JP3817152B2 - High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance - Google Patents

High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance Download PDF

Info

Publication number
JP3817152B2
JP3817152B2 JP2001191756A JP2001191756A JP3817152B2 JP 3817152 B2 JP3817152 B2 JP 3817152B2 JP 2001191756 A JP2001191756 A JP 2001191756A JP 2001191756 A JP2001191756 A JP 2001191756A JP 3817152 B2 JP3817152 B2 JP 3817152B2
Authority
JP
Japan
Prior art keywords
steel
weather resistance
toughness
strength
weather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001191756A
Other languages
Japanese (ja)
Other versions
JP2002180187A (en
Inventor
実 伊藤
俊永 長谷川
寛 紀平
明 宇佐見
康児 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001191756A priority Critical patent/JP3817152B2/en
Publication of JP2002180187A publication Critical patent/JP2002180187A/en
Application granted granted Critical
Publication of JP3817152B2 publication Critical patent/JP3817152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大気環境での耐候性が要求され、かつ、構造物としての安全性の確保の観点からは、優れた強度、靭性、溶接性が要求される橋梁、鉄塔などの鋼構造物に使用される鋼材に関するものである。特に、本発明は、従来、使用鋼材として、適切な耐候性を発現する鋼材を見い出すことが困難な海浜地区や、融雪塩を散布する高飛来塩粒子環境の日陰条件下においても、優れた耐候性を発現する鋼材に関するものである。
【0002】
【従来の技術】
従来から、鋼材自体が生成する、緻密な保護性を有する“保護性さび”あるいは“安定さび”により、大気環境での腐食減量を抑制し、重塗装やめっきをせずに、裸で、あるいは、“安定さび”の形成を補助するための表面処理のみで使用できる鋼材として、耐候性に有効なCu、Ni等を微量含有する耐候性鋼(例えば、JISG3114溶接構造用耐候性熱間圧延鋼材)が、様々な鋼構造分野で使用されている。
【0003】
しかし、環境中に塩素イオンが存在すると、保護性を有する緻密なさびの形成が妨げられるため、耐候性鋼といえども、高飛来塩分環境において十分な耐候性を発揮することは困難であり、耐候性鋼の使用は、飛来塩分量が0.05mg/cm2/day(以下mddと略称)未満の環境に制限されているのが実状である。
【0004】
最近、従来の耐候性鋼を使用することが困難な高飛来塩分環境下でも、十分な保護性を有する"安定さび"を形成して、優れた耐候性を発現する、いわゆる、海浜あるいは海岸耐候性鋼が開発されつつある。例えば、特開平11−172370号公報には、鋼に、Cu及びNiを、特にNiを、従来の耐候性鋼の範囲からは予想できないような範囲で多量に添加すると、海浜地区においても優れた耐候性を発現することが開示されている。
【0005】
しかし、上記公報に記載の海浜耐候性鋼においては、Niを多量に含有するので、製造コストの上昇を招くという問題がある。また、上記海浜耐候性鋼は、付着塩分が降雨等によって洗い流される可能性が高く、かつ、鋼材表面が乾燥する期間が長い日照条件下では、十分な耐候性を発現するが、一方、一旦付着した塩分の減少が期待できず、かつ、乾燥期間も十分でない日陰環境下では、必ずしも良好な耐候性を発現しないという問題を抱えている。
【0006】
【発明が解決しようとする課題】
本発明は、従来の耐候性鋼が抱える課題を解決するため、飛来塩分量が多く、かつ、日陰環境であるような環境、即ち、耐候性の観点からは最も過酷な環境においても、十分な保護性を有する“安定さび"を形成して耐候性を発現する、日陰高耐候性に優れた高靱性・高強度鋼を、コスト増加と溶接性の劣化を招くような極端な合金元素の多量添加に頼ることなく提供することを課題とするものである。
【0007】
そして、本発明によれば、大気環境での耐候性が要求され、かつ、構造物としての安全性の確保の観点からは、優れた強度、靭性、溶接性が要求される橋梁、鉄塔などの鋼構造物に使用される鋼材、特に、従来、使用鋼材として、適切な耐候性を発現する鋼材を見い出すことが困難な海浜地区や、融雪塩を散布する高飛来塩粒子環境の日陰条件下においても、優れた耐候性を発現する鋼材を提供することが可能となる。
【0008】
【課題を解決するための手段】
日陰環境の下では、降雨の影響を受け難いので、鋼材表面には、一旦付着した飛来塩分が長期間留まり、鋼材表面での"安定さび"の形成が妨げられる。また、日陰環境は、日照環境に比べて湿潤期間が長いので、更に、"安定さび"の形成には不利に作用する。そのため、耐候性鋼といえども、飛来塩分量の多い日陰環境において、優れた耐候性を発現することは非常に困難である。
【0009】
本発明者は、まず、耐候性に有効と思われる合金元素、特に、特開平11−172370号公報に開示されているNi及びCuを中心に検討した。その結果、Ni及びCuを上記公報記載の含有量の上限を超えて添加すると、高飛来塩分環境下での日陰耐候性は確かに向上するが、その効果は、必ずしも十分ではないことが判明した。
【0010】
また、多量のNi及びCuの添加は、鋼片の割れの増加や溶接性の低下など、他の特性の劣化を招いてしまうので、単に、従来技術の延長上で合金元素を多量に添加しただけでは、構造材料として用いることが可能な日陰耐候性鋼を製造することは困難であるとの結論に至った。
そこで、本発明者は、全く新しい観点から耐候性の向上に取り組んだ。すなわち、本発明は、"安定さび"のに有効なNi及びCuの添加を基本とし、その上で、鋼組織を適正化することにより、耐候性の向上を図るという試みに取り組んだ。
具体的には、鋼組織を、フェライト以外の第二相の面積率を制限した超細粒フェライト組織とすることによって、従来は達成できなかった高飛来塩分環境下での日陰耐候性を、飛躍的に向上できることを知見し、本発明をなすに至った。
そして、本発明が要旨とするところは、以下のとおりである。
【0011】
(1) 質量%で、C:0.01〜0.2%、Si:0.01〜1%、Mn:0.1〜2%、P:0.001〜0.05%、S:0.015%以下、Ni:2.58〜9%、Cu:0.1〜1.5%、Al:0.001〜0.1%、N:0.001〜0.01%、を含有し、残部が鉄及び不可避不純物からなり、鋼板表裏面のそれぞれの面から板厚方向に板厚の10〜50%の範囲に、平均フェライト粒径が3μm以下で、組織に占めるフェライト以外の第二相の面積率が25%以下の超細粒フェライト組織を有することを特徴とする日陰耐候性に優れた高強度・高靭性耐候性鋼。
【0012】
(2) 質量%で、更に、Cr:0.01〜0.5%、Mo:0.01〜3%、Ti:0.003〜1%、V:0.005〜0.5%、Nb:0.003〜0.25%、Zr:0.003〜0.1%、Ta:0.005〜0.2%、W:0.01〜3%、B:0.0003〜0.002%の1種又は2種以上、を含有することを特徴とする前記(1)に記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。
【0013】
(3) 質量%で、更に、Mg:0.0005〜0.01%、Ca:0.0005〜0.01%、REM:0.005〜0.1%の1種又は2種以上、を含有することを特徴とする前記(1)又は(2)に記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。
(4) 質量%で、更に、Sb:0.01〜0.15%、Sn:0.01〜0.15%、Pb:0.01〜0.15%、Co:0.01〜1.5%の1種又は2種以上、を含有することを特徴とする前記(1)乃至(3)のいずれかに記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。
(5) 前記鋼板表裏面の少なくとも一つの面に、有機樹脂、金属又は無機物の防食被覆を有することを特徴とする前記(1)乃至(4)のいずれかに記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態について詳細に述べる。
本発明は、化学組成を適正化した上で、鋼組織を超細粒化することによって、優れた日陰耐候性と、構造用材料として必要な基本特性を達成するものである。そこでまず、化学組成の限定理由とその作用を説明し、次いで、鋼組織の限定理由を説明する。なお、以下、「%」はすべて「質量%」のことである。
【0015】
Cは、鋼の強度を向上させる有効な成分として含有するが、0.01%未満の含有では、構造用鋼に必要な強度の確保が困難であり、一方、0.2%を超える過剰の含有は、母材及び溶接部の靭性や耐溶接割れ性を低下させるので、その含有量は、0.01〜0.2%の範囲とする。超微細フェライト組織を安定的に得るためには、0.1%を上限とすることが好ましい。また、大入熱溶接の溶接部靱性が求められる場合には、0.06%を上限とするのが好ましい。
【0016】
Siは、脱酸元素として、また、母材の強度確保に有効な元素であるが、0.01%未満の含有では脱酸が不十分となり、また、強度確保に不利である。逆に、1%を超える過剰の含有は、粗大な酸化物を形成せしめ、延性や靭性の劣化を招く。そこで、Siの含有量範囲は0.01〜1%とする。
Mnは、母材の強度、靭性の確保に必要な元素であり、最低限0.1%含有する必要があるが、過剰に含有すると、硬質相の生成や粒界脆化等により、母材靱性や溶接部の靭性、さらに、溶接割れ性などが劣化するので、材質上許容できる範囲で、含有量の上限を2%とする。
【0017】
Cuは、さび層の形成時にFeとともに溶出し、さび粒子の粗大化を抑制し、さび層の緻密さを保つことで耐候性を向上させるために必要な元素である。さび層を緻密化する効果を発揮するためには、0.1%以上の添加が必要である。一方、Cu量は多いほど耐候性の向上に有効であるが、1.5%を超えて添加しても、その効果は飽和し、また、熱間加工時の割れの問題が生じることから、Cu量の上限は1.5%とする。
【0018】
Niは、Cu以上にさび層の緻密化に有効な元素であり、Cuとともに必須の元素である。Niは、さび層中に含まれると、鋼中のFeとともに溶出し、さび層中にほぼ均一に含まれることにより、さび層の表面に付着した飛来塩分に由来するClイオンのさび層/地鉄界面への浸透を抑制し、さび層内部を低Clイオン環境とする。このように、Niは、高飛来塩分環境下において、さび粒子の緻密化を促進する。
【0019】
また、Niは、それ自体、Clイオンを含む水溶液中における乾湿繰り返し腐食環境での腐食速度を低減する効果を有し、この効果も、耐候性の向上に有効に寄与する。
【0020】
ただし、飛来塩分量あるいは日陰環境の具体的な条件にもよるが、塩分環境が過酷なほど、Ni量を高める必要がある。
Ni量は高いほど耐候性の向上に有効であり、Ni量の上限は、耐候性よりも他の特性からの要求で決定される。すなわち、溶接性、鋼材表面性状の確保の観点から、Niの上限は9%とする。超微細フェライト組織を安定的に得るには、5%を上限とすることが好ましく、さらに好ましくは、3.5%を上限とする。
【0021】
Alは、脱酸、オーステナイト粒径の細粒化等に有効な元素であるが、該効果を得るためには、0.001%以上含有する必要がある。一方、0.1%を超えて過剰に含有すると、粗大な酸化物を形成して延性を極端に劣化させるので、Al含有量は、0.001〜0.1%の範囲に限定する必要がある。
Pは、耐候性向上に有効な元素であり、その効果を明確に発揮するためには、0.001%以上の添加が必要である。ただし、多量の添加は、靭性や溶接性を劣化させるので、構造用鋼においては好ましくない。本発明においては、靭性、溶接性の劣化が許容できる範囲として、上限を0.05%に限定する。
【0022】
Nは、AlやTiと結びついてオーステナイト粒の微細化に有効に作用し、その微量の含有が、機械的特性の向上に有効に寄与する。また、工業的に鋼中のNを完全に除去することは不可能であり、必要以上に低減することは、製造工程に過大な負荷をかけることになるので、好ましくない。そのため、工業的に制御が可能で、製造工程への負荷が許容できる範囲として、N量の下限を0.001%とする。一方、過剰に含有すると、固溶Nが増加し、延性や靭性に悪影響を及ぼす可能性があるので、許容できる範囲として、上限を0.01%とする。
【0023】
Sは、不純物元素で、延性・靭性を劣化させる元素であり、極力低減することが好ましいが、材質劣化が大きくなく、許容できる量として、上限を0.015%とする。
以上が本発明の鋼材の基本成分の限定理由であるが、本発明においては、強度・靭性の調整のために、必要に応じて、Cr、Mo、Ti、V、Nb、Zr、Ta、W、Bの1種または2種以上を含有することができる。
【0024】
Crは、強度向上に有効な元素であり、該効果を発揮せしめるためには、0.01%以上必要であるが、CrはFeよりも卑な金属であり、塩分の多い環境での耐候性を阻害するので、耐候性に悪影響を及ぼさない範囲として、添加量の上限は0.5%とする。
Moは、強度向上に関してはCrと同等の効果を有するが、該効果が明確となるためには、0.01%以上必要である。一方、耐候性に関しては、MoとCrとは正反対の作用をなすもので、Moは耐候性向上に有効な元素である。
【0025】
Moは鋼中に含まれると、さびを形成するに際してモリブデン酸を生成し、さび粒子表面に吸着して凝集したさび粒子間で生じた空隙を負電荷過剰としてClイオンや硫酸イオンなどの陰イオンの地鉄界面への浸透を抑制することをとおして、安定さびが形成可能な限界飛来塩分量をさらに高めることを可能にする作用がある。その効果は3%で飽和するとともに、3%を超えると、機械的性質、特に、靭性と溶接性を阻害するようになるので、本発明においては、Moの含有量を0.01〜3%の範囲に限定する。
【0026】
Tiは、析出強化により母材強度向上に寄与するとともに、TiNの形成により加熱オーステナイト粒径微細化にも有効な元素であり、また、靭性向上にも有効な元素であるが、これらの効果を発揮せしめるためには、0.003%以上の含有が必要である。一方、1%を超えると、粗大な析出物や介在物を形成して、靭性や延性を劣化させるので、Ti量の上限を1%とする。
【0027】
Vも、V(C、N)を形成して強度向上に有効な元素であるが、過剰の含有では、析出脆化により靭性が劣化する。従って、靭性の大きな劣化を招かずに、効果を発揮せしめる範囲として、Vの含有量を0.005〜0.5%の範囲に限定する。
Nbは、Nb(C、N)を形成することで強度・靭性の向上に有効な元素であるが、過剰の含有では、析出脆化により靭性が劣化する。従って、靭性の劣化を招かずに、該効果を得る範囲として、Nbの含有量を0.003〜0.25%の範囲に限定する。
【0028】
Zrも、窒化物を形成する元素であり、Tiと同様の効果を有するが、その効果を発揮せしめるためには、0.003%以上の含有が必要である。一方、0.1%を超えると、Tiと同様に粗大な析出物や介在物を形成して靭性や延性を劣化させるので、Zrの含有量を0.003〜0.1%の範囲に限定する。
Taも、強度・靭性の向上に有効な元素であるが、効果を発揮せしめるためには、0.005%以上の含有が必要である。一方、0.2%を超えると、析出脆化や粗大な析出物や介在物による靭性劣化を生じるので、Ta量の上限を0.2%とする。
【0029】
Wは、強度向上、耐候性向上に関してMoとほぼ同等の効果を有する。該効果を発揮せしめるためには、最低限0.01%含有させる必要があるが、3%超で他の特性への悪影響が顕在化するので、本発明では、Wの含有量を0.01〜3%に限定する。
Bは、微量で確実にNと結びつくので、固溶Nの固定による靭性向上に有効であり、また、焼入性向上による強度・靭性の向上に有効な元素である。上記効果を発揮せしめるためには、0.0003%以上の添加が必要である。一方、0.002%を超えて過剰に含有すると、BNが粗大となり、延性や靭性に悪影響を及ぼし、また、溶接性も劣化させるので、B量の上限を0.002%とする。
【0030】
さらに、本発明においては、延性の向上、継手靭性の向上のために、必要に応じて、Mg、Ca、REMの1種または2種以上を含有することができる。
Mg、Ca、REMは、いずれも硫化物の熱間圧延中の展伸を抑制して、延性特性の向上に有効である。また、酸化物を微細化させて、継手靭性の向上にも有効である。その効果を発揮せしめるための含有量の下限は、Mg及びCaは0.0005%、REMは0.005%である。一方、過剰に含有すると硫量物や酸化物の粗大化を生じ、延性や靭性の劣化を招くので、Mg量及びCa量の上限は0.01%とし、REM量の上限は0.1%とする。
さらに、本発明においては、さらなる耐食性の向上のために、必要に応じて、Sb、Sn、Pb、Coの1種または2種以上を含有することができる。
Sb、Sn、Pb、Coは、いずれも母材の溶解そのものを抑制して、耐食性の向上に有効である。その効果を発揮するための含有量の下限は、それぞれ0.01%である。一方、Sb、Sn、Pb、Coを過剰に含有すると延性や靭性の劣化を招くので、含有量の上限は、Sb、Sn、Pbについては0.15%、Coについては1.5%とする。
【0031】
次に、本発明における組織要件について説明する。
すなわち、上記化学組成を有する鋼において、「鋼板表裏面のそれぞれの面から板厚方向に板厚の10〜50%の範囲に、平均フェライト粒径が3μm以下で、組織に占めるフェライト以外の第二相の面積率が25%以下の超細粒フェライト組織を有する」ことにより、飛来塩分量の高い日陰環境下において保護性の優れた安定さびを形成して、良好な耐候性を発揮することが可能となる。
【0032】
耐候性に対しては、通常範囲の細粒化ではほとんど効果がないが、平均粒径が3μm以下の超細粒組織とすることにより、安定さびの形成が均一化されて、耐候性が飛躍的に向上する。
特に、本発明の超細粒組織から形成される安定さびは、Clイオンの侵入抑制に効果があるので上記超細粒組織は、Clイオンにより安定さびの形成が大きく阻害される、飛来塩分量の多い日陰環境における耐候性を、通常粒径の場合に比べて、著しく向上させる。
【0033】
安定さびの均一形成に関しては、フェライト以外の第二相の存在も悪影響を及ぼす。安定さびの均一形成に悪影響を及ぼす第二相としては、パーライト、ベイナイト、マルテンサイト相があり、該第二相を抑制する必要がある。
本発明者の詳細な実験に基づけば、第二相の面積率が25%以下であれば悪影響はほとんど無視できる。それ故、本発明においては、パーライト、ベイナイト、マルテンサイト相からなる第二相の面積率を25%以下に限定する。
【0034】
なお、上記の第二相以外の金属相であるセメンタイトや炭窒化物などの微細析出物に関しては、そのサイズが、パーライト、ベイナイト、マルテンサイト相からなる第二相に比べて非常に微細であるので、耐候性に対してほとんど悪影響を及ぼさない。酸化物や硫化物などの介在物についてもサイズが小さければ問題ないが、長さが5μmを超えるような粗大介在物は、極力低減することが好ましい。
【0035】
鋼板において、このような、平均フェライト粒径が3μm以下で、組織に占めるフェライト以外の第二相の面積率が25%以下の超細粒フェライト組織を有すべき範囲は、鋼板表裏面のそれぞれの面から板厚方向に、板厚の10〜50%の範囲とする。ただし、これは安全代も考慮した範囲である。大気腐食による安定さびの形成は鋼板表面から進行するから、上記組織の厚さは、構造材料として強度を確保できる板厚減少分以上あればよい。
【0036】
本発明においては、上記組織要件が満足されていれば、その達成手段は問わないが、平均フェライト粒径が3μm以下で、フェライト以外の第二相の面積率が25%以下とするために好ましい方法として、フェライト単相域〜フェライト/オーステナイト二相域で熱間加工を行ってフェライトに加工歪を導入し、フェライトの再結晶を利用する方法が挙げられる。
【0037】
すなわち、この方法に従えば、フェライト単相域での加工であるために第二相を含まないか、もしくは、二相域加工であってもオーステナイトが大歪加工されるために、オーステナイトからパーライト、ベイナイト、及び/又は、マルテンサイトの相が形成されないで、フェライト相と微細なセメンタイト相が容易に形成される。
具体的には、例えば、特開平7−126798号公報や特開平7−126797号公報などに開示されているように、表層あるいは全厚超細粒鋼の製造方法を用いることによって、本発明の組織要件を得ることが可能である。
【0038】
なお、特開平7−126798号公報や特開平7−126797号公報に開示されているようなフェライトの加工・再結晶によって超細粒組織を有する鋼を製造するにあたって、パーライト、ベイナイト、及び/又は、マルテンサイトの相からなる第二相の抑制を確実にするためには、熱間加工後の冷却を、冷却速度が放冷の冷却速度以下である徐冷とするか、加速冷却をする場合には、加速冷却の停止温度を500℃以上とするか、600℃以上の焼戻し処理を施すことが好ましい。このようにすることによって、パーライト、ベイナイト、及び/又は、マルテンサイトの相からなる第二相が形成され難くなり、また、生成された第二相もフェライトと微細炭化物に分解されるので、本発明の組織要件を満足することが容易となる。
【0039】
以上が、本発明に関する要件の説明であるが、本発明においては、必要に応じて、鋼材の表面に、有機樹脂による塗装や金属または無機物の防食被覆を施すことも可能である。すなわち、本発明は、鋼材表面に黒皮が存在したままでの使用、あるいは、ショットブラスト等により黒皮を除去しただけの裸使用で、飛来塩分量の多い日陰環境下で十分優れた耐候性を示すが、さらに安定した耐候性を保証する場合、あるいは、初期のさび汁等の流出による景観の悪化を嫌う場合には、さらに、表面に有機樹脂による塗装や金属または無機物の防色被覆を施す。
【0040】
有機樹脂としては、エポキシ脂系、フタル酸系、ウレタン樹脂系、ビニルブチラール樹脂系及びその他の樹脂系であってよく、いずれも、塗装耐久性・耐候性が向上する。金属被覆では、Zn、Zn−Al、又は、Alめっき、あるいは、溶射などにより、耐候性の向上が期待できる。
いずれの場合も、本発明鋼と上記被覆との組み合わせにより、めっき、あるいは、溶射による被覆相に、微視的あるいは巨視的な欠陥が存在していて、該欠陥から地鉄の腐食が進行しても、その際に、Ni、Crなどを含有した緻密な"安定さび"が形成されるので、本発明鋼と上記被覆の組み合せは、本発明鋼のように極めて優れた耐候性を有しない鋼に上記被覆を施した場合に比べて、鋼材表面に対する保護性を格段に向上せしめる。
【0041】
また、特開昭55−97477号公報及び特開昭55−97478号公報等に開示されている耐候性鋼に係る、初期さび汁流出防止技術としてのさび安定化処理皮膜を本発明鋼に塗布することも、景観や安定さびの均一形成させる上で有効である。
【0042】
【実施例】
以上が本発明の要件についての説明であるが、さらに、実施例に基づいて本発明の効果を説明する。表1及び表2(表1の続き)に示す化学組成を有する鋼片を用いて、表3及び表4に示す製造条件a、b、又はc、及び、表5及び表6に示す製造条件d、e又はfに従って、超細粒鋼を製造した。なお、表1及び表2中には、化学組成、鋼組織の一方あるいは両方が本発明の要件を満足していない比較例も併せて示す。
【0043】
【表1】

Figure 0003817152
【0044】
【表2】
Figure 0003817152
【0045】
【表3】
Figure 0003817152
【0046】
【表4】
Figure 0003817152
【0047】
【表5】
Figure 0003817152
【0048】
【表6】
Figure 0003817152
【0049】
表1及び表2において、鋼片番号5〜8、10、16、18〜24は、その化学組成が本発明で規定する化学組成を満足している例(発明例)であり、鋼片番号26〜30は、その化学組成が本発明で規定する化学組成を満足していない例(比較例)である。
表7及び表8(表7の続き)に、製造された鋼板における超細粒層の割合、超細粒層のフェライト粒径、第二相の面積率、及び、鋼板の材質(強度、靭性)を示す。
超細粒層の割合は、鋼板の任意の10カ所における断面方向の光学顕微鏡組織観察により求めた平均値であり、粒径と第二相面積率は、表裏面の各々について超細粒層のほぼ中央(全厚が超細粒組織となっている場合は板厚の1/4t部と3/4部)を、倍率5000倍の走査型電子顕微鏡で5〜10視野観察して、各々、切断法、点算法により求めた値である。
【0050】
引張特性、2mmVノッチシャルピー衝撃特性は、圧延方向に直角な方向(C方向)の板厚中心部ついて測定した値である。
表7及び表8から、本発明の化学組成を有し、平均フェライト粒径が3μm以下の超細粒組織を、鋼板表裏面のそれぞれの面から板厚方向に板厚の10〜50%まで有する鋼板は、極めて良好な材質特性を有していることが解る。特に、靭性が優れていることが解る。
【0051】
【表7】
Figure 0003817152
【0052】
【表8】
Figure 0003817152
【0053】
【表9】
Figure 0003817152
【0054】
【表10】
Figure 0003817152
【0055】
表9及び表10(表9の続き)に、製造された鋼板の耐候性を評価した結果を示す。いずれも、黒皮を削除した後の鋼板の表面直下から、6×50×150mmのサイズの試験片を採取し、そのまま(裸材)か、安定化処理皮膜を施した後(表面処理材)に、千葉県富津市臨海部において、離岸距離によって飛来塩分量を変化させた3箇所で暴露試験を、日照及び日陰環境で1、3及び7年実施した。離岸距離は、50m、800m及び2000mの3種類としたが、各々の位置における飛来塩分量は、年間平均で、それぞれ、0.8mdd、0.2mdd及び0.1mddである。
【0056】
日照環境下の大気曝露試験は、試験片を南向き、水平に対し30°の傾斜で設置して行った。
日陰環境下の大気曝露試験は、図1に模式的に示す日陰大気曝露試験法で、試験片1を水平に設置し、試験片が雨に濡れないようアルミニウム板で覆い、水分は結露のみにより供給され、且つ、海風は試験片の面を通るようにして、試験を行った。
【0057】
耐候性の評価は、さび層の目視外観評価と腐食減量によって行った。
さび層の目視外観評価は、暴露期間が最も長い7年のものについて実施し、均一に安定さびが形成されて最も状態が良好と判断される場合を評点4とし、層状剥離さびや鱗状さび等の不均一な腐食形態が増加するにともなって評点を下げていき、全面に層状剥離さびが認められて、さびの安定化と腐食の進展防止が全く望めない状態を評点1とした。
【0058】
腐食減量は、各曝露期間での平均板厚減少量を測定し、平均板厚減少量と曝露期間との両対数プロットから外挿して50年後の推定板厚減少量を求めて評価した。
表9及び表10から、本発明である鋼板番号A5〜A8、A10、A12、A18、A20〜A26、A29、A30は、超細粒層を表裏各面で10〜50%有するので、構造材料として重要な強度・靭性が良好であるとともに、同じNi量で比較した場合に、本発明で規定する範囲を満足していない比較例の鋼板よりも、格段に耐候性が優れていることが解かる。
【0059】
特に、従来の海浜耐候性でも安定さびの形成が期待できなかった高飛来塩分かつ日陰環境においても、日照環境と同等の耐候性が達成されている。
一方、比較例である鋼板番号B1〜B10は、本発明の化学組成、組織要件のいずれか、あるいは、両方とも本発明で規定するそれら範囲を満足していないために、本発明と比較して耐候性が劣っており、特に、高飛来塩分環境での日陰耐候性については格段に劣っている。
【0060】
すなわち、鋼板番号B1は、耐候性に必須のNiが過小であるため超細粒組織を有しているものの、耐候性が日照、日陰とも本発明に比べて劣っている。
鋼板番号B2は、耐候性に必須のNi及びCuがともに過小であるため超細粒組織を有しているものの、耐候性が日照、日陰とも本発明に比べて劣っている。鋼板番号B3は、C量が過大なため靭性が本発明に比べて劣っているとともに、組織に占める第二相の面積率も多いために、日陰耐候性が劣っている。
【0061】
鋼板番号B4は、Mn量が過大なため靭性が本発明に比べて劣っている。
鋼板番号B5は、Crが過剰に添加されているため孔食状の腐食を呈して安定さびの均一形成が妨げられており、耐候性が日照、日陰環境とも劣っている。
鋼板番号B6、B8、及び、B9は、化学組成は本発明を満足しているものの通常の熱間圧延ままで超細粒組織となっていないため、日陰耐候性の改善が認められない。
【0062】
鋼板番号B7、及び、B10も、化学組成は本発明で規定する範囲を満足しているが、焼きならし処理により製造されているため超細粒組織となっておらず、やはり、日陰耐候性の改善が認められない。
以上の実施例からも、本発明によれば、構造材料として十分な強度、靭性を有し、かつ、高飛来塩分環境での耐候性が、日照、日陰ともに極めて優れていることが明らかである。
【0063】
【発明の効果】
本発明は、構造材料として極めて良好な強度、靭性を有するとともに、飛来塩分量が多く、かつ、日陰湿潤環境下であるような、耐候性の観点からは最も過酷な環境においても、十分な保護性を有する安定さびを形成して耐候性を発現する鋼を、コスト増加と溶接性の劣化を招くような極端な合金元素の多量添加に頼ることなく提供することを可能とした。
【0064】
本発明によれば、大気環境での耐候性が要求され、かつ、構造物としての安全性の確保の観点からは、優れた強度、靭性、溶接性が要求される橋梁、鉄塔などの鋼構造物に使用される鋼材、特に、従来、使用鋼材として、優れた耐候性を発現する鋼材を見い出すことが困難な海浜地区や、融雪塩を散布する高飛来塩粒子環境の日陰湿潤条件下においても、優れた耐候性を有する鋼材を提供することができる。それ故、本発明の産業上の効果は極めて顕著である。
【図面の簡単な説明】
【図1】実施例における日陰環境下の大気曝露試験法を模式的に示す図である。
【符号の説明】
1…試験片
2…アルミニウム板[0001]
BACKGROUND OF THE INVENTION
The present invention is required for steel structures such as bridges and steel towers that are required to have weather resistance in an atmospheric environment and have excellent strength, toughness, and weldability from the viewpoint of ensuring safety as a structure. It relates to the steel used. In particular, the present invention is excellent in weather resistance even under the shady conditions of a beach area where it is difficult to find steel materials that exhibit appropriate weather resistance as steel materials used in the past, and high flying salt particle environments where snow melting salt is sprayed. It is related with the steel material which expresses property.
[0002]
[Prior art]
Traditionally, the steel material itself produces a dense protective “protective rust” or “stable rust” that suppresses corrosion weight loss in the atmosphere, barely without heavy coating or plating, or As a steel material that can be used only by surface treatment to assist in the formation of “stable rust”, weathering steel containing a trace amount of Cu, Ni, etc. effective in weathering resistance (for example, weathering hot rolled steel for JISG3114 welded structure) ) Is used in various steel structures.
[0003]
However, when chlorine ions are present in the environment, the formation of dense rust with protection is hindered, so even with weathering steel, it is difficult to exhibit sufficient weather resistance in a high-flying salinity environment. The use of weather-resistant steel has an incoming salt content of 0.05 mg / cm 2 The reality is that the environment is limited to less than / day (hereinafter abbreviated as mdd).
[0004]
Recently, the so-called beach or coastal weather resistance that produces excellent weatherability by forming "stable rust" with sufficient protection even in high-flying salinity environment where it is difficult to use conventional weathering steel Stainless steel is being developed. For example, in Japanese Patent Application Laid-Open No. 11-172370, Cu and Ni, particularly Ni, are added to steel in a large amount in a range that cannot be predicted from the range of conventional weathering steel. It has been disclosed to develop weather resistance.
[0005]
However, the beach weatherproof steel described in the above publication contains a large amount of Ni, so that there is a problem that the manufacturing cost is increased. In addition, the above-mentioned beach weather-resistant steel is highly likely to be washed away due to rainfall, etc., and under the sunshine conditions where the steel surface is dry for a long time, it exhibits sufficient weather resistance. However, there is a problem that good weather resistance is not always exhibited in a shaded environment where a decrease in salt content cannot be expected and the drying period is not sufficient.
[0006]
[Problems to be solved by the invention]
In order to solve the problems of conventional weathering steel, the present invention is sufficient even in an environment where the amount of incoming salt is large and the environment is shaded, that is, the most severe environment from the viewpoint of weather resistance. High-toughness and high-strength steel with excellent shade and high weather resistance that forms a protective "stable rust" and has high weather resistance. It is an object to provide without depending on the addition.
[0007]
And according to the present invention, from the viewpoint of ensuring the weather resistance in the atmospheric environment and ensuring the safety as a structure, such as bridges, steel towers and the like that are required to have excellent strength, toughness and weldability. Steel materials used in steel structures, especially in the sea area where it is difficult to find steel materials that exhibit appropriate weather resistance as conventional steel materials, and in the shade conditions of high flying salt particle environments where snow melting salt is sprayed However, it is possible to provide a steel material that exhibits excellent weather resistance.
[0008]
[Means for Solving the Problems]
In the shaded environment, it is difficult to be affected by rainfall, so that the salt salt once adhered to the steel surface stays for a long time, preventing the formation of "stable rust" on the steel surface. In addition, the shaded environment has a longer wet period than the sunshine environment, which further adversely affects the formation of “stable rust”. Therefore, even with weathering steel, it is very difficult to express excellent weather resistance in a shaded environment with a large amount of incoming salt.
[0009]
The present inventor first examined mainly alloy elements which are considered to be effective in weather resistance, particularly Ni and Cu disclosed in JP-A-11-172370. As a result, when adding Ni and Cu beyond the upper limit of the content described in the above publication, the shade weather resistance under high flying salinity environment is certainly improved, but it has been found that the effect is not always sufficient. .
[0010]
In addition, the addition of a large amount of Ni and Cu leads to deterioration of other properties such as an increase in cracking of steel slabs and a decrease in weldability. Therefore, simply adding a large amount of alloy elements on the extension of the prior art. As a result, it was concluded that it was difficult to produce shade weathering steel that could be used as a structural material.
Therefore, the present inventor worked on improving weather resistance from a completely new viewpoint. That is, the present invention has been based on the addition of Ni and Cu effective for “stable rust”, and has further tackled an attempt to improve the weather resistance by optimizing the steel structure.
Specifically, by making the steel structure an ultrafine-grained ferrite structure in which the area ratio of the second phase other than ferrite is limited, the weather resistance in the high-flying salinity environment, which could not be achieved in the past, has jumped. It has been found that it can be improved, and the present invention has been made.
The gist of the present invention is as follows.
[0011]
(1) By mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 2%, P: 0.001 to 0.05%, S: 0 .015% or less, Ni: 2.58 -9%, Cu: 0.1-1.5%, Al: 0.001-0.1%, N: 0.001-0.01%, the balance consists of iron and inevitable impurities, The average ferrite grain size is 3 μm or less and the area ratio of the second phase other than ferrite occupying the structure is less than 25% within the range of 10 to 50% of the plate thickness in the thickness direction from the respective surfaces of the steel sheet front and back surfaces. A high-strength, high-toughness weather-resistant steel excellent in shade weather resistance, characterized by having a fine-grained ferrite structure.
[0012]
(2) In mass%, Cr: 0.01 to 0.5%, Mo: 0.01 to 3%, Ti: 0.003 to 1%, V: 0.005 to 0.5%, Nb : 0.003-0.25%, Zr: 0.003-0.1%, Ta: 0.005-0.2%, W: 0.01-3%, B: 0.0003-0.002 % High-strength and high-toughness weather-resistant steel excellent in shade weather resistance as described in (1) above.
[0013]
(3) By mass%, Mg: 0.0005-0.01%, Ca: 0.0005-0.01%, REM: 0.005-0.1% The high-strength and high-toughness weather-resistant steel excellent in shade weather resistance as described in (1) or (2) above.
(4) By mass%, Sb: 0.01 to 0.15%, Sn: 0.01 to 0.15%, Pb: 0.01 to 0.15%, Co: 0.01 to 1. The high-strength and high-toughness weather-resistant steel excellent in shade weather resistance according to any one of the above (1) to (3), characterized by containing 5% of one kind or two or more kinds.
(5) It has excellent shade and weather resistance according to any one of (1) to (4), characterized in that it has an anti-corrosion coating of an organic resin, metal or inorganic material on at least one surface of the front and back surfaces of the steel plate. High strength and high toughness weathering steel.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The present invention achieves excellent shade resistance and basic characteristics required for a structural material by optimizing the chemical composition and making the steel structure ultrafine-grained. Therefore, first, the reason for limiting the chemical composition and its action will be described, and then the reason for limiting the steel structure will be described. Hereinafter, “%” means “% by mass”.
[0015]
C is contained as an effective component for improving the strength of the steel. However, if the content is less than 0.01%, it is difficult to ensure the strength necessary for the structural steel, while an excess of more than 0.2% is required. Inclusion reduces the toughness and weld crack resistance of the base material and the welded portion, so the content is in the range of 0.01 to 0.2%. In order to obtain an ultrafine ferrite structure stably, the upper limit is preferably 0.1%. Moreover, when the weld part toughness of high heat input welding is calculated | required, it is preferable to make 0.06% into an upper limit.
[0016]
Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if it is less than 0.01%, deoxidation is insufficient and it is disadvantageous for securing the strength. On the other hand, an excessive content exceeding 1% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the content range of Si is set to 0.01 to 1%.
Mn is an element necessary for ensuring the strength and toughness of the base material, and it is necessary to contain at least 0.1%. However, if it is excessively contained, the base material may be formed due to generation of a hard phase or embrittlement at grain boundaries. Since the toughness, the toughness of the welded portion, and the weld cracking properties are deteriorated, the upper limit of the content is set to 2% within the allowable range of the material.
[0017]
Cu is an element necessary for improving weather resistance by eluting with Fe during formation of the rust layer, suppressing coarsening of the rust particles, and maintaining the fineness of the rust layer. In order to exhibit the effect of densifying the rust layer, addition of 0.1% or more is necessary. On the other hand, the greater the amount of Cu, the more effective the weather resistance is. However, even if added over 1.5%, the effect is saturated, and the problem of cracking during hot working occurs. The upper limit of the amount of Cu is 1.5%.
[0018]
Ni is an element more effective for densification of the rust layer than Cu, and is an essential element together with Cu. When Ni is contained in the rust layer, it elutes together with Fe in the steel, and is contained almost uniformly in the rust layer, so that the rust layer / ground of Cl ions derived from the flying salt adhering to the surface of the rust layer. Suppression of the iron interface is suppressed, and the inside of the rust layer is made a low Cl ion environment. Thus, Ni promotes densification of rust particles in a high flying salinity environment.
[0019]
Ni itself has the effect of reducing the corrosion rate in a dry and wet repeated corrosive environment in an aqueous solution containing Cl ions, and this effect also contributes to the improvement of weather resistance.
[0020]
However, although depending on the amount of incoming salt or the specific conditions of the shaded environment, the more severe the salt environment, the higher the amount of Ni must be.
The higher the Ni content, the more effective the weather resistance, and the upper limit of the Ni content is determined by the demands from other characteristics than the weather resistance. That is, from the viewpoint of securing weldability and steel surface properties, the upper limit of Ni is 9%. In order to obtain an ultrafine ferrite structure stably, the upper limit is preferably 5%, and more preferably 3.5%.
[0021]
Al is an element effective for deoxidation, austenite grain size reduction, etc., but in order to obtain this effect, it is necessary to contain 0.001% or more. On the other hand, if it contains excessively exceeding 0.1%, a coarse oxide is formed and ductility is extremely deteriorated, so the Al content needs to be limited to a range of 0.001 to 0.1%. is there.
P is an element effective for improving the weather resistance, and 0.001% or more must be added in order to clearly demonstrate the effect. However, a large amount of addition deteriorates toughness and weldability and is not preferable for structural steel. In the present invention, the upper limit is limited to 0.05% as a range in which deterioration of toughness and weldability can be tolerated.
[0022]
N is combined with Al and Ti and effectively acts to refine the austenite grains, and the inclusion of a small amount effectively contributes to the improvement of mechanical properties. Moreover, it is impossible to completely remove N in steel industrially, and reducing it more than necessary is not preferable because it imposes an excessive load on the manufacturing process. Therefore, the lower limit of the N amount is set to 0.001% as a range that can be industrially controlled and the load on the manufacturing process is allowable. On the other hand, if contained excessively, the solid solution N increases, which may adversely affect ductility and toughness. Therefore, the upper limit is made 0.01% as an acceptable range.
[0023]
S is an impurity element that degrades ductility and toughness, and is preferably reduced as much as possible. However, the material deterioration is not so great that the upper limit is 0.015% as an allowable amount.
The above is the reason for limiting the basic components of the steel material of the present invention. In the present invention, Cr, Mo, Ti, V, Nb, Zr, Ta, W, and W are adjusted as necessary for the adjustment of strength and toughness. 1 or 2 or more of B can be contained.
[0024]
Cr is an element effective for improving the strength, and in order to exert this effect, 0.01% or more is necessary. However, Cr is a base metal rather than Fe, and is weather resistant in a salty environment. Therefore, the upper limit of the addition amount is 0.5% as a range that does not adversely affect the weather resistance.
Mo has the same effect as Cr in terms of strength improvement, but 0.01% or more is necessary for the effect to become clear. On the other hand, regarding weather resistance, Mo and Cr have the opposite action, and Mo is an element effective for improving weather resistance.
[0025]
When Mo is contained in steel, it forms molybdic acid when forming rust, and voids formed between the rust particles that are adsorbed and aggregated on the surface of rust particles are negatively charged and anions such as Cl ions and sulfate ions. This has the effect of further increasing the limit amount of salt that can be formed by stable rust through the suppression of the penetration of the steel into the iron-iron interface. The effect saturates at 3%, and if it exceeds 3%, mechanical properties, particularly toughness and weldability, are impaired. In the present invention, the Mo content is set to 0.01 to 3%. Limited to the range.
[0026]
Ti is an element that contributes to improving the strength of the base metal by precipitation strengthening, and is also an element effective for refinement of heated austenite grain size by the formation of TiN, and is also an element effective for improving toughness. In order to exhibit it, it is necessary to contain 0.003% or more. On the other hand, if it exceeds 1%, coarse precipitates and inclusions are formed, and the toughness and ductility are deteriorated, so the upper limit of the Ti amount is made 1%.
[0027]
V is also an element effective for improving the strength by forming V (C, N). However, if contained excessively, toughness deteriorates due to precipitation embrittlement. Therefore, the content of V is limited to a range of 0.005 to 0.5% as a range in which the effect is exhibited without causing a large deterioration in toughness.
Nb is an element effective for improving strength and toughness by forming Nb (C, N), but if it is excessively contained, the toughness deteriorates due to precipitation embrittlement. Therefore, the Nb content is limited to a range of 0.003 to 0.25% as a range for obtaining the effect without causing deterioration of toughness.
[0028]
Zr is also an element that forms a nitride, and has the same effect as Ti. However, in order to exert the effect, it is necessary to contain 0.003% or more. On the other hand, if it exceeds 0.1%, coarse precipitates and inclusions are formed like Ti, and the toughness and ductility are deteriorated, so the Zr content is limited to the range of 0.003 to 0.1%. To do.
Ta is also an element effective for improving the strength and toughness. However, in order to exert the effect, it is necessary to contain 0.005% or more. On the other hand, if it exceeds 0.2%, precipitation embrittlement and toughness deterioration due to coarse precipitates and inclusions occur, so the upper limit of the amount of Ta is set to 0.2%.
[0029]
W has almost the same effect as Mo in terms of strength improvement and weather resistance improvement. In order to exert this effect, it is necessary to contain at least 0.01%. However, if it exceeds 3%, adverse effects on other characteristics will be manifested. Therefore, in the present invention, the content of W is set to 0.01%. Limited to ~ 3%.
B is an element effective in improving toughness by fixing solid solution N and effective in improving strength and toughness by improving hardenability because it binds to N reliably in a small amount. In order to exert the above effect, 0.0003% or more must be added. On the other hand, if it exceeds 0.002% and excessively contained, BN becomes coarse, which adversely affects ductility and toughness, and also deteriorates weldability. Therefore, the upper limit of B content is set to 0.002%.
[0030]
Furthermore, in this invention, 1 type, or 2 or more types of Mg, Ca, and REM can be contained as needed for the improvement of ductility and the improvement of joint toughness.
Mg, Ca, and REM are all effective in improving ductility by suppressing the extension of sulfide during hot rolling. It is also effective in improving the joint toughness by making the oxide finer. The lower limit of the content for exhibiting the effect is 0.0005% for Mg and Ca, and 0.005% for REM. On the other hand, if it is contained excessively, it causes coarsening of the sulfur content and oxides, leading to deterioration of ductility and toughness. Therefore, the upper limit of Mg content and Ca content is 0.01%, and the upper limit of REM content is 0.1%. And
Furthermore, in the present invention, one or more of Sb, Sn, Pb, and Co can be contained as necessary for further improvement of corrosion resistance.
Sb, Sn, Pb, and Co are all effective in improving corrosion resistance by suppressing the dissolution of the base material itself. The lower limit of the content for exhibiting the effect is 0.01%. On the other hand, excessive inclusion of Sb, Sn, Pb, and Co leads to deterioration of ductility and toughness, so the upper limit of the content is 0.15% for Sb, Sn, and Pb, and 1.5% for Co .
[0031]
Next, organizational requirements in the present invention will be described.
That is, in the steel having the above chemical composition, “within the range of 10 to 50% of the plate thickness in the plate thickness direction from the front and back surfaces of the steel plate, the average ferrite grain size is 3 μm or less, and the other than ferrite occupying the structure. By having an ultrafine ferrite structure with a two-phase area ratio of 25% or less, it forms stable rust with excellent protective properties in a shaded environment with a high amount of incoming salt and exhibits good weather resistance. Is possible.
[0032]
For weather resistance, there is almost no effect in the normal range of grain refinement, but by forming an ultrafine grain structure with an average grain size of 3 μm or less, the formation of stable rust is made uniform and the weather resistance jumps. Improve.
In particular, since the stable rust formed from the ultrafine grain structure of the present invention is effective in suppressing the intrusion of Cl ions, the ultrafine grain structure has an amount of incoming salt that greatly inhibits the formation of stable rust by Cl ions. As a result, the weather resistance in a shady environment with a large amount of water is remarkably improved as compared with the case of a normal particle size.
[0033]
Regarding the uniform formation of stable rust, the presence of the second phase other than ferrite also has an adverse effect. As the second phase that adversely affects the uniform formation of stable rust, there are pearlite, bainite, and martensite phase, and it is necessary to suppress the second phase.
Based on the detailed experiments of the present inventors, if the area ratio of the second phase is 25% or less, the adverse effects can be almost ignored. Therefore, in the present invention, the area ratio of the second phase composed of pearlite, bainite, and martensite phase is limited to 25% or less.
[0034]
In addition, regarding fine precipitates such as cementite and carbonitride that are metal phases other than the second phase, the size is very fine compared to the second phase composed of pearlite, bainite, and martensite phase. Therefore, it has almost no adverse effect on the weather resistance. Inclusions such as oxides and sulfides are not a problem as long as the size is small, but coarse inclusions having a length exceeding 5 μm are preferably reduced as much as possible.
[0035]
In the steel sheet, the range where the average ferrite grain size is 3 μm or less and the area ratio of the second phase other than ferrite occupying the structure should have an ultrafine ferrite structure of 25% or less is as follows. From the surface to the thickness direction, the thickness is in the range of 10 to 50%. However, this is a range that considers the safety allowance. Since the formation of stable rust due to atmospheric corrosion proceeds from the surface of the steel sheet, the thickness of the structure only needs to be equal to or greater than the reduction in sheet thickness that can ensure strength as a structural material.
[0036]
In the present invention, as long as the above structural requirements are satisfied, there is no limitation on the means for achieving it, but it is preferable because the average ferrite particle size is 3 μm or less and the area ratio of the second phase other than ferrite is 25% or less. As a method, a method of hot working in a ferrite single-phase region to a ferrite / austenite two-phase region to introduce processing strain into the ferrite and utilizing recrystallization of the ferrite can be mentioned.
[0037]
That is, according to this method, since the processing is performed in the ferrite single-phase region, the second phase is not included, or even in the two-phase processing, austenite is subjected to large strain processing. In addition, a bainite and / or martensite phase is not formed, and a ferrite phase and a fine cementite phase are easily formed.
Specifically, for example, as disclosed in JP-A-7-126798, JP-A-7-12697, and the like, by using a method for producing a surface layer or full-thickness ultrafine-grained steel, Organizational requirements can be obtained.
[0038]
In manufacturing steel having an ultrafine grain structure by processing and recrystallization of ferrite as disclosed in JP-A-7-126798 and JP-A-7-12697, pearlite, bainite, and / or In order to ensure the suppression of the second phase consisting of the martensite phase, when cooling after hot working is slow cooling, where the cooling rate is lower than the cooling rate of cooling, or accelerated cooling For this, it is preferable to set the stop temperature of accelerated cooling to 500 ° C. or higher, or to perform a tempering treatment of 600 ° C. or higher. By doing so, it becomes difficult to form a second phase composed of pearlite, bainite and / or martensite phase, and the generated second phase is also decomposed into ferrite and fine carbide. It becomes easy to satisfy the organizational requirements of the invention.
[0039]
The above is an explanation of the requirements related to the present invention. In the present invention, the surface of the steel material can be coated with an organic resin or coated with an anticorrosion coating of metal or inorganic as necessary. That is, the present invention is sufficiently weather resistant in a shady environment with a large amount of incoming salt, with the use where the black skin is present on the surface of the steel, or the bare use where the black skin is removed by shot blasting etc. However, if you want to guarantee more stable weather resistance, or if you don't like the deterioration of the landscape due to the outflow of the initial rust juice, etc., the surface should be further coated with an organic resin or a metal or inorganic color-proof coating. Apply.
[0040]
The organic resin may be an epoxy resin, a phthalic acid, a urethane resin, a vinyl butyral resin, and other resin systems, all of which improve coating durability and weather resistance. In metal coating, improvement in weather resistance can be expected by Zn, Zn-Al, Al plating, thermal spraying, or the like.
In any case, the combination of the steel of the present invention and the above coating has a microscopic or macroscopic defect in the coating phase by plating or thermal spraying, and corrosion of the base iron proceeds from the defect. However, in this case, a dense "stable rust" containing Ni, Cr, etc. is formed, so the combination of the steel of the present invention and the above coating does not have extremely excellent weather resistance like the steel of the present invention. Compared with the case where the above-mentioned coating is applied to steel, the protection against the steel surface is remarkably improved.
[0041]
In addition, a rust stabilization treatment film as an initial rust juice outflow prevention technique applied to the weather-resistant steel disclosed in JP-A-55-97477 and JP-A-55-97478 is applied to the steel of the present invention. It is also effective in forming a uniform landscape and stable rust.
[0042]
【Example】
The above is the description of the requirements of the present invention. Further, the effects of the present invention will be described based on examples. Manufacturing conditions a, b, or c shown in Tables 3 and 4 and manufacturing conditions shown in Tables 5 and 6 using steel pieces having chemical compositions shown in Table 1 and Table 2 (continuation of Table 1) Ultra fine steel was produced according to d, e or f. Tables 1 and 2 also show comparative examples in which one or both of the chemical composition and the steel structure do not satisfy the requirements of the present invention.
[0043]
[Table 1]
Figure 0003817152
[0044]
[Table 2]
Figure 0003817152
[0045]
[Table 3]
Figure 0003817152
[0046]
[Table 4]
Figure 0003817152
[0047]
[Table 5]
Figure 0003817152
[0048]
[Table 6]
Figure 0003817152
[0049]
In Table 1 and Table 2, billet number 5-8, 10, 16, 18-24 Is an example (invention example) in which the chemical composition satisfies the chemical composition defined in the present invention, and the billet numbers 26 to 30 do not satisfy the chemical composition defined in the present invention. It is an example (comparative example).
In Tables 7 and 8 (continuation of Table 7), the ratio of the ultrafine-grained layer in the produced steel sheet, the ferrite grain size of the ultrafine-grained layer, the area ratio of the second phase, and the material (strength, toughness) of the steel sheet ).
The ratio of the ultrafine-grained layer is an average value obtained by observing the optical microscope structure in the cross-sectional direction at any 10 locations on the steel sheet, and the particle size and the second phase area ratio are the ultrafine-grained layers for each of the front and back surfaces. About the center (1 / 4t part and 3/4 part of the plate thickness when the total thickness is an ultrafine grain structure) is observed with a scanning electron microscope with a magnification of 5000 times for 5 to 10 fields, It is the value calculated | required by the cutting method and the point method.
[0050]
The tensile properties and 2 mmV notch Charpy impact properties are values measured at the thickness center in the direction perpendicular to the rolling direction (C direction).
From Table 7 and Table 8, the ultrafine-grained structure having the chemical composition of the present invention and having an average ferrite grain size of 3 μm or less is from 10 to 50% of the plate thickness in the plate thickness direction from the respective surfaces of the steel plate front and back surfaces. It can be seen that the steel sheet has extremely good material properties. In particular, it can be seen that the toughness is excellent.
[0051]
[Table 7]
Figure 0003817152
[0052]
[Table 8]
Figure 0003817152
[0053]
[Table 9]
Figure 0003817152
[0054]
[Table 10]
Figure 0003817152
[0055]
Table 9 and Table 10 (continuation of Table 9) show the results of evaluating the weather resistance of the manufactured steel sheets. In either case, a test piece having a size of 6 × 50 × 150 mm is taken from directly under the surface of the steel plate after the black skin is removed, and is applied as it is (bare material) or a stabilization treatment film is applied (surface treatment material). In addition, in the coastal area of Futtsu City, Chiba Prefecture, exposure tests were carried out at three locations where the amount of incoming salinity was changed depending on the distance from the shore in sunshine and shaded environments for 1, 3 and 7 years. The rip-off distance was set to three types of 50 m, 800 m and 2000 m, but the amount of incoming salt at each position was 0.8 mdd, 0.2 mdd and 0.1 mdd, respectively, on an annual average.
[0056]
The atmospheric exposure test in a sunshine environment was performed with the test piece facing south and inclined at 30 ° to the horizontal.
The atmospheric exposure test in the shaded environment is a shaded atmospheric exposure test method schematically shown in Fig. 1. The test piece 1 is installed horizontally, covered with an aluminum plate so that the test piece does not get wet in the rain, and moisture is only due to condensation. The test was conducted with sea breeze passing through the surface of the test piece.
[0057]
The weather resistance was evaluated by visual appearance evaluation of the rust layer and corrosion weight loss.
The visual appearance of the rust layer is evaluated for 7 years with the longest exposure period, and when the stable rust is uniformly formed and the state is judged to be the best, the score is 4, and layered peeling rust, scale-like rust, etc. As the non-uniform corrosion morphology increased, the score was lowered, and a layered peeling rust was observed on the entire surface, and a state where no stabilization of rust and prevention of the progress of corrosion could be expected was assigned a score of 1.
[0058]
Corrosion weight loss was evaluated by measuring the average plate thickness reduction amount during each exposure period, extrapolating from the logarithmic plot of the average plate thickness reduction amount and the exposure period, and obtaining the estimated plate thickness reduction amount after 50 years.
From Table 9 and Table 10, the steel plate number according to the present invention A5 to A8, A10, A12, A18, A20 to A26, A29, A30 has an ultrafine-grained layer on the front and back surfaces of 10 to 50%, so that it has excellent strength and toughness as a structural material, and satisfies the range specified in the present invention when compared with the same amount of Ni. It can be seen that the weather resistance is remarkably superior to that of the steel plate of the comparative example that is not.
[0059]
In particular, the weather resistance equivalent to that of the sunshine environment has been achieved even in a high salinity and shade environment where stable rust formation could not be expected even with conventional beach weather resistance.
On the other hand, steel plate numbers B1 to B10, which are comparative examples, are either compared with the present invention because either or both of the chemical composition and structural requirements of the present invention do not satisfy those ranges defined in the present invention. The weather resistance is inferior, and particularly the shade weather resistance in a high-flying salinity environment is extremely inferior.
[0060]
That is, the steel plate number B1 has an ultrafine grain structure because Ni essential for weather resistance is too small, but the weather resistance is inferior to that of the present invention in both sunlight and shade.
Steel plate number B2 has an ultrafine grain structure because both Ni and Cu essential for weather resistance are too small, but weather resistance is inferior to that of the present invention in both sunlight and shade. Steel plate number B3 is inferior in toughness compared to the present invention due to an excessive amount of C, and inferior in shade and weather resistance due to a large area ratio of the second phase in the structure.
[0061]
Steel plate number B4 is inferior in toughness compared to the present invention because the amount of Mn is excessive.
Steel plate number B5 exhibits pitting corrosion due to the excessive addition of Cr, which prevents uniform formation of stable rust, and weather resistance is inferior in both sunshine and shade environments.
Steel plates Nos. B6, B8, and B9 satisfy the present invention, but they do not have an improvement in shade weather resistance because they do not have an ultrafine grain structure as they are in normal hot rolling.
[0062]
Steel plates Nos. B7 and B10 also satisfy the range specified in the present invention, but they are manufactured by normalizing treatment, so that they do not have an ultrafine-grained structure. Improvement is not recognized.
Also from the above examples, according to the present invention, it is clear that the present invention has sufficient strength and toughness as a structural material, and has excellent weather resistance in a high-flying salinity environment in both sunlight and shade. .
[0063]
【The invention's effect】
The present invention has extremely good strength and toughness as a structural material, has a large amount of incoming salt, and provides sufficient protection even in the harshest environments from the viewpoint of weather resistance such as in a shady and humid environment. It is possible to provide a steel that forms stable rust with high weatherability and exhibits weather resistance without resorting to the addition of a large amount of an extreme alloying element that causes an increase in cost and deterioration of weldability.
[0064]
According to the present invention, steel structures such as bridges and steel towers that are required to have weather resistance in an atmospheric environment and have excellent strength, toughness, and weldability are required from the viewpoint of ensuring safety as a structure. Steel materials used for construction, especially in the coastal areas where it is difficult to find steel materials that exhibit excellent weather resistance as conventional steel materials, and even in the wet and humid conditions of high flying salt particle environments where snow melting salt is sprayed The steel material which has the outstanding weather resistance can be provided. Therefore, the industrial effect of the present invention is extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an atmospheric exposure test method in a shaded environment in an example.
[Explanation of symbols]
1 ... Test piece
2 ... Aluminum plate

Claims (5)

質量%で、
C :0.01〜0.2%、
Si:0.01〜1%、
Mn:0.1〜2%、
P :0.001〜0.05%、
S :0.015%以下、
Ni:2.58〜9%、
Cu:0.1〜1.5%、
Al:0.001〜0.1%、
N :0.001〜0.01%、
を含有し、残部が鉄及び不可避不純物からなり、
鋼板表裏面のそれぞれの面から板厚方向に板厚の10〜50%の範囲に、平均フェライト粒径が3μm以下で、組織に占めるフェライト以外の第二相の面積率が25%以下の超細粒フェライト組織を有することを特徴とする日陰耐候性に優れた高強度・高靭性耐候性鋼。
% By mass
C: 0.01-0.2%
Si: 0.01 to 1%,
Mn: 0.1 to 2%,
P: 0.001 to 0.05%,
S: 0.015% or less,
Ni: 2.58-9 %
Cu: 0.1 to 1.5%,
Al: 0.001 to 0.1%,
N: 0.001 to 0.01%
And the balance consists of iron and inevitable impurities,
The average ferrite grain size is 3 μm or less and the area ratio of the second phase other than ferrite occupying the structure is less than 25% within the range of 10 to 50% of the plate thickness in the thickness direction from the respective surfaces of the steel sheet front and back surfaces. A high-strength, high-toughness weather-resistant steel with excellent shade and weather resistance, characterized by having a fine-grained ferrite structure.
質量%で、更に、
Cr:0.01〜0.5%、
Mo:0.01〜3%、
Ti:0.003〜1%、
V :0.005〜0.5%、
Nb:0.003〜0.25%、
Zr:0.003〜0.1%、
Ta:0.005〜0.2%、
W :0.01〜3%、
B :0.0003〜0.002%の1種又は2種以上、
を含有することを特徴とする請求項1に記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。
In mass%,
Cr: 0.01 to 0.5%
Mo: 0.01 to 3%,
Ti: 0.003 to 1%
V: 0.005-0.5%
Nb: 0.003 to 0.25%,
Zr: 0.003 to 0.1%,
Ta: 0.005 to 0.2%,
W: 0.01 to 3%
B: One or more of 0.0003 to 0.002%,
The high-strength and high-toughness weather-resistant steel excellent in shade weather resistance according to claim 1, comprising:
質量%で、更に、
Mg:0.0005〜0.01%、
Ca:0.0005〜0.01%、
REM:0.005〜0.1%の1種又は2種以上、
を含有することを特徴とする請求項1又は2に記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。
In mass%,
Mg: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%,
REM: 0.005 to 0.1% of one or more,
The high-strength, high-toughness weather-resistant steel excellent in shade weather resistance according to claim 1 or 2, characterized by comprising:
質量%で、更に、
Sb:0.01〜0.15%、
Sn:0.01〜0.15%、
Pb:0.01〜0.15%、
Co:0.01〜1.5%の1種又は2種以上、
を含有することを特徴とする請求項1乃至3のいずれか1項に記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。
In mass%,
Sb: 0.01 to 0.15%,
Sn: 0.01 to 0.15%,
Pb: 0.01 to 0.15%,
Co: 0.01 to 1.5% of one or more,
The high-strength, high-toughness weather-resistant steel excellent in shade weather resistance according to any one of claims 1 to 3, wherein
前記鋼板表裏面の少なくとも一つの面に、有機樹脂、金属又は無機物の防食被覆を有することを特徴とする請求項1乃至4のいずれか1項に記載の日陰耐候性に優れた高強度・高靱性耐候性鋼。The high strength and high excellent weather resistance according to any one of claims 1 to 4, wherein the steel plate has an anticorrosion coating of an organic resin, a metal or an inorganic material on at least one surface of the front and back surfaces of the steel plate. Tough weathering steel.
JP2001191756A 2000-10-06 2001-06-25 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance Expired - Fee Related JP3817152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191756A JP3817152B2 (en) 2000-10-06 2001-06-25 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000308386 2000-10-06
JP2000-308386 2000-10-06
JP2001191756A JP3817152B2 (en) 2000-10-06 2001-06-25 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance

Publications (2)

Publication Number Publication Date
JP2002180187A JP2002180187A (en) 2002-06-26
JP3817152B2 true JP3817152B2 (en) 2006-08-30

Family

ID=26601736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191756A Expired - Fee Related JP3817152B2 (en) 2000-10-06 2001-06-25 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance

Country Status (1)

Country Link
JP (1) JP3817152B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677714B2 (en) * 2003-05-15 2011-04-27 住友金属工業株式会社 Steel materials for bridges with excellent beach weather resistance and structures using the same
JP4586489B2 (en) * 2004-10-22 2010-11-24 住友金属工業株式会社 Steel and structures with excellent beach weather resistance
CN102242307B (en) * 2005-08-03 2013-03-27 住友金属工业株式会社 Hot-rolled steel sheet and cold-rolled steel sheet and manufacturing method thereof
JP4502950B2 (en) * 2005-12-28 2010-07-14 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance and fatigue crack growth resistance
CN100334248C (en) * 2005-12-30 2007-08-29 武汉钢铁(集团)公司 Colding rolling weather resistant depth impacting plate for vehicle and mfg. method thereof
KR100815799B1 (en) * 2006-12-12 2008-03-20 주식회사 포스코 Cold-rolled steel sheet with high yield ratio and excellent weather resistance
KR100815709B1 (en) * 2006-12-12 2008-03-20 주식회사 포스코 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same
JP4826542B2 (en) * 2007-05-01 2011-11-30 住友金属工業株式会社 Steel for bolts and bridges using the same
KR100925639B1 (en) * 2007-12-24 2009-11-06 주식회사 포스코 High strength cold-rolled steel sheet having excellent weather resistance and method manufacturing the Same
JP5446278B2 (en) * 2009-01-14 2014-03-19 Jfeスチール株式会社 Structural steel with excellent weather resistance
JP5233829B2 (en) * 2009-05-11 2013-07-10 新日鐵住金株式会社 Steel and structures with excellent beach weather resistance
JP5600986B2 (en) * 2010-03-25 2014-10-08 Jfeスチール株式会社 Structural steel with excellent weather resistance
JP2012214871A (en) * 2011-03-29 2012-11-08 Jfe Steel Corp Steel material with rust layer excellent in corrosion resistance
JP5800735B2 (en) * 2012-03-16 2015-10-28 日新製鋼株式会社 Acid dew point corrosion steel and exhaust gas flow path components
JP5942532B2 (en) * 2012-03-28 2016-06-29 新日鐵住金株式会社 Steel material with excellent corrosion resistance
CN104164627B (en) * 2014-07-25 2016-05-25 合肥市瑞宏重型机械有限公司 A kind of running roller high strength alloy steel and manufacture method thereof
CN104694852A (en) * 2015-03-20 2015-06-10 苏州科胜仓储物流设备有限公司 High-strength steel plate for light goods shelves and forging process thereof
CN106086670A (en) * 2016-06-15 2016-11-09 成都高普石油工程技术有限公司 A kind of steel of petroleum drilling and mining drill bit
CN111101071B (en) * 2020-02-25 2021-04-13 湖南华菱涟源钢铁有限公司 High-strength weathering steel and production method thereof
CN111378898A (en) * 2020-04-23 2020-07-07 湖南华菱涟源钢铁有限公司 500MPa coating-free weathering steel and manufacturing method thereof
CN115233089B (en) * 2022-05-16 2023-04-28 季华实验室 Special steel for flexible gear and preparation process thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207340A (en) * 1993-12-03 1995-08-08 Nippon Steel Corp Production of steel plate which exhibits excellent corrosion resistance and low-temperature toughness in high sea salt particle and shade environment
JP3456743B2 (en) * 1994-01-17 2003-10-14 新日本製鐵株式会社 Coastal weathering steel
JPH111745A (en) * 1997-06-06 1999-01-06 Nkk Corp Structural steel excellent in seawater corrosion resistance, and its production
JPH1121623A (en) * 1997-07-07 1999-01-26 Nkk Corp Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio
JP3785271B2 (en) * 1997-10-01 2006-06-14 新日本製鐵株式会社 High weldability and weatherproof steel
JP4074385B2 (en) * 1998-08-18 2008-04-09 新日本製鐵株式会社 Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment
JP2000144310A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Steel for structural purpose excellent in corrosion fatigue resistance
JP3655765B2 (en) * 1999-01-12 2005-06-02 新日本製鐵株式会社 Welded steel pipe with excellent weather resistance
JP3773745B2 (en) * 2000-03-07 2006-05-10 株式会社神戸製鋼所 Method for producing low yield ratio and high Ti steel sheet excellent in bare weather resistance

Also Published As

Publication number Publication date
JP2002180187A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP3817152B2 (en) High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance
JP4495668B2 (en) High corrosion resistance steel
JP5250938B2 (en) Low yield ratio type high strength galvannealed steel sheet with excellent ductility and method for producing the same
KR20090089791A (en) High strength steel sheet having superior ductility and method for manufacturing the same
KR102018935B1 (en) Steel strip having a low si content
KR20200018637A (en) Structural Steels and Structures
JP3785271B2 (en) High weldability and weatherproof steel
JP3524790B2 (en) Coating steel excellent in coating film durability and method for producing the same
JPH07207340A (en) Production of steel plate which exhibits excellent corrosion resistance and low-temperature toughness in high sea salt particle and shade environment
JP7322932B2 (en) Thick steel plate, manufacturing method thereof, and structure
JP3367608B2 (en) Weather resistant steel
JP4352597B2 (en) High weather resistant steel
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
KR101723459B1 (en) Steel material for welded structure
JP3655765B2 (en) Welded steel pipe with excellent weather resistance
JP7192824B2 (en) Structural steel materials and structures with excellent fire resistance and paint corrosion resistance
JP4792644B2 (en) Steel with excellent salt resistance and high heat input welding toughness
JP7405246B2 (en) H-shaped steel
JP2001049338A (en) Production of high weldability weather resistant steel excellent in fire resistance
JP3820841B2 (en) Steel material with excellent weather resistance and weldability in high-flying salinity environment
JP7261364B1 (en) steel plate
KR20020041031A (en) Seaside corrosion resistance steel with superior tensile strength and method for manufacturing it
JP3353392B2 (en) High strength steel excellent in corrosion resistance and method for producing the same
JP3267170B2 (en) 780MPa class high tensile steel with excellent hot-dip galvanizing crack resistance
JP6988858B2 (en) Steel for bolts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R151 Written notification of patent or utility model registration

Ref document number: 3817152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees