JP2022506661A - High-strength structural steel and its manufacturing method - Google Patents

High-strength structural steel and its manufacturing method Download PDF

Info

Publication number
JP2022506661A
JP2022506661A JP2021524195A JP2021524195A JP2022506661A JP 2022506661 A JP2022506661 A JP 2022506661A JP 2021524195 A JP2021524195 A JP 2021524195A JP 2021524195 A JP2021524195 A JP 2021524195A JP 2022506661 A JP2022506661 A JP 2022506661A
Authority
JP
Japan
Prior art keywords
less
structural steel
content
strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021524195A
Other languages
Japanese (ja)
Other versions
JP7332692B2 (en
Inventor
パク,ジン‐ホ
イ,ジュ‐ヨン
ユ,スン‐ホ
キム,ボン‐ジュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2022506661A publication Critical patent/JP2022506661A/en
Application granted granted Critical
Publication of JP7332692B2 publication Critical patent/JP7332692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

【課題】高強度構造用鋼及びその製造方法を提供する。【解決手段】本発明は、重量%で、C:0.03%以上0.1%未満、Si:0.1%以上0.8%未満、Mn:0.3%以上1.5%未満、Cr:0.5%以上1.5%未満、Cu:0.1%以上0.5%未満、Al:0.01%以上0.08%未満、Ti:0.01%以上0.1%未満、Ni:0.05%以上0.1%未満、Nb:0.002%以上0.07%未満、P:0.03%以下、S:0.02%以下、残部はFe及び不可避不純物からなり、微細組織が、面積分率で、ベイナイト20%以上、ポリゴナルフェライト及び針状フェライトが合計で80%未満、その他の相としてパーライト及び島状マルテンサイトが10%未満であることを特徴とする。【選択図】図1PROBLEM TO BE SOLVED: To provide a high-strength structural steel and a method for manufacturing the same. According to the present invention, in terms of weight%, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and less than 1.5%. , Cr: 0.5% or more and less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and 0.1 %, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, the balance is Fe and inevitable It is composed of impurities, and the microstructure is 20% or more of bainite, less than 80% of polygonal ferrite and acicular ferrite in total, and less than 10% of pearlite and island martensite as other phases. It is a feature. [Selection diagram] Fig. 1

Description

本発明は、高強度構造用鋼及びその製造方法に係り、より詳しくは、海岸沿いの建築構造用鋼または船舶内部のバラストタンク及び関連付属機器などのように海水による腐食加速化が著しい環境において優れた腐食抵抗性を有する高強度構造用鋼及びその製造方法に関する。 The present invention relates to high-strength structural steel and its manufacturing method, and more specifically, in an environment where corrosion is significantly accelerated by seawater, such as coastal building structural steel or ballast tanks inside ships and related accessories. The present invention relates to a high-strength structural steel having excellent corrosion resistance and a method for producing the same.

金属の腐食は、食塩のように水によく溶けるイオン形態の無機物質が多い環境下で促進されるのが一般的であり、特に、塩素イオン(Cl)のように腐食を促進させる性質のイオンがある場合、非常に速く腐食が起こる。したがって、平均で3.5%のNaClを含んでいる海水中で、金属は非常に速い速度で腐食されるため、海水に隣接した構造物、海水環境下で運航する船舶など、様々な条件で腐食が問題となっている。
これに伴い、いくつかの種類の防食処理により腐食を抑制する技術が提案されている。しかし、このような防食処理の防食年限は20~30年程度に過ぎないため、素材自体の耐食性が確保されない場合、維持補修費用が絶え間なく発生する。つまり、構造物の耐久性を50年以上の長期間に増大させ、構造物の運用期間中の各種防食費用を低減するためには、素材自体の耐食性の強化が必須である。
Corrosion of metals is generally promoted in an environment containing a large amount of ionic inorganic substances that dissolve well in water, such as salt, and in particular, has the property of promoting corrosion such as chloride ion ( Cl- ). In the presence of ions, corrosion occurs very quickly. Therefore, in seawater containing an average of 3.5% NaCl, metals are corroded at a very high rate, so that under various conditions such as structures adjacent to seawater and ships operating in seawater environment. Corrosion is a problem.
Along with this, some kinds of anticorrosion treatments have been proposed to suppress corrosion. However, since the anticorrosion period of such anticorrosion treatment is only about 20 to 30 years, maintenance and repair costs are constantly incurred if the corrosion resistance of the material itself is not ensured. That is, in order to increase the durability of the structure over a long period of 50 years or more and reduce various anticorrosion costs during the operation period of the structure, it is essential to enhance the corrosion resistance of the material itself.

鋼材の耐海水性を向上させる元素のうち最も効果的な元素として、クロム(Cr)及び銅(Cu)がある。クロム及び銅は、腐食環境に応じて異なる役割を果たし、適切な比率で添加すると、海水による腐食加速化環境下でも優れた耐食効果を発揮することができる。しかし、クロムの場合、酸性環境では大きな効果を発揮できず、銅の場合、鋳造過程で鋳造亀裂を誘発するため、高価なニッケルを一定水準以上に添加する必要があるという問題がある。しかし、クロムは強酸以外の殆どの環境で耐食性向上の効果があり、最近の連続鋳造技術の発展によって銅添加鋼の鋳造欠陥防止のためのニッケルの最小添加量を少なくし、高価なニッケル添加量を減らして製品の原価を低下させることが可能となった。 Chromium (Cr) and copper (Cu) are the most effective elements for improving the seawater resistance of steel materials. Chromium and copper play different roles depending on the corrosive environment, and when added in an appropriate ratio, excellent corrosion resistance can be exhibited even in an environment where corrosion is accelerated by seawater. However, in the case of chromium, it cannot exert a great effect in an acidic environment, and in the case of copper, it induces casting cracks in the casting process, so that there is a problem that expensive nickel needs to be added above a certain level. However, chromium has the effect of improving corrosion resistance in most environments other than strong acids, and recent developments in continuous casting technology have reduced the minimum amount of nickel added to prevent casting defects in copper-added steel, resulting in an expensive amount of nickel added. It has become possible to reduce the cost of products.

一方、耐海水特性に優れた鋼材に関しては、従来技術として、特許文献1、2及び3が提案されている。特許文献1は、構成成分及び製造条件を工夫して鋼板の微細組織を制御することを提示しているが、温組織の含有量が少ない場合(20%未満)、強度の確保に困難があり、Ni含有量を0.05%以下に規定しているため、鋳造時の鋳造欠陥が多量に発生する虞がある。特許文献2の場合、Alが0.1%以上添加されて製鋼工程で粗大な酸化性介在物が形成され、圧延時の介在物が潰れて長く連なる延伸介在物が発生し、それにより、空孔形成が助長されて局部腐食の抵抗性が阻害される問題がある。また、特許文献3の場合のようにWが添加されると、連鋳性の欠陥発生の虞があり、また、粗大析出物の生成によるガルバニック腐食の虞があり、更に、空冷による組織粗大化に伴う強度低下の虞がある。
したがって、特許文献1~3による構造用鋼では、それ自体で海水耐食性及び強度を確保するのに無理がある。
On the other hand, as a prior art, Patent Documents 1, 2 and 3 have been proposed for steel materials having excellent seawater resistance. Patent Document 1 presents that the fine structure of a steel sheet is controlled by devising the constituent components and manufacturing conditions, but when the content of the temperature structure is small (less than 20%), it is difficult to secure the strength. Since the Ni content is specified to be 0.05% or less, a large amount of casting defects may occur during casting. In the case of Patent Document 2, 0.1% or more of Al is added to form coarse oxidizing inclusions in the steelmaking process, and the inclusions during rolling are crushed to generate long-running stretched inclusions, which is empty. There is a problem that pore formation is promoted and the resistance to local corrosion is hindered. Further, when W is added as in the case of Patent Document 3, there is a risk of continuous casting defects, there is a risk of galvanic corrosion due to the formation of coarse precipitates, and further, the structure is coarsened by air cooling. There is a risk of a decrease in strength due to the above.
Therefore, it is difficult for the structural steels according to Patent Documents 1 to 3 to secure seawater corrosion resistance and strength by themselves.

韓国特許出願公開第10-2011-0076148号公報Korean Patent Application Publication No. 10-2011-0076148 韓国特許出願公開第10-2011-0065949号公報Korean Patent Application Publication No. 10-2011-0065949 韓国特許出願公開第10-2004-0054272号公報Korean Patent Application Publication No. 10-2004-0054272

本発明の目的とするところは、構成成分及び製造条件の最適化により鋼板表面の腐食特性及び微細組織を制御し、鋼板の強度特性を向上させ、腐食速度を最小化し、鋼板自体の海水環境の耐腐食特性に優れた鋼板及びこれを製造する方法を提供することにある。
一方、本発明の課題は、上記内容に限定されない。本発明の課題は、本明細書の全体内容から理解することができ、本発明が属する技術分野における通常の知識を有する者であれば、本発明の付加的な課題を理解するのに何ら困難がない。
An object of the present invention is to control the corrosion characteristics and microstructure of the surface of a steel sheet by optimizing the components and manufacturing conditions, improve the strength characteristics of the steel sheet, minimize the corrosion rate, and adjust the seawater environment of the steel sheet itself. It is an object of the present invention to provide a steel sheet having excellent corrosion resistance and a method for manufacturing the steel sheet.
On the other hand, the subject of the present invention is not limited to the above contents. The subject of the present invention can be understood from the whole contents of the present specification, and it is difficult for a person having ordinary knowledge in the technical field to which the present invention belongs to understand the additional subject of the present invention. There is no.

本発明の高強度構造用鋼は、重量%で、C:0.03%以上0.1%未満、Si:0.1%以上0.8%未満、Mn:0.3%以上1.5%未満、Cr:0.5%以上1.5%未満、Cu:0.1%以上0.5%未満、Al:0.01%以上0.08%未満、Ti:0.01%以上0.1%未満、Ni:0.05%以上0.1%未満、Nb:0.002%以上0.07%未満、P:0.03%以下、S:0.02%以下、残部はFe及び不可避不純物からなり、微細組織が、面積分率でベイナイト20%以上、ポリゴナルフェライト及び針状フェライトが合計で80%未満、その他の相としてパーライト及び島状マルテンサイトが10%未満であることを特徴とする。 The high-strength structural steel of the present invention has C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and 1.5 in weight%. %, Cr: 0.5% or more and less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and 0 .1% or less, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, the balance is Fe And unavoidable impurities, the microstructure is bainite 20% or more in area fraction, polygonal ferrite and acicular ferrite are less than 80% in total, and pearlite and island martensite as other phases are less than 10%. It is characterized by.

上記高強度構造用鋼におけるCは、0.03%以上0.09%未満で含むことができる。
上記高強度構造用鋼におけるSiは、0.2%以上0.8%未満で含むことがよい。
上記高強度構造用鋼におけるCuは、0.1%以上0.45%未満で含むことが好ましい。
上記高強度構造用鋼は、500MPa以上の降伏強度、600MPa以上の引張強度を有することができる。
C in the high-strength structural steel can be contained in an amount of 0.03% or more and less than 0.09%.
The Si in the high-strength structural steel may be contained in an amount of 0.2% or more and less than 0.8%.
The Cu content in the high-strength structural steel is preferably 0.1% or more and less than 0.45%.
The high-strength structural steel can have a yield strength of 500 MPa or more and a tensile strength of 600 MPa or more.

本発明の高強度構造用鋼の製造方法は、重量%で、C:0.03%以上0.1%未満、Si:0.1%以上0.8%未満、Mn:0.3%以上1.5%未満、Cr:0.5%以上1.5%未満、Cu:0.1%以上0.5%未満、Al:0.01%以上0.08%未満、Ti:0.01%以上0.1%未満、Ni:0.05%以上0.1%未満、Nb:0.002%以上0.07%未満、P:0.03%以下、S:0.02%以下、残部はFe及び不可避不純物からなるスラブを1000℃以上1200℃以下の温度で再加熱する段階、再加熱した上記スラブを750℃以上950℃以下の仕上げ圧延温度で熱間圧延する段階、及び圧延された鋼板を750℃以上の冷却開始温度から400~700℃の冷却終了温度まで10℃/sec以上の冷却速度で冷却する段階、を含むことを特徴とする。 The method for producing high-strength structural steel of the present invention is C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more in weight%. Less than 1.5%, Cr: 0.5% or more and less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01 % Or more and less than 0.1%, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, The balance is a step of reheating a slab composed of Fe and unavoidable impurities at a temperature of 1000 ° C. or higher and 1200 ° C. or lower, a step of hot rolling the reheated slab at a finish rolling temperature of 750 ° C. or higher and 950 ° C. or lower, and rolling. It is characterized by including a step of cooling the rolled steel sheet at a cooling rate of 10 ° C./sec or more from a cooling start temperature of 750 ° C. or higher to a cooling end temperature of 400 to 700 ° C.

本発明によると、本発明の高強度構造用鋼は、海水の雰囲気環境で鋼板自体の耐食性が向上し、500MPa以上の降伏強度、600MPa以上の引張強度を有する強度特性に優れた構造用鋼板を提供することができる。
本発明の多様で有意義な利点及び効果は、上述した内容に限定されず、本発明の具体的な実施形態を説明する過程でより容易に理解されることができる。
According to the present invention, the high-strength structural steel of the present invention is a structural steel sheet having excellent corrosion resistance in a seawater atmosphere environment, a yield strength of 500 MPa or more, and a tensile strength of 600 MPa or more. Can be provided.
The diverse and meaningful advantages and effects of the present invention are not limited to those described above and can be more easily understood in the process of explaining specific embodiments of the present invention.

発明鋼4を顕微鏡で観察した写真であって、(a)は表面、(b)は厚さ方向1/4tの部分、(c)は厚さ方向1/2tの部分を観察した写真である。It is a photograph of the invention steel 4 observed with a microscope, in which (a) is a photograph of the surface, (b) is a photograph of a portion 1/4 t in the thickness direction, and (c) is a photograph of a portion observed in the thickness direction 1 / 2t. ..

以下、本発明の好適な実施形態を説明する。しかし、本発明の実施形態は、いくつかの他の形態に変形することができ、本発明の範囲は以下に説明する実施形態に限定されるものではない。また、本発明の実施形態は、当該技術分野で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。
本発明者は、構造用鋼の自体の耐食性を向上させるための方法について深く研究した結果、クロム、銅などの含有量を適宜制御し、再加熱温度、仕上げ圧延温度、冷却終了温度、冷却速度などの製造条件を最適化することで、微細組織を制御し、優れた耐海水特性及び強度特性を確保することができることを確認し、本発明を完成するに至った。
Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the invention can be transformed into several other embodiments, and the scope of the invention is not limited to the embodiments described below. Also, embodiments of the invention are provided to more fully explain the invention to those with average knowledge in the art.
As a result of deep research on a method for improving the corrosion resistance of the structural steel itself, the present inventor appropriately controls the content of chromium, copper, etc., and reheats the temperature, the finish rolling temperature, the cooling end temperature, and the cooling rate. By optimizing the manufacturing conditions such as, it was confirmed that the fine structure can be controlled and excellent seawater resistance and strength characteristics can be ensured, and the present invention has been completed.

以下、本発明の一側面による高強度構造用鋼について詳細に説明する。
[高強度構造用鋼]
まず、本発明の高強度構造用鋼の構成成分について説明する。
本発明の高強度構造用鋼は、重量%で、C:0.03%以上0.1%未満、Si:0.1%以上0.8%未満、Mn:0.3%以上1.5%未満、Cr:0.5%以上1.5%未満、Cu:0.1%以上0.5%未満、Al:0.01%以上0.08%未満、Ti:0.01%以上0.1%未満、Ni:0.05%以上0.1%未満、Nb:0.002%以上0.07%未満、P:0.03%以下、S:0.02%以下、残部はFe及び不可避不純物からなる。以下、各合金元素の単位は重量%である。
Hereinafter, the high-strength structural steel according to one aspect of the present invention will be described in detail.
[High-strength structural steel]
First, the constituent components of the high-strength structural steel of the present invention will be described.
The high-strength structural steel of the present invention has C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and 1.5 in weight%. %, Cr: 0.5% or more and less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and 0 .1% or less, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, the balance is Fe And unavoidable impurities. Hereinafter, the unit of each alloying element is% by weight.

炭素(C):0.03%以上0.1%未満
Cは、強度を向上させるために添加される元素であって、その含有量を増加させると、焼入れ性を向上させて強度を向上させることができるが、添加量が増加するにつれて全面腐食の抵抗性を阻害し、炭化物などの析出を助長するため、局部腐食の抵抗性にも一部影響を及ぼす。全面腐食及び局部腐食の抵抗性を向上させるためには、C含有量を減らす必要があるが、その含有量が0.03%未満であると、構造用鋼の用途材料としての十分な強度を確保するのが難しく、0.1%以上であると、溶接性を劣化させるため、溶接構造物用鋼として好ましくない。したがって、本発明におけるC含有量を0.03%以上0.1%未満に制限することが好ましい。一方、耐食性の観点からC含有量が0.09%未満であることがより好ましく、場合によっては、鋳造亀裂をさらに向上させ、炭素当量を減らすために、C含有量は0.08%未満であることが更に好ましい。一方、上記C含有量の下限は0.035%であることが好ましい。また、上記C含有量の上限は0.06%であることがより好ましく、0.054%であることが更に好ましい。
Carbon (C): 0.03% or more and less than 0.1% C is an element added to improve the strength, and when the content thereof is increased, the hardenability is improved and the strength is improved. However, as the addition amount increases, the resistance to total corrosion is inhibited and the precipitation of carbides and the like is promoted, so that the resistance to local corrosion is also partially affected. In order to improve the resistance to total corrosion and local corrosion, it is necessary to reduce the C content, but if the content is less than 0.03%, sufficient strength as a material for structural steel will be obtained. It is difficult to secure, and if it is 0.1% or more, the weldability is deteriorated, which is not preferable as steel for welded structures. Therefore, it is preferable to limit the C content in the present invention to 0.03% or more and less than 0.1%. On the other hand, from the viewpoint of corrosion resistance, the C content is more preferably less than 0.09%, and in some cases, the C content is less than 0.08% in order to further improve casting cracks and reduce carbon equivalent. It is more preferable to have. On the other hand, the lower limit of the C content is preferably 0.035%. Further, the upper limit of the C content is more preferably 0.06%, further preferably 0.054%.

シリコン(Si):0.1%以上0.8%未満
Siは、脱酸剤として作用するだけでなく、鋼の強度を増加させる役割を発揮する元素であって、その効果が発揮されるためには0.1%以上が必要である。また、Siは全面腐食の抵抗性の向上に寄与するため、含有量を増加させることが有利であるが、Si含有量が0.8%以上の場合、靭性及び溶接性を阻害し、圧延時のスケールの剥離を難しくしてスケールによる表面欠陥などを誘発する。したがって、本発明におけるSi含有量を0.1%以上0.8%未満に制限することが好ましい。場合によっては、耐食性の向上のためにSi含有量を0.2%以上に制限することがより好ましい。従って、Si含有量の下限は0.2%であることがより好ましく、0.27%であることが更に好ましい。また、上記Si含有量の上限は0.5%であることが好ましく、0.44%であることがより好ましい。
Silicon (Si): 0.1% or more and less than 0.8% Si is an element that not only acts as a deoxidizing agent but also increases the strength of steel, and its effect is exhibited. Requires 0.1% or more. Further, since Si contributes to the improvement of the resistance to total corrosion, it is advantageous to increase the content, but when the Si content is 0.8% or more, the toughness and weldability are impaired, and during rolling. It makes it difficult to peel off the scale and induces surface defects due to the scale. Therefore, it is preferable to limit the Si content in the present invention to 0.1% or more and less than 0.8%. In some cases, it is more preferable to limit the Si content to 0.2% or more in order to improve the corrosion resistance. Therefore, the lower limit of the Si content is more preferably 0.2%, further preferably 0.27%. The upper limit of the Si content is preferably 0.5%, more preferably 0.44%.

マンガン(Mn):0.3%以上1.5%未満
Mnは、靭性を低下させず、固溶強化によって強度を上昇させる有効な成分である。しかし、過度に添加した場合、腐食反応時に鋼材表面の電気化学反応速度を上昇させることで耐食性が低下することもある。Mnが0.3%未満添加される場合、構造用鋼材の耐久性の確保が困難であるという問題がある。これに対し、Mn含有量が増加すると、焼入れ性が増加して強度が上昇するが、1.5%以上添加されると、製鋼工程でスラブ鋳造時の厚さ中心部で偏析部が大きく発達し、溶接性が低下し、これに伴い、鋼板表面の耐食性を低下させるという問題点がある。したがって、本発明におけるMn含有量は0.3%以上1.5%未満に制限することが好ましい。Mn含有量の下限は0.4%であることがより好ましく、0.5%であることが更に好ましい。また、上記Mn含有量の上限は1.4%であることが好ましく、0.9%であることがより好ましい。
Manganese (Mn): 0.3% or more and less than 1.5% Mn is an effective component that does not reduce toughness but increases strength by strengthening solid solution. However, if it is added excessively, the corrosion resistance may be lowered by increasing the electrochemical reaction rate on the surface of the steel material during the corrosion reaction. When Mn is added in an amount of less than 0.3%, there is a problem that it is difficult to secure the durability of the structural steel material. On the other hand, when the Mn content increases, the hardenability increases and the strength increases, but when 1.5% or more is added, the segregated portion greatly develops at the center of the thickness during slab casting in the steelmaking process. However, there is a problem that the weldability is lowered and the corrosion resistance of the steel plate surface is lowered accordingly. Therefore, it is preferable to limit the Mn content in the present invention to 0.3% or more and less than 1.5%. The lower limit of the Mn content is more preferably 0.4%, further preferably 0.5%. The upper limit of the Mn content is preferably 1.4%, more preferably 0.9%.

クロム(Cr):0.5%以上1.5%未満
Crは、腐食環境で鋼材表面にCrを含む酸化膜を形成して耐食性を上昇させる元素である。海水環境において、Cr添加による耐食性の効果が十分に現れるためには、0.5%以上含有する必要がある。しかし、上記Crが1.5%以上と過度に含有されると、靭性及び溶接性に悪影響を及ぼすため、その含有量を0.5%以上1.5%未満に制限することが好ましい。一方、Cr含有量の下限は0.6%であることがより好ましく、1.2%であることが更に好ましい。また、上記Cr含有量の上限は1.4%であることがより好ましい。すなわち、本発明の一側面による構造用鋼は、Cr含有量が1.2%以上1.4%以下(すなわち、1.2~1.4%)であることが最も好ましい。
Chromium (Cr): 0.5% or more and less than 1.5% Cr is an element that forms an oxide film containing Cr on the surface of a steel material in a corrosive environment to increase corrosion resistance. In the seawater environment, it is necessary to contain 0.5% or more in order for the effect of corrosion resistance due to the addition of Cr to fully appear. However, if the Cr content is excessively 1.5% or more, the toughness and weldability are adversely affected. Therefore, it is preferable to limit the content to 0.5% or more and less than 1.5%. On the other hand, the lower limit of the Cr content is more preferably 0.6%, further preferably 1.2%. Further, it is more preferable that the upper limit of the Cr content is 1.4%. That is, it is most preferable that the structural steel according to one aspect of the present invention has a Cr content of 1.2% or more and 1.4% or less (that is, 1.2 to 1.4%).

銅(Cu):0.1%以上0.5%未満
Cuは、Niと同様に0.1%以上含有させると、Feの溶出を遅延させるため、全面腐食及び局部腐食の抵抗性の向上に有効である。しかし、Cu含有量が0.5%以上添加されると、スラブ製造時の液体状態のCuが粒界に溶け込んで熱間加工時にクラックを発生させるホットショートネス(Hot Shortness)現象を誘発するため、本発明におけるCu含有量は0.1%以上0.5%未満に制限することが好ましい。特に、Cu含有量の下限は0.2%であることがより好ましく、0.28%であることが最も好ましい。
一方、スラブ製造時に発生する表面亀裂は、C、Ni、Mnの含有量と相互的に作用するため、各元素の含有量に応じて表面亀裂の発生頻度は異なる場合があるが、該当元素の含有量に関わらず、表面亀裂発生の可能性を最小限に抑えるためには、Cu含有量を0.45%未満にすることがより好ましく、Cu含有量を0.43%以下にすることが最も好ましい。
Copper (Cu): 0.1% or more and less than 0.5% When Cu is contained in an amount of 0.1% or more like Ni, the elution of Fe is delayed, so that the resistance to total corrosion and local corrosion is improved. It is valid. However, when a Cu content of 0.5% or more is added, Cu in a liquid state during slab production melts into the grain boundaries and induces a hot shortness phenomenon that causes cracks during hot working. The Cu content in the present invention is preferably limited to 0.1% or more and less than 0.5%. In particular, the lower limit of the Cu content is more preferably 0.2%, most preferably 0.28%.
On the other hand, surface cracks generated during slab production interact with the contents of C, Ni, and Mn, so the frequency of surface cracks may differ depending on the content of each element. Regardless of the content, in order to minimize the possibility of surface cracking, the Cu content is more preferably less than 0.45%, and the Cu content is preferably 0.43% or less. Most preferred.

アルミニウム(Al):0.01%以上0.08%未満
Alは、脱酸のために添加される元素であって、鋼中でNと反応してAlNを形成し、オーステナイト結晶粒を微細化して靭性を向上させる元素である。Alは、十分な脱酸のために溶解状態で0.01%以上含有されることが好ましい。一方、Al含有量の下限は0.02%であることが好ましく、0.022%であることがより好ましい。これに対し、Alが0.08%以上に過度に含有されると、製鋼工程で粗大な酸化物の介在物を形成し、アルミニウム酸化物(Al oxide)系の特徴によって圧延時に潰れて長く連なる延伸介在物を形成する。このような延伸介在物の形成は、介在物の周辺に空孔の形成を助長し、このような空孔は、局部腐食の開始点として作用するため、局部腐食の抵抗性を阻害する虞がある。したがって、本発明におけるAl含有量は0.08%未満に制限することが好ましい。一方、Al含有量の上限は0.05%であることが好ましく、0.034%であることがより好ましい。
Aluminum (Al): 0.01% or more and less than 0.08% Al is an element added for deoxidation and reacts with N in steel to form AlN, resulting in finer austenite crystal grains. It is an element that improves toughness. Al is preferably contained in a dissolved state in an amount of 0.01% or more for sufficient deoxidation. On the other hand, the lower limit of the Al content is preferably 0.02%, more preferably 0.022%. On the other hand, when Al is excessively contained in an amount of 0.08% or more, coarse oxide inclusions are formed in the steelmaking process, and due to the characteristics of the aluminum oxide system, they are crushed during rolling and continue for a long time. Form stretching inclusions. The formation of such stretched inclusions promotes the formation of pores around the inclusions, which act as a starting point for local corrosion and thus may impair the resistance to local corrosion. be. Therefore, the Al content in the present invention is preferably limited to less than 0.08%. On the other hand, the upper limit of the Al content is preferably 0.05%, more preferably 0.034%.

チタン(Ti):0.01%以上0.1%未満
Tiは、0.01%以上添加すると、鋼中で炭素と結合してTiCを形成することにより、析出強化効果によって強度を向上させる役割を果たす。これに対し、Ti含有量が0.1%以上添加される場合には、その含有量の増加に対する強度向上効果が大きくない。したがって、本発明におけるTi含有量は、0.01%以上0.1%未満に制限することができる。Ti含有量の下限は0.015%であることがより好ましい。また、Ti含有量の上限は0.05%であることがより好ましく、0.028%であることが更に好ましい。
Titanium (Ti): 0.01% or more and less than 0.1% When Ti is added in an amount of 0.01% or more, it combines with carbon in steel to form TiC, thereby improving the strength by the precipitation strengthening effect. Fulfill. On the other hand, when the Ti content is 0.1% or more, the effect of improving the strength against the increase in the content is not great. Therefore, the Ti content in the present invention can be limited to 0.01% or more and less than 0.1%. The lower limit of the Ti content is more preferably 0.015%. Further, the upper limit of the Ti content is more preferably 0.05%, further preferably 0.028%.

ニッケル(Ni):0.05%以上0.1%未満
Niは、Cuと同様に0.05%以上含有させると、全面腐食及び局部腐食の抵抗性の向上に有効である。Ni含有量の下限は0.07%であることがより好ましい。また、Cuと共に添加すると、Cuと反応して融点の低いCu相の生成を抑制して、ホットショートネスを抑制する効果があるため、殆どのCu添加鋼では、NiをCu含有量の1倍以上添加することが一般的である。本発明のようにC、Mnなどの炭素当量に関する元素の含有量が低く、Cr含有量が大きい場合、Cu含有量の半分以下で入れてもショートネスを十分に防止することができる。Niは高価な元素であるため、相対的な投入効果を考慮してNi含有量の上限を0.1%未満に制限することが好ましい。更に、Ni含有量の上限は0.09%であることがより好ましい。
Nickel (Ni): 0.05% or more and less than 0.1% Ni is effective in improving the resistance to total corrosion and local corrosion when it is contained in an amount of 0.05% or more like Cu. The lower limit of the Ni content is more preferably 0.07%. Further, when added together with Cu, it has the effect of suppressing the formation of a Cu phase having a low melting point by reacting with Cu and suppressing hot shortness. Therefore, in most Cu-added steels, Ni is 1 times the Cu content. It is common to add the above. When the content of elements related to carbon equivalent such as C and Mn is low and the Cr content is high as in the present invention, shortness can be sufficiently prevented even if the content is less than half of the Cu content. Since Ni is an expensive element, it is preferable to limit the upper limit of the Ni content to less than 0.1% in consideration of the relative input effect. Further, the upper limit of the Ni content is more preferably 0.09%.

ニオブ(Nb):0.002%以上0.07%未満
Nbは、Tiと同様に鋼中で炭素と結合してNbCを形成することで、析出強化の役割を果たす元素であり、0.002%以上添加すると、強度を効果的に向上させる。但し、その含有量が0.07%以上添加された場合には、その含有量の増加に対する強度向上効果がそれほど大きくない。したがって、本発明におけるNb含有量は0.002%以上0.07%未満に制限することが好ましい。Nb含有量の下限は0.01%であることがより好ましく、0.017%であることが最も好ましい。また、Nb含有量の上限は0.05%であることがより好ましく、0.044%であることが更に好ましい。
Niobium (Nb): 0.002% or more and less than 0.07% Nb is an element that plays a role of precipitation strengthening by binding to carbon in steel to form NbC like Ti, and is 0.002. When added in% or more, the strength is effectively improved. However, when the content is 0.07% or more, the effect of improving the strength against the increase in the content is not so great. Therefore, the Nb content in the present invention is preferably limited to 0.002% or more and less than 0.07%. The lower limit of the Nb content is more preferably 0.01%, most preferably 0.017%. Further, the upper limit of the Nb content is more preferably 0.05%, further preferably 0.044%.

リン(P):0.03%以下
Pは、鋼中に不純物として存在し、その含有量が0.03%を超えて添加されると、溶接性が顕著に低下するだけでなく、靭性が低下する。したがって、P含有量を0.03%以下に制限することが好ましい。また、P含有量の上限が0.02%であることが好ましく、0.018%であることがより好ましい。一方、Pは、不純物であることから、その含有量を低減するほど有利であるため、その下限は別途限定しない。
Phosphorus (P): 0.03% or less P is present as an impurity in steel, and when its content exceeds 0.03%, not only the weldability is significantly reduced, but also the toughness is reduced. descend. Therefore, it is preferable to limit the P content to 0.03% or less. Further, the upper limit of the P content is preferably 0.02%, more preferably 0.018%. On the other hand, since P is an impurity, it is advantageous to reduce its content, and therefore its lower limit is not particularly limited.

硫黄(S):0.02%以下
Sは、鋼中に不純物として存在し、その含有量が0.02%を超えると、鋼の延性、衝撃靭性及び溶接性を劣化させる問題点がある。したがって、本発明におけるS含有量を0.02%以下に制限することが好ましい。特に、SはMnと反応してMnSのように延伸介在物を形成しやすく、延伸介在物の両端に存在する空孔は局部腐食の開始点となり得るため、その含有量の上限を0.01%以下にすることがより好ましく、0.008%以下にすることが最も好ましい。一方、Sは、不純物であることから、その含有量を低減するほど有利であるため、その下限は別途限定しない。
Sulfur (S): 0.02% or less S exists as an impurity in the steel, and if the content exceeds 0.02%, there is a problem that the ductility, impact toughness and weldability of the steel are deteriorated. Therefore, it is preferable to limit the S content in the present invention to 0.02% or less. In particular, S easily reacts with Mn to form stretched inclusions like MnS, and the pores existing at both ends of the stretched inclusions can be the starting point of local corrosion, so the upper limit of the content is 0.01. % Or less is more preferable, and 0.008% or less is most preferable. On the other hand, since S is an impurity, it is advantageous to reduce its content, and therefore its lower limit is not particularly limited.

本発明の高強度構造用鋼は、上記の合金元素以外に、残りは鉄(Fe)成分である。但し、通常の製造過程では、原料や周囲環境から意図されない不純物が不可避に混入することがあるため、これを排除することはできない。これらの不純物は、通常の技術者であれば、誰でも分かることであるため、そのすべての内容を詳細に言及しない。 In the high-strength structural steel of the present invention, in addition to the above alloying elements, the rest is an iron (Fe) component. However, in the normal manufacturing process, impurities unintended from the raw materials and the surrounding environment may be inevitably mixed, and this cannot be excluded. All of these impurities are not mentioned in detail, as any ordinary technician will know them.

一方、本発明の一側面による高強度構造用鋼は、微細組織として面積分率で、ベイナイト20%以上、ポリゴナルフェライト及び針状フェライトが合計で80%未満、その他の相としてパーライト及びMA(島状マルテンサイト)が10%未満であることができる。 On the other hand, the high-strength structural steel according to one aspect of the present invention has bainite 20% or more as a microstructure, polygonal ferrite and acicular ferrite less than 80% in total, and pearlite and MA (other phases). Island-like martensite) can be less than 10%.

本発明の一側面による高強度構造用鋼は、微細組織のうちベイナイトの面積分率が20%以上であることができ、30%以上であることがより好ましく、51%以上であることが最も好ましい。
一方、本発明の一側面による高強度構造用鋼は、微細組織のうちベイナイトの面積分率が78%以下であることができる。
本発明の一側面による高強度構造用鋼は、微細組織のうちベイナイトの面積分率が68%以上71%以下であることができる。
The high-strength structural steel according to one aspect of the present invention can have a surface integral of bainite of 20% or more, more preferably 30% or more, and most preferably 51% or more in the fine structure. preferable.
On the other hand, the high-strength structural steel according to one aspect of the present invention can have a surface integral of bainite of 78% or less in the fine structure.
The high-strength structural steel according to one aspect of the present invention can have a surface integral of bainite of 68% or more and 71% or less in the fine structure.

また、本発明の一側面による高強度構造用鋼は、微細組織のうちポリゴナルフェライト及び針状フェライトの合計の面積分率が80%未満であることができ、45%以下であることがより好ましい。
本発明の一側面による高強度構造用鋼は、微細組織のうちポリゴナルフェライト及び針状フェライトの合計の面積分率が10%以上であることができ、19%以上であることがより好ましい。
本発明の一側面による高強度構造用鋼は、微細組織のうちポリゴナルフェライト及び針状フェライトの合計の面積分率が25%以上30%以下であることができ、27%以上30%以下であることがより好ましい。
Further, in the high-strength structural steel according to one aspect of the present invention, the total surface integral of the polygonal ferrite and the needle-like ferrite in the microstructure can be less than 80%, and more preferably 45% or less. preferable.
The high-strength structural steel according to one aspect of the present invention can have a total surface integral of 10% or more of the polygonal ferrite and the needle-like ferrite in the fine structure, and more preferably 19% or more.
The high-strength structural steel according to one aspect of the present invention can have a total surface integral of 25% or more and 30% or less of polygonal ferrite and acicular ferrite in the microstructure, and is 27% or more and 30% or less. It is more preferable to have.

また、本発明の一側面による高強度構造用鋼は、微細組織のうちその他の相としてパーライト及びMA(島状マルテンサイト)の面積分率が10%未満であることができ、5%以下であることが好ましく、4%以下であることがより好ましく、2%以下であることが更に好ましい。 Further, the high-strength structural steel according to one aspect of the present invention can have an area fraction of pearlite and MA (island-like martensite) as the other phase of the fine structure of less than 10%, and is 5% or less. It is preferably abundant, more preferably 4% or less, still more preferably 2% or less.

高強度構造用鋼の材料として使用するためには、少なくとも500MPa、普遍的には600MPa以上の厚物材の強度を確保する必要があり、このために微細組織にベイナイト20%以上及びその他のポリゴナル及び/または針状フェライト中心の組織を構成した。また、その他の相であるパーライト及びMAの場合、10%以上含まれると、本発明に係る構造用鋼が用いられる環境において、低温靭性及び耐食性が不足する虞があるため、上限を10%未満に制限した。
本発明の一側面による高強度構造用鋼は、上記の構成成分系及び微細組織を満たすことで、500MPa以上の降伏強度、600MPa以上の引張強度を有することができる。
In order to use it as a material for high-strength structural steel, it is necessary to secure the strength of thick materials of at least 500 MPa, universally 600 MPa or more, and for this reason, bainite 20% or more and other polygonals in the microstructure must be secured. And / or a structure centered on needle-shaped ferrite was formed. Further, in the case of pearlite and MA, which are other phases, if 10% or more is contained, the low temperature toughness and corrosion resistance may be insufficient in the environment where the structural steel according to the present invention is used, so the upper limit is less than 10%. Limited to.
The high-strength structural steel according to one aspect of the present invention can have a yield strength of 500 MPa or more and a tensile strength of 600 MPa or more by satisfying the above-mentioned constituent component system and microstructure.

次に、本発明の他の一側面による高強度構造用鋼の製造方法について詳細に説明する。
[高強度構造用鋼の製造方法]
本発明の一側面による高強度構造用鋼の製造方法は、スラブ再加熱-熱間圧延-冷却の過程からなり、各製造段階別の詳細な条件は、以下のとおりである。
Next, a method for manufacturing a high-strength structural steel according to another aspect of the present invention will be described in detail.
[Manufacturing method of high-strength structural steel]
The method for producing high-strength structural steel according to one aspect of the present invention comprises the processes of slab reheating-hot rolling-cooling, and the detailed conditions for each production stage are as follows.

スラブ再加熱段階
まず、上記の構成成分からなるスラブを用意し、上記スラブを1000~1200℃の温度範囲で再加熱する。鋳造中に形成された炭窒化物を固溶させるために再加熱温度を1000℃以上とし、炭窒化物を十分に固溶させるために1050℃以上に加熱することがより好ましい。一方、過度に高い温度で再加熱した場合、オーステナイトが粗大に形成される虞があるため、上記再加熱温度は1200℃以下にすることが好ましい。
Slab reheating step First, a slab composed of the above components is prepared, and the slab is reheated in a temperature range of 1000 to 1200 ° C. It is more preferable to set the reheating temperature to 1000 ° C. or higher in order to dissolve the carbonitride formed during casting to a solid solution, and to heat it to 1050 ° C. or higher in order to sufficiently dissolve the carbonitride. On the other hand, when reheated at an excessively high temperature, austenite may be formed coarsely, so the reheating temperature is preferably 1200 ° C. or lower.

熱間圧延段階
上記再加熱したスラブに対して粗圧延及び仕上げ圧延を含む熱間圧延を行う。この時、仕上げ圧延は750℃以上の仕上げ圧延温度で完了することが好ましい。上記仕上げ圧延温度が750℃未満であると、空冷フェライトが多量に生成される問題がある。これに対し、上記仕上げ圧延温度が950℃を超えると、組織の粗大化による強度及び靭性の低下を引き起こす虞がある。したがって、本発明における上記仕上げ圧延温度は、750~950℃に制限することが好ましい。
Hot rolling stage Hot rolling including rough rolling and finish rolling is performed on the reheated slab. At this time, the finish rolling is preferably completed at a finish rolling temperature of 750 ° C. or higher. If the finish rolling temperature is less than 750 ° C., there is a problem that a large amount of air-cooled ferrite is generated. On the other hand, if the finish rolling temperature exceeds 950 ° C., the strength and toughness may decrease due to the coarsening of the structure. Therefore, the finish rolling temperature in the present invention is preferably limited to 750 to 950 ° C.

冷却段階
熱間圧延を終了した鋼材に対して水冷による強制冷却を行う。本発明では十分な冷却により厚物材でも高強度を確保することが核心技術であり、組織の粗大化を防ぐために、10℃/s以上の冷却速度で700℃以下の温度まで冷却する必要がある。また、上記冷却は、750℃以上の冷却開始温度から開始することができる。但し、400℃未満の温度まで冷却する場合、急冷過程によって中心部に微細なクラックが誘発されることがあり、製品表面と中心部の材質偏差及び製品の先/後端部の材質偏差を誘発する虞があるため、400℃以上の温度で冷却を終了することが好ましい。すなわち、冷却段階では、圧延された鋼板を750℃以上の冷却開始温度から400~700℃の冷却終了温度まで10℃/sの冷却速度で冷却することが好ましい。特に、上記冷却終了温度の範囲は、500~650℃であることがより好ましく、522~614℃であることが更に好ましい。
Cooling stage Forced cooling by water cooling is performed on the steel material that has been hot-rolled. In the present invention, it is a core technique to secure high strength even for thick materials by sufficient cooling, and in order to prevent the coarsening of the structure, it is necessary to cool to a temperature of 700 ° C. or less at a cooling rate of 10 ° C./s or more. be. Further, the cooling can be started from a cooling start temperature of 750 ° C. or higher. However, when cooling to a temperature of less than 400 ° C, fine cracks may be induced in the central part due to the quenching process, which induces material deviation between the product surface and the central part and material deviation at the front / rear end of the product. Therefore, it is preferable to finish the cooling at a temperature of 400 ° C. or higher. That is, in the cooling step, it is preferable to cool the rolled steel sheet at a cooling rate of 10 ° C./s from a cooling start temperature of 750 ° C. or higher to a cooling end temperature of 400 to 700 ° C. In particular, the range of the cooling end temperature is more preferably 500 to 650 ° C, further preferably 522 to 614 ° C.

一方、冷却速度の上限は、主に設備能力に関係し、10℃/s以上であれば、冷却速度が増加しても強度に有意な変化が見られないため、冷却速度の上限は、別途限定しなくてもよい。一方、上記冷却速度の下限は20℃/sであることがより好ましく、25℃/sであることが更に好ましく、30℃/sであることが最も好ましい。 On the other hand, the upper limit of the cooling rate is mainly related to the equipment capacity, and if the temperature is 10 ° C./s or higher, no significant change is observed in the strength even if the cooling rate is increased. Therefore, the upper limit of the cooling rate is separately set. It does not have to be limited. On the other hand, the lower limit of the cooling rate is more preferably 20 ° C / s, further preferably 25 ° C / s, and most preferably 30 ° C / s.

以下、実施例を挙げて本発明をより具体的に説明する。但し、下記実施例は、本発明を例示して、より詳細に説明するためのものにすぎず、本発明の権利範囲を限定するためのものではない点を留意するべきである。本発明の権利範囲は、特許請求の範囲に記載された事項と、それから合理的に類推される事項によって決定されるものであるためである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, it should be noted that the following examples are merely intended to illustrate and explain the present invention in more detail, and are not intended to limit the scope of rights of the present invention. This is because the scope of rights of the present invention is determined by the matters described in the claims and the matters reasonably inferred from them.

(実施例)
まず、下記表1に示した構成成分を有する溶鋼を準備した後、連続鋳造を用いてスラブを製造した。以後、上記スラブを下記表2の製造条件で再加熱、熱間圧延、冷却して鋼板を製造した。
製造された鋼板について光学及び電子顕微鏡で微細組織を観察し、各相の面積分率を測定した後、引張試験によって降伏強度及び引張強度を測定して表3に示した。また、耐海水特性評価として海水の代替として3.5%NaCl溶液に一日間浸漬した後、50% HCl+0.1% Hexamethylene tetramine溶液と共に超音波洗浄機に入れて試験片を洗浄し、重量減少を測定した。この重量減少量を初期試験片の表面積で割って腐食速度を算出し、比較鋼及び発明鋼の腐食速度を比較するために、比較鋼1の腐食速度を100を基準として相対腐食速度を比較評価し、その結果を表3に併せて示した。
(Example)
First, molten steel having the constituent components shown in Table 1 below was prepared, and then a slab was manufactured by continuous casting. After that, the slab was reheated, hot-rolled, and cooled under the production conditions shown in Table 2 below to produce a steel sheet.
The microstructure of the manufactured steel plate was observed with an optical and electron microscope, the area fraction of each phase was measured, and then the yield strength and tensile strength were measured by a tensile test and shown in Table 3. In addition, as a seawater resistance evaluation, after soaking in a 3.5% NaCl solution as a substitute for seawater for one day, the test piece was washed with an ultrasonic cleaner together with a 50% HCl + 0.1% Hexamethylene tetramine solution to reduce the weight. It was measured. In order to calculate the corrosion rate by dividing this weight loss amount by the surface area of the initial test piece and compare the corrosion rate of the comparative steel and the invention steel, the relative corrosion rate is compared and evaluated with the corrosion rate of the comparative steel 1 as a reference. The results are also shown in Table 3.

Figure 2022506661000002
Figure 2022506661000002

Figure 2022506661000003
Figure 2022506661000003

Figure 2022506661000004
Figure 2022506661000004

上記表1から分かるとおり、発明鋼1~4は、すべて本発明で規定する成分範囲を満たしているのに対し、比較鋼1~3は、Cr、Cu、NiまたはMnの成分範囲が本発明の範囲から外れていた。
その結果、発明鋼1~4は、フェライト系に(基盤に)ベイナイト20%以上の低温組織を有する微細組織を有するようになり、降伏強度500MPa以上、引張強度600MPa以上の高い強度を有しており、構造用鋼として十分な材質を備えていることが分かった。また、本発明で規定する成分範囲を満たすことにより、比較鋼1に比べて遅い腐食速度を示し、耐海水雰囲気で十分な寿命を有することが確認できた。
これに対し、比較鋼1~3は、Cr、Cu、NiまたはMnの成分範囲が本発明の範囲から逸脱していたため、本発明の製造条件を満たす製造方法で製造されたにも関わらず、表3から分かるとおり、相対腐食速度100以上の高い腐食速度を示し、結果的には耐海水雰囲気で十分な寿命を有することができないことが分かった。
As can be seen from Table 1 above, the invention steels 1 to 4 all satisfy the component range specified in the present invention, whereas the comparative steels 1 to 3 have a component range of Cr, Cu, Ni or Mn of the present invention. Was out of range.
As a result, the invented steels 1 to 4 have a microstructure having a bainite 20% or more low temperature structure (on the substrate) in a ferrite system, and have a high yield strength of 500 MPa or more and a tensile strength of 600 MPa or more. It was found that it has sufficient material for structural steel. Further, it was confirmed that by satisfying the component range specified in the present invention, the corrosion rate was slower than that of the comparative steel 1, and the life was sufficient in a seawater-resistant atmosphere.
On the other hand, the comparative steels 1 to 3 were manufactured by the manufacturing method satisfying the manufacturing conditions of the present invention because the component range of Cr, Cu, Ni or Mn deviated from the range of the present invention. As can be seen from Table 3, it was found that the relative corrosion rate showed a high corrosion rate of 100 or more, and as a result, it was not possible to have a sufficient life in a seawater resistant atmosphere.

一方、Crを1.2%以上1.4%以下で含有する発明鋼1及び2の場合、Crを1.2%以上1.4%以下で含有しない発明鋼3及び4に比べて、より遅い腐食速度を示すことが確認された。
これにより、本発明の一側面による構造用鋼として、Crを1.2%以上1.4%以下で含有することで、耐海水雰囲気で最も優れた寿命特性を有することが確認できた。
On the other hand, in the case of the invention steels 1 and 2 containing Cr in an amount of 1.2% or more and 1.4% or less, compared with the invention steels 3 and 4 in which Cr is not contained in an amount of 1.2% or more and 1.4% or less. It was confirmed that it showed a slow corrosion rate.
As a result, it was confirmed that the structural steel according to one aspect of the present invention has the best life characteristics in a seawater-resistant atmosphere by containing Cr in an amount of 1.2% or more and 1.4% or less.

以上、実施例について説明したが、当該技術分野における熟練した通常の技術者は、下記の特許請求の範囲に記載された本発明の思想及び領域から逸脱しない範囲内で、本発明の多様な修正及び変更が可能であるということを理解することができる。
Although the examples have been described above, a skilled ordinary engineer in the art has various modifications of the present invention within the scope of the idea and domain of the present invention described in the claims below. And can understand that changes are possible.

Claims (6)

重量%で、C:0.03%以上0.1%未満、Si:0.1%以上0.8%未満、Mn:0.3%以上1.5%未満、Cr:0.5%以上1.5%未満、Cu:0.1%以上0.5%未満、Al:0.01%以上0.08%未満、Ti:0.01%以上0.1%未満、Ni:0.05%以上0.1%未満、Nb:0.002%以上0.07%未満、P:0.03%以下、S:0.02%以下、残部はFe及び不可避不純物からなり、
微細組織が、面積分率で、ベイナイト20%以上、ポリゴナルフェライト及び針状フェライトが合計で80%未満、その他の相としてパーライト及び島状マルテンサイトが10%未満であることを特徴とする高強度構造用鋼。
By weight%, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and less than 1.5%, Cr: 0.5% or more Less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05 % Or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, the balance consists of Fe and unavoidable impurities.
The microstructure is characterized by an area fraction of 20% or more bainite, less than 80% total of polygonal ferrite and acicular ferrite, and less than 10% of pearlite and island martensite as other phases. Strength structural steel.
前記Cは、0.03%以上0.09%未満で含まれることを特徴とする請求項1に記載の高強度構造用鋼。 The high-strength structural steel according to claim 1, wherein C is contained in an amount of 0.03% or more and less than 0.09%. 前記Siは、0.2%以上0.8%未満で含まれることを特徴とする請求項1に記載の高強度構造用鋼。 The high-strength structural steel according to claim 1, wherein the Si is contained in an amount of 0.2% or more and less than 0.8%. 前記Cuは、0.1%以上0.45%未満で含まれることを特徴とする請求項1に記載の高強度構造用鋼。 The high-strength structural steel according to claim 1, wherein the Cu is contained in an amount of 0.1% or more and less than 0.45%. 前記高強度構造用鋼は、500MPa以上の降伏強度、600MPa以上の引張強度を有することを特徴とする請求項1に記載の高強度構造用鋼。 The high-strength structural steel according to claim 1, wherein the high-strength structural steel has a yield strength of 500 MPa or more and a tensile strength of 600 MPa or more. 重量%で、C:0.03%以上0.1%未満、Si:0.1%以上0.8%未満、Mn:0.3%以上1.5%未満、Cr:0.5%以上1.5%未満、Cu:0.1%以上0.5%未満、Al:0.01%以上0.08%未満、Ti:0.01%以上0.1%未満、Ni:0.05%以上0.1%未満、Nb:0.002%以上0.07%未満、P:0.03%以下、S:0.02%以下、残部はFe及び不可避不純物からなるスラブを1000℃以上1200℃以下の温度で再加熱する段階、
再加熱した前記スラブを750℃以上950℃以下の仕上げ圧延温度で熱間圧延する段階、及び
圧延された鋼板を750℃以上の冷却開始温度から400~700℃の冷却終了温度まで10℃/sec以上の冷却速度で冷却する段階、
を含むことを特徴とする高強度構造用鋼の製造方法。
By weight%, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and less than 1.5%, Cr: 0.5% or more Less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05 % Or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, the balance is a slab consisting of Fe and unavoidable impurities at 1000 ° C or more. The stage of reheating at a temperature of 1200 ° C or lower,
The step of hot rolling the reheated slab at a finish rolling temperature of 750 ° C. or higher and 950 ° C. or lower, and 10 ° C./sec from the cooling start temperature of 750 ° C. or higher to the cooling end temperature of 400 to 700 ° C. The stage of cooling at the above cooling rate,
A method for producing high-strength structural steel, which comprises.
JP2021524195A 2018-11-08 2019-11-08 High-strength structural steel and its manufacturing method Active JP7332692B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180136846A KR102142774B1 (en) 2018-11-08 2018-11-08 High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof
KR10-2018-0136846 2018-11-08
PCT/KR2019/015124 WO2020096398A1 (en) 2018-11-08 2019-11-08 High strength steel plate for structure with good seawater corrosion resistant property and method of manufacturing same

Publications (2)

Publication Number Publication Date
JP2022506661A true JP2022506661A (en) 2022-01-17
JP7332692B2 JP7332692B2 (en) 2023-08-23

Family

ID=70612140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021524195A Active JP7332692B2 (en) 2018-11-08 2019-11-08 High-strength structural steel and its manufacturing method

Country Status (6)

Country Link
US (1) US20210388458A1 (en)
EP (1) EP3878996A4 (en)
JP (1) JP7332692B2 (en)
KR (1) KR102142774B1 (en)
CN (1) CN112969809B (en)
WO (1) WO2020096398A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
KR20090058058A (en) * 2007-12-04 2009-06-09 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
JP2011195883A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp HIGH STRENGTH THICK STEEL PLATE HAVING TENSILE STRENGTH OF 590 MPa OR HIGHER AND EXCELLENT DUCTILITY AND TOUGHNESS, AND METHOD OF PRODUCING THE SAME
WO2014171427A1 (en) * 2013-04-15 2014-10-23 新日鐵住金株式会社 Hot-rolled steel sheet
JP2017150067A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Steel sheet excellent in brittleness crack propagation arrest property and manufacturing method therefor
JP2018009243A (en) * 2016-06-30 2018-01-18 新日鐵住金株式会社 Steel sheet excellent in brittle crack arrest property and manufacturing method therefor
CN108467993A (en) * 2018-06-11 2018-08-31 鞍钢股份有限公司 A kind of cryogenic pipelines ultra-wide high tenacity hot-rolled thick plank and its production method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316723A (en) * 1993-03-12 1994-11-15 Kobe Steel Ltd Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
KR100371960B1 (en) * 2000-09-29 2003-02-14 주식회사 포스코 High atmosphere corrosion resting and workability hot rolled strip having tensile strength of 60 kg/㎟ and method for manufacturing it
KR20040054272A (en) 2002-12-18 2004-06-25 주식회사 포스코 Method of manufacturing piping steel of a ship with a good seawater resistive property
WO2006103991A1 (en) * 2005-03-28 2006-10-05 Kabushiki Kaisha Kobe Seiko Sho High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
KR100815709B1 (en) * 2006-12-12 2008-03-20 주식회사 포스코 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same
US8647564B2 (en) * 2007-12-04 2014-02-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
KR101018159B1 (en) * 2008-05-15 2011-02-28 주식회사 포스코 High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
KR101125886B1 (en) * 2008-11-29 2012-03-21 주식회사 포스코 High strength ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and excellent haz toughness and manufacturing method for the same
WO2011052095A1 (en) * 2009-10-28 2011-05-05 新日本製鐵株式会社 Steel plate for line pipes with excellent strength and ductility and process for production of same
KR101289124B1 (en) 2009-12-10 2013-07-23 주식회사 포스코 Ship-building steel with excellent corrosion resistance at sea water
KR101289154B1 (en) 2009-12-29 2013-07-23 주식회사 포스코 Hot rolled steel sheet having excellent corrosion resistance and impcat toughness and manufacturing method thereof
KR101536471B1 (en) * 2013-12-24 2015-07-13 주식회사 포스코 Ultra-high strength steel sheet for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
KR20150112517A (en) * 2014-03-28 2015-10-07 현대제철 주식회사 Steel sheet for line pipe and method of manufacturing the same
CN106480374B (en) * 2015-08-31 2018-04-24 鞍钢股份有限公司 A kind of cold-resistant pipeline high tenacity low yield strength ratio hot-rolled thick plank and its production method
CN105441799B (en) * 2015-11-25 2017-05-24 武汉钢铁(集团)公司 High-toughness and low-yield-ratio quenched and tempered steel plate used in low-temperature environment and manufacturing method of high-toughness and low-yield-ratio quenched and tempered steel plate
KR101889182B1 (en) * 2016-12-20 2018-08-16 주식회사 포스코 Steel plate for welded steel pipe having excellent elogation of the longitudinal direction and toughness at low-temperature, method for manufacturing thereof and welded steel pipe using same
KR101899689B1 (en) 2016-12-23 2018-09-17 주식회사 포스코 Steel plate for welded steel pipe having excellent elogation of the longitudinal direction, method for manufacturing thereof and welded steel pipe using same
CN108728733A (en) * 2017-04-24 2018-11-02 鞍钢股份有限公司 Convey natural gas from coal X70 Pipeline Steel Plates and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
KR20090058058A (en) * 2007-12-04 2009-06-09 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
JP2011195883A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp HIGH STRENGTH THICK STEEL PLATE HAVING TENSILE STRENGTH OF 590 MPa OR HIGHER AND EXCELLENT DUCTILITY AND TOUGHNESS, AND METHOD OF PRODUCING THE SAME
WO2014171427A1 (en) * 2013-04-15 2014-10-23 新日鐵住金株式会社 Hot-rolled steel sheet
JP2017150067A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Steel sheet excellent in brittleness crack propagation arrest property and manufacturing method therefor
JP2018009243A (en) * 2016-06-30 2018-01-18 新日鐵住金株式会社 Steel sheet excellent in brittle crack arrest property and manufacturing method therefor
CN108467993A (en) * 2018-06-11 2018-08-31 鞍钢股份有限公司 A kind of cryogenic pipelines ultra-wide high tenacity hot-rolled thick plank and its production method

Also Published As

Publication number Publication date
KR102142774B1 (en) 2020-08-07
EP3878996A4 (en) 2022-01-05
KR20200053342A (en) 2020-05-18
JP7332692B2 (en) 2023-08-23
WO2020096398A1 (en) 2020-05-14
CN112969809A (en) 2021-06-15
US20210388458A1 (en) 2021-12-16
EP3878996A1 (en) 2021-09-15
CN112969809B (en) 2023-12-15

Similar Documents

Publication Publication Date Title
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
JP6847225B2 (en) Low yield ratio steel sheet with excellent low temperature toughness and its manufacturing method
JP7183410B2 (en) Steel plate for pressure vessel with excellent cryogenic toughness and ductility and its manufacturing method
KR20150112489A (en) Steel and method of manufacturing the same
KR101412427B1 (en) High strength steel plate and method for manufacturing the steel plate
KR20130046967A (en) High strength steel sheet have good wear resistant characteristics and method of manufacturing the steel sheet
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP2005146301A (en) High-strength hot-rolled steel plate superior in formability
JP7332692B2 (en) High-strength structural steel and its manufacturing method
KR101467030B1 (en) Method for manufacturing high strength steel plate
KR101572317B1 (en) Shape steel and method of manufacturing the same
JP7429782B2 (en) Structural steel plate with excellent seawater resistance and manufacturing method thereof
KR20130110646A (en) High strength steel sheet and method of manufacturing the steel sheet
KR101546124B1 (en) Hot-rolled steel and method of manufacturing the same
JP2005307313A (en) Method for producing steel plate excellent in earthquake-proof and weldability
KR101246466B1 (en) METHOD OF MANUFACTURING EXCELLENT FORMABILITY HOT ROLLED STEEL SHEET HAVING 1000MPa GRADE AND HOT ROLLED STEEL SHEET FABRICATED USING THEREOF
KR20110130972A (en) High strength line pipe steel with excellent low temperature dwtt property and method of manufacturing the high strength line pipe steel
KR102209569B1 (en) High strength and ductility steel sheet, and method for manufacturing the same
KR101185222B1 (en) Api hot-rolled steel sheet with high strength and method for manufacturing the api hot-rolled steel sheet
KR20110097519A (en) Steel plate with high strength and low temperature toughness and method of manufacturing the steel
KR20240098760A (en) High strength hot rolled steel having excellent corrosion resistance and method of manufacturing the same
KR101546147B1 (en) High strength steel plate and method for manufacturing the same
KR20240045561A (en) Plated steel sheet and method of manufacturing the same
KR20140042107A (en) Hot-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7332692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150