KR100815709B1 - Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same - Google Patents

Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same Download PDF

Info

Publication number
KR100815709B1
KR100815709B1 KR1020060126482A KR20060126482A KR100815709B1 KR 100815709 B1 KR100815709 B1 KR 100815709B1 KR 1020060126482 A KR1020060126482 A KR 1020060126482A KR 20060126482 A KR20060126482 A KR 20060126482A KR 100815709 B1 KR100815709 B1 KR 100815709B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
steel
high strength
rolled steel
Prior art date
Application number
KR1020060126482A
Other languages
Korean (ko)
Inventor
김재익
정기조
김종화
이수희
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060126482A priority Critical patent/KR100815709B1/en
Priority to JP2009541219A priority patent/JP5101628B2/en
Priority to PCT/KR2007/006426 priority patent/WO2008072873A1/en
Priority to CN2007800452596A priority patent/CN101553586B/en
Application granted granted Critical
Publication of KR100815709B1 publication Critical patent/KR100815709B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high strength cold-rolled steel sheet having weatherability, formability, and at least 80 kgf/mm^2 of tensile strength is provided, and a method for manufacturing the same is provided. A high strength cold-rolled steel sheet with excellent weatherability and formability has a composition comprising, by weight percent, 0.10 to 0.20% of carbon(C), 0.05 to 0.25% of silicon(Si), 1.0 to 2.5% of manganese(Mn), 0.02% or less of phosphorous(P), 0.01% or less of sulfur(S), 0.02 to 0.07% of aluminum(Al), 0.02 to 0.08% of niobium(Nb), 0.05 to 0.30% of nickel(Ni), 0.1 to 0.5% of copper(Cu), 0.8 to 1.5% of chromium(Cr), and 0.01 to 0.10% of cobalt(Co) with the balance of Fe and other inevitable impurities, and is comprised of 10 to 30% of a low temperature transformed structure, and the balance of ferrite. The low temperature transformed structure comprises at least one of martensite and bainite.

Description

내후성 및 가공성이 우수한 고강도 냉연강판과 그 제조방법{Formable High Strength Cold-Rolled Steel Sheet With Excellent Weather Resistance And Method Manufacturing The Same}Formable High Strength Cold-Rolled Steel Sheet With Excellent Weather Resistance And Method Manufacturing The Same}

일본 공개특허공보 평7-207408호Japanese Laid-Open Patent Publication No. 7-207408

일본 공개특허공보 평11-21622호Japanese Patent Application Laid-Open No. 11-21622

일본 공고특허공보 평6-104858호Japanese Patent Application Laid-open No. Hei 6-104858

본 발명은 건축, 철도 차량, 컨테이너 등에 사용되는 고강도 내후성 냉연 강판과 그 제조방법에 관한 것으로서, 보다 상세하게는 Cu-Co계의 성분계에서 저온변태조직을 확보하여 우수한 가공성과 함께 고강도 특성을 가지는 내후성 냉연강판과 그 제조방법에 관한 것이다.     The present invention relates to a high strength weather resistant cold rolled steel sheet used in construction, railroad cars, containers, and the like, and more particularly, to a low temperature transformation structure in a Cu-Co-based component system, thereby having a high workability with excellent workability. It relates to a cold rolled steel sheet and a method of manufacturing the same.

종래부터 컨테이너 또는 철도차량 등의 경량화 및 사용 수명 연장을 목적으로 스테인레스 또는 알루미늄 등의 소재들이 사용되어 왔다. 이와 같은 제품들에 요구되는 특성으로는 강도 특성을 포함하여 굽힘 가공성, 용접성, 내구성 등이 있다.      Conventionally, materials such as stainless steel or aluminum have been used for the purpose of reducing the weight and extending the service life of a container or a railway vehicle. Characteristics required for such products include bending properties, bendability, weldability, durability, and the like.

또한, 운송용 구조물의 경우 1회에 운반할 수 있는 화물의 중량을 올리기 위해서는 컨테이너의 경량화에 대한 요구가 적극적으로 이루어지고 있다. 예전에는 ISO에 의한 규격화된 20 또는 40피트의 컨테이너가 주로 사용되었지만 이와 같은 추세에 따라 45~53피트의 장척 컨테이너의 활용도가 높아지고 있는 추세이며, 이들 장척 컨테이너의 경우 컨테이너 자체 무게만도 3톤이 넘는 실정이다. 그러므로, 컨테이너의 경량화를 위해서 먼저 고려할 수 있는 방안이 적용 소재의 고강도화를 통한 소재 두께를 감소시키는 것이다. 예를 들어 1 TEU(Twenty-foot Equivalent Units, 컨테이너의 단위로써 20피트 컨테이너 1대 분을 칭함)의 컨테이너 화물을 선박에 선적 후 대서양을 횡단한다고 할 경우에 만약에 컨테이너의 중량을 10% 정도 경량화 시킬 수 있다면 사용되는 원료를 10% 이상 절약할 수 있다. 또한 이를 통해 광석원료의 사용시 발생하는 CO2의 발생량을 억제할 수 있으므로 지구 온난화에도 대응할 수 있다. In addition, in the case of a transport structure to increase the weight of the cargo that can be transported at one time, the demand for lightweight containers has been actively made. In the past, ISO standardized 20 or 40 foot containers were mainly used, but the trend is that the utilization of long containers of 45 to 53 feet is increasing. For these long containers, the container itself weighs only 3 tons. It is over. Therefore, the first consideration to reduce the weight of the container is to reduce the material thickness through the high strength of the applied material. For example, if one TEU (Twenty-foot Equivalent Units) container cargo is transited across the Atlantic after being shipped to the vessel, the weight of the container is reduced by about 10%. If you can, you can save more than 10% of the raw materials used. In addition, the amount of CO 2 generated when using ore raw materials can be suppressed, thereby coping with global warming.

이를 위해서는 컨테이너용 소재로서 80kgf/mm2 이상의 고강도 강판을 적용하는 것이 바람직하다. 특히, 컨테이너의 경우 수송 여건에 따라 해양 또는 육상의 다양한 기후 조건을 견디어야 하기 때문에 근본적으로 내후성이 우수한 강의 사용이 요구되고 있었다. To this end, it is preferable to apply a high strength steel sheet of 80kgf / mm 2 or more as a container material. In particular, since containers have to withstand various climatic conditions in the sea or on land, depending on the transport conditions, the use of steel with excellent weather resistance is required.

일례로, 종래에는 내후성 냉간 압연 강재인 SPA-C재(공업규격 KS D3542 및 JIS G3125 참조)가 주로 사용되어 왔으나, 이들 강은 인장강도가 50kg/mm2급으로 낮음에 따라 보다 큰 제품을 만드는 경우 자체의 중량으로 인한 수송비 상승 등이 제약 요인이 되었다. 또한, 자동차의 구조부재용으로 인장강도 60~80kg/mm2급의 고강도 냉연 강재가 있기는 하지만 이들 소재의 경우에도 강도 특성을 중시하여 제조함에 따라 목적으로 하는 내후성을 발휘하지는 못하는 문제점이 있었다. For example, conventionally, weather-resistant cold-rolled steel SPA-C material (see industrial standards KS D3542 and JIS G3125) has been mainly used, but these steels have a low tensile strength of 50 kg / mm 2 , thereby making larger products. Increasing transportation costs due to its own weight has become a limiting factor. In addition, although there are high-strength cold-rolled steel having a tensile strength of 60 ~ 80kg / mm 2 grade for the structural member of the vehicle, even in the case of these materials, there is a problem in that it does not exhibit the desired weather resistance as the emphasis on strength characteristics.

최근, 컨테이너 산업에 있어서도 원가 절감 및 환경 문제에 대응하기 위해 컨테이너의 자체 중량을 크게 감소시켜 보다 큰 컨테이너를 제작하고 있다. 이에 따라, 수송의 효율성을 크게 증가시키기 위한 시도가 진행되고 있으며, 특히 내후성 및 고강도를 가지는 강판에 대한 요구 및 이들 소재의 제조 방법에 관한 기술들이 제안되고 있다. Recently, in the container industry, in order to cope with cost reduction and environmental problems, a large container is manufactured by greatly reducing the weight of the container itself. Accordingly, attempts have been made to greatly increase the efficiency of transportation, and in particular, there is a demand for steel sheets having weather resistance and high strength and techniques for manufacturing these materials.

일례로, 일본 공개특허공보 평 7-207408호의 경우 C 0.008% 이하, Si 0.5~2.5%, Mn 0.1~3.5%, P 0.03~0.20%, S 0.01% 이하, Cu 0.05~2.0%, Al 0.005~0.1% 및 N 0.008% 이하, Cr 0.05~6.0%, Ni 0.05~2.0% 및 Mo 0.05~3.0%, B 0.0003~0.002%를 함유한 강을 1100~1300℃에서 가열하고 800~950℃에서 압연 종료하여 400~700℃로 권취 하는 것을 특징으로 하는 열연강대의 제조 방법을 제안하였다. 그러나, 이 기술에서 극히 일부의 실시 예만이 인장강도 60~70kg/mm2급이며 대 부분의 경우 인장강도는 50kg/mm2급을 나타내고 있어 80kg/mm2급의 인장강도를 확보할 수 없는 것으로 나타났다. 또한, 성분 구성 요소 중 Cr, Mo 등의 경화능 향상 원소를 다량 첨가함에 따라 용접성이 열화되고 제조 비용이 상승하는 문제점이 있었다. For example, in Japanese Patent Laid-Open No. 7-207408, C 0.008% or less, Si 0.5-2.5%, Mn 0.1-3.5%, P 0.03-0.20%, S 0.01% or less, Cu 0.05-2.0%, Al 0.005- Steels containing 0.1% and N 0.008% or less, Cr 0.05-6.0%, Ni 0.05-2.0% and Mo 0.05-3.0%, B 0.0003-0.002% are heated at 1100-1300 ° C and the rolling ends at 800-950 ° C. A method for producing a hot rolled steel strip, characterized in that the winding to 400 ~ 700 ℃. However, only a few embodiments of this technique show a tensile strength of 60 to 70 kg / mm 2, and in most cases, a tensile strength of 50 kg / mm 2 indicates that 80 kg / mm 2 can not be obtained. appear. In addition, there is a problem in that weldability is deteriorated and manufacturing cost is increased by adding a large amount of hardenability improving elements such as Cr and Mo among the component components.

또 다른 일례로, 일본 공개특허공보 평11-21622호는 C 0.15% 이하, Si 0.7% 이하, Mn 0.2~1.5%, P 0.03~0.15%, S 0.02% 이하, Cu 0.4% 이하, Al 0.01~0.1% 및 Cr 0.1% 이하, Ni 0.4~4.0% 및 Mo 0.1~1.5%를 함유한 강을 1050~1300℃로 가열하여 950℃ 이상에서 40% 이상의 열간 압연을 행한 후 900~750℃에서 압연 종료하고 공냉을 시행하는 방법을 제안하였다. 그러나, 이때에도 인장강도가 대부분 50kg/mm2급으로 극히 일부만이 60kg/mm2급의 인장특성을 나타내었으며, 이 기술은 주로 인장강도 50kg/mm2급 강판에 적용하는 기술이라 할 수 있다. 또한, P을 0.03~0.15%로 다량 첨가하여 해수 분위기에서의 내식성을 향상하는 효과를 언급하고는 있으나, P의 다량 첨가는 냉연재의 중심 편석 등을 유발하여 강판의 가공성을 급격히 떨어뜨리는 문제점이 있었다.As another example, Japanese Patent Laid-Open No. 11-21622 discloses C 0.15% or less, Si 0.7% or less, Mn 0.2-1.5%, P 0.03-0.15%, S 0.02% or less, Cu 0.4% or less, Al 0.01- or less. Steel containing 0.1% and less than 0.1% of Cr, 0.4 to 4.0% of Ni, and 0.1 to 1.5% of Mo is heated to 1050 to 1300 ° C, hot rolled at 40% or more at 950 ° C or more, and then finished rolling at 900 to 750 ° C. And air cooling is proposed. However, even at this time, most of the tensile strength is 50kg / mm 2 grade, only a few showed the tensile characteristics of 60kg / mm 2 grade, this technique can be said to be mainly applied to 50kg / mm grade 2 steel sheet. In addition, although the effect of improving the corrosion resistance in the seawater atmosphere by adding a large amount of P to 0.03 ~ 0.15% is mentioned, the addition of a large amount of P causes a central segregation of the cold rolled material, such that the workability of the steel sheet is sharply degraded there was.

또한, 일본 공개특허공보 평6-104858호는 C 0.02~0.12%, Si 0.5% 이하, Mn 0.1~2.0%, P 0.07~0.15%, S 0.02% 이하, Cu 0.25~0.55% 이하, Al 0.01~0.05% 및 Cr 0.3~1.25%, N2 0.006% 이하, Ti 0.06~0.20%를 함유한 강을 12.1Xti,eff(%)/Mn(%)>1.0 범위로 제어하고 1180℃이상에서 재가열, 880~950℃로 열간 압연 후 650℃이하로 권취하는 기술을 제공하고 있다. 이 기술은 석출물 제어 원소로서 Ti의 함량을 Mn 첨가량에 연계하여 첨가하고 있다. 그러나, 이 기술의 실시 예도 인장강도가 60kg/mm2급으로 본 발명에서 목표로 하는 80kg/mm2급 보다 낮다. In addition, Japanese Patent Laid-Open No. 6-104858 discloses C 0.02 to 0.12%, Si 0.5% or less, Mn 0.1 to 2.0%, P 0.07 to 0.15%, S 0.02% or less, Cu 0.25 to 0.55% or less, Al 0.01 to Steels containing 0.05% and Cr 0.3-1.25%, N 2 0.006% or less, Ti 0.06-0.20% are controlled in the range 12.1X ti, eff (%) / Mn (%)> 1.0 and reheated at 1180 ° C. or higher, After hot rolling at 880 ~ 950 ℃, it provides the technology of winding below 650 ℃. This technique adds Ti content in conjunction with the amount of Mn added as a precipitate control element. However, the embodiment of this technique also has a tensile strength of 60kg / mm 2 class lower than the 80kg / mm 2 class aimed at the present invention.

이에, 본 발명에서는 상기와 같은 문제점을 해결하기 위한 것으로, 인장강도 80kg/mm2 이상의 고강도를 가지면서 내후성 및 가공성을 확보하고자 하는 것이다. Thus, in the present invention to solve the above problems, it is to ensure weather resistance and workability while having a high strength of more than 80kg / mm 2 tensile strength.

상기 목적을 달성하기 위해 본 발명은, 중량%로 탄소(C) 0.10~0.20%, 실리콘(Si) 0.05~0.25%, 망간(Mn) 1.0~2.5%, 인(P) 0.02%이하, 황(S) 0.01% 이하, 알루미늄(Al) 0.02~0.07%, 니오븀(Nb) 0.02~0.08%, 니켈(Ni) 0.05~0.30%, 구리(Cu) 0.1~0.5%, 크롬(Cr) 0.8~1.5%, 코발트(Co) 0.01~0.10%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 10~30%의 저온변태조직과 나머지 페라이트로 조성되는 것이다.In order to achieve the above object, the present invention, by weight% of carbon (C) 0.10 ~ 0.20%, silicon (Si) 0.05 ~ 0.25%, manganese (Mn) 1.0 ~ 2.5%, phosphorus (P) 0.02% or less, sulfur ( S) 0.01% or less, aluminum (Al) 0.02-0.07%, niobium (Nb) 0.02-0.08%, nickel (Ni) 0.05-0.30%, copper (Cu) 0.1-0.5%, chromium (Cr) 0.8-1.5% , Cobalt (Co) containing 0.01 ~ 0.10%, is composed of the remaining Fe and other unavoidable impurities, it is composed of 10-30% low-temperature transformation structure and the remaining ferrite.

본 발명에서 상기 저온변태조직은 마르텐사이트와 베이나이트의 적어도 1종 이상이 포함되는 것이다. 바람직하게는 저온 변태조직이 주로 마르텐사이트가 일부 베이나이트가 포함되는 것이다.In the present invention, the low temperature transformation tissue is one containing at least one or more of martensite and bainite. Preferably, the low temperature metamorphic tissue mainly contains martensite and some bainite.

본 발명의 냉연강판의 제조방법은, 중량%로 탄소(C) 0.10~0.20%, 실리콘 (Si) 0.05~0.25%, 망간(Mn) 1.0~2.5%, 인(P) 0.02% 이하, 황(S) 0.01% 이하, 알루미늄(Al) 0.02~0.07%, 니오븀(Nb) 0.02~0.08%, 니켈(Ni) 0.05~0.30%, 구리(Cu) 0.1~0.5%, 크롬(Cr) 0.8~1.5%, 코발트(Co) 0.01~0.10%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1150~1300℃에서 재가열하여 750~930℃의 마무리 압연조건으로 열간 압연하고 400~650℃에서 권취한 다음, 냉간압연 후, (A1변태점+30℃)~(A3변태점 이하)의 온도에서 연속소둔하여 10~30%의 저온 변태 조직과 나머지 페라이트의 조직을 얻는 것이다. The method for producing a cold rolled steel sheet according to the present invention is 0.1% to 0.20% of carbon (C), 0.05 to 0.25% of silicon (Si), 1.0 to 2.5% of manganese (Mn), 0.02% or less of phosphorus (P), sulfur ( S) 0.01% or less, aluminum (Al) 0.02-0.07%, niobium (Nb) 0.02-0.08%, nickel (Ni) 0.05-0.30%, copper (Cu) 0.1-0.5%, chromium (Cr) 0.8-1.5% , Cobalt (Co) 0.01 ~ 0.10%, the steel consisting of the remaining Fe and other unavoidable impurities reheated at 1150 ~ 1300 ℃ hot-rolled under the finish rolling conditions of 750 ~ 930 ℃ and wound at 400 ~ 650 ℃ Next, after cold rolling, continuous annealing at a temperature of (A 1 transformation point + 30 ° C.) to (A 3 transformation point or less) is performed to obtain 10-30% of the low temperature transformation structure and the structure of the remaining ferrite.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 다양한 가공 특성과 함께 내후성을 만족하면서 인장강도 80kg/mm2 이상의 고강도를 확보하기 위한 연구 및 실험을 거듭하여 본 발명을 완성시킨 것이다. 본 발명은 Cu-Co의 내후성 성분계에서 Mn, Cr 등의 첨가량을 최적화하고 저온조직을 확보하여 고강도특성과 함께 내후성, 가공성을 확보하는데 특징이 있다. 이러한 본 발명의 냉연강판의 성분에 대하여 상세히 설명하고자 한다. The present inventors have completed the present invention by repeating research and experiments to secure high strength of 80kg / mm 2 or more while satisfying weather resistance along with various processing characteristics. The present invention is characterized by optimizing the addition amount of Mn, Cr, etc. in the weathering component system of Cu-Co and securing a low temperature structure, weather resistance, workability with high strength characteristics. The components of the cold rolled steel sheet of the present invention will be described in detail.

탄소(C)는 0.10~0.20 중량%(이하, 간단히 %라고 표기함)가 바람직하다. Carbon (C) is preferably 0.10 to 0.20% by weight (hereinafter simply referred to as%).

C는 강판의 강도 향상을 위해 첨가되는 원소로서 첨가량이 증가할수록 인장과 항복강도는 증가되나 과잉 첨가되면 가공성이 나빠지므로 그 상한은 0.20%가 바람직하다. 한편, C량이 0.10% 미만이면 충분한 석출 강화 효과를 얻을 수 없을 뿐만 아니라 0.09% 내외에서는 연주가로균열 현상이 빈번히 발생하는 문제가 있다.C is an element added to improve the strength of the steel sheet, the tensile strength and yield strength increases as the amount added, but the workability worsens when added excessively, the upper limit is preferably 0.20%. On the other hand, if the amount of C is less than 0.10%, not only does not obtain sufficient precipitation strengthening effect, but also has a problem in that a crack occurs frequently at around 0.09%.

실리콘(Si)은 0.05~0.25%가 바람직하다.As for silicon (Si), 0.05 to 0.25% is preferable.

Si는 용강 탈산 및 고용강화 효과를 제공할 뿐 아니라, 고온에서 강의 표층에 Fe와 함께 Fe2SiO4의 치밀한 산화물을 형성시켜 내식성을 향상시키는 역할도 하는 원소로써 이들 효과를 얻기 위해서는 최소 0.05% 이상의 첨가가 바람직하다. 따라서, Si은 내후성 향상을 위해 첨가하여야 하지만, 과잉 첨가되면 용접성 및 도금성이 열화되는 문제점이 있으므로 0.25% 이하로 첨가하는 것이 바람직하다.Si not only provides molten steel deoxidation and solid solution strengthening effect, but also forms a dense oxide of Fe 2 SiO 4 together with Fe in the surface layer of the steel at high temperature to improve corrosion resistance. Addition is preferred. Therefore, Si should be added to improve weather resistance, but if excessively added, there is a problem in that weldability and plating property deteriorate.

망간(Mn)은 1.0~2.5%가 바람직하다.As for manganese (Mn), 1.0 to 2.5% is preferable.

Mn은 고용에 의해 강화시키는데 효과적인 원소로서 강의 강도를 높이고 열간 가공성을 향상시키는 중요한 원소이지만, MnS형성에 의한 소재의 연성 및 가공성를 저해하는 원소이기도 하다. Mn의 함량이 적으면 가공성에는 유리하지만 소입성이 떨어져 강도 확보가 곤란하므로 목표로 하는 강도를 확보하기 위해서는 1.0% 이상의 첨가가 바람직하다. 반면에 Mn이 과잉 첨가되면 고가의 합금 원소 다량 첨가에 의한 경제성 저하 및 용접성을 해치는 문제점이 있으므로 상한은 2.5%가 바람직하다. Mn is an element that is effective for strengthening by solid solution and is an important element for increasing the strength of steel and improving hot workability, but is also an element that inhibits the ductility and workability of a material due to MnS formation. If the content of Mn is small, it is advantageous for workability but poor in hardenability, so that it is difficult to secure strength, so that 1.0% or more is preferable to secure the target strength. On the other hand, when Mn is excessively added, the upper limit is preferably 2.5% because there is a problem of deterioration in economics and weldability due to the addition of a large amount of expensive alloying elements.

인(P)은 0.02% 이하가 바람직하다.The phosphorus (P) is preferably 0.02% or less.

P는 강의 내식성을 향상시키는 역할을 하기 때문에 내식성 측면에서는 다량 첨가되는 것이 바람직하지만, 주조시 중심 편석을 가장 크게 일으키는 원소이므로 다량 첨가할 경우 용접성 및 인성을 저하시키는 요인이 된다. 따라서, 그 함량은 0.02% 이하로 제한하는 것이 바람직하다.Since P plays a role of improving the corrosion resistance of the steel, it is preferable to add a large amount in terms of corrosion resistance. However, since P is the element causing the largest segregation of the core during casting, a large amount of P decreases weldability and toughness. Therefore, the content is preferably limited to 0.02% or less.

황(S)은 0.01% 이하가 바람직하다.Sulfur (S) is preferably 0.01% or less.

S는 내식성 향상에 효과 있는 원소로 알려져 있지만, 강 중 Mn과 결합해 부식 개시점 역할을 하는 비금속 개재물을 형성하므로 가능한 한 그 함량을 감소시키는 것이 바람직하다. 따라서, S량은 0.01% 이하가 바람직하며, 보다 바람직하게는 0.005% 이하로 관리하는 것이 좋다.S is known as an effective element for improving corrosion resistance, but it is desirable to reduce the content as much as possible because it forms a non-metallic inclusion which serves as a starting point of corrosion in combination with Mn in the steel. Therefore, the amount of S is preferably 0.01% or less, and more preferably 0.005% or less.

알루미늄(Al)은 0.02~0.07%가 바람직하다.As for aluminum (Al), 0.02 to 0.07% is preferable.

Al은 일반적으로 용강 탈산 및 내식성 향상에도 효과가 있는 원소이지만, 과잉 첨가되면 강 중 개재물량을 증가시켜 가공성을 저하하는 문제점이 있으므로 그 함량을 0.02~0.07%로 설정하는 것이 바람직하다.Al is generally an element that is effective in improving deoxidation and corrosion resistance of molten steel, but when it is added excessively, there is a problem of decreasing the workability by increasing the amount of inclusions in the steel, so the content is preferably set to 0.02 to 0.07%.

니오븀(Nb)은 0.02~0.08%가 바람직하다.Niobium (Nb) is preferably 0.02% to 0.08%.

Nb은 페라이트의 재결정을 지연시키는 효과를 나타낼 뿐만 아니라 강중 C, N2 등과 결합하여 석출함으로써 강판의 강도를 상승시키는 효과를 나타내는 원소로서 목표로 하는 강도 확보를 위해서는 0.02% 이상의 첨가가 바람직하다. 반면에 Nb의 첨가량이 0.08%를 초과하면 제조 원가 상승 및 열간 압연 작업성을 저하시키는 요인이 된다.Nb is not only an effect of delaying the recrystallization of ferrite but also an element exhibiting the effect of increasing the strength of the steel sheet by being combined with C and N 2 in steel to precipitate, so that addition of 0.02% or more is preferable for securing the target strength. On the other hand, when the addition amount of Nb exceeds 0.08%, it becomes a factor that increases the manufacturing cost and the hot rolling workability.

니켈(Ni)은 0.05~0.3%가 바람직하다.As for nickel (Ni), 0.05 to 0.3% is preferable.

Ni은 일반적으로 Cu 첨가강에서 주조시 발생하는 주조 균열을 방지하는 역할 뿐만 아니라 내식성을 향상시키는 원소로서, 이와 같은 효과를 발휘하기 위해서는 0.05% 이상의 첨가가 바람직하다. 그러나 Ni의 함량이 0.3%를 초과하면 오히려 내식성을 나쁘게 할 뿐만 아니라 고가의 합금원소를 과다 사용함에 따른 원가적인 문제가 있다. Ni is generally an element that improves corrosion resistance as well as preventing casting cracks generated during casting in Cu-added steel. In order to exert such effects, addition of 0.05% or more is preferable. However, if the content of Ni exceeds 0.3%, rather than worsening the corrosion resistance, there is a cost problem due to the excessive use of expensive alloying elements.

구리(Cu)는 0.1~0.5%가 바람직하다.As for copper (Cu), 0.1 to 0.5% is preferable.

Cu는 부식 분위기에서 안정적인 녹층을 형성하여 내부식성을 향상시키는 원소로서 목표로 하는 내식성을 확보하기 위해서는 0.1% 이상의 첨가가 바람직하다. 그러나, Cu의 첨가량이 0.5%를 초과하면 연주시 입계 균열의 요인이 될 뿐만 아니라 열연 강판의 표면상태를 거칠게 하는 문제가 있다. Cu is an element which forms a stable rust layer in a corrosive atmosphere and improves corrosion resistance, and is preferably added at least 0.1% in order to ensure target corrosion resistance. However, when the addition amount of Cu exceeds 0.5%, not only does it cause grain boundary cracking during playing, but also there is a problem of roughening the surface state of the hot rolled steel sheet.

크롬(Cr)은 0.8~1.5%가 바람직하다.Chromium (Cr) is preferably 0.8 to 1.5%.

Cr은 Cu와 같이 안정적인 녹층을 형성시키는 역할을 하는 원소로서 내식성을 확보하고 강도를 얻기 위해서는 0.8% 이상의 첨가가 바람직하다. 또한, Cr의 첨가량이 1.5%를 초과하면 오히려 구멍 부식성을 유발하는 요인으로 작용할 뿐만 아니라 제조원가를 급격히 상승시킨다.Cr is an element that plays a role of forming a stable rust layer, such as Cu, is preferably 0.8% or more in order to secure corrosion resistance and obtain strength. In addition, when the addition amount of Cr exceeds 1.5%, rather than acting as a factor causing the hole corrosion, but also sharply increases the manufacturing cost.

코발트(Co)은 0.01~0.1%가 바람직하다.Cobalt (Co) is preferably 0.01 to 0.1%.

Co의 경우 강중 내식성을 확보하기 위해 첨가되는 Cu 및 Cr 등과 반응하여 표면층 부식 억제 생성물의 형성을 촉진하는 원소로서, 이와 같은 효과를 얻기 위해서는 0.01% 이상의 첨가가 바람직하다. 그러나, Co 첨가량이 0.10%를 초과하면 내식성 향상 효과의 기여 효과보다는 제조 원가의 상승 요인으로 작용한다.Co is an element that reacts with Cu, Cr, etc., added to secure corrosion resistance in steel, and promotes formation of a surface layer corrosion inhibiting product, and in order to obtain such an effect, 0.01% or more is preferable. However, when the amount of Co added exceeds 0.10%, it contributes to an increase in manufacturing cost rather than a contribution of improving the corrosion resistance.

상기한 성분을 포함하면서 불가피한 불순물과 나머지 Fe로 되는 것이다. 필요에 따라 내후성강에서 특성 향상을 첨가하는 합금원소가 첨가될 수 있는 것이며, 본 발명의 실시 예에서 밝히지 않은 합금 원소가 첨가되었다 하여 본 발명의 범위에서 제외되는 것으로 해석하지는 않는다. Including the above-mentioned components, it becomes an unavoidable impurity and remainder Fe. If necessary, an alloying element may be added to the weathering steel to add a property improvement, and an alloying element which is not disclosed in the embodiment of the present invention is added and is not interpreted as being excluded from the scope of the present invention.

본 발명의 냉연강판에서 미세조직은, 저온변태조직을 10~30vol.%(간단히, %로 표기함) 포함하고 나머지 페라이트로 되는 것이다. 저온변태조직이 10%이상 되도록 하여 항복강도를 낮춤과 아울러 가공경화지수를 높여 우수한 가공성을 확보할 수 있다. 저온변태조직이 10% 미만이면 강내 고용 원소의 잔존에 따라 불연속 항복거동을 나타내어 가공공정에서 가공 결함이 발생하여 목표로 하는 가공성을 확보하기가 곤란하다. 저온변태조직이 30%를 초과하면 가공성이 좋지 않다. 본 발명에서 저온 변태조직은 마르텐사이트, 베이나이트 등이 있으며, 이들이 1종 또는 2종 이상 포함되는 것이다. 저온변태조직은 주로 마르텐사이트이고 일부 베이나이트가 존재하는 것이 가장 바람직하다.In the cold-rolled steel sheet of the present invention, the microstructure includes 10-30 vol.% (Simply, expressed in%) of the low temperature transformation structure and the remaining ferrite. The low temperature transformation structure is 10% or more, which lowers the yield strength and increases the work hardening index, thereby ensuring excellent workability. If the low-temperature transformation structure is less than 10%, discontinuous yielding behavior is exhibited according to the remaining solid solution in the steel, and machining defects occur in the machining process, making it difficult to secure the target workability. If the low temperature transformation tissue exceeds 30%, the workability is poor. In the present invention, the low-temperature metamorphic tissue may include martensite, bainite, and the like, and one or two or more of them are included. The cold metamorphic tissue is mainly martensite and most preferably some bainite is present.

이하, 본 발명의 냉연강판의 제조방법에 대하여 설명한다. Hereinafter, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.

상기의 화학 조성을 지닌 강을 열간 압연 단계에서 재가열 온도 1150~1300℃, 마무리 압연온도 750~930℃에서 압연 후 400~650℃에서 권취하고 냉간압연 및 연속 소둔에 의해 (A1변태점+30℃)~(A3변태점 이하)의 온도에서 열처리하여 저온 변태조직을 포함하도록 하여 인장강도 80kg/mm2 이상을 가지는 내후성 및 가공성이 우수한 고강도 냉연 강판을 제조할 수 있다. The steel having the above chemical composition was rolled at 400 ~ 650 ℃ after rolling at reheating temperature of 1150 ~ 1300 ℃ and finishing rolling temperature of 750 ~ 930 ℃ in hot rolling step, by cold rolling and continuous annealing (A 1 transformation point + 30 ℃). By heat treatment at a temperature of ~ (A 3 transformation point or less) to include a low temperature transformation structure can be produced a high strength cold rolled steel sheet having excellent weather resistance and workability having a tensile strength of 80kg / mm 2 or more.

재가열온도 1150℃미만에서는 주조시 형성된 응고조직의 파괴가 불충분하여 중심 편석이 잘 발달되기 때문에, 최종 형성된 결정립의 혼립이 발생되어 가공성 및 충격 인성이 현저히 저하된다. 또한 재가열온도가 1300℃를 넘으면 산화에 의한 스케일 형성이 촉진되어 슬라브의 두께 감소량이 크고 재가열시 결정립 조대화에 따라 충격인성이 저하되는 단점이 있으며, 가열 원단위의 상승으로 인한 경제적인 손실이 크므로 재가열 온도의 관리 범위는 1150~1300℃가 바람직하다. If the reheating temperature is less than 1150 DEG C, since the solidification structure formed during casting is insufficient and the center segregation is well developed, mixing of the finally formed crystal grains occurs and workability and impact toughness are significantly reduced. In addition, if the reheating temperature exceeds 1300 ℃, the formation of scale by oxidation is promoted, and the slab thickness decreases and the impact toughness decreases due to the coarsening of grains when reheating, and the economic loss due to the increase of the heating unit is large. As for the management range of reheating temperature, 1150-1300 degreeC is preferable.

마무리 열연온도가 930℃보다 높으면 두께 전반에 걸쳐 균일한 열간 압연이 이루어지지 않아 결정립 미세화가 불충분하게 되고, 이에 따라 결정립 조대화에 기인한 충격 인성의 저하가 나타난다. 반대로, 마무리열연온도 750℃ 미만에서는 저온 영역에서 열간 압연이 마무리됨에 따라 결정립의 혼립화가 급격히 진행되어 내식성 및 가공성의 저하를 초래하므로 마무리 열연 온도를 750~930℃로 제한하는 것이 바람직하다. If the finishing hot rolling temperature is higher than 930 ° C, uniform hot rolling is not performed throughout the thickness, resulting in insufficient grain refinement, resulting in a drop in impact toughness due to grain coarsening. On the contrary, when the hot rolling is finished at a temperature of less than the final hot rolling temperature of 750 ° C., as the hot rolling is finished in the low temperature region, it is preferable to limit the finish hot rolling temperature to 750 to 930 ° C. because the hybridization of the crystal grains proceeds rapidly.

마무리 열간압연 후에 권취하는데, 권취온도가 650℃초과하면 충분한 석출 효과가 얻어지지 않음에 따라 소재 강도가 감소하여 목표 강도인 80kg/mm2의 안정적인 확보가 곤란하다. 반면에 400℃ 미만의 권취온도에서는 냉각 및 유지하는 동안 경질상이 생성되어 냉간압연 공정에서 압연기의 롤-포스(Roll force)가 상승함에 따라 압연성을 확보할 수 없는 문제점이 있으므로 권취온도의 관리 범위는 400~650℃로 한정하는 것이 바람직하다. Winding after finishing hot rolling, when the coiling temperature exceeds 650 ℃ it is difficult to secure a stable strength of the target strength of 80kg / mm 2 as a sufficient precipitation effect is not obtained. On the other hand, at winding temperatures of less than 400 ° C., hard phases are generated during cooling and holding, and as the roll force of the rolling mill rises in the cold rolling process, rolling properties cannot be secured. It is preferable to limit to 400-650 degreeC.

한편, 상기한 마무리 열연 후 권취전에 런-아웃-테이블(ROT, Run-out-table)에서의 냉각하는 것이 바람직하다. 본 발명의 바람직한 일 실시 예에 따르면 이때의 냉각속도가 초당 20~40℃가 바람직하나 반드시 여기에 제한되는 것은 아니다. 냉각속도가 초당 20℃미만이면 결정립 성장의 촉진에 의해 상대적으로 조대 결정립이 형성되어 강도 저하의 요인이 될 수 있다. 냉각속도가 초당 40℃를 초과하면 베이나이트와 같은 경한 제2상을 형성될 수 있어 냉간 압연성이 떨어질 수 있다. On the other hand, it is preferable to cool in a run-out-table (ROT) before winding up after said finishing hot rolling. According to a preferred embodiment of the present invention, the cooling rate at this time is preferably 20 ~ 40 ℃ per second, but is not necessarily limited thereto. If the cooling rate is less than 20 ° C per second, the coarse grains are formed by the promotion of grain growth, which may be a cause of strength degradation. If the cooling rate exceeds 40 ° C per second, a hard second phase such as bainite may be formed, resulting in poor cold rolling.

열간 압연이 끝난 소재는 통상의 냉간 압연조건으로 압연을 실시하고 연속소둔 공정을 거치게 된다. 이때 목표로 하는 재질 특성을 확보하기 위해서는 소둔온도를 (A1변태점+30℃이상)~A3변태점 이하로 관리하는 것이 바람직하다. 소둔 후에 저온 변태조직을 10~30% 범위로 포함하고 나머지 페라이트의 조직이 되는 것이 바람직하다. The hot rolled material is subjected to rolling under normal cold rolling conditions and subjected to a continuous annealing process. At this time, in order to secure the target material properties, it is preferable to manage the annealing temperature (A 1 transformation point + 30 ° C or more) to A 3 transformation point or less. After annealing, it is desirable to include the low temperature metamorphic tissue in the range of 10-30% and become the tissue of the remaining ferrite.

연속소둔 공정에서 소둔온도가 (A1변태점+30℃) 보다 낮을 경우 냉간압연시의 변형립에 의해 연성이 급격히 떨어질 뿐만 아니라 소둔 후 냉각공정에서 목표로 하는 제2상의 체적 분율을 얻을 수 없음에 따라 가공성이 저하되는 문제점이 있다. 반면에 A3변태점을 초과할 경우에는 고온 소둔에 의해 강의 표면 결함이 증가하는 문제점이 있다. 본 발명의 연속소둔에서 냉각은 본 발명에서 요구하는 저온 변태조직을 얻도록 하는 냉각조건이면 된다. 바람직하게는 수냉각할 수 있으며, 냉각가스를 이용하여 냉각하는 것도 가능하다. If the annealing temperature is lower than (A 1 transformation point + 30 ℃) in the continuous annealing process, the ductility drops rapidly due to the deformation grain during cold rolling, and the volume fraction of the second phase targeted in the cooling process after annealing cannot be obtained. Therefore, there is a problem that the workability is lowered. On the other hand, when the A 3 transformation point is exceeded, there is a problem in that the surface defects of the steel are increased by high temperature annealing. Cooling in the continuous annealing of the present invention may be any cooling condition to obtain the low temperature transformation structure required by the present invention. Preferably it can be water cooled and it is also possible to cool using cooling gas.

본 발명의 실시 예에 따르면 본 발명의 냉연강판은 다양한 가공특성 즉, 굽 힘성과 연신성을 만족하면서 내후성 그리고, 고강도 특성을 갖는다. 또한, 본 발명의 냉연강판은 Si 등의 성분 제어에 의하여 용접성, 도금성 등의 특성도 확보되는 것이다. According to an embodiment of the present invention, the cold rolled steel sheet of the present invention has weather resistance and high strength while satisfying various processing characteristics, that is, bending property and stretchability. In addition, the cold rolled steel sheet of the present invention also ensures the properties such as weldability, plating property, etc. by control of components such as Si.

이하, 실시 예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

[실시 예 1]Example 1

아래 표 1과 같이 조성된 강에 대하여, 규격화된 부식저항 지수(CI)값에 대한 평가 및 내후성 시험을 실시한 후 그 평가 결과를 표 2에 나타내었다. Table 2 shows the results of evaluation of the standardized corrosion resistance index (CI) and weather resistance test for steels as shown in Table 1 below.

내후성 시험은 30℃의 5% 염수(NaCl 용액) 조건에서 480시간 동안 염수 분무시험 (SST, Salt Spray Test)을 실시하고 그 결과를 표 2에 나타내었다. The weather resistance test was conducted for a salt spray test (SST, ST) for 5 hours in a 5% salt solution (NaCl solution) at 30 ° C. and the results are shown in Table 2.

부식저항지수는 ASTM G101에 규정된 내후성 평가 지수로써 이 값이 높을수록 강의 내후성은 좋은 것으로 알려져 있으며, 이는 주로 합금원소를 바탕으로 산출한 지수로써 다음과 같이 정의된다.Corrosion resistance index is a weather resistance evaluation index specified in ASTM G101. The higher this value is, the better the weather resistance of steel is. It is mainly calculated based on alloying elements and is defined as follows.

부식저항지수(CI) = 26.01(%Cu) + 3.88(%Ni) + 1.2(%Cr) + 1.49(%Si) + 17.28(%P) - 7.29(%Cu)(%Ni) - 9.10(%Ni)(%P) - 33.39(%Cu)2 Corrosion Resistance Index (CI) = 26.01 (% Cu) + 3.88 (% Ni) + 1.2 (% Cr) + 1.49 (% Si) + 17.28 (% P)-7.29 (% Cu) (% Ni)-9.10 (% Ni) (% P)-33.39 (% Cu) 2

강종Steel grade 화학성분 (중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS AlAl NbNb CoCo NiNi CuCu CrCr 발명강1Inventive Steel 1 0.150.15 0.080.08 1.541.54 0.0090.009 0.0030.003 0.0420.042 0.0510.051 0.050.05 0.190.19 0.350.35 0.960.96 발명강2Inventive Steel 2 0.160.16 0.150.15 1.981.98 0.0080.008 0.0030.003 0.0370.037 0.0470.047 0.060.06 0.140.14 0.360.36 1.021.02 비교강1Comparative Steel 1 0.050.05 0.150.15 1.541.54 0.0120.012 0.0060.006 0.0330.033 0.0240.024 0.040.04 0.210.21 0.250.25 0.360.36 비교강2Comparative Steel 2 0.160.16 0.650.65 0.540.54 0.0940.094 0.0050.005 0.0420.042 -- -- 0.460.46 0.750.75 1.051.05 비교강3Comparative Steel 3 0.130.13 0.050.05 0.560.56 0.0110.011 0.0040.004 0.0340.034 0.0660.066 -- 0.150.15 0.360.36 -- 비교강4Comparative Steel 4 0.120.12 0.200.20 1.341.34 0.0090.009 0.0240.024 0.0510.051 -- -- 0.120.12 0.310.31 0.760.76

강 종River bell 부식저항 지수, CI (Corrosion resistance index)Corrosion Resistance Index (CI) 부식 정도 (무게 감량, gr/cm2)Corrosion degree (weight loss, gr / cm 2 ) 내후성 평가 Weatherability Assessment 발명강 1Inventive Steel 1 6.6767996.676799 0.02640.0264 양 호Good 발명강 2Inventive Steel 2 6.7875886.787588 0.02560.0256 양 호Good 비교강 1Comparative Steel 1 5.6876285.687628 0.03120.0312 불 량Defective 비교강 2Comparative Steel 2 3.4547113.454711 0.05180.0518 불 량Defective 비교강 3Comparative Steel 3 5.4741615.474161 0.03980.0398 불 량Defective 비교강 4Comparative Steel 4 6.4044256.404425 0.02960.0296 양 호Good

표 2에 나타난 바와 같이 비교강(1)~비교강(3)은 부식저항 지수 값은 낮고 부식에 의한 무게 감량이 커서 내후성 측면에서 적용이 곤란하였으며 비교강(4) 및 발명강(1)과 (2)의 경우 부식에 의한 무게 감량과 부식저항지수 값 측면에서 우수한 내후성을 나타냄을 알 수 있었다. As shown in Table 2, the comparative steels (1) to comparative steels (3) had a low corrosion resistance index value and a large weight loss due to corrosion, making it difficult to apply in terms of weather resistance. In case of (2), it was found that weather resistance was excellent in terms of weight loss and corrosion resistance index value.

[실시 예 2]Example 2

실시 예 1의 표 1에서 발명강(1), (2) 및 비교강(1)~(4)들을 이용하여, 표 3과 같은 조건으로 작업하여 냉연 강판을 제조한 후 각각의 소재에 대하여 기계적 성질 및 가공 특성을 평가한 결과를 표 4에 나타내었다. In Table 1 of Example 1, using the invention steel (1), (2) and comparative steels (1) to (4), by working under the same conditions as Table 3 to produce a cold rolled steel sheet for each material mechanical Table 4 shows the results of evaluating the properties and processing characteristics.

구분division 사용 강종Used steel grade 재가열 온도(℃)Reheating Temperature (℃) 열연 마무리 온도(℃)Hot rolled finish temperature (℃) 냉각속도 (℃/s)Cooling rate (℃ / s) 권취온도 (℃)Winding temperature (℃) 소둔온도 (℃)Annealing Temperature (℃) 발명재1Invention 1 발명강1Inventive Steel 1 12001200 800800 2525 620620 800800 발명재2Invention 2 12001200 910910 2525 620620 850850 발명재3Invention 3 발명강2Inventive Steel 2 12001200 860860 3030 500500 830830 발명재4Invention 4 12501250 880880 3030 500500 880880 비교재1Comparative Material 1 발명강1Inventive Steel 1 10801080 700700 2525 450450 750750 비교재2Comparative Material 2 12001200 870870 2525 600600 650650 비교재3Comparative Material 3 12201220 870870 3030 600600 700700 비교재4Comparative Material 4 발명강2Inventive Steel 2 12501250 850850 2020 600600 700700 비교재5Comparative Material 5 12501250 850850 2020 600600 750750 비교재6Comparative Material 6 비교강1Comparative Steel 1 12501250 830830 3030 560560 800800 비교재7Comparative Material7 12501250 830830 2525 560560 850850 비교재8Comparative Material 8 비교강2Comparative Steel 2 12001200 860860 3030 620620 830830 비교재9Comparative Material 9 비교강3Comparative Steel 3 11901190 860860 2525 600600 830830 비교재10Comparative Material 10 비교강4Comparative Steel 4 12001200 870870 2020 620620 700700 비교재11Comparative Material 11 12001200 870870 2525 620620 850850

구분division 항복강도 (kgf/mm2)Yield strength (kgf / mm 2 ) 인장강도 (kgf/mm2)Tensile Strength (kgf / mm 2 ) 연신율 (%)Elongation (%) 제2상 분율Second phase fraction 가공성Machinability 체적분율(%) Volume fraction (%) 마르텐사이트 분율(%)Martensite fraction (%) 베이나이트 분율(%)Bainite fraction (%) 발명재1Invention 1 42.142.1 88.788.7 16.916.9 14.214.2 13.313.3 0.90.9 양호Good 발명재2Invention 2 46.946.9 91.291.2 17.117.1 15.815.8 14.214.2 1.61.6 양호Good 발명재3Invention 3 58.258.2 93.193.1 18.218.2 15.415.4 13.213.2 2.22.2 양호Good 발명재4Invention 4 62.562.5 96.296.2 18.718.7 17.417.4 16.816.8 0.60.6 양호Good 비교재1Comparative Material 1 76.476.4 99.899.8 6.26.2 6.16.1 4.94.9 1.21.2 Crack 발생Crack occurrence 비교재2Comparative Material 2 72.572.5 81.481.4 9.19.1 1.41.4 0.00.0 1.41.4 Crack 발생Crack occurrence 비교재3Comparative Material 3 82.882.8 91.491.4 7.87.8 0.00.0 0.00.0 0.00.0 Crack 발생Crack occurrence 비교재4Comparative Material 4 90.490.4 91.991.9 6.06.0 0.00.0 0.00.0 0.00.0 Crack 발생Crack occurrence 비교재5Comparative Material 5 77.177.1 92.292.2 8.48.4 0.00.0 0.00.0 0.00.0 Crack 발생Crack occurrence 비교재6Comparative Material 6 45.745.7 62.862.8 19.019.0 3.23.2 3.23.2 0.00.0 양호Good 비교재7Comparative Material7 40.140.1 60.460.4 17.517.5 3.83.8 3.63.6 0.20.2 양호Good 비교재8Comparative Material 8 76.576.5 82.482.4 5.25.2 0.00.0 0.00.0 0.00.0 Crack 발생Crack occurrence 비교재9Comparative Material 9 62.462.4 76.176.1 12.412.4 0.00.0 0.00.0 0.00.0 양호Good 비교재10Comparative Material 10 84.684.6 85.385.3 22 0.00.0 0.00.0 0.00.0 Crack 발생Crack occurrence 비교재11Comparative Material 11 46.546.5 72.572.5 19.419.4 5.45.4 5.45.4 0.00.0 양호Good

표 4에 나타난 바와 같이, 화학 성분 및 제조 조건이 본 발명 방법의 범위를 만족하는 발명재 (1)~(4)의 경우 인장강도 80kgf/mm2 이상, 소둔 후 마르텐사이트 상을 포함한 제2상의 체적 분율이 10% 이상을 확보할 수 있었으며, 밴딩 가공 및 스트레칭 가공 시에도 가공 균열이 발생하지 않아 내후성 및 고강도, 고가공성을 가지는 냉연강판의 제조가 가능하였다. As shown in Table 4, in the case of the inventive materials (1) to (4) in which the chemical composition and the production conditions satisfy the scope of the method of the present invention, the tensile strength is 80 kgf / mm 2 As mentioned above, the volume fraction of the second phase including the martensite phase after annealing was secured at 10% or more, and no cracking occurred during bending and stretching, thus producing cold-rolled steel sheets having weather resistance, high strength, and high workability. It was possible.

반면에 발명강의 화학 조성 범위를 만족하지만 제조 조건이 본 발명의 범위를 벗어난 비교재(1)~(5)는 목표로 하는 가공성을 얻는데 실패하였다. 즉, 소둔 온도가 본 발명의 (A1변태점+30℃) 이상이라는 소둔 범위를 만족하지 못함에 따라 연성이 10%도 되지 않을 뿐만 아니라 소둔판에서 마르텐사이트상을 포함한 제2상의 체적 분율도 10%를 넘지 못함에 따라 스트레칭 가공시 대부분 가공 균열이 발생하였다.On the other hand, the comparative materials (1) to (5) which satisfy the chemical composition range of the inventive steel but whose manufacturing conditions are out of the range of the present invention failed to obtain the target workability. That is, since the annealing temperature does not satisfy the annealing range of (A 1 transformation point + 30 ° C.) or more of the present invention, the ductility is not less than 10%, and the volume fraction of the second phase including the martensite phase in the annealing plate is also 10. As it did not exceed%, most processing cracks occurred during stretching.

한편, C와 Cr 등이 본 발명 조성을 벗어남에 따라 내후성도 목표를 확보할 수 없었던 비교강(1)에 대하여 본 발명의 제조조건 범위에서 제조한 비교재(6)과 비교재(7)의 경우 비교적 가공성은 양호하였지만, 인장강도가 80kgf/mm2 수준으로 목표로 하였던 80kgf/mm2 이상의 인장강도를 확보할 수 없었다. On the other hand, in the case of the comparative material (6) and the comparative material (7) manufactured in the manufacturing conditions range of the present invention for the comparative steel (1) that C and Cr, etc. were not able to secure the weatherability target as the deviation of the present invention composition Although relatively good processability, tensile strength was not possible to secure a tensile strength of at least 80kgf / mm 2 who aims the second level 80kgf / mm.

또한, 화학 조성이 본 발명의 조성 범위에 비하여 Si, P는 높고 Mn, Co 등은 낮았던 비교강(2) 및 Mn, Cr 등이 낮았던 비교강(3)의 경우에도 내후성을 확보할 수 없었지만, 이들 소재를 본 발명의 제조 범위에서 작업한 경우(비교재 8 및 9)에도 소둔후 제2상의 목표 체적 분율을 확보할 수 없음에 따라 표 4에서 보는 바와 같이 가공성을 확보할 수 없음을 알 수 있었다.In addition, even in the case of comparative steel (2) having a high chemical composition, Si, P, and low Mn, Co and the like compared to the composition range of the present invention, and the comparative steel (3) having a low Mn, Cr and the like, weather resistance could not be ensured. Even when these materials were worked in the production range of the present invention (Comparative Materials 8 and 9), it is not possible to secure the target volume fraction of the second phase after annealing. there was.

한편 내후성이 비교적 양호하였던 비교강(4)에 대하여 본 소둔 범위보다 낮은 온도에서 소둔하면(비교재 10), 인장강도는 목표 수준을 만족하였지만 소둔 온도가 낮음에 따라 제2상의 체적 분율이 10% 미만으로 가공시 가공 균열이 발생하는 문제점이 있었다. 반면에 소둔 온도를 올리는 경우(비교재 11)에는 목표로 하는 고강도 특성을 확보할 수 없는 문제점이 발생하였다. On the other hand, when the annealing was performed at a temperature lower than the present annealing range for the comparative steel (4), which had relatively good weather resistance (Comparative Material 10), the tensile strength satisfied the target level but the volume fraction of the second phase was 10% as the annealing temperature was low. There was a problem that processing cracks occur during processing to less than. On the other hand, in the case of raising the annealing temperature (Comparative Material 11), there was a problem that the target high strength properties could not be secured.

본 발명에서 상기 실시형태는 하나의 예시로서, 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이어도 본 발명의 기술적 범위에 포함된다. In the present invention, the above embodiment is only one example, and the present invention is not limited thereto. Anything that has substantially the same configuration as the technical idea described in the claims of the present invention and achieves the same operation and effect is included in the technical scope of the present invention.

상기한 바와 같이, 본 발명에 의하면 내후성과 기계적 특성을 동시에 확보함과 아울러 우수한 가공성을 얻을 수 있음에 따라 스트레칭 가공 등이 요구되는 용도 등 부가가치가 높은 강판을 제공할 수 있는 유용한 효과가 있는 것이다. As described above, according to the present invention, it is possible to provide a steel sheet with high added value, such as applications requiring stretching, as well as securing weatherability and mechanical properties at the same time and obtaining excellent workability.

Claims (3)

중량%로 탄소(C) 0.10~0.20%, 실리콘(Si) 0.05~0.25%, 망간(Mn) 1.0~2.5%, 인(P) 0.02%이하, 황(S) 0.01% 이하, 알루미늄(Al) 0.02~0.07%, 니오븀(Nb) 0.02~0.08%, 니켈(Ni) 0.05~0.30%, 구리(Cu) 0.1~0.5%, 크롬(Cr) 0.8~1.5%, 코발트(Co) 0.01~0.10%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 10~30%의 저온변태조직과 나머지 페라이트로 조성되는 내후성과 가공성이 우수한 고강도 냉연 강판.By weight%, carbon (C) 0.10 to 0.20%, silicon (Si) 0.05 to 0.25%, manganese (Mn) 1.0 to 2.5%, phosphorus (P) 0.02% or less, sulfur (S) 0.01% or less, aluminum (Al) 0.02 to 0.07%, niobium (Nb) 0.02 to 0.08%, nickel (Ni) 0.05 to 0.30%, copper (Cu) 0.1 to 0.5%, chromium (Cr) 0.8 to 1.5%, cobalt (Co) 0.01 to 0.10% A high strength cold rolled steel sheet having excellent weatherability and workability, which is composed of remaining Fe and other unavoidable impurities, and composed of 10 to 30% low temperature transformation structure and remaining ferrite. 제 1항에 있어서, 상기 저온변태조직은 마르텐사이트와 베이나이트의 적어도 1종이상이 포함되는 것을 특징으로 하는 내후성과 가공성이 우수한 고강도 냉연강판. The high strength cold rolled steel sheet having excellent weatherability and workability according to claim 1, wherein the low temperature transformation structure includes at least one of martensite and bainite. 중량%로 탄소(C) 0.10~0.20%, 실리콘 (Si) 0.05~0.25%, 망간(Mn) 1.0~2.5%, 인 (P) 0.02% 이하, 황(S) 0.01% 이하, 알루미늄(Al) 0.02~0.07%, 니오븀(Nb) 0.02~ 0.08%, 니켈(Ni) 0.05~0.30%, 구리(Cu) 0.1~0.5%, 크롬(Cr) 0.8~1.5%, 코발트(Co) 0.01~0.10%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강을 1150~1300℃에서 재가열하여 750~930℃의 마무리압연조건으로 열간 압연하고 400~650℃에서 권취한 다음, 냉간압연 후, (A1변태점+30℃)~(A3변태점 이하)의 온도에서 연속소둔하여 10-30%의 저온변태조직과 나머지 페라이트의 조직을 얻는 것을 포함하여 이루어지는 내후성 및 가공성이 우수한 고강도 냉연 강판의 제조 방법.By weight%, carbon (C) 0.10 ~ 0.20%, silicon (Si) 0.05 ~ 0.25%, manganese (Mn) 1.0 ~ 2.5%, phosphorus (P) 0.02% or less, sulfur (S) 0.01% or less, aluminum (Al) 0.02 to 0.07%, niobium (Nb) 0.02 to 0.08%, nickel (Ni) 0.05 to 0.30%, copper (Cu) 0.1 to 0.5%, chromium (Cr) 0.8 to 1.5%, cobalt (Co) 0.01 to 0.10% Re-heat the steel, which is composed of the remaining Fe and other unavoidable impurities, at 1150 to 1300 ° C., hot rolled to a finish rolling condition of 750 to 930 ° C., and wound at 400 to 650 ° C., followed by cold rolling, (A 1 transformation point A method for producing a high strength cold rolled steel sheet having excellent weather resistance and workability, comprising continuously annealing at a temperature of + 30 ° C) to (A 3 transformation point or less) to obtain a 10-30% low-temperature transformation structure and a structure of the remaining ferrite.
KR1020060126482A 2006-12-12 2006-12-12 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same KR100815709B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020060126482A KR100815709B1 (en) 2006-12-12 2006-12-12 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same
JP2009541219A JP5101628B2 (en) 2006-12-12 2007-12-11 High-strength cold-rolled steel sheet excellent in weather resistance and workability and method for producing the same
PCT/KR2007/006426 WO2008072873A1 (en) 2006-12-12 2007-12-11 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same
CN2007800452596A CN101553586B (en) 2006-12-12 2007-12-11 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060126482A KR100815709B1 (en) 2006-12-12 2006-12-12 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same

Publications (1)

Publication Number Publication Date
KR100815709B1 true KR100815709B1 (en) 2008-03-20

Family

ID=39411318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060126482A KR100815709B1 (en) 2006-12-12 2006-12-12 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same

Country Status (4)

Country Link
JP (1) JP5101628B2 (en)
KR (1) KR100815709B1 (en)
CN (1) CN101553586B (en)
WO (1) WO2008072873A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637902A (en) * 2021-07-28 2021-11-12 武汉钢铁有限公司 Cold-rolled automobile weathering steel containing rare earth and having yield strength of 280MPa and production method thereof
CN115418566A (en) * 2022-08-30 2022-12-02 日照钢铁控股集团有限公司 Manufacturing method of low-cost high-P weathering steel
CN115852245A (en) * 2021-09-27 2023-03-28 宝山钢铁股份有限公司 Cold-rolled bainite weathering steel and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253852B1 (en) * 2009-08-04 2013-04-12 주식회사 포스코 Non-heat Treatment Rolled Steel and Drawn Wire Rod Having High Toughness and Method Of Manufacturing The Same
CN104419877B (en) * 2013-09-05 2017-04-05 鞍钢股份有限公司 Cold-rolled martensitic steel with weather resistance and manufacturing method thereof
KR101767762B1 (en) * 2015-12-22 2017-08-14 주식회사 포스코 High strength cold-rolled steel sheet having excellent bendability and method for manufacturing the same
KR102142774B1 (en) * 2018-11-08 2020-08-07 주식회사 포스코 High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193194A (en) 2001-12-27 2003-07-09 Nippon Steel Corp High strength steel sheet having excellent weldability and hole expansibility and production method therefor
JP2003253382A (en) 2002-02-27 2003-09-10 Nippon Steel Corp Weather-resistant high-strength steel sheet superior in bending resistance for abrasive blasting, and manufacturing method
KR100548864B1 (en) 2001-08-24 2006-02-02 신닛뽄세이테쯔 카부시키카이샤 Steel plate and pipe exhibiting excellent deep drawing ability and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420371B2 (en) * 1995-03-20 2003-06-23 Jfeスチール株式会社 Chrome steel sheet with excellent formability and weatherability
JP2000063981A (en) * 1998-08-20 2000-02-29 Nippon Steel Corp Atmosphere corrosion resisting steel showing blackish color tone from initial stage of rusting and excellent in external appearance characteristic and stability of color tone
KR100371960B1 (en) * 2000-09-29 2003-02-14 주식회사 포스코 High atmosphere corrosion resting and workability hot rolled strip having tensile strength of 60 kg/㎟ and method for manufacturing it
JP3817152B2 (en) * 2000-10-06 2006-08-30 新日本製鐵株式会社 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance
JP4507668B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 Manufacturing method of high corrosion resistant steel
JP4586489B2 (en) * 2004-10-22 2010-11-24 住友金属工業株式会社 Steel and structures with excellent beach weather resistance
JP4844197B2 (en) * 2006-03-30 2011-12-28 住友金属工業株式会社 Manufacturing method of steel material with excellent weather resistance and paint peeling resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548864B1 (en) 2001-08-24 2006-02-02 신닛뽄세이테쯔 카부시키카이샤 Steel plate and pipe exhibiting excellent deep drawing ability and method for producing the same
JP2003193194A (en) 2001-12-27 2003-07-09 Nippon Steel Corp High strength steel sheet having excellent weldability and hole expansibility and production method therefor
JP2003253382A (en) 2002-02-27 2003-09-10 Nippon Steel Corp Weather-resistant high-strength steel sheet superior in bending resistance for abrasive blasting, and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637902A (en) * 2021-07-28 2021-11-12 武汉钢铁有限公司 Cold-rolled automobile weathering steel containing rare earth and having yield strength of 280MPa and production method thereof
CN115852245A (en) * 2021-09-27 2023-03-28 宝山钢铁股份有限公司 Cold-rolled bainite weathering steel and preparation method thereof
CN115418566A (en) * 2022-08-30 2022-12-02 日照钢铁控股集团有限公司 Manufacturing method of low-cost high-P weathering steel

Also Published As

Publication number Publication date
WO2008072873A1 (en) 2008-06-19
CN101553586B (en) 2011-03-02
JP5101628B2 (en) 2012-12-19
CN101553586A (en) 2009-10-07
JP2010512461A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
KR101069968B1 (en) High strength hot-rolled steel sheet having exceelent impact resistance and paintability and method for manufacturing the same
KR100851158B1 (en) High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It
KR100815799B1 (en) Cold-rolled steel sheet with high yield ratio and excellent weather resistance
KR101758567B1 (en) Clad steel sheet having superior strength and formability, and method for manufacturing the same
US20080240969A1 (en) High Strength Hot Rolled Steel Sheet Containing High Mn Content with Excellent Workability and Method for Manufacturing the Same
KR101256523B1 (en) Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR100815709B1 (en) Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same
KR20160078840A (en) High manganese steel sheet having superior yield strength and fromability, and method for manufacturing the same
KR20150075307A (en) Ultra-high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same
KR101038826B1 (en) High Strength Hot-Rolled Steel Sheet Having Excellent Weather Resistance and Impact Resistance, and Manufacturing Method Thereof
KR101657793B1 (en) Bake hardening steel sheet having excellent drawability and method for manufacturing thereof
KR101153485B1 (en) High-strength colled rolled steel sheet having excellent deep-drawability and yield ratio, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet using the same and method for manufacturing thereof
KR100925639B1 (en) High strength cold-rolled steel sheet having excellent weather resistance and method manufacturing the Same
KR101299786B1 (en) Method for manufacturing hot-rolled steel having excellent anti-aging and the hot-rolled steel by the same method
KR102403849B1 (en) High strength austenitic stainless steel with excellent productivity and cost saving effect, and method for manufacturing the same
KR20020040213A (en) A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/㎟ GRADE WITH EXCELLENT WEATHER RESISTANCE AND WORKABILITY
KR100958002B1 (en) Formable High Strength Cold-Rolled Steel Sheet With Weather Resistance And Method Manufacturing The Same
KR20090020360A (en) High strength cold-rolled steel sheet having exellent dent resistance and weatherability and manufacturing thereof
KR20110077091A (en) Hot-rolled steel for linepipe and method for manufacturing the same
KR101685842B1 (en) Hot-rolled steel sheet and method of manufacturing the same
KR101433444B1 (en) Method for manufacturing formable hot-rolled steel having excellent anti-fluting and the hot-rolled steel by the same method
KR101277235B1 (en) Manufacturing method for low alloy high strength steel sheet with excellent weldability and the steel sheet manufactured thereby
KR101410156B1 (en) Method for manufacturing hot-rolled steel having excellent corrosion resistance property and the hot-rolled steel by the same method
KR101433446B1 (en) Method for manufacturing hot-rolled steel having excellent corrosion resistance and anti-fluting and the hot-rolled steel by the same method
KR101410104B1 (en) Method for manufacturing formable hot-rolled steel having excellent anti-fluting, surface quality and the hot-rolled steel by the same method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140314

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150309

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170307

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180309

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200310

Year of fee payment: 13