (en) | High-strength steel sheet having high ductility and method for producing the same | |
JP2017197787A (en) | High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor | |
JP5089224B2 (en) | Manufacturing method of on-line cooling type high strength steel sheet | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JP7493138B2 (en) | Ultra-low yield ratio high tensile steel plate and its manufacturing method | |
JPH1180890A (en) | High strength hot rolled steel plate and its production | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
KR20200127577A (en) | Ultra-high strength steel sheet having shear workability excellent and method for manufacturing thereof | |
JPH0693332A (en) | Production of high tensile strength and high toughness fine bainitic steel | |
JP3264956B2 (en) | Accelerated cooling type manufacturing method for thick steel plate | |
JP2655901B2 (en) | Manufacturing method of direct quenching type high strength steel sheet with excellent toughness | |
JP2621744B2 (en) | Ultra-high tensile cold rolled steel sheet and method for producing the same | |
JP3337246B2 (en) | Method for producing thick H-section steel having a thickness of 40 mm or more with small difference in mechanical properties in the thickness direction | |
JPH08232016A (en) | Production of high tensile strength steel plate | |
JPS63183123A (en) | Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating | |
JP3255004B2 (en) | High strength steel material for welding excellent in toughness and arrestability and method for producing the same | |
JPH06240353A (en) | Production of 780mpa class high tensile strength steel excellent in weldability and low temperature toughness | |
JPH09256038A (en) | Heat treatment before stress relieving annealing treatment for thick steel plate | |
JPH07233414A (en) | Production of low yield ratio high tensile strength steel plate excellent in uniform elongation | |
JPH10168518A (en) | Manufacture of high tensile strength steel plate with tapered thickness | |
JPH08225883A (en) | Production of high tensile strength steel plate excellent in strength and toughness | |
JPH06145787A (en) | Production of high tensile strength steel excellent in weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20021217 |