JP3785271B2 - High weldability and weatherproof steel - Google Patents

High weldability and weatherproof steel Download PDF

Info

Publication number
JP3785271B2
JP3785271B2 JP10254198A JP10254198A JP3785271B2 JP 3785271 B2 JP3785271 B2 JP 3785271B2 JP 10254198 A JP10254198 A JP 10254198A JP 10254198 A JP10254198 A JP 10254198A JP 3785271 B2 JP3785271 B2 JP 3785271B2
Authority
JP
Japan
Prior art keywords
steel
weldability
rust
weather resistance
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10254198A
Other languages
Japanese (ja)
Other versions
JPH11172370A (en
Inventor
明 宇佐見
康児 田辺
岳史 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10254198A priority Critical patent/JP3785271B2/en
Publication of JPH11172370A publication Critical patent/JPH11172370A/en
Application granted granted Critical
Publication of JP3785271B2 publication Critical patent/JP3785271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海浜地区や融雪塩を散布する地区など、高飛来海塩粒子環境で塩害が懸念される大気環境における橋梁、鉄塔などの鋼構造物などに使用される、優れた溶接性と環境の飛来海塩粒子量に応じた耐候性を有する鋼材に関するものである。
【0002】
【従来の技術】
従来、海岸地帯などの塩害が発生する場所で使用する鋼構造部材の防食としては、普通鋼材の塗装使用、めっき鋼板の使用、溶射やモルタルライニングなどの表面被覆の使用、ステンレスやチタンなどの高合金高耐食材料の使用が挙げられる。さらに、鋼構造物の維持管理費を低減する技術として、耐候性鋼材(JISG3141溶接構造用耐候性鋼)の無塗装使用が挙げられる。
【0003】
塗装の場合、塗り替えが必然的に必要なために維持管理費がかかるといった問題があった。また、めっきの場合、構造体の溶融めっきでは熱応力による変形やめっきの剥離などといった問題があった。溶射やモルタルライニングの場合も、防食皮膜の剥離や劣化などが問題であった。さらに高合金の耐食材料の場合、材料コストが高く主要構造部材として広く使えないといった問題があった。
【0004】
耐候性鋼材は、無塗装使用の場合、使用後数年〜10年で鋼材表面に防食性に優れた緻密な安定さびが形成し、この安定さびがその後の鋼材の腐食の進行を防ぐという鋼材である。鋼構造物には、溶接性を考慮した耐候性溶接構造用鋼が、橋梁や建築物を中心にこれまで多く使用されてきた。しかしながら、「無塗装耐候性橋梁の設計・施工要領(改訂案):建設省土木研究所、鋼材倶楽部、日本橋梁建設協会、平成5年3月」に示されるように、海浜地区や融雪塩を散布する地区など飛来海塩粒子量が多い地域では、鋼材表面に付着した塩分によって保護性に優れた安定さびの形成が阻害されるため、無塗装使用に適さないといった問題点があった。
【0005】
耐候性鋼の海浜地区での鋼材の耐候性向上については、例えば特公昭56−9356号公報の発明では、含P(0.03〜0.20%)で溶接性に優れ、かつ海水が関与した腐食環境や一般大気環境で優れた耐候性を有する鋼材が開示されている。また、特開平2−125839号公報に記載の発明では、低Si−P−Cu−Niの複合添加にCaとAlの複合酸化物の添加が有効であるとしている。また、特開平5−51668号公報の発明では、酸化物を鋼材中に微細分散させて鋼材表面のpH低下を抑制することが有効であるとしている。また、特開平7−242993号公報に記載の発明では、Ni−Cr−Alの複合添加が有効であるとしている。
【0006】
このように、従来の耐候性鋼の欠点である海浜地区での耐候性が優れた鋼材は開発されているが、溶接構造用鋼材として必須である溶接性は、必ずしも十分ではなかった点が問題であった。また、特開平2−125839号公報に記載の発明および特開平5−51668号公報に記載の発明は、いずれも数%のNi添加鋼を基本成分とした発明であるが、これらの鋼材は海浜地区での耐候性は優れているものの、飛来海塩粒子量の適用限界が不明であったため、実構造物への適用可否を判断することが難しいといった課題があった。
また、発明者らによる研究調査の結果、例えば特公昭56−9356号公報の発明では、含P(0.03〜0.20%)の鋼材でも、溶接継手部の機械的特性に一定以上の品質を求める場合、溶接時の入熱制限や予熱などが不可欠であるといった問題点があった。
【0007】
一方、耐候性については言及していないが、溶接性を改善した鋼材としては、例えば特公昭60−24576号公報の発明では、Mn等を基本成分として含有する鋼に、粒子径を特定したTi酸化物、Ti酸化物とTi窒化物の複合体を含有させることにより、溶接熱影響部における切欠靭性を改善した溶接用高靭性鋼が得られるとしている。また、特公昭61−117245号公報の発明では、特定量のC,Si,Mn,P,N,Al,S,Bを含有させ、かつ特定粒子径、特定粒子数のTi酸化物およびTi窒化物+MnSの複合体の両者を同時に含有させることにより、溶接熱影響部の低温切欠靭性の優れた鋼材を得られるとしている。
【0008】
しかし、これらの鋼材は、Cu,NiおよびTiを添加している場合でも、鋼材の海浜地区での耐候性能およびその性能に基づく用途については一切述べられていない。また、使用される環境の飛来海塩粒子量に応じて、好ましいNi添加量の範囲が異なることについても述べられていない。それゆえ、これらの溶接性に優れた鋼板を海浜地区での無塗装使用に適用するためには、海浜地区での耐候性に及ぼす化学成分の影響を改めて別途に検討する必要があった。
【0009】
本発明は、かかる課題を解決するためになされたもので、塩害が懸念される環境で安定さびを形成して優れた耐候性を示し、かつ溶接構造用鋼として十分な母材強度、靭性および溶接性を有する鋼材を提供するものである。
【0010】
【課題を解決するための手段】
本発明者らは、耐候性鋼が飛来海塩粒子の多い大気環境で、耐食性に優れた保護さび膜を形成しにくいことに着目し、従来の耐候性鋼の低合金鋼の成分系を基にして研究を重ねてきた。その結果、飛来海塩粒子の少ない内陸部においては鋼材の耐候性向上に有効であるCrは、海浜地区や融雪塩を散布する地区などの高飛来海塩粒子環境では、耐候性に対して顕著な悪影響があることが判明した。
【0011】
また、種々の合金元素について耐候性向上の検討を実施した結果、Cu−1%以上のNiの複合添加が海浜地区での安定さび生成に顕著に作用することが明らかになった。さらに、Cu−Ni系の適用限界(安定さびが十分形成する上限の年平均飛来海塩粒子量)は、Ni添加量でほぼ整理できることが判明した。Niは高価な添加元素であることから、この知見によって腐食環境の厳しさに応じて最も経済性に優れた鋼材を提供することが可能となった。
【0012】
次に、Cu−Ni系の母材特性について検討した。一般に、C,P,Sを低減し、Si,MnおよびAlで脱酸を行うことで、母材の強度、靭性に優れた鋼材が得られるという知見を利用した。さらに、Niを1%以上添加する本発明鋼の場合でも、耐候性向上を目的としてTiを添加することが好ましい。この場合、添加するTiに対してN含有量を制御することにより、フェライト相中にTiNを微細分散析出することができ、入熱量の大きい溶接条件で生じる溶接熱影響部の靭性劣化を低減することができることが判明した。
【0013】
さらに、本発明で完成した鋼材は、塗装や溶射などの防食被覆された状態でも、普通鋼や従来の耐候性鋼に比較して、遥かに優れた皮膜耐久性を有することが判明した。これは、皮膜の局所的な欠陥部から下地鋼板の腐食が進行しても、生成したさびが緻密で保護性に優れるため、防食皮膜の更なる剥離や皮膜下腐食の進展を抑制するものと推察される。
【0014】
本発明は上記知見に基づくものであって、その要旨は下記の通りである。
(1)重量%で、
C :0.03〜0.15%、 Si:0.05〜0.55%、
Mn:0.3〜2.0%、 Cu:0.30〜1.00%、
Ni:1.0〜5.5%、 Al:0.010〜0.090%、
N :0.0010〜0.0070%、P:0.030%以下、
S :0.010%以下、 Cr:0.1%以下
を含有し、残部がFeおよび不可避的不純物からなることを特徴とする高溶接性高耐候性鋼。
(2)さらに重量%で、Ti:0.005〜0.02%を含み、Ti/N:2.0〜3.5であることを特徴とする前記(1)記載の高溶接性高耐候性鋼。
(3)さらに重量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%の1種または2種以上を含むことを特徴とする前記(1)または(2)記載の高溶接性高耐候性鋼。
(4)さらに重量%で、Mo:0.1〜1.0%、W:0.1〜1.0%の1種または2種を含むことを特徴とする前記(1)乃至(3)のいずれかに記載の高溶接性高耐候性鋼。
(5)さらに重量%で、Nb:0.002〜0.020%、V:0.01〜0.05%、B:0.0003〜0.0050%のうち1種または2種以上を含むことを特徴とする前記(1)乃至(4)のいずれかに記載の高溶接性高耐候性鋼。
(6)表面が有機樹脂、金属または無機物で被覆されたことを特徴とする前記(1)乃至(5)のいずれかに記載の高溶接性高耐候性鋼。
【0015】
【発明の実施の形態】
以下、本発明の実施する形態について説明する。まず、本発明の鋼における化学組成の限定理由とその作用について述べる。
C:Cは、構造材料としての強度を確保するために必要であり、0.03%以上添加するが、0.15%を超えて含まれると溶接継手部のマトリックスの靭性が低下し、溶接性が阻害されるため、その上限を0.15%とした。
【0016】
Si:Siは脱酸のための必須元素で、0.05%以上添加するが、0.55%を超えて添加すると、溶接部に高炭素島状マルテンサイトが生成し、溶接性が阻害されるため、その上限を0.55%とした。
【0017】
Mn:Mnは脱酸、強度調整および不純物であるSをMnSとして固定し、Sによる熱間脆性の防止、および後述するTiNの微細分散析出サイトであるMnSの生成のために0.3%以上添加するが、2.0%を超えて添加すると溶接性が阻害されるので、その範囲を0.3〜2.0%とした。
【0018】
Cu:Cuは鋼中Feと共に溶出し、さび層の形成時にさび粒子の結晶・粗大化を抑制し、さびの緻密さを保持するため、飛来海塩粒子の多い環境での耐候性を向上させるのに必須の元素であり、0.30%以上の添加で有効である。その効果は多いほどよいが、1.0%を超えると溶接性低下や熱間加工における割れが問題となるので、その範囲を0.3〜1.0%とした。溶接性を優先的に考慮すれば、0.30〜0.50%が好ましい。
【0019】
Ni:Niは、さび層中に0.5%以上含まれると鋼中Feと共に溶出し、さび層中にほぼ均一に含まれることにより、さび層表面に飛来海塩粒子として付着したClイオンのさび層/地鉄界面への浸透を抑制し、さび層内部を低Cl環境としてさび粒子の結晶化・粗大成長を抑制することにより、さび層の緻密さを保持する作用がある。また、鋼中Ni添加量の増加に従って、Clイオンを含む水溶液中での乾湿繰り返し腐食環境で鋼材の耐食性を向上する。
本発明者らの研究によれば、さび層中に0.5%以上Niが含まれるためには、1.0%以上のNi添加が有効であることが明らかとなった。また、5.5%を超えるとコスト高となるので、1.0%〜5.5%とした。好ましくは、使用環境の飛来海塩粒子量に応じてNi添加量をさらに限定すれば、経済性、溶接性共に好ましいことが明らかとなった。使用環境の年平均飛来海塩粒子量が、0.05〜0.2mg/100cm2 /dayの場合、1.0〜2.5%のNi添加が好ましい。0.2〜0.5mg/100cm2 /dayの場合、2.5〜3.5%のNi添加が好ましい。0.5〜0.8mg/100cm2 /dayの場合、2.5〜5.5%のNi添加が好ましく、0.8mg/100cm2 /dayを超える場合、1.0%〜3.5%のNi添加鋼への塗装などの防食被覆使用が好ましい。
【0020】
Al:Alは脱酸元素として0.010%以上必要であるが、添加量が多いと介在物が増加するため、上限を0.090%とする。
【0021】
Ti,N:Tiは必要に応じて、鋼中に一定量以上かつNと一定の割合の範囲でTiとNが同時に含まれる場合、TiNとしてフェライト相中に微細分散析出し、鋼中のCuおよびNiがFeと共に均一に溶出する反応を促進し、Clイオンの浸透を抑制する緻密なさび層の形成を助長する。この効果を得るには0.0010%以上のNと0.0050%以上のTi添加が必要である。また、0.02%超のTi、または0.0070%超のNを添加すると、粗大な析出物の析出が起こり、靭性を劣化させるのでTi,Nの範囲をそれぞれ0.005〜0.02%、0.0010〜0.0070%とした。
【0022】
さらにTi/Nが2.0未満の場合、TiN粒子が十分フェライト相中に析出せず、3.5を超える場合、TiN粒子の粗大凝集が生じて微細、分散状態が得られず、耐候性および溶接性の向上が得られないため、Ti/Nの範囲を2.0〜3.5とした。
【0023】
P:Pは耐候性を向上するのに有効な元素であるが,0.030%を超えて含まれると溶接性が劣化するので、その範囲を0.030%以下とした。特に大入熱溶接特性を十分確保する場合、0.005%以下が好ましい。
【0024】
S:Sは鋼材の靭性や耐候性を劣化させる不可避的不純物であり、少ないほど好ましい。特に0.01%を超えて含まれると介在物が増加すると共に、継手部フェライト相の靭性を著しく劣化させるので、その範囲を0.01%以下とした。十分な耐候性を確保するためには、0.005%以下が好ましい。
【0025】
Cr:CrはFeよりも卑な金属のため、数%の添加では海塩粒子の多い環境中での耐候性を阻害するほか、溶接性を阻害するため、少なければ少ないほどよい。0.1%以下であれば、耐候性や溶接性への阻害作用はほぼ無視できるので、その範囲を0.1%以下とした。
【0026】
Ca,Mg:CaおよびMgは必要に応じて添加するものであり、これらを添加すると、鋼中に酸化物または硫化物として存在し、地鉄から溶出することにより、Ca(OH)2 やMg(OH)2 などを形成して、さびコロイド粒子生成初期の成長を抑制するため、さび粒子の微細析出、凝集を促進する。その効果は0.0005%以上の添加で有効であり、0.0100%で飽和するので、それらの元素の範囲を0.0005%〜0.0100%とした。
【0027】
REM:REMも必要に応じて添加するものであり、介在物の形態を制御して板厚方向の引張特性を改善し、ラメラーティアの軽減や低温靭性の向上に有効である。このために0.0005%以上含有するが、添加量が多すぎると介在物が増加するため、上限を0.0100%とした。
【0028】
Mo,W:MoおよびWは、必要に応じて0.1%以上添加すると地鉄から溶出したのち、モリブデン酸およびタングステン酸を生成し、さび粒子表面に吸着して凝集したさび粒子間で生じた空隙を負電荷過剰として、Clイオンや硫酸イオンなどの陰イオンの地鉄界面への浸透を抑制し、耐候性または安定さびを形成する限界飛来海塩粒子量をさらに向上させる作用があるが、その効果は1.0%で飽和する。それゆえ、耐候性の向上を優先する場合には、0.1〜1.0%が好ましい。
【0029】
また、Moは母材強度を上昇させる効果があり、厚手材、高強度材などに対して0.02%以上添加するが、0.20%を超えて添加すると溶接継手部に上部マルテンサイトや島状マルテンサイトなどを生成して、継手靭性を著しく低下する。それゆえ、溶接性を十分に確保する場合は、0.020〜0.20%が好ましい。
【0030】
Nb,V,B:Nb,V,Bは、母材強度を上昇させる効果があり、厚手材、高強度材に対して、Nbは0.002%以上、Vは0.01%以上、Bは0.0003%以上添加するが、いずれの元素も次の範囲を超えて添加すると靭性が劣化するため、Nb:0.02%以下、V:0.05%以下およびB:0.0050%以下と限定した。
【0031】
防食被覆:本発明鋼に、有機樹脂による塗装、金属溶射、またはめっきを施して、塩害が懸念される大気環境で使用した場合、普通鋼や従来の耐候性鋼に同様の防食被覆を施した場合に比べて遥かに優れた耐候性、耐久性を示す。有機樹脂としては、エポキシ樹脂系、フタル酸系、ウレタン樹脂系、ビニルブチラール樹脂系およびその他の樹脂系でいずれも塗装耐久性が向上する。
【0032】
また、金属被覆では、Zn,Zn−Al,Alめっきおよび溶射などで優れた耐候性を示す。いずれの場合も、被覆層の微視的あるいは巨視的な欠陥から地鉄の腐食が進行した際、Ni,Cuなどを含有した緻密なさび層が形成され、それ以降の腐食の進展を抑制する。また、特開昭53−65232号公報、特開昭55−97477号公報および特開昭55−97478号公報などに開示されている耐候性鋼の初期さび汁流出防止技術としてのさび安定化処理皮膜を本発明鋼に塗布することにより、高海塩粒子環境でも初期さび汁を防止しながら、安定さびが形成される。
【0033】
【実施例】
表1(表1−1)及び表2(表1−2)に示す化学組成の鋼を溶製し、熱間圧延および必要に応じて熱処理を施して厚さ25mmの厚鋼板を試作した。中入熱溶接(50kJ/cm)および大入熱溶接(120kJ/cm)で実継手を製作し、溶接継手部の靭性を−40℃でのシャルピー衝撃試験の吸収エネルギーで評価した。
【0034】
また、試作鋼の高海塩粒子環境での耐候性を評価するために、千葉県富津市臨海部の4カ所で暴露試験を1,3,7年実施した。なお、その暴露地点は、離岸距離(平均飛来海塩粒子量)が各々地点V:5m(1.3mdd)、地点W:50m(0.8mdd)、地点X:200m(0.5mdd)、地点Y:800m(0.2mdd)とした。
【0035】
試作鋼の耐候性および適用限界飛来海塩粒子量を次の評価で求めた。すなわち、さびの外観評点評価、さびのイオン透過抵抗測定、腐食量から求めた平均板厚減少量の3項目である。
【0036】
さびの安定化の状況を、さび層の外観評点1〜4で評価し、4が最も良く、安定さび形成を示し、1が層状の剥離錆が認められ、さびの安定化および腐食進展の防止が期待できない状態を示すという指標により評価を行った。
【0037】
さびのイオン透過抵抗測定では、交流インピーダンス法によるさびのイオン透過抵抗値を測定し、3kΩ以上で緻密な安定さび形成と判断した。平均板厚減少量は、4カ所での腐食量−時間曲線から50年後の推定板厚減少量を、平均板厚減少量と時間の両対数プロット上で外挿して求め、無塗装橋梁使用の基準である腐食量0.4mm/50年を無塗装使用可否の目安として、4カ所の暴露試験結果から適用限界飛来海塩粒子量を求めた。
【0038】
表3(表2−1)及び表4(表2−2)に、試作鋼の特性値、すなわち溶接性および海浜地区での耐候性を示す。表中、さび評点、イオン透過抵抗値は、4カ所のうち飛来海塩粒子量が最も少ない地点Yにおける評価結果である。
【0039】
比較例A1〜A11は、それぞれC,Si,Mn,P,Cu,Ni,Al,Ti,Nが過剰のため継手靭性値が低く、大入熱溶接性が悪い。また、比較例C1〜C7は、C,S,Cu,Ni,Crが本発明の範囲外のため、本発明例と比較すると耐候性が不十分である。比較例C8は、従来の耐候性鋼(JIS G3141 溶接構造用耐候性鋼板 SMA490)であるが、地点V〜Yの4カ所の中で最も飛来海塩粒子量が少ない地点Yでも安定さびが形成されず、無塗装使用に適さないことがわかる。
【0040】
D1〜D40は本発明鋼の結果であり、いずれの試作鋼も地点Yの環境では、さび評点、イオン透過抵抗および50年後の推定腐食量は、いずれの評価においても優れた耐候性を有することがわかる。また、4カ所の暴露試験結果から推定した限界海塩粒子量は、Ni添加量でほぼ分類できることがわかる。すなわち、環境の年平均飛来海塩粒子量が
(1)0.05〜0.2mg/100cm2 /dayの場合、1.0〜2.5%Ni添加が好ましい。
(2)0.2〜0.5mg/100cm2 /dayの場合、2.5〜3.5%Ni添加が好ましい。
(3)0.5〜0.8mg/100cm2 /dayの場合、2.5〜5.5%Ni添加が好ましい。
【0041】
表5(表3)に、試作鋼に有機樹脂塗装を施し、表面にカッタナイフで1片70mmのクロスカット傷をつけて地点V(年平均飛来海塩粒子量1.3mdd)に5年間暴露し、クロスカットからの最大塗膜膨れ幅(塗膜下腐食の最大進展幅)を評価して、塗装した試作鋼の当該環境における耐候性の評価を示した。
【0042】
耐候性向上に必要な成分が本発明範囲外である比較例C1〜C8に塗装した供試材は、いずれも最大膨れ幅が最小のものでも32mmであり、本発明例D1〜D40に塗装した供試材は、最大のものでも14mmであることから、本発明鋼が塗装を施して使用しても、優れた耐候性を有することがわかる。
【0043】
【表1】

Figure 0003785271
【0044】
【表2】
Figure 0003785271
【0045】
【表3】
Figure 0003785271
【0046】
【表4】
Figure 0003785271
【0047】
【表5】
Figure 0003785271
【0048】
【発明の効果】
上記実施例からも明らかなように、本発明は海浜地区や融雪塩の散布などにより塩害が懸念される地区における橋梁、鉄塔をはじめとする鋼構造物に対して、構造用鋼材として必須特性である溶接性と高飛来海塩粒子でも安定したさびを形成して優れた耐候性を共に有する鋼材を提供するものであり、また、無塗装使用および塗装使用においても優れた耐候性を有することから、いずれの使用方法でも鋼構造物の維持管理費の低減を可能とする。産業上その効果は極めて顕著である。[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent weldability and environment used for steel structures such as bridges and steel towers in an atmospheric environment where salt damage is a concern in high-flying sea salt particle environments, such as beach areas and areas where snow melting salt is sprayed. It relates to a steel material having weather resistance according to the amount of flying sea salt particles.
[0002]
[Prior art]
Conventionally, corrosion protection of steel structural members used in locations where salt damage occurs, such as coastal areas, includes the use of ordinary steel materials, the use of plated steel sheets, the use of surface coatings such as thermal spraying and mortar lining, and the high use of stainless steel and titanium. Use of alloy high corrosion resistance material is mentioned. Furthermore, as a technique for reducing the maintenance cost of the steel structure, there is a non-painting use of weathering steel (JISG 3141 weathering steel for welded structure).
[0003]
In the case of painting, there is a problem that maintenance and management costs are required because repainting is inevitably necessary. In the case of plating, there are problems such as deformation due to thermal stress and peeling of the plating in the hot-dip plating of the structure. In the case of thermal spraying or mortar lining, peeling or deterioration of the anticorrosive film was a problem. Further, in the case of a high alloy corrosion resistant material, there is a problem that the material cost is high and it cannot be widely used as a main structural member.
[0004]
Weather-resistant steel is a steel material that, when used unpainted, forms a precise stable rust with excellent corrosion resistance on the surface of the steel within a few years to 10 years after use, and this stable rust prevents the subsequent corrosion of the steel. It is. For steel structures, weather-resistant welded structural steels that take weldability into account have been used so far, mainly in bridges and buildings. However, as shown in “Design and Construction Guidelines for Unpainted Weatherproof Bridges (Revised Draft): Ministry of Construction, Public Works Research Institute, Steel Club, Japan Bridge Construction Association, March 1993” In areas where the amount of flying sea salt particles is large, such as the area where it is sprayed, the formation of stable rust with excellent protective properties is hindered by the salt attached to the surface of the steel material, which makes it unsuitable for unpainted use.
[0005]
For improving the weather resistance of weathering steel in the beach area, for example, in the invention of Japanese Examined Patent Publication No. 56-9356, it contains P (0.03 to 0.20%) and has excellent weldability, and sea water is involved. Steel materials having excellent weather resistance in a corrosive environment and a general atmospheric environment are disclosed. In addition, in the invention described in Japanese Patent Laid-Open No. 2-125839, the addition of a complex oxide of Ca and Al is effective for the complex addition of low Si—P—Cu—Ni. Further, in the invention of Japanese Patent Laid-Open No. 5-51668, it is said that it is effective to finely disperse the oxide in the steel material to suppress the pH drop on the steel material surface. In addition, in the invention described in Japanese Patent Laid-Open No. 7-242993, the combined addition of Ni—Cr—Al is effective.
[0006]
In this way, steel materials with excellent weather resistance in the beach area, which is a drawback of conventional weather resistant steels, have been developed, but the weldability that is essential as a steel material for welded structures has not always been sufficient. Met. The invention described in Japanese Patent Laid-Open No. 2-12539 and the invention described in Japanese Patent Laid-Open No. 5-51668 are both inventions based on Ni-added steel of several%, but these steel materials are Although the weather resistance in the area is excellent, there was a problem that it was difficult to determine whether to apply to actual structures because the application limit of the amount of flying sea salt particles was unknown.
In addition, as a result of research and investigation by the inventors, for example, in the invention of Japanese Patent Publication No. 56-9356, even with steel containing P (0.03 to 0.20%), the mechanical characteristics of the welded joint portion are more than a certain level. When quality is required, there is a problem that it is indispensable to limit heat input during welding or to preheat.
[0007]
On the other hand, although the weather resistance is not mentioned, as a steel material with improved weldability, for example, in the invention of Japanese Examined Patent Publication No. 60-24576, a steel containing Mn or the like as a basic component, Ti having a specified particle diameter is used. It is said that high toughness steel for welding with improved notch toughness in the weld heat affected zone can be obtained by including a composite of oxide, Ti oxide and Ti nitride. Further, in the invention of Japanese Patent Publication No. 61-117245, a specific amount of C, Si, Mn, P, N, Al, S, B is contained, and a specific particle diameter, a specific number of particles of Ti oxide and Ti nitriding are included. It is said that the steel material excellent in the low temperature notch toughness of the weld heat affected zone can be obtained by simultaneously containing both the composite of the product + MnS.
[0008]
However, even when Cu, Ni, and Ti are added to these steel materials, the weather resistance performance of the steel materials in the beach area and uses based on the performance are not described at all. Moreover, it is not described that the range of the preferable Ni addition amount varies depending on the amount of flying sea salt particles in the environment used. Therefore, in order to apply these steel sheets having excellent weldability to uncoated use in the beach area, it was necessary to separately examine the influence of chemical components on the weather resistance in the beach area.
[0009]
The present invention has been made in order to solve such problems, and exhibits excellent weather resistance by forming stable rust in an environment in which salt damage is a concern, and sufficient base material strength, toughness, and A steel material having weldability is provided.
[0010]
[Means for Solving the Problems]
The present inventors paid attention to the fact that weathering steel is difficult to form a protective rust film with excellent corrosion resistance in an atmospheric environment with a lot of incoming sea salt particles, and based on the low-alloy steel component system of conventional weathering steel. I have been doing research. As a result, Cr, which is effective in improving the weather resistance of steel in inland areas where there are few flying sea salt particles, is prominent in terms of weather resistance in high flying sea salt particle environments such as beach areas and areas where snow melting salt is sprayed. It turns out that there is a bad influence.
[0011]
Moreover, as a result of investigating the improvement in weather resistance of various alloy elements, it has been clarified that the combined addition of Ni of Cu-1% or more significantly affects the formation of stable rust in the beach area. Furthermore, it has been found that the application limit of Cu-Ni system (the amount of annual average sea salt particles that can be sufficiently formed by stable rust) can be roughly arranged by adding Ni. Since Ni is an expensive additive element, this knowledge makes it possible to provide the most economical steel material according to the severity of the corrosive environment.
[0012]
Next, the characteristics of the Cu-Ni base material were examined. In general, the knowledge that a steel material excellent in strength and toughness of a base material can be obtained by reducing C, P and S and deoxidizing with Si, Mn and Al was utilized. Furthermore, even in the case of the steel of the present invention to which Ni is added at 1% or more, it is preferable to add Ti for the purpose of improving the weather resistance. In this case, by controlling the N content with respect to Ti to be added, TiN can be finely dispersed and precipitated in the ferrite phase, thereby reducing the toughness deterioration of the weld heat affected zone occurring under welding conditions with a large heat input. It turns out that you can.
[0013]
Furthermore, it has been found that the steel material completed in the present invention has a much superior film durability compared to ordinary steel and conventional weathering steel even in a state where the steel material is coated with anticorrosion such as painting or spraying. This is because even if corrosion of the underlying steel plate proceeds from local defects in the film, the generated rust is dense and excellent in protection, so that further peeling of the anticorrosion film and progress of subfilm corrosion are suppressed. Inferred.
[0014]
The present invention is based on the above findings, and the gist thereof is as follows.
(1) By weight%
C: 0.03-0.15%, Si: 0.05-0.55%,
Mn: 0.3 to 2.0%, Cu: 0.30 to 1.00%,
Ni: 1.0 to 5.5%, Al: 0.010 to 0.090%,
N: 0.0010 to 0.0070%, P: 0.030% or less,
S: 0.010% or less, Cr: 0.1% or less, with the balance being Fe and inevitable impurities, high weldability and weatherability steel.
(2) Further, by weight%, Ti: 0.005 to 0.02%, Ti / N: 2.0 to 3.5, high weldability and high weather resistance according to (1) above Steel.
(3) Further, by weight%, one or more of Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: 0.0005 to 0.0100% are included. The high weldability and weatherproof steel according to (1) or (2) above.
(4) The above (1) to (3), further comprising one or two of Mo: 0.1 to 1.0% and W: 0.1 to 1.0% by weight% The high weldability and weatherproof steel according to any one of the above.
(5) Further, by weight%, Nb: 0.002 to 0.020%, V: 0.01 to 0.05%, B: 0.0003 to 0.0050%, including one or more The high weldability and weatherproof steel according to any one of (1) to (4), wherein:
(6) The high weldability and weatherable steel according to any one of (1) to (5), wherein the surface is coated with an organic resin, a metal, or an inorganic substance.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described. First, the reason for limiting the chemical composition of the steel of the present invention and the action thereof will be described.
C: C is necessary to ensure the strength as a structural material, and is added in an amount of 0.03% or more, but if it exceeds 0.15%, the toughness of the matrix of the welded joint portion decreases, and welding The upper limit was made 0.15% because the property is inhibited.
[0016]
Si: Si is an essential element for deoxidation, and is added at 0.05% or more, but if added over 0.55%, high-carbon island martensite is generated in the weld zone and weldability is hindered. Therefore, the upper limit was made 0.55%.
[0017]
Mn: Mn is 0.3% or more for deoxidation, strength adjustment, fixing S as an impurity as MnS, prevention of hot brittleness due to S, and generation of MnS which is a finely dispersed precipitation site of TiN described later. However, if it exceeds 2.0%, weldability is impaired, so the range was made 0.3 to 2.0%.
[0018]
Cu: Cu elutes together with Fe in steel, suppresses rust particle crystallization and coarsening when forming a rust layer, and maintains the fineness of rust, thus improving the weather resistance in an environment with a lot of incoming sea salt particles It is an essential element, and is effective when added in an amount of 0.30% or more. The greater the effect, the better. However, if it exceeds 1.0%, weldability deterioration and cracks in hot working become problems, so the range was made 0.3 to 1.0%. Considering weldability preferentially, 0.30 to 0.50% is preferable.
[0019]
Ni: When Ni is contained in the rust layer in an amount of 0.5% or more, it elutes together with Fe in the steel, and is almost uniformly contained in the rust layer, so that Cl ions adhered to the surface of the rust layer as flying sea salt particles. It suppresses the penetration of the rust layer / base metal interface, and suppresses crystallization and coarse growth of rust particles by setting the inside of the rust layer as a low Cl environment, thereby maintaining the denseness of the rust layer. Further, the corrosion resistance of the steel material is improved in a dry and wet repeated corrosion environment in an aqueous solution containing Cl ions as the amount of Ni added in the steel increases.
According to the study by the present inventors, it has been clarified that addition of 1.0% or more of Ni is effective for containing 0.5% or more of Ni in the rust layer. Moreover, since it will become expensive if it exceeds 5.5%, it was set as 1.0%-5.5%. Preferably, it is clear that both the economical efficiency and the weldability are preferable if the Ni addition amount is further limited according to the amount of flying sea salt particles in the use environment. When the annual average amount of sea salt particles used is 0.05 to 0.2 mg / 100 cm 2 / day, 1.0 to 2.5% Ni addition is preferable. In the case of 0.2 to 0.5 mg / 100 cm 2 / day, Ni addition of 2.5 to 3.5% is preferable. For 0.5~0.8mg / 100cm 2 / day, preferably Ni addition of 2.5 to 5.5%, if it exceeds 0.8mg / 100cm 2 / day, 1.0 % ~3.5% It is preferable to use an anticorrosion coating such as painting on Ni-added steel.
[0020]
Al: Al needs to be 0.010% or more as a deoxidizing element. However, since the inclusion increases when the addition amount is large, the upper limit is made 0.090%.
[0021]
Ti, N: Ti is optionally dispersed in the ferrite phase as TiN when Ti and N are simultaneously contained in the steel in a certain amount or more and in a certain ratio range with N, if necessary. And promotes the reaction of Ni eluting uniformly with Fe and promotes the formation of a dense rust layer that suppresses the penetration of Cl ions. To obtain this effect, 0.0010% or more of N and 0.0050% or more of Ti need to be added. Further, if adding more than 0.02% Ti or more than 0.0070% N, coarse precipitates are precipitated and the toughness is deteriorated, so the range of Ti and N is 0.005 to 0.02 respectively. %, 0.0010 to 0.0070%.
[0022]
Further, when Ti / N is less than 2.0, TiN particles do not sufficiently precipitate in the ferrite phase, and when it exceeds 3.5, coarse aggregation of TiN particles occurs and a fine and dispersed state cannot be obtained, and weather resistance And since the improvement of weldability is not obtained, the range of Ti / N was set to 2.0 to 3.5.
[0023]
P: P is an element effective for improving the weather resistance, but if included over 0.030%, the weldability deteriorates, so the range was made 0.030% or less. In particular, when sufficiently ensuring the high heat input welding characteristics, 0.005% or less is preferable.
[0024]
S: S is an unavoidable impurity that deteriorates the toughness and weather resistance of the steel material, and the smaller the better. In particular, inclusions exceeding 0.01% increase inclusions and significantly deteriorate the toughness of the joint ferrite phase, so the range was made 0.01% or less. In order to ensure sufficient weather resistance, 0.005% or less is preferable.
[0025]
Cr: Since Cr is a base metal than Fe, addition of a few percent inhibits the weather resistance in an environment where there are many sea salt particles, and also inhibits weldability. If it is 0.1% or less, the inhibitory effect on weather resistance and weldability can be almost ignored, so the range was made 0.1% or less.
[0026]
Ca, Mg: Ca and Mg are added as necessary. When these are added, they are present in the steel as oxides or sulfides, and are eluted from the ground iron to cause Ca (OH) 2 and Mg. (OH) 2 and the like are formed to suppress the initial growth of rust colloidal particles, thereby promoting fine precipitation and aggregation of rust particles. The effect is effective when 0.0005% or more is added, and is saturated at 0.0100%. Therefore, the range of these elements is set to 0.0005% to 0.0100%.
[0027]
REM: REM is also added as necessary, and is effective in reducing lamellar tear and improving low-temperature toughness by controlling the form of inclusions to improve the tensile properties in the thickness direction. For this reason, it contains 0.0005% or more, but if the addition amount is too large, inclusions increase, so the upper limit was made 0.0100%.
[0028]
Mo, W: Mo and W are dissolved between the rust particles, which are eluted from the ground iron and added to molybdic acid and tungstic acid when adsorbed on the surface of the rust particles. However, it has the effect of further increasing the amount of limit sea salt particles that form weather resistance or stable rust by suppressing the penetration of negative ions such as Cl ions and sulfate ions into the iron-iron interface by making the voids excessively negatively charged. The effect is saturated at 1.0%. Therefore, when priority is given to improving the weather resistance, 0.1 to 1.0% is preferable.
[0029]
Mo has the effect of increasing the strength of the base metal and is added to 0.02% or more of thick materials, high strength materials, etc., but if added over 0.20%, upper martensite and Island martensite and the like are generated, and the joint toughness is significantly reduced. Therefore, when sufficient weldability is ensured, 0.020 to 0.20% is preferable.
[0030]
Nb, V, B: Nb, V, B has an effect of increasing the strength of the base material. Nb is 0.002% or more, V is 0.01% or more, and B is thick or high-strength material. 0.0003% or more is added, but if any element is added beyond the following range, toughness deteriorates, so Nb: 0.02% or less, V: 0.05% or less, and B: 0.0050% Limited to:
[0031]
Anti-corrosion coating: The steel of the present invention is coated with organic resin, metal sprayed or plated, and when used in an air environment where salt damage is a concern, the same anti-corrosion coating is applied to ordinary steel and conventional weather-resistant steel. It shows far better weather resistance and durability than the case. As the organic resin, an epoxy resin type, a phthalic acid type, a urethane resin type, a vinyl butyral resin type and other resin types all improve the coating durability.
[0032]
Further, the metal coating exhibits excellent weather resistance due to Zn, Zn-Al, Al plating, thermal spraying, and the like. In either case, a dense rust layer containing Ni, Cu or the like is formed when the corrosion of the iron core proceeds from microscopic or macroscopic defects in the coating layer, and the subsequent progress of corrosion is suppressed. . Further, rust stabilization treatment as a technique for preventing initial rust juice outflow of weathering steel disclosed in JP-A-53-65232, JP-A-55-97477, JP-A-55-97478, etc. By applying the film to the steel of the present invention, stable rust is formed while preventing initial rust juice even in a high sea salt particle environment.
[0033]
【Example】
Steels having the chemical compositions shown in Table 1 (Table 1-1) and Table 2 (Table 1-2) were melted and subjected to hot rolling and heat treatment as necessary to produce a 25 mm thick steel plate. Real joints were manufactured by medium heat input welding (50 kJ / cm) and large heat input welding (120 kJ / cm), and the toughness of the welded joints was evaluated by the absorbed energy of the Charpy impact test at -40 ° C.
[0034]
In addition, in order to evaluate the weather resistance of the prototype steel in a high sea salt particle environment, exposure tests were conducted for 1, 3 and 7 years at four locations in the coastal area of Futtsu City, Chiba Prefecture. In addition, the shoreline distance (average amount of incoming sea salt particles) is point V: 5 m (1.3 mdd), point W: 50 m (0.8 mdd), point X: 200 m (0.5 mdd), Point Y: 800 m (0.2 mdd).
[0035]
The weather resistance and the application limit flying sea salt particle amount of the prototype steel were obtained by the following evaluation. That is, there are three items: rust appearance rating evaluation, rust ion permeation resistance measurement, and average plate thickness reduction obtained from the amount of corrosion.
[0036]
The rust stabilization status was evaluated with the appearance score 1 to 4 of the rust layer, 4 being the best, indicating stable rust formation, 1 showing layered peeling rust, rust stabilization and prevention of corrosion progression The evaluation was based on an indicator that indicates a state that cannot be expected.
[0037]
In the rust ion permeation resistance measurement, the rust ion permeation resistance value was measured by the AC impedance method, and it was judged that a dense stable rust was formed at 3 kΩ or more. Average thickness reduction amount is obtained by extrapolating the estimated thickness reduction amount after 50 years from the corrosion amount-time curve at four locations on the logarithmic plot of average thickness reduction amount and time, and using unpainted bridges. Corrosion amount of 0.4 mm / 50 years, which is the standard for the above, was used as an indication of whether or not unpainted can be used.
[0038]
Table 3 (Table 2-1) and Table 4 (Table 2-2) show the characteristic values of the prototype steel, that is, the weldability and the weather resistance in the beach area. In the table, the rust score and the ion permeation resistance value are the evaluation results at the point Y where the amount of flying sea salt particles is the smallest among the four locations.
[0039]
In Comparative Examples A1 to A11, since C, Si, Mn, P, Cu, Ni, Al, Ti, and N are excessive, the joint toughness value is low and the high heat input weldability is poor. Moreover, since C, S, Cu, Ni, and Cr are outside the scope of the present invention in Comparative Examples C1 to C7, the weather resistance is insufficient when compared with the present invention. Comparative Example C8 is a conventional weathering steel (JIS G3141 weathering steel plate for welded structure SMA490), but stable rust is formed even at point Y where the amount of sea salt particles is the smallest among four points V to Y. It turns out that it is not suitable for unpainted use.
[0040]
D1 to D40 are the results of the steels of the present invention. In any of the prototype steels, the rust rating, ion permeation resistance, and estimated corrosion amount after 50 years have excellent weather resistance in any evaluation in the environment of point Y. I understand that. It can also be seen that the limit sea salt particle amount estimated from the exposure test results at four locations can be roughly classified by the amount of Ni added. That is, when the average amount of sea salt particles in the environment is (1) 0.05 to 0.2 mg / 100 cm 2 / day, addition of 1.0 to 2.5% Ni is preferable.
(2) In the case of 0.2 to 0.5 mg / 100 cm 2 / day, addition of 2.5 to 3.5% Ni is preferable.
(3) In the case of 0.5 to 0.8 mg / 100 cm 2 / day, 2.5 to 5.5% Ni addition is preferable.
[0041]
In Table 5 (Table 3), the prototype steel is coated with an organic resin, the surface is cut with a cutter knife with a 70 mm crosscut, and exposed to point V (average amount of sea salt particles 1.3 mdd per year) for 5 years. Then, the maximum coating blister width from the crosscut (maximum progress width of corrosion under the coating) was evaluated, and an evaluation of the weather resistance of the coated prototype steel in the environment was shown.
[0042]
The test materials coated on Comparative Examples C1 to C8 whose components necessary for improving the weather resistance were outside the scope of the present invention were all 32 mm even when the maximum swollen width was the smallest, and were coated on Invention Examples D1 to D40. Since the maximum specimen is 14 mm, it can be seen that the steel of the present invention has excellent weather resistance even if it is used after being coated.
[0043]
[Table 1]
Figure 0003785271
[0044]
[Table 2]
Figure 0003785271
[0045]
[Table 3]
Figure 0003785271
[0046]
[Table 4]
Figure 0003785271
[0047]
[Table 5]
Figure 0003785271
[0048]
【The invention's effect】
As is apparent from the above examples, the present invention has essential characteristics as a structural steel material for steel structures including bridges and steel towers in the coastal area and areas where salt damage is a concern due to the application of snowmelt salt. It provides a steel material that has both good weldability and stable rust even with high flying sea salt particles and has excellent weather resistance, and also has excellent weather resistance in both unpainted and painted applications Any method of use makes it possible to reduce the maintenance cost of steel structures. The effect is very remarkable in industry.

Claims (6)

重量%で、
C :0.03〜0.15%、
Si:0.05〜0.55%、
Mn:0.3〜2.0%、
Cu:0.30〜1.00%、
Ni:1.0〜5.5%、
Al:0.010〜0.090%、
N :0.0010〜0.0070%
を含有し、さらに不可避的に、
P :0.030%以下、
S :0.010%以下、
Cr:0.1%以下
を含み、残部がFeおよび不可避的不純物からなることを特徴とする高溶接性高耐候性鋼。
% By weight
C: 0.03-0.15%,
Si: 0.05 to 0.55%,
Mn: 0.3 to 2.0%,
Cu: 0.30 to 1.00%,
Ni: 1.0 to 5.5%,
Al: 0.010 to 0.090%,
N: 0.0010 to 0.0070%
Inevitably further,
P: 0.030% or less,
S: 0.010% or less,
Cr: Highly weldable and weatherable steel containing 0.1% or less, with the balance being Fe and inevitable impurities.
請求項1に記載の鋼に、さらに重量%で、
Ti:0.005〜0.02%
を含有し、かつ
TiとNの比が2.0≦Ti/N≦3.5
であることを特徴とする高溶接性高耐候性鋼。
The steel of claim 1 further in weight percent,
Ti: 0.005-0.02%
And the ratio of Ti and N is 2.0 ≦ Ti / N ≦ 3.5
Highly weldable and weatherproof steel characterized by
請求項1または2に記載の鋼に、さらに重量%で、
Ca:0.0005〜0.0100%、
Mg:0.0005〜0.0100%、
REM:0.0005〜0.0100%
の1種または2種以上を含むことを特徴とする高溶接性高耐候性鋼。
The steel according to claim 1 or 2, further in wt%,
Ca: 0.0005 to 0.0100%,
Mg: 0.0005 to 0.0100%,
REM: 0.0005 to 0.0100%
High weldability high weatherability steel characterized by including 1 type or 2 types or more.
請求項1乃至3のいずれか1項に記載の鋼に、さらに重量%で、
Mo:0.1〜1.0%、
W :0.1〜1.0%
の1種または2種を含むことを特徴とする高溶接性高耐候性鋼。
The steel according to any one of claims 1 to 3, further in wt%,
Mo: 0.1 to 1.0%,
W: 0.1 to 1.0%
A high-weldability and weather-resistant steel characterized by containing one or two of the following.
請求項1乃至4のいずれか1項に記載の鋼に、さらに重量%で、
Nb:0.002〜0.020%、
V :0.01〜0.05%、
B :0.0003〜0.0050%
の1種または2種以上を含むことを特徴とする高溶接性高耐候性鋼。
The steel according to any one of claims 1 to 4, further in wt%,
Nb: 0.002 to 0.020%,
V: 0.01 to 0.05%,
B: 0.0003 to 0.0050%
High weldability high weatherability steel characterized by including 1 type or 2 types or more.
表面に有機樹脂、金属または無機物の防食被覆を有することを特徴とする請求項1乃至5のいずれか1項に記載の高溶接性高耐候性鋼。The high weldability and weatherproof steel according to any one of claims 1 to 5, wherein the surface has an anticorrosion coating of an organic resin, a metal, or an inorganic substance.
JP10254198A 1997-10-01 1998-04-14 High weldability and weatherproof steel Expired - Fee Related JP3785271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10254198A JP3785271B2 (en) 1997-10-01 1998-04-14 High weldability and weatherproof steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-269023 1997-10-01
JP26902397 1997-10-01
JP10254198A JP3785271B2 (en) 1997-10-01 1998-04-14 High weldability and weatherproof steel

Publications (2)

Publication Number Publication Date
JPH11172370A JPH11172370A (en) 1999-06-29
JP3785271B2 true JP3785271B2 (en) 2006-06-14

Family

ID=26443252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10254198A Expired - Fee Related JP3785271B2 (en) 1997-10-01 1998-04-14 High weldability and weatherproof steel

Country Status (1)

Country Link
JP (1) JP3785271B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003165A (en) 2013-05-10 2016-01-08 제이에프이 스틸 가부시키가이샤 Steel material for welded structure
KR20180022996A (en) 2015-09-11 2018-03-06 제이에프이 스틸 가부시키가이샤 Structural steel material with excellent weather resistance

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817152B2 (en) * 2000-10-06 2006-08-30 新日本製鐵株式会社 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance
EP1408324A4 (en) 2001-07-12 2011-01-26 Nippon Steel Corp Method for predicting degree of corrosion of weather-resistant steel
JP4762878B2 (en) * 2006-12-18 2011-08-31 新日本製鐵株式会社 Weatherproof steel with enhanced rust stabilization ability and method for producing the same
JP5265944B2 (en) * 2008-03-04 2013-08-14 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance
JP5774859B2 (en) * 2011-01-24 2015-09-09 株式会社神戸製鋼所 Corrosion resistant steel for ship superstructure
KR102034424B1 (en) 2017-11-24 2019-10-18 주식회사 포스코 Mold Flux, steel product, and Method for manufacturing steel product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826395B2 (en) * 1988-11-08 1996-03-13 新日本製鐵株式会社 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method
JPH101720A (en) * 1996-06-10 1998-01-06 Nkk Corp Manufacture of thick-walled 780n/mm2 class steel excellent in weldability, acoustic anisotropy, and toughness in central part of plate thickness
JP3535716B2 (en) * 1997-03-31 2004-06-07 株式会社神戸製鋼所 Painted steel with excellent durability
JP3568760B2 (en) * 1997-06-24 2004-09-22 株式会社神戸製鋼所 Thick plate with excellent bare weather resistance and weldability
JPH1121623A (en) * 1997-07-07 1999-01-26 Nkk Corp Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003165A (en) 2013-05-10 2016-01-08 제이에프이 스틸 가부시키가이샤 Steel material for welded structure
KR20180022996A (en) 2015-09-11 2018-03-06 제이에프이 스틸 가부시키가이샤 Structural steel material with excellent weather resistance

Also Published As

Publication number Publication date
JPH11172370A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP5691350B2 (en) Structural steels and steel structures with excellent weather resistance
JP4495668B2 (en) High corrosion resistance steel
JP3817152B2 (en) High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance
JP6405910B2 (en) Corrosion resistant steel
JP2006169626A5 (en)
JP2008144204A (en) Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP4924775B2 (en) Steel sheet with small welding deformation and excellent corrosion resistance
JP4677714B2 (en) Steel materials for bridges with excellent beach weather resistance and structures using the same
JP3785271B2 (en) High weldability and weatherproof steel
JP5796403B2 (en) Steel material for welded structures with excellent weather resistance
KR101723459B1 (en) Steel material for welded structure
JP2000017383A (en) High atmosphere corrosion resisting steel
KR20010043879A (en) Atmospheric corrosion resistant steel product
JP5600986B2 (en) Structural steel with excellent weather resistance
JP5797877B2 (en) Weatherproof steel with excellent corrosion resistance in high humidity environments
JP3655765B2 (en) Welded steel pipe with excellent weather resistance
JP3535716B2 (en) Painted steel with excellent durability
JP4407261B2 (en) Steel material with excellent beach weather resistance and structure using the same
JP3265867B2 (en) Welded structural steel with excellent weather resistance
JP7261364B1 (en) steel plate
JP4598233B2 (en) Low hydrogen coated arc welding rod for Cu-Ni coastal high weathering steel
JP2001262273A (en) Weather resistant steel tube excellent in weldability
JP2001049338A (en) Production of high weldability weather resistant steel excellent in fire resistance
JP2000313939A (en) Manufacture of welded steel tube excellent in atmosphere corrosion resistance
JP2000001752A (en) Welded joint excellent in corrosion resistance and fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees