JP4599770B2 - Welded structural steel with excellent low temperature toughness - Google Patents

Welded structural steel with excellent low temperature toughness Download PDF

Info

Publication number
JP4599770B2
JP4599770B2 JP2001209698A JP2001209698A JP4599770B2 JP 4599770 B2 JP4599770 B2 JP 4599770B2 JP 2001209698 A JP2001209698 A JP 2001209698A JP 2001209698 A JP2001209698 A JP 2001209698A JP 4599770 B2 JP4599770 B2 JP 4599770B2
Authority
JP
Japan
Prior art keywords
toughness
haz
steel
amount
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209698A
Other languages
Japanese (ja)
Other versions
JP2003027179A (en
Inventor
聡 伊木
博幸 ▲角▼
善明 村上
敏文 小嶋
伸一 鈴木
龍至 平井
穣 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001209698A priority Critical patent/JP4599770B2/en
Publication of JP2003027179A publication Critical patent/JP2003027179A/en
Application granted granted Critical
Publication of JP4599770B2 publication Critical patent/JP4599770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海洋構造物、圧力容器、船舶、橋梁、建築及びライパイプ等の大型溶接構造物に用いられる高張力鋼に関し、特に低温での大入熱溶接HAZ靭性に優れたものに関する。
【0002】
【従来の技術】
近年、海洋構造物、圧力容器、船舶などの鋼構造物は大型化し、使用鋼材は厚肉化の傾向にある。厚肉材の場合、仮付け溶接等の小入熱溶接時の低温割れや、作業能率を向上させるためのエレクトロガス溶接(EGW),サブマージアーク溶接(SAW)等の大入熱溶接による低温靭性の低下が問題とされる場合がある。
【0003】
そのため、厚肉材の製造においては、小入熱溶接時の低温割れ防止のため、低Ceq化、低Pcm化するとともに、大入熱溶接HAZ部の靭性劣化を防止する成分設計が通常行われている。
【0004】
しかし、最近では構造物によって、−40℃での低温靭性が要求される場合も見受けられるなど、従来より遥かに成分設計の困難度はましている。
【0005】
大入熱溶接HAZ靭性改善方法として、種々の提案がされており、例えば、特公昭55−26164号公報は、微細なTiNを析出させγ結晶粒の粗大化を抑制することを、特許第2950076号公報は、多量の微細なAl2O3析出物によりオーステナイトの粗大化を抑制する方法を提案している。
【0006】
そして、特開昭61−79745号公報は、Ti酸化物粒子を核生成サイトとして粒内フェライトを生成させて組織を微細化し、HAZ靭性を改善する方法を、特開平5−287374号公報は、Ca酸化物やCaオキシサルファイドを核として粒内アシキュラーフェライトを生成させ、組織を微細化する方法を提案している。
【0007】
また、特開平9−20955号公報では、N量をTi及びB量に応じて調整し、TiN,BNによりボンド部の靭性を改善する方法が提案されている。
【0008】
しかしながら、特公昭55−26164号公報記載の方法では、1400℃前後となるボンド部で、TiNの大部分が溶解するため、組織が粗大化し、ボンド部靭性は改善されない。
【0009】
また、特許第2950076号公報記載の方法でも、高温で長期に保持された場合は、Al2O3によってもオーステナイト粒径の粗大化を抑制することは困難である。
【0010】
特開昭61−79745号公報記載の方法では、Ti酸化物を鋼中に微細に分散するために強脱酸元素のAlは0.007%以下と極端に少ない特殊な成分であり、溶解での鋼種編成が複雑となる。
【0011】
同様に、特開平5−287374号公報記載の方法は、Ca酸化物を安定に確保するため、Oを0.0040%以下に、強脱酸元素であるAlを0.007%以下に制限するもので、脱酸方法、成分元素の添加などで精密な制御が必要で、更に溶接材料によっては溶接金属部の靭性が低下する問題も懸念される。
【0012】
特開平9−20955号公報記載の方法では、N量をTiあるいはB窒化物として固定される量以上添加するため、加熱温度が1000〜1200℃となるHAZが固溶Nにより脆化する。
【0013】
特許第2931065号公報は、溶接熱影響部におけるTiNが、入熱量500kJ/cm〜1000kJ/cmという超大入熱で高温に長時間曝される状態においても溶解しない寸法、および微細化に必要な個数が得られるよう製造条件を規定し、更に、BNとの相乗効果により溶接ボンド部を含むHAZ全域での低温靭性を改善することを提案している。
【0014】
しかし、粗大なTiNが、母材や入熱が低下した場合のHAZに残存し、鋼材の清浄性を低下させることが懸念され、また、最近、特に大型化の著しいコンテナ船用として多量の鋼板を製造する場合、鋳片の冷却速度を5℃/分以下とすることは生産性の観点から好ましくない。
【0015】
【発明が解決しようとする課題】
上述したように、現在、生産性を損なうことなく、大入熱溶接のHAZ全域で優れた低温靭性が得られる鋼板製造技術は十分確立されているとは言い難く、特に、構造物の局所脆化をもたらし安全性低下をさせるため好ましくないとされるシャルピー衝撃値変動幅を十分小さくする技術は提供されていない。
【0016】
本発明は、生産性に優れ、大入熱溶接(400kJ/cm以上)のHAZ全域(Bond,Bond+1mm、3mm、5mm)での靭性が、−40℃でのシャルピー衝撃値(vE−40)として個々の試験片で、100J以上となる溶接構造用鋼を提供することにある。
【0017】
【課題を解決するための手段】
本発明者等は、先行技術を基に、超大入熱溶接HAZ靭性に及ぼす成分組成の影響について検討を行った。
【0018】
その結果、特許第2931065号は、上述したように超大入熱溶接特有の長い高温滞留時間でも溶解消滅しない粗大TiNを生成させること、およびHAZにおいて固定されない過剰なNによりHAZ靭性が劣化するのを防止するためN量をTi,B量との関係において規定することを特徴とするものであるが、その規定されているTi量の範囲内において、鋼板の表面性状や清浄性を考慮してTi添加量を低く抑えた場合、靭性を改善するBの効果は必ずしも安定して得られず、特に−40℃のように従来経験されなかった低温の場合では、むしろその焼入れ性向上効果によるものと推測される靭性値の変動が切欠位置によっては観察され、優れた技術ではあるものの、いっそうの靭性改善が必要であることが判明した。
【0019】
そこで、本発明者等は、鋳造凝固過程の冷却速度を遅くするなどして生産性を阻害することなく粒内フェライト生成による靭性改善効果をより一層向上させる方法について鋭意検討を行い、新たな知見として、常法の鋳造凝固過程で得られるAl23析出物が鋼中に一定寸法で適当量確保された場合、TiNや、BNの析出核として粗大TiNとほぼ同じ効果が得られること、およびAl、B,N添加量を適正化し、特に、溶接部においてBと窒化物を形成しない固溶Nを十分なAl量によりAlNとして析出させ、固溶Nを低減することにより、−40℃においてもHAZ全域(Bond、Bond+1〜5mm)で変動幅が小さく安定して良好な靭性の得られることを見出した。
【0020】
本発明は、上記知見を基にさらに検討を加えてなされたものであり、すなわち、本発明は、
1.質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2%、S:0.001〜0.01%、sol.Al:0.04〜0.08%、B:0.0005〜0.003%、O:0.001〜0.005%、N:0.004〜0.007%で0.9×1.3B≦N≦1.2×1.3B(但し、Bは含有量(%)とする。)を満足するNを含有し、且つ、円相当直径が0.5μm以上、3μm以下のAl析出物を1×10個/mm以上含有する残部Feおよび不可避的不純物からなる低温靭性に優れた溶接構造用鋼。
【0021】
2. Cu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%の群から選択された一種または二種以上を含有する1記載の低温靭性に優れた溶接構造用鋼。
【0022】
【発明の実施の形態】
以下、本発明の成分限定理由について詳細に説明する。
【0023】

Cは、強度を確保するために必要で、その効果を得るため、0.04%以上添加する。一方、0.12%を超えて添加すると高炭素島状マルテンサイトが生成し、HAZ靭性および溶接性が低下するため、0.04〜0.12%(0.04%以上、0.12%以下)とする。尚、0.04%未満の場合、強度を確保するため、焼入れ性向上元素を多量に添加しなければならず、生産原価が上昇し、靭性、溶接性が劣化する。
【0024】
Si
Siは、強度の確保と、製鋼過程における脱酸剤として必要で、その効果を得るため、0.01%以上添加する。一方、0.5%を超えて添加すると高炭素島状マルテンサイトが生成しやすくなり、HAZ靭性が劣化するため、0.01〜0.5%とする。
【0025】
Mn
Mnは、強度を確保するため、0.5%以上添加する。一方、2%を超えると焼入れ性が増大し、溶接性、HAZ靭性を劣化させるため、0.5〜2%とする。
【0026】

Sは、HAZ部でのフェライトの核生成サイトとなるMnSを生成するため必要で、0.001%以上とする。一方、0.01%を超えると、母材および溶接部の靭性が低下するため、0.001〜0.01%とする。
【0027】

Bは、フェライトの核生成サイトとなるBNを生成させるため、0.0005%以上添加する。一方、0.003%を超えて添加するとHAZ靭性が低下するため、0.0005〜0.003%とする。
【0028】
sol.Al
sol.Alは、脱酸およびHAZ靭性に有害な固溶Nを低減させ、Al23を生成させるため0.04%以上とする。一方、0.08%を超えると、粗大なAl系介在物が生じるようになり、靭性が低下するため、0.04〜0.08%とする。
【0029】
図2は、HAZ全域でのシャルピー衝撃値(vE−40)におよぼすsol.Alの影響を示すもので、sol.Al以外の成分を本発明範囲内として、sol.Al量のみ、本発明範囲内および本発明範囲外のそれぞれにおいて2種類変化させた鋼を用いた。その結果、本発明鋼ではHAZ全域で安定して優れたシャルピー衝撃試験結果が得られている。尚、試験結果は平均値を示す。
【0030】
図3は、図2の試験結果において、切欠位置をHAZ+1mmとしたシャルピー衝撃試験における個々の衝撃値(vE−40)と平均値を示すもので、sol.Al量が本発明範囲外で低い供試鋼の場合、平均値とかけはなれた極めて低い衝撃値が発生する不安定な挙動を示し、局所脆化による安全性が懸念される結果となっている。
【0031】
sol.Al量が低い供試鋼の場合、最高加熱温度がボンド部より低いHAZ+1mmでは、AlNを形成せず、Bとの窒化物とならない固溶Nにより、フェライト地組織の靭性劣化が生じたものと思われる。
【0032】

Nは、HAZにおいてオーステナイト結晶粒の粗大化を抑制し、また、フェライトの核生成サイトとなるBNを生成させるため0.004%以上とする。一方、0.007%を超えると固溶N量がAl窒化物の形成によっても過剰となり、靭性が低下するため、0.004〜0.007%とする。
【0033】
本発明では、更にN量を0.004〜0.007%の範囲内において、0.9×1.3B≦N≦1.2×1.3B(Bは含有量(%))に規定し、含有するNの大部分をBNとすることが必要である。
【0034】

鋼中O量は、BNの析出サイトとなるAl23析出物を十分確保し、また、過剰な添加による粗大介在物の生成を防止するため、0.001〜0.005%とする。
【0035】
Al23析出物
Al23析出物は、フェライト析出核となるBNを析出させ、HAZ部を微細フェライト組織とし低温靭性を向上させるため、円相当直径で0.5μm以上、3μm以下で、その個数を1×103個以上に規定する。尚、本発明でAl23析出物とは、Al23析出物およびAl23を主体とし、他の酸化物(例えば、SiO2、CaO)も含む複合析出物とする。
【0036】
図1に、相当円直径が0.5μm以上、3μm以下のAl23析出物数に及ぼすsol.Al量の影響を示す。供試鋼は、請求項1記載の成分組成を有する本発明鋼と、該発明鋼において、N量のみまたはsol.Al量のみを本発明範囲外とする比較鋼とした。
【0037】
その結果、sol.Al量が本発明範囲内となる鋼では、いずれも円相当直径で0.5μm以上、3μm以下となるAl23析出物の個数は1×103個以上となるものの、これらのうち、N量が本発明範囲外となる比較鋼では、−40℃でのシャルピー衝撃試験結果が不安定となっていた。
【0038】
Alが本発明の範囲外となる鋼では、円相当直径で0.5μm以上、3μm以下となるAl23析出物の個数が少なくやはりシャルピー衝撃試験結果が不安定となっていた。
【0039】
本発明は以上の構成により十分な特性が得られるが、更にその特性を向上させるため、Cu,Ni,Cr,Mo,V,Nbの一種又は二種以上を添加することができる。これらの元素を添加する場合、Cu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%とする。
【0040】
尚、本発明において、「残部が実質的にFe」とは、本発明の作用効果を損なわない範囲で、不可避不純物、他の微量元素を含有することを意味する。
【0041】
次に製造条件について述べる。本発明では、鋼中に微細なAl23析出物を安定して析出させることが重要あるが,鋳造凝固速度を5℃/分より遅くする必要はなく、溶鋼からの鋳造凝固過程は常法によるものでよい。鋳造凝固後は所要の条件で加熱をした後に、圧延等の加工を施して厚鋼板とする。
【0042】
鋳片の加熱条件、圧延等の加工条件は、所望する強度に応じて適宜設定すればよく、加速冷却などの水冷操作と組合わせたり、圧延後熱処理を行うことは何等差し支えない。
【0043】
【実施例】
表1、2に示す成分組成の鋼を溶製し、連続鋳造法でスラブとした後、1100〜1250℃に加熱し、TMCP,DQ−Tなどにより板厚50〜70mmの鋼板を製造した。
【0044】
これらの鋼板について、母材の機械的性質およびエレクトロガスアーク溶接(入熱400〜530kJ/cm)のHAZ靭性を調査した。HAZ靭性はシャルピー衝撃試験により、切欠位置をボンド部、ボンド部からHAZ側に1mm、3mm,5mmとし、試験温度−40℃でのシャルピー衝撃値(平均値、個々の値)によって評価した。表示は平均値のみとした。
【0045】
【表1】

Figure 0004599770
【0046】
【表2】
Figure 0004599770
【0047】
表3、4に製造条件、これらの試験結果を示す。本発明鋼であるNo.1〜15は、母材の引張強度510N/mm2以上、−40℃でのシャルピー衝撃値200J以上、ボンド部を含むHAZ全域での−40℃でのシャルピー衝撃値(平均値)として100J以上が得られている。更に、表には示さなかったものの個々の衝撃値の変動幅も小さく、何れの試験結果においても平均値の±20%以内であった。
【0048】
一方、No.16〜32は比較鋼で、いずれもsol.Alおよび/またはN量が本発明範囲外でHAZの各位置での衝撃値(平均値)が劣り、また、個々の衝撃値の変動幅も大きく、平均値の±20%を超えていた。
【0049】
No.16〜21、23、25、27〜31はNが本発明範囲外で、BおよびNのバランスが悪く、No.17,18,20〜22、24,26,28,32はsol.Al量が本発明範囲外で低い。そのため、これら比較鋼はボンドを含むHAZ全域のいずれかまたは全ての位置で、−40℃でのシャルピー衝撃値(平均値)が100J以下となっている。
【0050】
【表3】
Figure 0004599770
【0051】
【表4】
Figure 0004599770
【0052】
【発明の効果】
本発明によれば、エレクトロガスアーク溶接等の400kJ/cm以上の大入熱溶接継手部HAZ全域で安定して優れた低温靭性となる溶接構造用鋼が得られ、産業上極めて有用である。
【図面の簡単な説明】
【図1】Al23の析出状態に及ぼすsol.Al量の影響を示す図。
【図2】HAZ靭性(vE−40の平均値:J)に及ぼすsol.Al量の影響を示す図。
【図3】HAZ靭性(vE−40の個々の衝撃値:J)に及ぼすsol.Al量の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-strength steel used for large-scale welded structures such as offshore structures, pressure vessels, ships, bridges, buildings, and live pipes, and more particularly, to high heat input HAZ toughness at low temperatures.
[0002]
[Prior art]
In recent years, steel structures such as offshore structures, pressure vessels, ships and the like have become larger, and the steel materials used tend to be thicker. In the case of thick materials, low temperature toughness due to low temperature cracking during small heat input welding such as tack welding and high heat input welding such as electrogas welding (EGW) and submerged arc welding (SAW) to improve work efficiency There is a case where a decrease in the number is a problem.
[0003]
For this reason, in the manufacture of thick-walled materials, in order to prevent low-temperature cracking during small heat input welding, component design is generally performed to reduce Ceq and Pcm and prevent toughness deterioration of the high heat input HAZ part. ing.
[0004]
However, recently, there are cases in which low temperature toughness at −40 ° C. is required depending on the structure, and the degree of difficulty in designing components is far greater than in the past.
[0005]
Various proposals have been made as methods for improving the high heat input HAZ toughness. For example, Japanese Patent Publication No. 55-26164 discloses that fine TiN is precipitated to suppress coarsening of γ crystal grains. No. 1 proposes a method of suppressing austenite coarsening by a large amount of fine Al2O3 precipitates.
[0006]
JP-A-61-79745 discloses a method for improving the HAZ toughness by generating intragranular ferrite by using Ti oxide particles as nucleation sites, and JP-A-5-287374 discloses a method for improving HAZ toughness. Proposed is a method of generating intragranular acicular ferrite using Ca oxide or Ca oxysulfide as a nucleus to refine the structure.
[0007]
Japanese Laid-Open Patent Publication No. 9-20955 proposes a method of adjusting the N amount according to the Ti and B amounts and improving the toughness of the bond portion by TiN and BN.
[0008]
However, in the method described in Japanese Examined Patent Publication No. 55-26164, since most of TiN dissolves at the bond portion at around 1400 ° C., the structure becomes coarse and the bond portion toughness is not improved.
[0009]
Further, even in the method described in Japanese Patent No. 2950076, it is difficult to suppress the coarsening of the austenite grain size even by Al2O3 when kept at a high temperature for a long time.
[0010]
In the method described in JP-A-61-79745, in order to finely disperse Ti oxide in steel, Al, which is a strong deoxidizing element, is an extremely small special component of 0.007% or less. The steel grade organization becomes complicated.
[0011]
Similarly, the method described in JP-A-5-287374 restricts O to 0.0040% or less and Al, which is a strong deoxidizing element, to 0.007% or less in order to ensure stable Ca oxide. However, precise control is required by a deoxidation method, addition of component elements, and the like. Further, depending on the welding material, there is a concern that the toughness of the weld metal part is lowered.
[0012]
In the method described in Japanese Patent Application Laid-Open No. 9-20955, since the N amount is added in an amount that is fixed as Ti or B nitride, the HAZ at a heating temperature of 1000 to 1200 ° C. is embrittled by the solid solution N.
[0013]
Japanese Patent No. 2931065 discloses that TiN in the weld heat affected zone does not dissolve even in a state where it is exposed to a high temperature for a long time with an extremely high heat input of 500 kJ / cm to 1000 kJ / cm, and the number required for miniaturization. The manufacturing conditions are defined so that the low temperature toughness in the entire HAZ including the weld bond portion is improved by a synergistic effect with BN.
[0014]
However, there is a concern that coarse TiN will remain in the HAZ when the base metal and heat input are reduced, and the cleanliness of the steel material will be lowered. When manufacturing, it is not preferable that the cooling rate of the slab is 5 ° C./min or less from the viewpoint of productivity.
[0015]
[Problems to be solved by the invention]
As described above, it is difficult to say that steel sheet manufacturing technology that can provide excellent low temperature toughness in the entire HAZ region of high heat input welding without sacrificing productivity is particularly well established. No technology has been provided for sufficiently reducing the Charpy impact value fluctuation range, which is undesirable for reducing the safety and reducing safety.
[0016]
The present invention is excellent in productivity, and the toughness in the entire HAZ region (Bond, Bond + 1 mm, 3 mm, 5 mm) of high heat input welding (400 kJ / cm or more) is the Charpy impact value (vE-40) at −40 ° C. The object is to provide a welded structural steel of 100 J or more with individual test pieces.
[0017]
[Means for Solving the Problems]
Based on the prior art, the present inventors examined the influence of the component composition on the super large heat input welding HAZ toughness.
[0018]
As a result, as described above, Japanese Patent No. 2931065 generates coarse TiN that does not dissolve and disappear even in the long high-temperature residence time peculiar to super-high heat input welding, and that HAZ toughness deteriorates due to excessive N that is not fixed in HAZ. In order to prevent this, the amount of N is specified in relation to the amounts of Ti and B, but within the range of the specified amount of Ti, Ti is considered in consideration of the surface properties and cleanliness of the steel sheet. When the addition amount is kept low, the effect of B for improving toughness is not necessarily obtained stably, especially in the case of a low temperature that has not been experienced in the past, such as -40 ° C., rather due to its hardenability improving effect. The estimated fluctuation of toughness value was observed depending on the notch position, and it was found that further improvement in toughness was necessary although it was an excellent technique.
[0019]
Therefore, the present inventors have conducted intensive studies on a method for further improving the toughness improvement effect by intragranular ferrite formation without hindering productivity by slowing down the cooling rate of the casting solidification process, etc. As an appropriate amount of Al 2 O 3 precipitates obtained in a conventional casting solidification process is ensured in steel with a certain size, the same effect as coarse TiN can be obtained as TiN and BN precipitation nuclei, And -40 ° C. by optimizing the addition amount of Al, B, and N, in particular, by precipitating solute N that does not form nitrides with B in the weld zone as AlN with a sufficient amount of Al, and reducing the solute N. In addition, it was found that the fluctuation range is small and stable and good toughness can be obtained over the entire HAZ (Bond, Bond + 1 to 5 mm).
[0020]
The present invention has been made based on further studies based on the above findings, that is, the present invention
1. In mass%, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, S: 0.001 to 0.01%, sol. Al: 0.04 to 0.08%, B: 0.0005 to 0.003%, O: 0.001 to 0.005%, N: 0.004 to 0.007%, 0.9 × 1. Al 2 O containing N satisfying 3B ≦ N ≦ 1.2 × 1.3B (where B is the content (%)) and having an equivalent circle diameter of 0.5 μm or more and 3 μm or less. 3 precipitate 1 × 10 3 cells / mm 2 or more content to balance of Fe and low-temperature toughness excellent welding structural steel consisting of unavoidable impurities.
[0021]
2. One or two selected from the group of Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% 2. A steel for welded structure having excellent low-temperature toughness according to 1, containing at least a seed.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reasons for limiting the components of the present invention will be described in detail.
[0023]
C
C is necessary for securing the strength, and is added in an amount of 0.04% or more in order to obtain the effect. On the other hand, if added over 0.12%, high carbon island martensite is generated, and the HAZ toughness and weldability are lowered. Therefore, 0.04 to 0.12% (0.04% or more, 0.12% The following. In addition, when less than 0.04%, in order to ensure strength, a large amount of a hardenability improving element must be added, resulting in an increase in production costs and deterioration of toughness and weldability.
[0024]
Si
Si is necessary as a deoxidizer in securing the strength and in the steelmaking process, and is added in an amount of 0.01% or more in order to obtain the effect. On the other hand, if added over 0.5%, high-carbon island martensite is likely to be generated, and the HAZ toughness deteriorates, so the content is made 0.01 to 0.5%.
[0025]
Mn
Mn is added in an amount of 0.5% or more to ensure strength. On the other hand, if it exceeds 2%, the hardenability increases and the weldability and HAZ toughness are deteriorated.
[0026]
S
S is necessary to generate MnS that becomes a nucleation site of ferrite in the HAZ part, and is made 0.001% or more. On the other hand, if it exceeds 0.01%, the toughness of the base metal and the welded portion will decrease, so 0.001 to 0.01%.
[0027]
B
B is added in an amount of 0.0005% or more in order to generate BN that becomes a nucleation site of ferrite. On the other hand, if added over 0.003%, the HAZ toughness decreases, so 0.0005 to 0.003%.
[0028]
sol. Al
sol. Al decreases to 0.04% or more in order to reduce solid solution N harmful to deoxidation and HAZ toughness and to generate Al 2 O 3 . On the other hand, if it exceeds 0.08%, coarse Al-based inclusions are produced, and the toughness is lowered. Therefore, the content is made 0.04 to 0.08%.
[0029]
FIG. 2 shows the effect of sol. On the Charpy impact value (vE-40) in the entire HAZ. This shows the influence of Al. Components other than Al are included in the scope of the present invention, and sol. Only the amount of Al was used, and two types of steel were used, each within the scope of the present invention and outside the scope of the present invention. As a result, the steel of the present invention has obtained stable and excellent Charpy impact test results throughout the HAZ. In addition, a test result shows an average value.
[0030]
FIG. 3 shows individual impact values (vE-40) and average values in the Charpy impact test in which the notch position is HAZ + 1 mm in the test results of FIG. In the case of a test steel whose Al content is low outside the scope of the present invention, it shows an unstable behavior in which an extremely low impact value that is different from the average value is generated, and the safety due to local embrittlement is a concern. .
[0031]
sol. In the case of the test steel with a low Al content, in HAZ + 1 mm where the maximum heating temperature is lower than the bond part, the toughness deterioration of the ferrite texture occurs due to the solid solution N that does not form AlN and does not become a nitride with B. Seem.
[0032]
N
N is made 0.004% or more in order to suppress coarsening of austenite crystal grains in HAZ and to generate BN which becomes a nucleation site of ferrite. On the other hand, if it exceeds 0.007%, the amount of solute N becomes excessive due to the formation of Al nitride and the toughness decreases, so the content is made 0.004 to 0.007%.
[0033]
In the present invention, the N amount is further specified within the range of 0.004 to 0.007% to 0.9 × 1.3B ≦ N ≦ 1.2 × 1.3B (B is the content (%)). , It is necessary to make most of the contained N BN.
[0034]
O
The amount of O in the steel is set to 0.001 to 0.005% in order to sufficiently secure Al 2 O 3 precipitates serving as BN precipitation sites and to prevent generation of coarse inclusions due to excessive addition.
[0035]
Al 2 O 3 precipitates Al 2 O 3 precipitates precipitate BN as ferrite precipitation nuclei and make the HAZ part a fine ferrite structure to improve low-temperature toughness. Therefore, the equivalent circle diameter is 0.5 μm or more and 3 μm or less. The number is defined as 1 × 10 3 or more. In the present invention, the Al 2 O 3 precipitate is a composite precipitate mainly composed of Al 2 O 3 precipitate and Al 2 O 3 and also containing other oxides (for example, SiO 2 and CaO).
[0036]
FIG. 1 shows the effect of sol. On the number of Al 2 O 3 precipitates having an equivalent circular diameter of 0.5 μm or more and 3 μm or less. The influence of the amount of Al is shown. The test steel is a steel of the present invention having the component composition according to claim 1 and the steel of the present invention, in which only N amount or sol. Only the amount of Al was used as a comparative steel outside the scope of the present invention.
[0037]
As a result, sol. In the steel in which the amount of Al falls within the scope of the present invention, the number of Al 2 O 3 precipitates having an equivalent circle diameter of 0.5 μm or more and 3 μm or less is 1 × 10 3 or more. In the comparative steel in which the N amount is out of the range of the present invention, the Charpy impact test result at −40 ° C. was unstable.
[0038]
In steels in which Al is outside the scope of the present invention, the number of Al 2 O 3 precipitates having an equivalent circle diameter of 0.5 μm or more and 3 μm or less is small, and the Charpy impact test results are unstable.
[0039]
In the present invention, sufficient characteristics can be obtained by the above configuration. However, in order to further improve the characteristics, one or more of Cu, Ni, Cr, Mo, V, and Nb can be added. When these elements are added, Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% To do.
[0040]
In the present invention, “the balance is substantially Fe” means containing inevitable impurities and other trace elements as long as the effects of the present invention are not impaired.
[0041]
Next, manufacturing conditions will be described. In the present invention, it is important to stably precipitate fine Al 2 O 3 precipitates in the steel, but it is not necessary to make the casting solidification rate slower than 5 ° C./min. It may be by law. After casting and solidification, the steel sheet is heated under the required conditions, and then subjected to processing such as rolling to obtain a thick steel plate.
[0042]
The heating conditions of the slab and the processing conditions such as rolling may be appropriately set according to the desired strength, and there is no problem in combination with water cooling operation such as accelerated cooling or heat treatment after rolling.
[0043]
【Example】
Steels having the component compositions shown in Tables 1 and 2 were melted and made into slabs by a continuous casting method, and then heated to 1100 to 1250 ° C. to produce steel plates having a thickness of 50 to 70 mm by TMCP, DQ-T or the like.
[0044]
For these steel plates, the mechanical properties of the base metal and the HAZ toughness of electrogas arc welding (heat input 400 to 530 kJ / cm) were investigated. The HAZ toughness was evaluated by a Charpy impact test, with the notch position being 1 mm, 3 mm, and 5 mm from the bond portion to the HAZ side with a Charpy impact value (average value, individual value) at a test temperature of −40 ° C. Only the average value was displayed.
[0045]
[Table 1]
Figure 0004599770
[0046]
[Table 2]
Figure 0004599770
[0047]
Tables 3 and 4 show the manufacturing conditions and the test results. No. which is steel of the present invention. 1 to 15 has a tensile strength of the base material of 510 N / mm 2 or more, a Charpy impact value at −40 ° C. of 200 J or more, and a Charpy impact value (average value) at −40 ° C. of the entire HAZ including the bond portion is 100 J or more. Has been obtained. Further, although not shown in the table, the fluctuation range of each impact value was small, and in any test result, it was within ± 20% of the average value.
[0048]
On the other hand, no. 16 to 32 are comparative steels, all of which are sol. When the amount of Al and / or N was outside the range of the present invention, the impact value (average value) at each position of the HAZ was inferior, and the fluctuation range of each impact value was large, exceeding ± 20% of the average value.
[0049]
No. Nos. 16 to 21, 23, 25, and 27 to 31 are those in which N is outside the scope of the present invention, and the balance between B and N is poor. 17, 18, 20-22, 24, 26, 28, 32 are sol. The amount of Al is low outside the scope of the present invention. Therefore, these comparative steels have a Charpy impact value (average value) at −40 ° C. of 100 J or less at any or all positions in the entire HAZ including the bond.
[0050]
[Table 3]
Figure 0004599770
[0051]
[Table 4]
Figure 0004599770
[0052]
【The invention's effect】
According to the present invention, a steel for welded structure that exhibits stable and excellent low temperature toughness in the entire heat input welded joint HAZ of 400 kJ / cm or more such as electrogas arc welding is obtained, which is extremely useful industrially.
[Brief description of the drawings]
1 shows the effect of sol. On the precipitation state of Al 2 O 3 . The figure which shows the influence of Al amount.
FIG. 2 shows the effect of sol. On HAZ toughness (average value of vE-40: J). The figure which shows the influence of Al amount.
FIG. 3 shows the effect of sol. On HAZ toughness (individual impact value of vE-40: J). The figure which shows the influence of Al amount.

Claims (2)

質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2%、S:0.001〜0.01%、sol.Al:0.04〜0.08%、B:0.0005〜0.003%、O:0.001〜0.005%、N:0.004〜0.007%で0.9×1.3B≦N≦1.2×1.3B(但し、Bは含有量(%)とする。)を満足するNを含有し、且つ、円相当直径が0.5μm以上、3μm以下のAl析出物を1×10個/mm以上含有する残部Feおよび不可避的不純物からなる低温靭性に優れた溶接構造用鋼。In mass%, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, S: 0.001 to 0.01%, sol. Al: 0.04 to 0.08%, B: 0.0005 to 0.003%, O: 0.001 to 0.005%, N: 0.004 to 0.007%, 0.9 × 1. Al 2 O containing N satisfying 3B ≦ N ≦ 1.2 × 1.3B (where B is the content (%)) and having an equivalent circle diameter of 0.5 μm or more and 3 μm or less. 3 precipitate 1 × 10 3 cells / mm 2 or more content to balance of Fe and low-temperature toughness excellent welding structural steel consisting of unavoidable impurities. Cu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%の群から選択された一種または二種以上を含有する請求項1記載の低温靭性に優れた溶接構造用鋼。  One or two selected from the group consisting of Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% The welded structural steel excellent in low temperature toughness according to claim 1, comprising at least a seed.
JP2001209698A 2001-07-10 2001-07-10 Welded structural steel with excellent low temperature toughness Expired - Fee Related JP4599770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209698A JP4599770B2 (en) 2001-07-10 2001-07-10 Welded structural steel with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209698A JP4599770B2 (en) 2001-07-10 2001-07-10 Welded structural steel with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JP2003027179A JP2003027179A (en) 2003-01-29
JP4599770B2 true JP4599770B2 (en) 2010-12-15

Family

ID=19045318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209698A Expired - Fee Related JP4599770B2 (en) 2001-07-10 2001-07-10 Welded structural steel with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP4599770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028863B2 (en) * 2013-07-04 2016-11-24 新日鐵住金株式会社 Seamless steel pipe for line pipe used in sour environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207243A (en) * 1993-01-08 1994-07-26 Sumitomo Metal Ind Ltd Steel for welding structure
JPH1192829A (en) * 1997-09-24 1999-04-06 Nkk Corp Production of soft cold rolled steel sheet excellent in shape in longitudinal direction of coil
JPH11246929A (en) * 1998-03-04 1999-09-14 Natl Res Inst For Metals Oxide-dispersed steel and its production
JP2001064747A (en) * 1999-08-25 2001-03-13 Sumitomo Metal Ind Ltd B-added high tensile strength steel excellent in toughness in weld heat-affected zone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207243A (en) * 1993-01-08 1994-07-26 Sumitomo Metal Ind Ltd Steel for welding structure
JPH1192829A (en) * 1997-09-24 1999-04-06 Nkk Corp Production of soft cold rolled steel sheet excellent in shape in longitudinal direction of coil
JPH11246929A (en) * 1998-03-04 1999-09-14 Natl Res Inst For Metals Oxide-dispersed steel and its production
JP2001064747A (en) * 1999-08-25 2001-03-13 Sumitomo Metal Ind Ltd B-added high tensile strength steel excellent in toughness in weld heat-affected zone

Also Published As

Publication number Publication date
JP2003027179A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
JP5604842B2 (en) Steel material for large heat input welding
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5076658B2 (en) Steel material for large heat input welding
JP2005320624A (en) Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding
JP2007231312A (en) High-tensile-strength steel and manufacturing method therefor
JP4787141B2 (en) Thick steel plate with excellent toughness of weld heat-affected zone and low softening
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP2009045671A (en) Wire for high-heat input electroslag welding
JP5966907B2 (en) Steel material for large heat input welding
JP4449388B2 (en) Manufacturing method of high-strength thick steel plates with excellent brittle crack propagation stop properties and super high heat input welding heat-affected zone toughness
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP2007262508A (en) Thick steel plate having excellent toughness in high heat input weld heat affected zone
JP4599770B2 (en) Welded structural steel with excellent low temperature toughness
JP2003221643A (en) Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP4105990B2 (en) High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same
JP2007277642A (en) Method for manufacturing steel sheet superior in toughness at welding heat-affected zone
JP4105991B2 (en) High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same
JP5895780B2 (en) Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP4792643B2 (en) Steel material for large heat input welding
JP2001335883A (en) High tensile steel sheet excellent in weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4599770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees