JPH06240353A - Production of 780mpa class high tensile strength steel excellent in weldability and low temperature toughness - Google Patents

Production of 780mpa class high tensile strength steel excellent in weldability and low temperature toughness

Info

Publication number
JPH06240353A
JPH06240353A JP2663293A JP2663293A JPH06240353A JP H06240353 A JPH06240353 A JP H06240353A JP 2663293 A JP2663293 A JP 2663293A JP 2663293 A JP2663293 A JP 2663293A JP H06240353 A JPH06240353 A JP H06240353A
Authority
JP
Japan
Prior art keywords
less
temperature
seconds
point
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2663293A
Other languages
Japanese (ja)
Other versions
JP2692523B2 (en
Inventor
Tomoya Fujiwara
知哉 藤原
Hideji Okaguchi
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2663293A priority Critical patent/JP2692523B2/en
Publication of JPH06240353A publication Critical patent/JPH06240353A/en
Application granted granted Critical
Publication of JP2692523B2 publication Critical patent/JP2692523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide the method for producing 780MPa class high tensile strength steel excellent in weldability and low temp. toughness. CONSTITUTION:Steel contg. 0.01 to 0.20% C, <=0.04% Si, 0.6 to 2.0% Mn, 0.005 to 0.08% Nb, 0.005 to 0.03% Ti, 0.05 to 1.0% Cu, 0.5 to 4.0% Ni, 0.005 to 0.08% sol.Al and <=0.006% N is heated to 1000 to 1250 deg.C and is rolled down at <=900 deg.C at >=50% cumulative draft, and the rolling is completed at the Ar3 point to 900 deg.C. Immediately after that, it is subjected to accelerated cooling to 580 to 300 deg.C, is cooled and is thereafter isothemtally held for 10 to 100sec or is cooled for 10 to 100sec at <=0.5 deg.C/s cooling rate. Next, the operation of reheating it to the Ac3 point to (the Ac3 point+1000C) and thereafter subjecting it to hardening treatment is executed for one time or repeated for >=two times, and after that, tempering treatment is executed at the Ac1 point or below. The steel may moreover be incorporated with one or more kinds among 0.05 to 1.0% Cr, 0.05 to 1.50% Mo, 0.01 to 0.10% V and 0.0005 to 0.0020% B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、引張強度が 780MPa
以上の性能を有し、溶接性と低温靱性に優れた高張力鋼
の製造方法に係わり、特に上記性能を有する板厚が40mm
以上の厚肉鋼を安定して製造するのに好適な調質型高張
力鋼の製造方法に関する。
The present invention has a tensile strength of 780 MPa.
It is related to the manufacturing method of high-strength steel that has the above performance and is excellent in weldability and low-temperature toughness.
The present invention relates to a method for producing a heat-treated high-strength steel suitable for stably producing the thick steel.

【0002】[0002]

【従来の技術】近年、溶接構造物の大型化傾向はますま
す著しくなっており、これらに使用される構造用鋼板
は、より一層の高張力化並びに厚肉化の一途をたどって
いる。例えば、ジャッキアップ型石油掘削リグのラック
材に、厚さ 100mmの 780MPa 級高張力鋼板が使用され
たりするようになっている。しかしながら、高強度化に
伴い溶接性および低温靱性は低下する傾向にあり、現在
のところ一般的に使用されている 780MPa 級高張力鋼
板は、十分な靱性と溶接性が兼備されているとは言い難
く、さらに構造物の安全性、すなわち、脆性破壊防止の
観点から優れた性能を有する 780MPa 級厚鋼板が求め
られている。
2. Description of the Related Art In recent years, the tendency of welded structures to increase in size has become more and more remarkable, and structural steel sheets used for these structures have been increasing in tension and thickness. For example, 100 mm thick 780 MPa class high-strength steel sheets have been used for the rack material of jack-up type oil drilling rigs. However, the weldability and low temperature toughness tend to decrease with increasing strength, and it is said that the 780MPa class high strength steel sheet that is currently generally used has both sufficient toughness and weldability. There is a demand for a 780 MPa grade thick steel plate that is difficult and has excellent performance from the viewpoint of structural safety, that is, prevention of brittle fracture.

【0003】従来の 780MPa 級高強度厚鋼板の製造方
法としては、特開平1−195242号公報に開示されている
ように、圧延完了後、連続2回の再加熱、焼入れと引き
続き1回の焼戻しを行う計3回の熱処理法によって靱性
を向上させることが公知となっている。
As a conventional method for producing a 780 MPa class high strength thick steel plate, as disclosed in Japanese Patent Laid-Open No. 195242/1989, after rolling is completed, continuous reheating is carried out twice, quenching is followed by one tempering. It is known that the toughness is improved by a total of three heat treatment methods of performing.

【0004】[0004]

【発明が解決しようとする課題】上記の特開平1−1952
42号公報に示される方法では、2回目の焼入れ前のオー
ステナイト粒径を十分に微細にすることができず、所望
の靱性が得られない。そのため、添加合金元素量を最適
化し、さらに1回目の熱処理方法を種々工夫することが
必要である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the method disclosed in Japanese Patent Publication No. 42, the austenite grain size before the second quenching cannot be made sufficiently fine, and desired toughness cannot be obtained. Therefore, it is necessary to optimize the amount of the added alloy element and further devise the first heat treatment method.

【0005】本発明の目的は、1段目の加工熱処理で微
細な炭化物および炭窒化物の分散を有するベイナイト組
織とすることによって、再加熱の際に微細なオーステナ
イト粒を得ることができる、溶接性と低温靱性に優れた
780MPa 級高張力厚鋼の製造方法を提供することにあ
る。
The object of the present invention is to obtain fine austenite grains during reheating by forming a bainite structure having fine carbide and carbonitride dispersion in the first stage heat treatment. Toughness and low temperature toughness
An object of the present invention is to provide a method for manufacturing 780 MPa grade high strength thick steel.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、次の
(1)、(2) の製造方法にある。
The summary of the present invention is as follows.
It is in the manufacturing method of (1) and (2).

【0007】(1) 質量%にて、C:0.01〜0.20%、Si:
0.04%以下、Mn: 0.6〜2.0 %、Nb:0.005 〜0.08%、
Ti: 0.005〜0.03%、Cu:0.05〜1.0 %、Ni: 0.5〜4.
0 %、sol.Al: 0.005〜0.08%およびN: 0.006%以下
を含有し、残部がFeおよび不可避不純物からなる鋼を、
1000〜1250℃の温度に加熱した後、 900℃以下の温度で
累積圧下率50%以上の圧下を加え、 Ar3点以上 900℃以
下の温度で圧延を完了し、その後1段目の熱処理とし
て、直ちに 580℃以下 300℃以上の温度まで加速冷却
し、冷却後、 580℃以下 300℃以上の温度で、10秒以上
100秒以下の範囲で等温保持し、または 580℃以下 300
℃以上の温度で、10秒以上 100秒以下の範囲で 0.5℃/s
以下の冷却速度で冷却し、次いで2段目の熱処理とし
て、 Ac3点以上、(Ac3点+100 ℃) 以下の温度域に再加
熱した後焼入処理する操作を1回または2回以上繰り返
して行い、その後 Ac1点以下の温度で焼戻処理を行うこ
とを特徴とする溶接性と低温靱性に優れた 780MPa 級
高張力鋼の製造方法。
(1) In mass%, C: 0.01 to 0.20%, Si:
0.04% or less, Mn: 0.6 to 2.0%, Nb: 0.005 to 0.08%,
Ti: 0.005-0.03%, Cu: 0.05-1.0%, Ni: 0.5-4.
Steel containing 0%, sol.Al: 0.005 to 0.08% and N: 0.006% or less, with the balance Fe and unavoidable impurities,
After heating to a temperature of 1000 to 1250 ° C, a reduction of cumulative reduction of 50% or more is applied at a temperature of 900 ° C or less, rolling is completed at a temperature of Ar 3 points or more and 900 ° C or less, and then as the first heat treatment. Immediately, accelerate cooling to 580 ℃ or less and 300 ℃ or more, and after cooling, at 580 ℃ or less and 300 ℃ or more, for 10 seconds or more.
Keep isothermal for 100 seconds or less, or 580 ℃ or less 300
0.5 ℃ / s in 10 seconds or more and 100 seconds or less at a temperature of ℃ or more
Cooling at the following cooling rate, then as the second heat treatment, reheating to a temperature range of Ac 3 point or higher and (Ac 3 point + 100 ° C) or lower, and then quenching treatment is repeated once or twice or more. The method for producing a 780 MPa class high strength steel excellent in weldability and low temperature toughness, which comprises performing tempering treatment at a temperature of Ac 1 point or lower.

【0008】(2) 上記(1) に記載の鋼が、さらに質量%
にて、Cr:0.05〜1.0 %、Mo:0.05〜1.50%、V:0.01
〜0.10%およびB:0.0005〜0.0020%の1種以上を含有
することを特徴とする上記 (1)に記載の溶接性と低温靱
性に優れた 780MPa 級高張力鋼の製造方法。
(2) The steel described in (1) above has a further mass%
At Cr: 0.05 to 1.0%, Mo: 0.05 to 1.50%, V: 0.01
To 0.10% and B: 0.0005 to 0.0020%, and a method for producing a 780 MPa class high strength steel excellent in weldability and low temperature toughness according to (1) above.

【0009】本発明者らは、前記のような観点から溶接
性と靱性の優れた 780MPa 級厚鋼の製造手段を提供す
べく鋭意研究を重ねた結果、 780MPa 級高張力鋼にお
いて、強度を低下させることなく靱性を向上させるため
には、再加熱の際のオーステナイト粒径を微細にするこ
とが最も効果的であるという知見を得た。
From the above viewpoints, the present inventors have earnestly studied to provide a means for producing a 780 MPa grade thick steel having excellent weldability and toughness, and as a result, the strength of the 780 MPa grade high strength steel is reduced. It was found that it is most effective to make the austenite grain size fine during reheating in order to improve the toughness without causing it.

【0010】ところが、3回熱処理法の1回目の処理を
単なる焼入処理とする従来の方法では、粗い上部ベイナ
イト、もしくはこれとマルテンサイトとの混合組織とな
り、2回目の焼入れ前の組織として望ましい微細なオー
ステナイト粒を得る方法としては不適当である。
However, in the conventional method in which the first treatment of the third heat treatment method is simply a quenching treatment, a coarse upper bainite or a mixed structure of this and martensite is formed, which is desirable as the structure before the second hardening. It is not suitable as a method for obtaining fine austenite grains.

【0011】上記の問題を解決するために、加工熱処理
法と添加合金元素量の適正化との両面から高靱性 780M
Pa 級高張力鋼の製造手段を検討した結果、以下の〜
の手段を見いだした。
In order to solve the above problems, a high toughness of 780M is obtained from both the aspects of thermomechanical treatment and optimization of the amount of added alloy elements.
As a result of examining the production method of the Pa class high strength steel, the following
I found the means of.

【0012】1段目の熱処理において、未再結晶オー
ステナイト域で50%以上の累積圧下を加えた後一定条件
で加速冷却し、冷却後、さらに一定条件で等温保持また
は緩冷却するという独自の加工熱処理法によって、2段
目の熱処理前の組織を、内部に炭化物および炭窒化物が
微細に分散したベイナイト組織とすることができる。
In the first-stage heat treatment, a unique processing of applying a cumulative reduction of 50% or more in the unrecrystallized austenite region, accelerating cooling under a constant condition, and then maintaining the same temperature or slowly cooling under a constant condition after cooling. By the heat treatment method, the structure before the second heat treatment can be a bainite structure in which carbides and carbonitrides are finely dispersed.

【0013】前組織として上記のベイナイト組織を有
する鋼を、 Ac3点以上、(Ac3点+100 ℃) 以下の温度域
に再加熱した際には、従来法に比べ、極めて微細なオー
ステナイト粒が得られる。
When the steel having the above bainite structure as a pre-structure is reheated to a temperature range of Ac 3 point or higher and (Ac 3 point + 100 ° C.) or lower, extremely fine austenite grains are formed as compared with the conventional method. can get.

【0014】これらの独自の加工熱処理法に加えて、
靱性、特に溶接熱影響部の靱性に悪影響を及ぼすSiの含
有量を0.04質量%以下に抑えることにより、より一層の
靱性向上効果が得られ、溶接性にも優れた 780MPa 級
高張力鋼を製造することができる。
In addition to these original processing heat treatment methods,
Manufacture of 780MPa class high-strength steel with excellent toughness and excellent weldability by controlling the Si content, which adversely affects the toughness, especially the toughness of the weld heat affected zone, to 0.04 mass% or less. can do.

【0015】[0015]

【作用】以下、本発明の作用について本発明者らの実験
結果等に基づいて詳述する。
The operation of the present invention will be described in detail below based on the results of experiments conducted by the present inventors.

【0016】まず、素材鋼の化学組成を前記のように限
定した理由について説明する。なお、「%」は全て質量
%を意味する。
First, the reason why the chemical composition of the raw steel is limited as described above will be explained. In addition, all "%" mean the mass%.

【0017】C:0.01〜0.20% Cは強度上昇に有効な元素であり、そのためには、C含
有量は0.01%以上が必要である。しかし、靱性の確保お
よび耐溶接割れ性の低下防止の観点から、上限を0.20%
とした。
C: 0.01 to 0.20% C is an element effective for increasing strength, and for this purpose, the C content must be 0.01% or more. However, from the viewpoint of ensuring toughness and preventing deterioration of weld crack resistance, the upper limit is 0.20%.
And

【0018】Si:0.04%以下 Siは脱酸のために必要な元素であるが、Si含有量が0.04
%を超えると溶接熱影響部の低温靱性を低下させるた
め、0.04%以下とした。
Si: 0.04% or less Si is an element necessary for deoxidation, but the Si content is 0.04% or less.
%, The low-temperature toughness of the heat-affected zone of the weld is reduced, so the content was made 0.04% or less.

【0019】Mn: 0.6〜2.0 % Mnは強度上昇に有効な元素であり、そのためには、Mn含
有量は 0.6%以上が必要である。しかし、 2.0%を超え
ると靱性が劣化するため、上限を 2.0%とした。
Mn: 0.6 to 2.0% Mn is an element effective for increasing strength, and for this purpose, the Mn content must be 0.6% or more. However, if it exceeds 2.0%, the toughness deteriorates, so the upper limit was made 2.0%.

【0020】Nb:0.005 〜0.08% Nbは結晶粒の微細化に有効な元素であり、そのために
は、Nb含有量は 0.005%以上が必要である。しかし、0.
08%を超えると靱性が劣化するため、上限を0.08%とし
た。
Nb: 0.005 to 0.08% Nb is an element effective for refining crystal grains, and for this purpose, the Nb content must be 0.005% or more. But 0.
If it exceeds 08%, the toughness deteriorates, so the upper limit was made 0.08%.

【0021】Ti: 0.005〜0.03% Tiは結晶粒の微細化に有効な元素であり、そのために
は、Ti含有量は 0.005%以上が必要である。しかし、0.
03%を超えると靱性が劣化するため、上限を0.03%とし
た。
Ti: 0.005-0.03% Ti is an element effective for refining crystal grains, and for this purpose, the Ti content must be 0.005% or more. But 0.
If it exceeds 03%, the toughness deteriorates, so the upper limit was made 0.03%.

【0022】sol.Al: 0.005〜0.08% Alは、脱酸剤として、また結晶粒の微細化にも有効な元
素であるため、sol.Alとして0.005 %以上含有させる。
しかし、sol.Al含有量が0.08%を超えて過量になると、
鋼の性質に有害な介在物を生成するので、上限を0.08%
とした。
Sol.Al: 0.005 to 0.08% Since Al is an element effective as a deoxidizing agent and also for refining crystal grains, 0.005% or more of sol.Al is contained.
However, if the sol.Al content exceeds 0.08% and becomes excessive,
The upper limit is 0.08% because it creates inclusions that are harmful to the properties of steel.
And

【0023】N: 0.006%以下 Nは、Alとともに窒化物を生成し、結晶粒の微細化に有
効であるが、N含有量が0.006 %を超えて過量になると
溶接部の靱性を損なうので、上限を 0.006%とした。
N: 0.006% or less N forms a nitride together with Al and is effective for refining the crystal grains, but if the N content exceeds 0.006% and becomes excessive, the toughness of the welded portion is impaired. The upper limit was set to 0.006%.

【0024】Cu:0.05〜1.0 % Cuは強度上昇に有効な元素であり、そのためには、Cu含
有量は0.05%以上が必要である。しかし、1.0 %を超え
る過量のCu含有量になると靱性を低下させるため、上限
を 1.0%とした。
Cu: 0.05 to 1.0% Cu is an element effective for increasing the strength, and for this purpose, the Cu content must be 0.05% or more. However, if the Cu content exceeds 1.0%, the toughness decreases, so the upper limit was made 1.0%.

【0025】Ni: 0.5〜4.0 % Niは、低温靱性を改善するのに有効な元素であり、その
ためには、 0.5%以上含有させる必要がある。しかし、
Ni含有量が 4.0%を超えるとその添加によるコストアッ
プに見合うだけの強度上昇と靱性改善が得られないた
め、上限を 4.0%とした。
Ni: 0.5 to 4.0% Ni is an element effective for improving the low temperature toughness, and for that purpose, it is necessary to contain 0.5% or more. But,
When the Ni content exceeds 4.0%, the strength increase and toughness improvement cannot be obtained to meet the cost increase due to the addition, so the upper limit was made 4.0%.

【0026】本発明の方法の素材となる鋼では、上記の
各元素に加えてさらに、次の各元素のうちのいずれか1
種、または2種以上を含有させることができる。
In the steel used as the raw material of the method of the present invention, in addition to the above-mentioned elements, any one of the following elements
One kind or two or more kinds can be contained.

【0027】Cr:0.05〜1.0 % Crは強度上昇に有効な元素であり、そのためには、Cr含
有量は0.05%以上が必要であるが、1.0 %を超えて過量
に含有させると靱性を低下させるため、上限を1.0 %と
した。
Cr: 0.05 to 1.0% Cr is an element effective for increasing the strength. For that purpose, the Cr content must be 0.05% or more, but if it exceeds 1.0% in an excessive amount, the toughness decreases. Therefore, the upper limit was made 1.0%.

【0028】Mo:Mo:0.05〜1.50% Moは強度上昇に有効な元素であり、そのためには、Mo含
有量は0.05%以上が必要であるが、1.50%を超える過量
のMo含有量になると靱性を低下させるため、上限を 1.5
%とした。
Mo: Mo: 0.05 to 1.50% Mo is an element effective for increasing the strength. For that purpose, the Mo content must be 0.05% or more, but if the Mo content exceeds 1.50%, it becomes too much. The upper limit is 1.5 to reduce toughness.
%.

【0029】V:0.01〜0.10% Vは強度上昇に有効な元素であり、そのためには、V含
有量は0.01%以上が必要であるが、0.10%を超える過量
のV含有量になると靱性を低下させるため、上限を 0.1
%とした。
V: 0.01 to 0.10% V is an element effective for increasing the strength, and for that purpose, the V content must be 0.01% or more, but if the V content exceeds 0.10%, the toughness becomes tough. The upper limit is 0.1 to lower
%.

【0030】B:B:0.0005〜0.0020% Bは、焼入れ性の向上とそれに伴う強度の上昇に有効な
元素であり、そのためには、B含有量は0.0005%以上が
必要である。しかし、B含有量が0.0020%を超えると靱
性が劣化するため、上限を0.0020%とした。
B: B: 0.0005 to 0.0020% B is an element effective in improving hardenability and accompanying increase in strength, and for this purpose, the B content must be 0.0005% or more. However, if the B content exceeds 0.0020%, the toughness deteriorates, so the upper limit was made 0.0020%.

【0031】次に、圧延および熱処理の各条件について
説明する。
Next, each condition of rolling and heat treatment will be described.

【0032】本発明の製造方法において最も肝要なの
は、 Ac3点以上、(Ac3点+100 ℃) 以下の温度域に再加
熱した際に、微細なオーステナイト粒を得るために必要
な前処理条件、すなわち1段目の加工熱処理条件であ
り、そして、この条件により微細に分散した炭化物およ
び炭窒化物を内部に持つベイナイト組織を得ることが必
須である。
The most important point in the production method of the present invention is the pretreatment conditions necessary for obtaining fine austenite grains when reheated to a temperature range of Ac 3 point or higher and (Ac 3 point + 100 ° C.) or lower, That is, it is the first-stage thermo-mechanical treatment condition, and it is essential to obtain a bainite structure having carbide and carbonitride finely dispersed therein under this condition.

【0033】以下に前記のように圧延と熱処理の各条件
を限定した理由について詳述する。
The reasons for limiting the conditions of rolling and heat treatment as described above will be described in detail below.

【0034】1) 素材鋼片の加熱温度 加熱時のオーステナイト結晶粒の粗大化を防止するため
上限温度を1250℃とし、一方、圧延中の結晶粒の微細化
および圧延後の析出強化に有効なNbを固溶させるため下
限温度を1000℃とする。
1) Heating temperature of raw steel billet The upper limit temperature is set to 1250 ° C. in order to prevent coarsening of austenite crystal grains during heating, while it is effective for refining the crystal grains during rolling and strengthening precipitation after rolling. The minimum temperature is set to 1000 ° C to form a solid solution of Nb.

【0035】圧延によりベイナイト組織の微細化を図る
ためには、 900℃以下の温度で累積圧下率を50%以上と
して圧延する必要がある。
In order to refine the bainite structure by rolling, it is necessary to roll at a temperature of 900 ° C. or lower with a cumulative reduction of 50% or more.

【0036】2) 圧延完了温度 900 ℃を超える温度での圧延完了または累積圧下率の不
足 (50%未満) では、微細なオーステナイト粒組織を得
ることができず、また圧延完了温度が Ar3点未満では靱
性が劣化する。このため、圧延完了温度は Ar3点以上 9
00℃以下の温度範囲に限定する。
2) When the rolling completion temperature is higher than 900 ° C. or the rolling reduction is insufficient (less than 50%), a fine austenite grain structure cannot be obtained, and the rolling completion temperature is Ar 3 point. If it is less than 100%, the toughness deteriorates. For this reason, the rolling completion temperature is Ar 3 points or more 9
Limited to a temperature range of 00 ° C or less.

【0037】3) 1段目の熱処理(圧延完了直後の冷却
温度範囲と冷却速度など) 組織の微細化およびベイナイト組織生成による強度の上
昇が十分得られる条件として、 580〜300 ℃の温度域ま
で冷却する必要がある。このときの冷却速度条件として
最も望ましいのは、10℃/s以上の加速冷却である。
3) First-stage heat treatment (cooling temperature range and cooling rate immediately after completion of rolling) As a condition for obtaining a sufficient structure refinement and strength increase due to bainite structure formation, a temperature range of 580 to 300 ° C. It needs to be cooled. The most desirable cooling rate condition at this time is accelerated cooling of 10 ° C./s or more.

【0038】微細なベイナイト組織を十分に得るために
は、上記の加速冷却を施した後、 580〜300 ℃の温度範
囲で10秒以上 100秒以下の時間の範囲で等温保持する
か、またはこの等温保持に代えて 580〜300 ℃の温度範
囲で10秒以上 100秒以下の時間の範囲で 0.5℃/s以下の
冷却速度で緩冷却する必要がある。
In order to sufficiently obtain a fine bainite structure, after carrying out the above-mentioned accelerated cooling, it is kept isothermal in the temperature range of 580 to 300 ° C. for 10 seconds or more and 100 seconds or less, or Instead of isothermal holding, it is necessary to perform slow cooling at a cooling rate of 0.5 ° C / s or less in the temperature range of 580 to 300 ° C for a period of 10 seconds to 100 seconds.

【0039】等温保持時間が10秒未満では、微細なベイ
ナイト組織が十分得られない。一方、 100秒を超えると
ベイニティックフェライト(ベイナイト組織を構成する
フェライト部分)同志が合体し靱性が劣化する。このた
め、保持時間は10秒以上 100秒以下とする必要がある。
If the isothermal holding time is less than 10 seconds, a fine bainite structure cannot be obtained sufficiently. On the other hand, if it exceeds 100 seconds, the bainitic ferrite (ferrite part that constitutes the bainite structure) will unite and the toughness will deteriorate. Therefore, the retention time must be 10 seconds or more and 100 seconds or less.

【0040】等温保持に代えて前記の緩冷却を所定時間
行うことにより、上記と同様の効果を得ることができ
る。
The same effect as described above can be obtained by performing the above-mentioned slow cooling for a predetermined time instead of holding the same temperature.

【0041】4) 2段目の熱処理(再加熱、焼入れ) さらに、焼入処理前の再加熱の際には、オーステナイト
粒が粗大化するのを防ぐために、加熱温度は Ac3点以
上、(Ac3点+100 ℃) 以下に限定する必要がある。加熱
温度が Ac3点未満では、未変態のフェライトが残るた
め、均一で微細なオーステナイト粒が得られない。一
方、(Ac3点+100 ℃) を超えるとオーステナイト粒が粗
大化し、靱性が劣化する。
4) Second-stage heat treatment (reheating, quenching) Further, in the reheating before the quenching treatment, in order to prevent the austenite grains from coarsening, the heating temperature is Ac 3 points or higher, ( Ac 3 points +100 ℃) It is necessary to limit to below. If the heating temperature is less than Ac 3 point, untransformed ferrite remains, and uniform and fine austenite grains cannot be obtained. On the other hand, if it exceeds (Ac 3 point + 100 ° C), the austenite grains become coarse and the toughness deteriorates.

【0042】また、こうした焼入処理を2回以上繰り返
して行い、2回目の焼入温度を1回目の焼入温度より低
くすることによって組織をより微細にし、靱性を向上さ
せることができる。
By repeating such quenching treatment two or more times and making the second quenching temperature lower than the first quenching temperature, the structure can be made finer and the toughness can be improved.

【0043】5) 焼戻処理 焼入れによって生じた歪を除去し、かつ炭化物を微細に
析出させることによって、強度・靱性バランスを改善す
るために実施する。そして、強度・靱性バランスに支障
をきたさないためには、焼戻温度は Ac1点以下に限定す
る必要があり、また 450℃以上とすることが望ましい。
5) Tempering Treatment This is carried out in order to improve the strength / toughness balance by removing the strain caused by quenching and precipitating carbides finely. Then, in order not to hinder the balance between strength and toughness, the tempering temperature must be limited to Ac 1 point or lower, and is preferably 450 ° C. or higher.

【0044】[0044]

【実施例】常法により溶製、製造された表1に示す化学
組成の素材鋼片(厚さ 160mm)から、表2(1) および表
2(2) に示す製造条件で厚さ40〜65mmの鋼板を製造し
た。
[Example] From a raw steel slab (thickness: 160 mm) having the chemical composition shown in Table 1 manufactured and melted by a conventional method, a thickness of 40 to 40 is obtained under the manufacturing conditions shown in Tables 2 (1) and 2 (2). A 65 mm steel plate was manufactured.

【0045】得られた鋼板の評価には、鋼板の板厚の1/
4 部から試験片を採取し、引張試験および2mmVノッチ
シャルピー衝撃試験を用いた。これらの結果を表2(1)
および表2(2) に併せて示す。
The evaluation of the obtained steel sheet is 1 / thick of the thickness of the steel sheet.
Specimens were taken from 4 parts and a tensile test and a 2 mmV notch Charpy impact test were used. These results are shown in Table 2 (1)
And also shown in Table 2 (2).

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2(1)】 [Table 2 (1)]

【0048】[0048]

【表2(2)】 [Table 2 (2)]

【0049】表2(1) および表2(2) から、本発明で定
める条件で製造された本発明例の鋼板では、引張強度で
780MPa 以上の強度と、−80℃でのシャルピー衝撃試
験において 215J以上の吸収エネルギーを示しており、
優れた低温靱性の高張力鋼が得られていることがわか
る。本発明の方法による高張力鋼は、低C、低Si含有量
であるから優れた溶接性をも兼ね備えている。
From Table 2 (1) and Table 2 (2), the tensile strength of the steel sheet of the example of the present invention manufactured under the conditions defined in the present invention
It shows a strength of 780 MPa or more and an absorbed energy of 215 J or more in the Charpy impact test at -80 ° C.
It can be seen that a high strength steel with excellent low temperature toughness is obtained. The high-strength steel produced by the method of the present invention has a low C content and a low Si content, and therefore has excellent weldability.

【0050】[0050]

【発明の効果】本発明の方法によれば、引張強さが 780
MPa 級で、かつ溶接性にも優れた低温靱性の良好な高
張力鋼を製造することができる。
According to the method of the present invention, the tensile strength is 780
It is possible to manufacture a high-strength steel having a MPa grade and a good low-temperature toughness which is excellent in weldability.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%にて、C:0.01〜0.20%、Si:0.04
%以下、Mn: 0.6〜2.0 %、Nb:0.005 〜0.08%、Ti:
0.005〜0.03%、Cu:0.05〜1.0 %、Ni: 0.5〜4.0
%、sol.Al: 0.005〜0.08%およびN: 0.006%以下を
含有し、残部がFeおよび不可避不純物からなる鋼を、10
00〜1250℃の温度に加熱した後、 900℃以下の温度で累
積圧下率50%以上の圧下を加え、 Ar3点以上 900℃以下
の温度で圧延を完了し、その後1段目の熱処理として、
直ちに 580℃以下 300℃以上の温度まで加速冷却し、冷
却後、 580℃以下 300℃以上の温度で、10秒以上 100秒
以下の範囲で等温保持し、または 580℃以下 300℃以上
の温度で、10秒以上 100秒以下の範囲で 0.5℃/s以下の
冷却速度で冷却し、次いで2段目の熱処理として、 Ac3
点以上、(Ac3点+100 ℃) 以下の温度域に再加熱した後
焼入処理する操作を1回または2回以上繰り返して行
い、その後 Ac1点以下の温度で焼戻処理を行うことを特
徴とする溶接性と低温靱性に優れた 780MPa 級高張力
鋼の製造方法。
1. In mass%, C: 0.01 to 0.20%, Si: 0.04
% Or less, Mn: 0.6 to 2.0%, Nb: 0.005 to 0.08%, Ti:
0.005-0.03%, Cu: 0.05-1.0%, Ni: 0.5-4.0
%, Sol.Al: 0.005 to 0.08% and N: 0.006% or less, with the balance being Fe and inevitable impurities, 10
After heating to a temperature of 00 to 1250 ℃, a reduction of cumulative reduction of 50% or more is applied at a temperature of 900 ℃ or lower, rolling is completed at a temperature of Ar 3 points or higher and 900 ℃ or lower, and then as the first heat treatment. ,
Immediately perform accelerated cooling to a temperature of 580 ° C or less and 300 ° C or more, and after cooling, hold isothermally at a temperature of 580 ° C or less and 300 ° C or more for 10 seconds or more and 100 seconds or less, or at a temperature of 580 ° C or less and 300 ° C or more. , 10 seconds or more and 100 seconds or less at a cooling rate of 0.5 ° C / s or less, and then as the second heat treatment, Ac 3
It is recommended to reheat to a temperature range above the point above (Ac 3 points + 100 ° C) and then to perform quenching once or more times, and then perform tempering at a temperature below the Ac 1 point. A method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness.
【請求項2】質量%にて、C:0.01〜0.20%、Si:0.04
%以下、Mn: 0.6〜2.0 %、Nb:0.005 〜0.08%、Ti:
0.005〜0.03%、Cu:0.05〜1.0 %、Ni: 0.5〜4.0
%、sol.Al: 0.005〜0.08%およびN: 0.006%以下を
含有し、さらにCr:0.05〜1.0%、Mo:0.05〜1.50%、
V:0.01〜0.10%およびB:0.0005〜0.0020%の1種以
上を含有し、残部がFeおよび不可避不純物からなる鋼
を、1000〜1250℃の温度に加熱した後、 900℃以下の温
度で累積圧下率50%以上の圧下を加え、 Ar3点以上900
℃以下の温度で圧延を完了し、その後1段目の熱処理と
して、直ちに 580℃以下 300℃以上の温度まで加速冷却
し、冷却後、 580℃以下 300℃以上の温度で、10秒以上
100秒以下の範囲で等温保持し、または 580℃以下 300
℃以上の温度で、10秒以上100 秒以下の範囲で 0.5℃/s
以下の冷却速度で冷却し、次いで2段目の熱処理とし
て、 Ac3点以上、(Ac3点+100 ℃) 以下の温度域に再加
熱した後焼入処理する操作を1回または2回以上繰り返
して行い、その後 Ac1点以下の温度で焼戻処理を行うこ
とを特徴とする溶接性と低温靱性に優れた 780MPa 級
高張力鋼の製造方法。
2. In mass%, C: 0.01 to 0.20%, Si: 0.04
% Or less, Mn: 0.6 to 2.0%, Nb: 0.005 to 0.08%, Ti:
0.005-0.03%, Cu: 0.05-1.0%, Ni: 0.5-4.0
%, Sol.Al: 0.005 to 0.08% and N: 0.006% or less, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.50%,
Steel containing at least one of V: 0.01 to 0.10% and B: 0.0005 to 0.0020% and the balance being Fe and inevitable impurities is heated to a temperature of 1000 to 1250 ° C, and then accumulated at a temperature of 900 ° C or less. Reduction of 50% or more is applied, Ar 3 points or more 900
Rolling is completed at a temperature of ℃ or less, then as the first heat treatment, it is immediately accelerated cooled to a temperature of 580 ℃ or less and 300 ℃ or more, and after cooling, it is 580 ℃ or less and 300 ℃ or more for 10 seconds or more.
Keep isothermal for 100 seconds or less, or 580 ℃ or less 300
0.5 ℃ / s in 10 seconds or more and 100 seconds or less at temperature above ℃
Cooling at the following cooling rate, then as the second heat treatment, reheating to a temperature range of Ac 3 point or higher and (Ac 3 point + 100 ° C) or lower, and then quenching treatment is repeated once or twice or more. The method for producing a 780 MPa class high strength steel excellent in weldability and low temperature toughness, which comprises performing tempering treatment at a temperature of Ac 1 point or lower.
JP2663293A 1993-02-16 1993-02-16 Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness Expired - Fee Related JP2692523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2663293A JP2692523B2 (en) 1993-02-16 1993-02-16 Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2663293A JP2692523B2 (en) 1993-02-16 1993-02-16 Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness

Publications (2)

Publication Number Publication Date
JPH06240353A true JPH06240353A (en) 1994-08-30
JP2692523B2 JP2692523B2 (en) 1997-12-17

Family

ID=12198831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2663293A Expired - Fee Related JP2692523B2 (en) 1993-02-16 1993-02-16 Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness

Country Status (1)

Country Link
JP (1) JP2692523B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402007B1 (en) * 1999-09-20 2003-10-17 주식회사 포스코 A METHOD FOR PRODUCING A HIGH TENSILE STEEL WITH 125kgf/㎟ TENSILE STRENGTH GRADE
JP2008248338A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Steel member having excellent fatigue crack propagation resistance and weld heat affected zone low temperature toughness
CN103361566A (en) * 2012-03-30 2013-10-23 鞍钢股份有限公司 High-strength high-toughness Cu-containing steel and production method thereof
WO2017208329A1 (en) 2016-05-31 2017-12-07 新日鐵住金株式会社 High-tensile steel plate having excellent low-temperature toughness
CN109881083A (en) * 2018-06-08 2019-06-14 江苏沙钢集团有限公司 Strip cast-rolled 700 MPa-grade weathering steel and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402007B1 (en) * 1999-09-20 2003-10-17 주식회사 포스코 A METHOD FOR PRODUCING A HIGH TENSILE STEEL WITH 125kgf/㎟ TENSILE STRENGTH GRADE
JP2008248338A (en) * 2007-03-30 2008-10-16 Kobe Steel Ltd Steel member having excellent fatigue crack propagation resistance and weld heat affected zone low temperature toughness
CN103361566A (en) * 2012-03-30 2013-10-23 鞍钢股份有限公司 High-strength high-toughness Cu-containing steel and production method thereof
WO2017208329A1 (en) 2016-05-31 2017-12-07 新日鐵住金株式会社 High-tensile steel plate having excellent low-temperature toughness
KR20180096782A (en) 2016-05-31 2018-08-29 신닛테츠스미킨 카부시키카이샤 High tensile strength steel sheet excellent in low temperature toughness
CN109881083A (en) * 2018-06-08 2019-06-14 江苏沙钢集团有限公司 Strip cast-rolled 700 MPa-grade weathering steel and production method thereof

Also Published As

Publication number Publication date
JP2692523B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
EP1375694B1 (en) Hot-rolled steel strip and method for manufacturing the same
JP5028785B2 (en) High toughness high tensile steel sheet and method for producing the same
JPH06128688A (en) Hot rolled steel plate excellent in fatigue characteristic and it production
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP2692523B2 (en) Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet
JPH059570A (en) Production of high weldability and high strength steel
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
KR100328051B1 (en) A Method of manufacturing high strength steel sheet
JP2756535B2 (en) Manufacturing method for strong steel bars
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JPH0670248B2 (en) Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction
JP3298718B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JP2706133B2 (en) Method for producing low yield ratio, high toughness, high strength steel sheet
JPH08283838A (en) Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP2528395B2 (en) Manufacturing method of ultra high strength cold rolled steel sheet for ERW pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees