JP4762878B2 - Weatherproof steel with enhanced rust stabilization ability and method for producing the same - Google Patents

Weatherproof steel with enhanced rust stabilization ability and method for producing the same Download PDF

Info

Publication number
JP4762878B2
JP4762878B2 JP2006340115A JP2006340115A JP4762878B2 JP 4762878 B2 JP4762878 B2 JP 4762878B2 JP 2006340115 A JP2006340115 A JP 2006340115A JP 2006340115 A JP2006340115 A JP 2006340115A JP 4762878 B2 JP4762878 B2 JP 4762878B2
Authority
JP
Japan
Prior art keywords
steel
aluminum nitride
rust
added
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006340115A
Other languages
Japanese (ja)
Other versions
JP2008150670A (en
Inventor
寛 紀平
正雄 木村
康児 田辺
睦人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006340115A priority Critical patent/JP4762878B2/en
Publication of JP2008150670A publication Critical patent/JP2008150670A/en
Application granted granted Critical
Publication of JP4762878B2 publication Critical patent/JP4762878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、橋梁をはじめとする鋼構造物の無塗装化を可能とし、ミニマムメンテナンス化をはかることができる耐候性鋼材に関するもので、特に、鋼材表面のさびの緻密化を促し、長期のさび安定化能を改善する技術に関する。   The present invention relates to a weather-resistant steel material that enables non-painting of steel structures such as bridges and can achieve minimum maintenance, and in particular, promotes the densification of rust on the surface of steel materials for long-term rusting. The present invention relates to a technology for improving the stabilizing ability.

1933年に米国にて初めて商品化された耐候性鋼は、1960年代に入って我が国にも導入され、JIS G3114に規定されたSMA耐候性鋼(以下、JIS−SMA材と略す)が、橋梁をはじめとして最小保全化へのニーズの高い鋼構造物に現在も広く適用されている。
しかし、高湿度で塩害の影響のある我が国でのJIS−SMA材の適用事例の中には、期待された状態とは異なる異常な腐食を起こした例が一部に発生した。
The first weather-resistant steel that was commercialized in the United States in 1933 was introduced in Japan in the 1960s. The SMA weather-resistant steel specified in JIS G3114 (hereinafter abbreviated as JIS-SMA material) It is still widely applied to steel structures where there is a high need for minimum maintenance.
However, some of the examples of application of JIS-SMA materials in Japan that are affected by salt damage at high humidity caused abnormal corrosion that was different from the expected state.

そのため、非特許文献1に記載されているように、JIS−SMA材の使用は、飛来塩分量が0.05mg−NaCl/dm/day(以下、mddと略す。)以下となる地域に限定されており、鋼構造物の最小保全化へ向け、飛来塩分量が0.05mddを超える地域でも使える耐候性鋼が強く求められていた。
そして、十数年にわたる理論的および実証的研究(例えば、特許文献1、非特許文献2参照)を経て、1998年に初めてニッケル系高耐候性鋼(海浜耐候性鋼)が商品化され、実際に橋梁に使用された。
Therefore, as described in Non-Patent Document 1, the use of JIS-SMA material is limited to areas where the amount of incoming salt is 0.05 mg-NaCl / dm 2 / day (hereinafter abbreviated as mdd). Accordingly, there has been a strong demand for weathering steel that can be used even in areas where the amount of incoming salt exceeds 0.05 mdd, in order to minimize the maintenance of steel structures.
After decades of theoretical and empirical research (see, for example, Patent Document 1 and Non-Patent Document 2), nickel-based high weathering steel (seaside weathering steel) was commercialized for the first time in 1998. Used for bridges.

JIS−SMA材においては、主としてCuとCrによる緻密な保護性さびの形成作用が活用されて、長期の曝露による腐食速度の低減効果が発現する。一方、塩害が前述の範囲を超えて厳しくなると、Crは鋼/さび界面での結露水液性を低pH化するため、腐食を加速することが報告されている(非特許文献2参照)。
この不安定性を排除するためCrを無添加とし、JIS−SMA材の規格を参考にして、保護性さびの密着性を高めるCuを温存しつつNiを増量添加して耐塩害性をあげたのがニッケル系高耐候性鋼である。
In the JIS-SMA material, the action of forming dense protective rust mainly by Cu and Cr is utilized, and the effect of reducing the corrosion rate due to long-term exposure is manifested. On the other hand, when salt damage becomes severe beyond the above-mentioned range, it is reported that Cr accelerates corrosion because it lowers the pH of condensed water at the steel / rust interface (see Non-Patent Document 2).
In order to eliminate this instability, Cr was not added, and referring to the standard of JIS-SMA material, increasing the amount of Ni while preserving Cu, which improves the adhesion of protective rust, increased salt damage resistance. Is nickel-based high weathering steel.

JIS−SMA材に形成する保護性さびの主たる機能が、密着性向上と環境遮断性向上にあったのに対し、ニッケル系高耐候性鋼に形成する保護性さびの特徴は、鋼/さび界面でのpH制御機能がさらに加わった点にある。塩害の影響が強くなっても低pH化による腐食加速の元凶であるCrがなく、Ni濃化により増強された保護性さびのカチオン交換機能によってさび内層にNaイオンが濃化し、湿潤時にも鋼/さび界面が高pHに維持されて不動態が保障されるので、腐食の進行が抑制される。   While the main function of protective rust formed on JIS-SMA material was to improve adhesion and environmental barrier properties, the characteristic of protective rust formed on nickel-based high weather resistant steel is the steel / rust interface. In addition, a pH control function is added. Even if the influence of salt damage is strong, there is no Cr, which is the main cause of corrosion acceleration by lowering the pH, and Na ions are concentrated in the inner layer of rust by the cation exchange function of protective rust enhanced by Ni concentration, and even when wet, steel Since the / rust interface is maintained at a high pH and passivation is ensured, the progress of corrosion is suppressed.

このニッケル系高耐候性鋼は、Niが、JIS−SMA材における上限含有量である0.4%を超えて添加された耐候性鋼と定義されているが(例えば、非特許文献3参照)、商品化されているニッケル系高耐候性鋼は、製造者毎に添加元素構成が異なり、Cu−Ni系高耐候性鋼、Ca−Cu−Ni系高耐候性鋼、N−Cu−Ni系高耐候性鋼、極低C−Cu−Ni系高耐候性鋼、Mo−Ni系高耐候性鋼、Ti−Cu−Ni系高耐候性鋼などに分類され、従来、それぞれについて多くの発明がなされている(例えば、特許文献1〜10参照)。   This nickel-based high weathering steel is defined as a weathering steel in which Ni is added in excess of 0.4%, which is the upper limit content in the JIS-SMA material (see, for example, Non-Patent Document 3). In addition, commercialized nickel-based high weathering steel has different additive element configurations for each manufacturer, Cu-Ni-based high weathering steel, Ca-Cu-Ni-based high weathering steel, N-Cu-Ni-based steel It is classified into high weathering steel, ultra low C-Cu-Ni high weathering steel, Mo-Ni high weathering steel, Ti-Cu-Ni high weathering steel, etc. (For example, refer to Patent Documents 1 to 10).

このようにニッケル系高耐候性鋼と言っても添加元素の構成が多岐にわたり、しかも、歴史も浅いので、各種ニッケル系高耐候性鋼の防食性に対する微量添加元素の効果や影響は十分に体系的研究がなされておらず、添加元素の構成の違いにより腐食界面での微量添加元素に関わる化学反応が全く異なる可能性も高いので、添加元素の構成毎に微量添加元素の効果や影響を吟味する必要がある。   In this way, even if it is nickel-based high weather resistant steel, the composition of additive elements is diverse and the history is also short, so the effects and effects of trace additive elements on the corrosion resistance of various nickel-based high weather resistant steels are fully systematized. There is a high possibility that the chemical reaction related to trace elements at the corrosive interface is completely different due to differences in the composition of additive elements, so the effects and effects of trace elements are examined for each additive element composition. There is a need to.

このような背景の中、C,Si,Mn,P,S,Cu,Ni,(Cr),Mo,およびTiの各元素については、東京工業大学創造プロジェクト研究体SIG1(高耐候性鋼材の橋梁への適用に関する研究会)によって、(社)日本鉄鋼協会・橋梁研究会・耐候性鋼防食設計WGの協力を得て、下記の式(1)に示される耐候性合金指標Vの計算方法が提案された。
V=1/{(1.0−0.16[C])・(1.05−0.05[Si])・(1.04−0.016[Mn])・(1.0−0.5[P])・(1.0−1.9[S])・(1.0−0.10[Cu])・(1.0−0.12[Ni])・(1.0−0.3[Mo])・(1.0−1.7[Ti])} ・・・(1)
ただし、上記式(1)の各合金成分の範囲は、質量%で、0≦[C]<1.5、0.1<[Si]<5、0.1<[Mn]<10、0≦[P]<0.15、0≦[S]<0.03、0≦[Cu]<1.1、0≦[Ni]<5、0≦[Mo]<0.6、0≦[Ti]<0.12にあることが前提であり、さらにV値の範囲は、0.9≦V≦2.5であることを確認して用いる。
Against this backdrop, each element of C, Si, Mn, P, S, Cu, Ni, (Cr), Mo, and Ti is the Tokyo Institute of Technology Creation Project Research Body SIG1 (high weather resistant steel bridge) With the cooperation of the Japan Iron and Steel Institute, Bridge Research Society, and Weatherproof Steel Corrosion Design WG, the calculation method of the weathering alloy index V shown in the following formula (1) was suggested.
V = 1 / {(1.0-0.16 [C]), (1.05-0.05 [Si]), (1.04-0.016 [Mn]), (1.0-0.5 [P]), (1.0-1.9 [S]) (1.0-0.10 [Cu]), (1.0-0.12 [Ni]), (1.0-0.3 [Mo]), (1.0-1.7 [Ti])} (1)
However, the range of each alloy component of the above formula (1) is mass%, 0 ≦ [C] <1.5, 0.1 <[Si] <5, 0.1 <[Mn] <10, 0 ≦ [P] <0.15 , 0 ≦ [S] <0.03, 0 ≦ [Cu] <1.1, 0 ≦ [Ni] <5, 0 ≦ [Mo] <0.6, 0 ≦ [Ti] <0.12, and V The value range is used after confirming that 0.9 ≦ V ≦ 2.5.

これにより、これらの成分を用いる限りにおいては、ニッケル系高耐候性鋼材の耐塩害性の高さは、V値によりおおむね把握できるようになったと言える。   As a result, as long as these components are used, it can be said that the high salt resistance of the nickel-based high weathering steel can be generally grasped by the V value.

尚、塩害環境下での数%以下のCr添加の功罪についてはまだ明確にされておらず、これまで商品化されたニッケル系高耐候性鋼材は、塩害に対し制御不能な不確定要素を排除するため、一般にCr無添加を基本としている。耐候性合金指標Vの計算式である式(1)にCrの影響が入っていないのは、このことを背景に、Cr無添加鋼へ適用することを原則としているためである。ただし、不可避的に混入する不純物Crや、JIS−SMA材に含まれる程度のCr量であれば、その含有を許容しても大きな誤差にはならない。   In addition, the merits and demerits of Cr addition of several percent or less in a salt damage environment have not yet been clarified, and the nickel-based high weathering steel materials that have been commercialized so far eliminate uncertainties that cannot be controlled against salt damage. Therefore, in general, Cr is not added. The reason why Cr does not affect the formula (1), which is the calculation formula of the weather resistant alloy index V, is that it is applied to the Cr-free steel in principle. However, if the amount of impurity Cr inevitably mixed in or the amount of Cr contained in the JIS-SMA material is allowed, the inclusion of the inclusion does not cause a large error.

このようにニッケル系高耐候性鋼と言っても添加元素の構成が多岐にわたり、化学的成分だけではその耐候性能の把握が困難であるが、鋼材の耐候性を向上するためにこれまで検討されてきたのは、前記式(1)からも示唆されるように、いずれもS以外の合金元素をさらに添加するものであった。
しかし、CuとNiは、その役割が比較的明快であるが、それ以外の添加元素が加わる場合においては、腐食反応メカニズムやさび形成プロセスが異なるため、その耐候性に及ぼす微量添加元素の効果や影響が逆転することもあり、闇雲に元素を添加するだけでは単にコストアップとなるだけで、それによる耐候性向上に限界がある。
In this way, even if it is nickel-based high weathering steel, the composition of additive elements is diverse, and it is difficult to grasp the weathering performance only with chemical components, but it has been studied so far to improve the weatherability of steel materials. As has been suggested from the above formula (1), all of them have further added an alloy element other than S.
However, the role of Cu and Ni is relatively clear. However, when other additive elements are added, the corrosion reaction mechanism and the rust formation process are different. The effects may be reversed, and adding elements to the dark clouds only increases costs, and there is a limit to improving the weather resistance.

「道路橋示方書・同解説」、日本道路協会、平成14年3月"Road Bridge Specification and Explanation", Japan Road Association, March 2002 紀平寛,伊藤叡,溝口茂,村田朋美,宇佐見明,田辺康児:「材料と環境」Vol.49、pp.30−40(2000)Hiroshi Kihira, Satoshi Ito, Shigeru Mizoguchi, Tomomi Murata, Akira Usami, Yasuko Tanabe: “Materials and Environment” Vol. 49, pp. 30-40 (2000) 三木千壽,市川篤司,鵜飼真,竹村誠洋,中山武典,紀平寛:「土木学会論文集」No.738/I−64、pp.271−281、2003Chiaki Miki, Atsushi Ichikawa, Makoto Ukai, Masahiro Takemura, Takenori Nakayama, Hiroshi Kihira: "Journal of Civil Engineers" No.738 / I-64, pp.271-281, 2003 (社)日本鉄鋼協会・共同研究会・鉄鋼分析部会編:「日本鉄鋼業における分析技術」(1982)Japan Iron and Steel Association, Joint Research Group, Steel Analysis Subcommittee: “Analytical Technology in the Japanese Steel Industry” (1982) 特許第2572447号公報Japanese Patent No. 2572447 特許第3785271号公報Japanese Patent No. 3785271 特許第3817152号公報Japanese Patent No. 3817152 特許第3655765号公報Japanese Patent No. 3655765 特許第3568750号公報Japanese Patent No. 3568750 特許第3458762号公報Japanese Patent No. 3458762 特許第3463600号公報Japanese Patent No. 3463600 特許第3465494号公報Japanese Patent No. 3465494 特許第3646512号公報Japanese Patent No. 3646512 特許第3719053号公報Japanese Patent No. 3719053

そこで、本発明は、耐候性鋼において、従来の微量添加元素による性能向上に代わり、コストアップにならない元素や化合物を利用することにより、耐候性鋼の性能、特に、長期のさび安定化能を改善することを課題とする。   Therefore, in the present invention, in the weathering steel, the performance of the weathering steel, in particular, the long-term rust stabilization ability is obtained by using elements and compounds that do not increase the cost in place of the performance improvement by the conventional trace amount additive element. The issue is to improve.

本発明者らは、コストアップとなる微量元素の添加によらない耐候性鋼の性能向上手段を研究する過程で、酸素0.007%程度を含む1.2%Ni―0.8%Cuベースのニッケル系高耐候性鋼にて、0.03%のアルミニウム添加によりわずかながらも腐食量が極小をとる傾向を見いだした。この現象を詳細に調査したところ、アルミニウムの微量添加で粒子長軸長さ1μm以下の窒化アルミニウムが形成され、それにより腐食抑制効果が発現されたものと判明した。   In the course of investigating the means for improving the performance of weathering steel without adding trace elements, which increases the cost, the present inventors have a 1.2% Ni-0.8% Cu base containing about 0.007% oxygen. In the nickel-based high weathering steel, 0.03% of aluminum was added, but the corrosion amount was found to be minimal. When this phenomenon was investigated in detail, it was found that aluminum nitride having a particle major axis length of 1 μm or less was formed by the addition of a small amount of aluminum, thereby exhibiting a corrosion inhibiting effect.

従来、アルミと結びついた窒素は、窒化アルミニウムの微細析出物を形成し、高温状態にてオーステナイト粒径を細粒化に有効に作用することが知られており、これにより耐候性鋼の機械的特性を改善できる。しかし、窒化アルミニウムのさび安定化能に対する作用については、その研究例はなかった。そこで、本発明らは、耐候性鋼への窒化アルミニウムの添加効果について検討した。   Conventionally, nitrogen combined with aluminum has been known to form fine precipitates of aluminum nitride and effectively work to reduce the austenite grain size at high temperatures, which makes it possible to mechanically resist weathering steel. The characteristics can be improved. However, there has been no study on the effect of aluminum nitride on the ability to stabilize rust. Therefore, the present inventors examined the effect of adding aluminum nitride to weathering steel.

耐候性鋼材の経年腐食量Yと経過年数Xとの関係は、初年腐食量をA、さび安定化指数をBとしたとき、下記式(2)によって示されることが知られている。
Y=A・XB ・・・(2)
It is known that the relationship between the aging corrosion amount Y and the elapsed years X of the weathering steel material is represented by the following formula (2), where A is the initial year corrosion amount and B is the rust stabilization index.
Y = A · X B (2)

ここで言うさび安定化能とは、より緻密なさびの形成によって長期に腐食速度を低減する能力を言う。具体的には、式(2)においてさび安定化指数(以下、B値と記す)を小さくする能力として定量化することができる。
本発明者らは、このような式(2)を用いる評価を行って、耐候性鋼中に微細分散された窒化アルミニウムにさび安定化能があることを確認した。
The rust stabilizing ability as used herein refers to the ability to reduce the corrosion rate over a long period of time by forming a denser rust. Specifically, it can be quantified as the ability to reduce the rust stabilization index (hereinafter referred to as B value) in equation (2).
The inventors of the present invention performed evaluation using the formula (2), and confirmed that the aluminum nitride finely dispersed in the weathering steel has a rust stabilizing ability.

すなわち、耐候性鋼に窒化アルミニウム添加を行って長期曝露試験供し、得たデータを用いて式(2)のA値とB値を統計的回帰により評価・分析した。その結果、初年腐食量(A値)に顕著な差異を見いだすのは難しかったが、窒化アルミニウム添加によってB値がより小さな値になることが明らかとなった。
これにより、窒化アルミニウムを耐候性鋼に添加するとさび安定化能が高まるという新しい知見を得て、以下の本発明をなした。
そのような本発明の要旨は次の通りである。
In other words, aluminum nitride was added to the weathering steel and subjected to a long-term exposure test. Using the obtained data, the A value and B value of the formula (2) were evaluated and analyzed by statistical regression. As a result, it was difficult to find a significant difference in the first year corrosion amount (A value), but it became clear that the B value became smaller by the addition of aluminum nitride.
As a result, a new finding that the ability to stabilize rust increases when aluminum nitride is added to weathering steel has been made, and the following present invention has been made.
The gist of the present invention is as follows.

(1)質量%で、
C :0.03%〜0.18%、
Si:0.1%〜0.65%、
Mn:0.2%〜1.4%、
P :0.03%以下
S :0.02%以下、
Cu:0.3%〜2%、
Ni:0.2%〜6%、
N :0.002%〜0.01%、
Al:0.01〜0.5%、
O :0.005%以下
を含有し、残部Feおよび不可避的不純物からなるとともに、粒子長軸長さ0.001〜1μmの窒化アルミニウムを5〜50質量ppm含有することを特徴とするさび安定化能を高めた耐候性鋼。
(2)質量%で、さらに、
P :0.03超%〜0.2%、
Cr:0.1%〜0.75%、
Mo:0.1%〜0.5%、
Ti:0.001%〜0.03%
のうちいずれか1種以上を含有することを特徴とする(1)に記載のさび安定化能を高めた耐候性鋼。
(3)質量%で、さらに、
V :0.001%〜0.05%、
Nb:0.001%〜0.05%、
W :0.001%〜0.05%
のうちいずれか1種以上を含有することを特徴とする(1)または(2)に記載のさび安定化能を高めた耐候性鋼。
(4)質量%で、さらに、
Ca:0.0001%〜0.005%、
Mg:0.0001%〜0.005%
の一種または2種を含有すること特徴とする(1)〜(3)のいずれかに記載のさび安定化能を高めた耐候性鋼。
(1) In mass%,
C: 0.03% to 0.18%,
Si: 0.1% to 0.65%,
Mn: 0.2% to 1.4%
P: 0.03% or less S: 0.02% or less,
Cu: 0.3% to 2%,
Ni: 0.2% to 6%,
N: 0.002% to 0.01%,
Al: 0.01 to 0.5%,
Rust stabilization characterized by containing 5 to 50 ppm by mass of aluminum nitride containing 0.005% or less of O 2, the balance Fe and inevitable impurities, and a particle major axis length of 0.001 to 1 μm Weatherproof steel with enhanced performance.
(2) In mass%,
P: more than 0.03% to 0.2%,
Cr: 0.1% to 0.75%
Mo: 0.1% to 0.5%,
Ti: 0.001% to 0.03%
The weatherproof steel with enhanced rust stabilization ability according to (1), characterized by containing at least one of them.
(3) In mass%,
V: 0.001% to 0.05%,
Nb: 0.001% to 0.05%,
W: 0.001% to 0.05%
The weatherproof steel with enhanced rust stabilization ability according to (1) or (2), characterized by containing at least one of the above.
(4) In mass%,
Ca: 0.0001% to 0.005%,
Mg: 0.0001% to 0.005%
The weatherproof steel with enhanced rust stabilization ability according to any one of (1) to (3), characterized by containing one or two of the above.

(5)溶鋼中に窒化アルミニウムを添加して製造することを特徴とする(1)〜(4)のいずれかに記載のさび安定化能を高めた耐候性鋼の製造方法。
(6)脱酸後の溶鋼中に、アルミニウム及び窒素を添加するか、あるいは、アルミニウム、窒素及び窒化アルミニウムを添加して製造することを特徴とする(1)〜(4)のいずれかに記載のさび安定化能を高めた耐候性鋼の製造方法。
(5) The method for producing weatherable steel with enhanced rust stabilization ability according to any one of (1) to (4), wherein aluminum nitride is added to molten steel for production.
(6) Aluminum or nitrogen is added to the molten steel after deoxidation, or aluminum, nitrogen and aluminum nitride are added to produce the steel, according to any one of (1) to (4) For producing weatherable steel with improved rust stabilization ability.

本発明により、さび安定化能を高めた耐候性鋼材をコストアップせずに提供することが可能となる。これによって、無塗装耐候性鋼橋梁における長期の腐食減耗量がより低下するので、さらに安全・安心なミニマムメンテナンス鋼構造物の実現が可能となる。また、耐候性鋼の無塗装使用による適用範囲が広がるため、より広い地域でライフサイクルコストの低減ができ、公共鋼構造物の維持管理費用において、納税者負担が軽減される効果が生ずる。   According to the present invention, it is possible to provide a weather-resistant steel material with enhanced rust stabilization ability without increasing the cost. As a result, the long-term corrosion depletion amount of unpainted weather-resistant steel bridges is further reduced, so that a safer and more secure minimum maintenance steel structure can be realized. In addition, since the range of application by using non-painting of weather resistant steel is expanded, the life cycle cost can be reduced in a wider area, and the taxpayer's burden is reduced in the maintenance cost of public steel structures.

以下、本発明の耐候性鋼の実施の形態を説明する。
まず、本発明の特徴である窒化アルミニウムを耐候性鋼に含有させる点について述べる。
Hereinafter, embodiments of the weathering steel of the present invention will be described.
First, the point that aluminum nitride, which is a feature of the present invention, is contained in weathering steel will be described.

微細な窒化アルミニウムは、さび形成過程における核発生過程に作用し、より緻密なさびを形成させる。さび層の環境遮断機能とさび/鋼界面pHの制御機能の双方を窒化アルミニウムにより高める点が本発明のポイントとなる。微細な窒化アルミニウムは、腐食過程の中で、鋼材の腐食によりイオン化し、水溶液中に徐々に溶解し、微細なさび核として適切なサイズのサイトを提供する。   The fine aluminum nitride acts on the nucleation process in the rust formation process and forms a finer rust. The point of the present invention is that both the environment blocking function of the rust layer and the control function of the rust / steel interface pH are enhanced by aluminum nitride. The fine aluminum nitride is ionized by the corrosion of the steel material during the corrosion process, and gradually dissolves in the aqueous solution to provide an appropriately sized site as a fine rust nucleus.

窒化アルミニウムのうち窒素は、水溶液中でアンモニウムイオンや亜硝酸イオンに化学変化するので、核生成サイト周辺領域の局所pHを高め、鉄イオンの溶解度を下げてさびコロイドの核形成を加速する。さびコロイドの核形成が促されると、さびコロイド粒子の凝集体として構成されるさび層中の空隙を埋める各種サイズの微細さびコロイド粒子を効果的に生成する。これにより長期にはさび層中の空隙が各種サイズのさびコロイド粒子で埋め尽くされ、さび層の緻密化に寄与する。その結果、耐候性鋼のさび安定化能を高める。この効果は前述の式(2)のうちB値を低減するので、長期の腐食量抑制効果は絶大となる。   Nitrogen in aluminum nitride chemically changes to ammonium ion or nitrite ion in an aqueous solution, so that the local pH in the region around the nucleation site is increased, the solubility of iron ions is lowered, and nucleation of rust colloid is accelerated. When nucleation of rust colloid is promoted, fine rust colloid particles of various sizes that effectively fill the voids in the rust layer constituted as aggregates of rust colloid particles are effectively generated. As a result, in the long term, voids in the rust layer are filled with rust colloidal particles of various sizes, contributing to densification of the rust layer. As a result, the rust stabilization ability of the weather resistant steel is enhanced. Since this effect reduces the B value in the above-described equation (2), the long-term corrosion amount suppressing effect becomes enormous.

この効果を発現させるためには、さびコロイドの核発生サイトとして機能しうる窒化アルミニウムが鋼中に5質量ppm以上存在する必要がある。効果をより明らかとするために10質量ppm以上存在するのが望ましい。
また、さびコロイドの核発生サイトとして機能しうる鋼中の窒化アルミニウムの上限粒子長軸長さ(窒化アルミニウム粒子は一般に針状の形態を呈しており、大きさを規定するために、粒子長軸長さを用いた。)は1μm以下であるが、望ましくは0.5μm以下、さらに望ましくは0.3μm以下である。
窒化アルミニウムの下限粒子長軸長さは、0.001μm以上である。これ未満の粒子長軸長さであると、窒化アルミニウムの溶解消失が速く、さび形成過程におけるさびコロイドの核発生補助サイトとしてほとんど機能しない。望ましくは0.005μm以上である。
In order to express this effect, it is necessary that 5 mass ppm or more of aluminum nitride that can function as a nucleation site of rust colloid exists in steel. In order to make the effect more apparent, it is desirable to be present at 10 ppm by mass or more.
In addition, the upper limit particle long axis length of aluminum nitride in steel that can function as a nucleation site of rust colloid (the aluminum nitride particles generally have a needle-like form, and in order to define the size, the particle long axis The length is used) is 1 μm or less, preferably 0.5 μm or less, and more preferably 0.3 μm or less.
The lower limit particle major axis length of aluminum nitride is 0.001 μm or more. When the particle major axis length is less than this, dissolution and disappearance of aluminum nitride is fast, and it hardly functions as a nucleation auxiliary site for rust colloid in the rust formation process. Desirably, it is 0.005 μm or more.

このような窒化アルミニウムが鋼中に分散していると、耐候性鋼のさび安定化能が高まるが、窒化アルミニウムの過剰な添加は鋼材の靱性を下げたり、熱間加工性を下げたりする。この観点から、窒化アルミニウム含有量の上限を50質量ppmとするのが望ましい。   When such aluminum nitride is dispersed in the steel, the rust stabilizing ability of the weather-resistant steel is enhanced, but excessive addition of aluminum nitride lowers the toughness of the steel material or lowers the hot workability. From this viewpoint, it is desirable that the upper limit of the aluminum nitride content be 50 mass ppm.

以上のような窒化アルミニウムを鋼中で形成させるためには、溶鋼内の化学反応による方法と溶鋼中に窒化アルミニウムを添加する方法、あるいはこれらの方法を組み合わせた方法がある。   In order to form aluminum nitride as described above in steel, there are a method based on a chemical reaction in molten steel, a method in which aluminum nitride is added to molten steel, or a method in which these methods are combined.

溶鋼内の化学反応で窒化アルミニウムを形成するためには、AlをN添加等と組み合わせて添加する。その際、溶鋼中の酸素量を低く規制することが必要である。
本発明らは、前述の研究過程で窒素含有鋼中の酸素量を低く規制したところ、アルミニウム添加量の増大とともに耐候性が向上する傾向を見出した。酸素量が多いと、粒子長軸長さ1μmを超える粗大なアルミニウム酸化物を形成する。そのような酸化物は、孔食起点となって腐食を加速すると考えられる。
In order to form aluminum nitride by a chemical reaction in the molten steel, Al is added in combination with N addition or the like. At that time, it is necessary to regulate the amount of oxygen in the molten steel low.
The present inventors have found that when the amount of oxygen in the nitrogen-containing steel is restricted to a low level in the aforementioned research process, the weather resistance tends to improve as the amount of aluminum added increases. When the amount of oxygen is large, coarse aluminum oxide having a particle major axis length exceeding 1 μm is formed. Such oxides are believed to accelerate pitting corrosion as a starting point for pitting.

この耐食性向上効果は、酸素が0.005%以下においてAlの添加量が0.01%のときにより明確に発現し、0.48%で飽和したが、さらに酸素を0.001%未満に規制した場合にはAl添加量の増大に伴って単調に耐候性能が向上した。ただし、酸素0.001%未満の状態を実製鋼工程で実現するには強脱酸剤の多量添加が必要となり、脱酸コストの上昇を招く。このためAlの上限を0.5%とした。   This effect of improving corrosion resistance is more clearly manifested when the amount of Al added is 0.01% when oxygen is 0.005% or less, and is saturated at 0.48%, but further restricts oxygen to less than 0.001%. In such a case, the weather resistance performance monotonously improved as the Al addition amount increased. However, in order to realize a state of less than 0.001% oxygen in the actual steelmaking process, it is necessary to add a large amount of a strong deoxidizer, leading to an increase in deoxidation cost. For this reason, the upper limit of Al was made 0.5%.

このように、化学反応で窒化アルミニウムを形成する場合、耐候性の改善に阻害要因となっていたアルミニウム酸化物の形成を極力抑制し、窒化アルミニウムの効果を引き出す点が本発明の鍵となる。   Thus, when aluminum nitride is formed by a chemical reaction, the key to the present invention is to suppress the formation of aluminum oxide, which has been an impediment to improving weather resistance, and to bring out the effect of aluminum nitride.

製鋼工程において溶鋼中の窒素含有量を所定の水準に制御しつつ酸素含有量を下げるためには、取鍋精錬工程において高純度窒素ガスのバブリングを行うなど、一般鋼材の製法とは異なる工夫や配慮が必要である。アルミニウムを脱酸剤として用いる通常の製鋼法では多量のアルミニウム酸化物が鋼中に残留してしまう。本発明の耐候性鋼を用いた鋼材を製造するにあたっては、鋼材中にアルミニウム酸化物が極力残留しないよう、脱酸はアルミニウムや窒素の添加前に行うのを原則となる。やむなくアルミニウムを脱酸に用いる場合には、脱酸処理後に十分時間をかけて、溶鋼中に形成した粗大なアルミニウム酸化物を浮上させてから、窒素とアルミニウムを添加して微細な窒化アルミニウムを鋼中に形成させるのが良い。製造段階で前述の配慮がなされなければ、類似成分であっても本発明の効果は発現しない。   In order to lower the oxygen content while controlling the nitrogen content in the molten steel to a predetermined level in the steelmaking process, such as bubbling high-purity nitrogen gas in the ladle refining process, Consideration is necessary. In a normal steelmaking method using aluminum as a deoxidizer, a large amount of aluminum oxide remains in the steel. In producing a steel material using the weathering steel of the present invention, deoxidation is basically performed before adding aluminum or nitrogen so that aluminum oxide does not remain in the steel material as much as possible. When aluminum is unavoidably used for deoxidation, a sufficient amount of time is taken after deoxidation treatment to float the coarse aluminum oxide formed in the molten steel, and then nitrogen and aluminum are added to form fine aluminum nitride into the steel. It is good to form inside. If the above-mentioned consideration is not made at the manufacturing stage, even if it is a similar component, the effect of the present invention is not exhibited.

鋼中での窒化アルミニウムの形成を確実にするためには、次の、製鋼段階で溶鋼中に窒化アルミニウムを添加する方法が効果的である。
添加する方法としては、転炉中で酸素ランス内に窒化アルミニウムの粉体を混入させて注入する方法、取鍋精錬中にアルミ被覆ワイヤーで添加する方法、真空脱ガス中にバブリングするアルゴンガスに粉体混入して添加する方法、連続鋳造中にアルミ被覆ワイヤーで添加する方法、鋳造前に鋳型内に予めアルミ被覆した所定量の窒化アルミニウム粉を置いておく方法などがあり、いずれの方法を用いても良い。窒化アルミニウムを溶鋼中に添加する方法は種々考えられるため、手法はここに例示したものに限らない。
In order to ensure the formation of aluminum nitride in the steel, the following method of adding aluminum nitride into the molten steel at the steel making stage is effective.
As a method of addition, a method in which aluminum nitride powder is mixed and injected into an oxygen lance in a converter, a method in which aluminum coated wire is added during ladle refining, and an argon gas to be bubbled during vacuum degassing. There are a method of adding by mixing powder, a method of adding with aluminum-coated wire during continuous casting, a method of placing a predetermined amount of aluminum nitride powder pre-aluminized in the mold before casting, etc. It may be used. Since various methods of adding aluminum nitride to molten steel are conceivable, the method is not limited to the one exemplified here.

溶鋼中に窒化アルミニウムを添加する場合でも、前述のように、溶鋼中でのアルミニウム酸化物の形成を極力抑制した状態で添加するか、溶鋼中にアルミニウム酸化物が形成されている場合でも、形成した粗大なアルミニウム酸化物を十分に浮上させてから添加するのがよい。
また、鋼中に窒化アルミニウムを形成する方法として、この窒化アルミニウムを添加する方法と先の溶鋼内の化学反応による方法とを組み合わせた方法を用いてもよいことはもちろんである。
Even when aluminum nitride is added to the molten steel, as described above, it is added even when aluminum oxide is formed in the molten steel while the formation of aluminum oxide is suppressed as much as possible. It is preferable to add the coarse aluminum oxide after sufficiently floating.
Further, as a method of forming aluminum nitride in steel, it is needless to say that a method in which the method of adding aluminum nitride and the method of chemical reaction in the molten steel are combined may be used.

次に、窒化アルミニウム含有のベースとなる鋼の化学組成について述べる。なお、含有量の%は質量%を意味する。
Cは、耐候性鋼に所定の強度を与えるため必須の元素である。また、Cは前記式(1)にもあるように、鋼材の耐候性を向上させる元素である。これらを鑑み、下限値を0.03%とし、靱性低下を起こさない範囲として、0.18%を上限に設定した。
Next, the chemical composition of steel as a base containing aluminum nitride will be described. In addition,% of content means the mass%.
C is an essential element for giving a weathering steel a predetermined strength. Moreover, C is an element which improves the weather resistance of steel materials as also in said Formula (1). In view of these, the lower limit was set to 0.03%, and 0.18% was set to the upper limit as a range in which the toughness did not decrease.

Siは、精錬時に脱酸に用いる基本元素である。また、Siは前記式(1)にもあるように、鋼材の耐候性を向上する元素である。これらを鑑み、下限値を0.1%とし、靱性低下や溶接性低下を起こさない範囲として、0.65%を上限に設定した。   Si is a basic element used for deoxidation during refining. Moreover, Si is an element which improves the weather resistance of steel materials as also in said Formula (1). In view of these, the lower limit was set to 0.1%, and 0.65% was set to the upper limit as a range in which the toughness and weldability did not decrease.

Mnは、強度を高め加工性を改善する基本元素である。またMnは前記式(1)にもあるように鋼材の耐候性を向上する元素である。これらを鑑み、下限値を0.2%とし、靱性低下や溶接性低下を起こさない範囲として、1.4%を上限に設定した。
Pは、溶接性の観点から添加量を0.03%以下に低減するか無添加とする。
Mn is a basic element that increases strength and improves workability. Further, Mn is an element that improves the weather resistance of the steel as shown in the formula (1). In view of these, the lower limit was set to 0.2%, and 1.4% was set to the upper limit as a range in which the toughness and weldability did not decrease.
P is added to 0.03% or less from the viewpoint of weldability or is not added.

Sは、前記式(1)にあるように、耐候性を低下させる元素であるので無添加とする。溶銑脱硫が不十分の場合には不可避的不純物として混入がありうるので、上限として0.02質量を設定する。望ましくは0.01%以下、さらに望ましくは0.005%以下に管理して製造するのが良い。   Since S is an element that lowers the weather resistance as shown in the above formula (1), it is not added. When hot metal desulfurization is insufficient, there is a possibility of contamination as an inevitable impurity, so 0.02 mass is set as the upper limit. Desirably, the production is controlled to 0.01% or less, more preferably 0.005% or less.

Cuは、前述および前記式(1)にあるように、耐候性を向上させる元素であるので0.3%を下限に設定する。熱間加工割れなどが起きないよう、2%を上限に設定する。   Since Cu is an element that improves the weather resistance, as described above and in the formula (1), 0.3% is set as the lower limit. The upper limit is set to 2% so that hot working cracks do not occur.

Niは、前述および前記式(1)にあるように、塩害のある環境などで耐候性を向上させる基軸元素である。本発明は、Ni含有量が低い一般耐候性鋼材にも有効であることから、下限を0.2%と規定する。ニッケル系高耐候性鋼の定義は0.4%以上にNiが含有されることであるが、望ましい範囲として下限を1%とする。これは、JIS−SMA材またはその相当鋼種と耐候性に有意な差をつけるためである。上限は、コストを考慮して6%と設定する。   Ni is a basic element that improves the weather resistance in an environment with salt damage as described above and in the formula (1). Since the present invention is effective for general weathering steel having a low Ni content, the lower limit is defined as 0.2%. The definition of nickel-based high weather resistance steel is that Ni is contained in 0.4% or more, but the lower limit is 1% as a desirable range. This is to make a significant difference in weather resistance from the JIS-SMA material or its equivalent steel type. The upper limit is set to 6% in consideration of cost.

酸素Oは、本発明の効果を確実に発揮させるために0.005%以下とする必要がある。これは、前述のとおり鋼中のアルミニウム成分が酸素と結びついて耐候性に悪影響を及ぼす粗大なアルミニウム酸化物の悪影響を抑制し、本発明のポイントである窒化アルミニウムによるさび安定化能向上効果を最大化するためである。さび安定化能向上の観点からは、鋼中の酸素含有量は低いほどよく、望ましくは0.004%以下、さらに望ましくは0.003%以下とするのが良い。ただし過度の脱酸素は製鋼上コストアップとなるので望ましくない。鋼中の酸素含有量には酸化物量も含まれるため、脱酸に用いた各種添加元素が酸化物として鋼中に残留しないよう、製鋼工程において前述のような留意が必要となる。   Oxygen O needs to be made 0.005% or less in order to reliably exhibit the effects of the present invention. As described above, the aluminum component in the steel is combined with oxygen to suppress the adverse effect of coarse aluminum oxide that adversely affects the weather resistance, and the effect of improving the rust stabilization ability by the aluminum nitride that is the point of the present invention is maximized. This is because of From the viewpoint of improving rust stabilization ability, the oxygen content in the steel is preferably as low as possible, preferably 0.004% or less, and more preferably 0.003% or less. However, excessive deoxygenation is undesirable because it increases the cost of steelmaking. Since the oxygen content in the steel includes the amount of oxide, the above-mentioned attention is required in the steel making process so that various additive elements used for deoxidation do not remain in the steel as oxides.

Nは、前述のとおり長軸長さ0.001μm以上1μm以下の窒化アルミニウム粒子を鋼材中に形成させるためにAl添加等と組み合わせて添加することができる。また、窒化アルミニウムを鋼中に添加した結果として鋼に含有される。
必要な窒化アルミニウムを含有させるために窒素含有量の下限を0.002%と規定するが、多ければ多いほど耐候性向上に効果的であるので、望ましくは0.004%以上、さらに望ましくは0.006%以上とするのが良い。ただし、過剰な窒素の含有は靱性や溶接性を劣化させるとともに、製造工程に過剰な負荷をかけコストアップになる。よって上限を0.01%と規定する。
N can be added in combination with Al addition or the like in order to form aluminum nitride particles having a major axis length of 0.001 μm or more and 1 μm or less in the steel as described above. Moreover, it contains in steel as a result of adding aluminum nitride in steel.
In order to contain the necessary aluminum nitride, the lower limit of the nitrogen content is defined as 0.002%. However, since the higher the content, the more effective the weather resistance is, so 0.004% or more is desirable, more desirably 0. 0.006% or more is preferable. However, the excessive nitrogen content deteriorates toughness and weldability and increases the cost by adding an excessive load to the manufacturing process. Therefore, the upper limit is defined as 0.01%.

Alは、溶鋼内の化学反応で窒化アルミニウムを形成するため、N添加等と組み合わせて添加することができる。また、窒化アルミニウムを鋼中に添加した結果として鋼に含有される。含有範囲は、窒化アルミニウムを必要量含有させるために下限として0.01%を設定する。また、前述のように効果が飽和するなどにより上限を0.5%に設定する。   Since Al forms aluminum nitride by a chemical reaction in the molten steel, it can be added in combination with N addition or the like. Moreover, it contains in steel as a result of adding aluminum nitride in steel. The content range is set to 0.01% as the lower limit in order to contain the required amount of aluminum nitride. Further, the upper limit is set to 0.5% because the effect is saturated as described above.

本発明は、上記成分よりなり残部Fe及び不可避的不純物よりなる鋼を基本とし、この鋼に窒化アルミニウムを上述のように含有させるものであるが、さらに、上記成分に加えて、P:0.03超%〜0.2%、Cr:0.1%〜0.75%、Mo:0.1%〜0.5%、Ti:0.001%〜0.03%、V:0.001%〜0.05%、Nb:0.001%〜0.05%、W:0.001%〜0.05%のうちいずれか1種以上を鋼に含有することができる。   The present invention is based on a steel composed of the above components and the balance Fe and unavoidable impurities, and this steel contains aluminum nitride as described above. In addition to the above components, P: 0.0. More than 03% to 0.2%, Cr: 0.1% to 0.75%, Mo: 0.1% to 0.5%, Ti: 0.001% to 0.03%, V: 0.001 % To 0.05%, Nb: 0.001% to 0.05%, and W: 0.001% to 0.05% can be contained in the steel.

Pは、前述のように溶接性の観点から添加量を制限されるが、前記式(1)にもあるように耐候性を向上させる元素でもあるので、溶接性があまり求められない用途においては0.03%を超えて添加するのが望ましい。上限を0.2%と規制したのは、耐候性鋼材の用途を鑑みて、溶接性の限界に配慮したためである。   As described above, P is limited in terms of weldability from the viewpoint of weldability, but is also an element that improves the weather resistance as shown in the formula (1), so in applications where weldability is not required so much. It is desirable to add over 0.03%. The reason why the upper limit is regulated to 0.2% is that the limit of weldability is taken into consideration in view of the use of weathering steel.

Crは、前述のように、塩害がある地区で用いると耐候性を劣化させたり向上させたりと鋼材の防食性に不安定な要因を与える元素である。塩害の厳しい環境ではこの不安定性を排除するため無添加を原則とするのが良い。一方、内陸部のように塩害がさほど厳しくない地区で使われる場合には、Crが緻密な保護性さびの形成に寄与する効果が十分発揮され、Cr添加により、耐候性が向上する確率が高まる。塩害の影響がさほど厳しくない地点で用いる場合は、Crを0.1%以上添加することで、耐候性の向上効果が発現する。なお、Crを添加する場合、Cr量の上限は、JIS−SMA材の規格上限である0.75%以下の添加まで許容できることとした。   As described above, Cr is an element that causes an unstable factor in the corrosion resistance of steel materials, such as deterioration or improvement of weather resistance when used in an area with salt damage. In an environment where salt damage is severe, it is advisable to add no additives in order to eliminate this instability. On the other hand, when used in areas where salt damage is not so severe, such as inland areas, Cr contributes sufficiently to the formation of dense protective rust, and the addition of Cr increases the probability of improving weather resistance. . When used at a point where the influence of salt damage is not so severe, the effect of improving weather resistance is manifested by adding 0.1% or more of Cr. In addition, when adding Cr, the upper limit of Cr amount was allowed to be added up to 0.75% or less which is the upper limit of the standard of JIS-SMA material.

Moは、添加すると鋼材のコストアップとなるため無添加が望ましいが、前記式(1)にもあるように耐候性を向上させる元素であるので、さらに高い耐候性を要求される場合には、0.1%以上添加するのが望ましい。過剰添加は本発明の効果に阻害要因となるため0.5%を上限に設定する。   When Mo is added, the addition of steel is not desirable because it increases the cost of the steel material. However, since Mo is an element that improves the weather resistance as shown in the formula (1), when higher weather resistance is required, It is desirable to add 0.1% or more. Excessive addition becomes a hindrance to the effect of the present invention, so 0.5% is set as the upper limit.

Tiは、前記式(1)にもあるように耐候性を向上させる元素として知られるが、過剰添加は本発明の効果に阻害要因として働く.これはチタンが溶鋼中の窒素と化合しやすいことに起因し、窒化アルミニウムの形成を阻害するためである。溶接性改善のため添加が必要となることがあるので下限を0.001%として、本発明に悪影響が生じない0.03%を上限に規制する。本発明の効果を確実に発揮させるためには、望ましくは0.02%以下、さらに望ましくは0.01%以下とするのが良い。   Ti is known as an element that improves the weather resistance as shown in the formula (1), but excessive addition acts as an inhibiting factor for the effect of the present invention. This is because titanium is easily combined with nitrogen in the molten steel and inhibits formation of aluminum nitride. Since addition may be necessary for improving weldability, the lower limit is set to 0.001%, and the upper limit is set to 0.03% which does not adversely affect the present invention. In order to ensure the effect of the present invention, it is preferably 0.02% or less, more preferably 0.01% or less.

V:0.001%〜0.05%、Nb:0.001%〜0.05%、W:0.001%〜0.05%については、本発明の効果を特段阻害することはなく、鋼材の機械的特性の改善に効果があるので有用と判断された場合に添加できる。ただし、過剰な添加は製造工程や製作・加工工程における各種問題を呈するので、それぞれ上限値を設定した。   About V: 0.001% -0.05%, Nb: 0.001% -0.05%, W: 0.001% -0.05%, the effect of this invention is not inhibited especially, Since it is effective in improving the mechanical properties of steel, it can be added when judged useful. However, since excessive addition presents various problems in the manufacturing process and production / processing process, an upper limit value was set for each.

本発明では、さらに前記に加えて、Ca:0.0001%〜0.005%、Mg:0.0001%〜0.005%の1種または2種を含有させることができるものとした。
これらの添加は溶鋼中でアルミより酸素と結びつく力が強いため、酸化アルミの形成を抑制して窒化アルミニウム形成を助長するので本発明の効果発現を阻害しない。また、CaもMgも腐食過程で水酸化物を生成し腐食界面pHの上昇を駆動する。本発明の緻密さび生成効果と併用することで、さらに鋼材の耐候性を向上させることができる。Caの添加により形成される鋼中の介在物の内、安定的にpH上昇効果を発現するのはカルシウム酸化物であり、その次がカルシウム・アルミニウム複合酸化物である。いずれか1種以上が鋼中に分散していることが望ましい。
In the present invention, in addition to the above, one or two of Ca: 0.0001% to 0.005% and Mg: 0.0001% to 0.005% can be contained.
Since these additions have a stronger ability to combine with oxygen than aluminum in molten steel, the formation of aluminum oxide is suppressed by suppressing the formation of aluminum oxide, so that the effect of the present invention is not inhibited. In addition, both Ca and Mg generate hydroxide during the corrosion process and drive the increase of the corrosion interface pH. By using together with the dense rust generating effect of the present invention, it is possible to further improve the weather resistance of the steel material. Of the inclusions in the steel formed by the addition of Ca, calcium oxide stably exhibits a pH increasing effect, followed by calcium / aluminum composite oxide. It is desirable that at least one of them is dispersed in the steel.

以下、本発明の実施例を説明するが、実施例は、本発明の実施可能性及び効果を確認するための一例であり、本発明は、この例に限定されるものではない。   Examples of the present invention will be described below, but the examples are examples for confirming the feasibility and effects of the present invention, and the present invention is not limited to these examples.

種々の化学的成分の鋼材について、曝露試験を実施した結果を表1〜表8に示す。表1は3Ni−0.35Cu系、表2は1.2Ni−0.8Cu系、表3は0.7Ni−0.5Cu系、表4は1.2Ni−2.0Cu系、表5は4.0Ni−0.4Cu系、表6は0.3Ni−0.3Cu系、表7は5Ni−0.4Cu系、表8は6Ni−0.3Cu系耐候性鋼における実施例である。
なお、表中に--と示したものは、その元素を添加していないため含有量の分析をしていないことを示している。
Tables 1 to 8 show the results of performing exposure tests on steel materials having various chemical components. Table 1 is 3Ni-0.35Cu system, Table 2 is 1.2Ni-0.8Cu system, Table 3 is 0.7Ni-0.5Cu system, Table 4 is 1.2Ni-2.0Cu system, Table 5 is 4 0.0Ni-0.4Cu series, Table 6 is an example of 0.3Ni-0.3Cu series, Table 7 is a 5Ni-0.4Cu series, and Table 8 is an example of 6Ni-0.3Cu series weather resistant steel.
In addition, what is indicated as-in the table indicates that the content was not analyzed because the element was not added.

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

曝露試験は覆い付き架台の下で水平に100mm×150mm×t6mmに切削加工された鋼材を試験片として取り付けた。この試験片は、真空誘導加熱炉を用いて溶製した各種成分の鋳片を、1200℃で5分間加熱処理をして熱間圧延機により8mm厚さに圧延し、さらに所定の寸法に機械加工して得たものである。試験開始にあたり、事前にサンドブラスト処理を行ってISO8501−1に規定されたSa3の均一な面を得たのち、蒸留水およびアセトンで超音波洗浄し、表面付着を除去した。   In the exposure test, a steel material cut horizontally to 100 mm × 150 mm × t6 mm under a covered frame was attached as a test piece. This test piece is a slab of various components melted using a vacuum induction heating furnace, heat-treated at 1200 ° C. for 5 minutes, rolled into a thickness of 8 mm by a hot rolling mill, and further machined to a predetermined size. It was obtained by processing. At the start of the test, a sand blast treatment was performed in advance to obtain a uniform surface of Sa3 defined in ISO8501-1, and then ultrasonic cleaning was performed with distilled water and acetone to remove surface adhesion.

曝露試験は10年間行い、試験片回収は満3年、満5年、満7年、満10年の各時点におこない、例えば非特許文献3などに記載された旧来から知られる酸洗法を用いてブランク減量が最小化するようさびを丁寧に除去し、鋼材の重量減少量を厳密に測定して腐食減耗量を算出した。   The exposure test is conducted for 10 years, and the specimens are collected every 3 years, 5 years, 7 years, and 10 years. For example, the traditional pickling method described in Non-Patent Document 3 is used. The rust was carefully removed so that the weight loss of the blank was minimized, and the weight loss of the steel material was strictly measured to calculate the corrosion loss.

曝露場所は千葉県富津市であり、JIS Z2381(屋外曝露試験方法通則)に従って覆い付き曝露架台内で測定した年平均飛来塩分量は0.21mdd、年平均硫黄酸化物量は0.058mddとなっている。気象条件は実測値がないが、館山気象官署のデータを参考に、曝露期間の年平均気温は16.7℃、年平均湿度は73.0%、年間降水量は1420mm、年平均風速は2.9m/秒程度と推定される。   The exposure location is Futtsu City, Chiba Prefecture, and the annual average amount of incoming salt measured in a covered exposure stand according to JIS Z2381 (General Rules for Outdoor Exposure Test Method) is 0.21 mdd, and the annual average sulfur oxide amount is 0.058 mdd. Yes. Although there is no actual measured weather condition, referring to the data of Tateyama Meteorological Office, the annual average temperature during the exposure period is 16.7 ° C, the annual average humidity is 73.0%, the annual precipitation is 1420mm, and the average annual wind speed is 2. It is estimated to be about 9m / sec.

鋼中の窒化アルミニウム量(以下、αと記す)の定量法としては、〔(社)日本鉄鋼協会・共同研究会・鉄鋼分析部会編:「日本鉄鋼業における分析技術」(1982)〕に詳細な記述がある抽出残渣分析法を用いる。これらの鋼中窒化物は、例えば10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール溶液(以下、10%AA系溶液と記す)、4%スルホサリチル酸−1%塩化リチウム−メタノール溶液(以下、4%SSA系溶液と記す)などの有機溶媒を用いた定電位電解法や、例えば6%臭素−酢酸メチル溶液や14%沃素−メタノール溶液中で当該鋼材の切り粉を溶解させるハロゲン有機溶媒法などによって、抽出残渣として分離できる。アルカリ水溶液に短時間に溶解する窒化アルミニウムの分析は、抽出残渣を水酸化ナトリウム水溶液中に分散させ、流出液中の窒素を分析して窒化アルミニウム量に換算する方法をとるのが良い。   For details on how to determine the amount of aluminum nitride in steel (hereinafter referred to as α), please refer to [The Japan Iron and Steel Institute, Joint Research Group, Steel Analysis Group, “Analytical Techniques in the Japanese Steel Industry” (1982)]. The extraction residue analysis method with the following description is used. These nitrides in steel are, for example, 10% acetylacetone-1% tetramethylammonium chloride-methanol solution (hereinafter referred to as 10% AA-based solution), 4% sulfosalicylic acid-1% lithium chloride-methanol solution (hereinafter, 4%). A potentiostatic electrolysis method using an organic solvent such as a 6% bromine-methyl acetate solution or a 14% iodine-methanol solution, for example, a halogen organic solvent method in which the steel material is dissolved in a 6% bromine-methyl acetate solution or a 14% iodine-methanol solution. Can be separated as an extraction residue. For analysis of aluminum nitride dissolved in an alkaline aqueous solution in a short time, it is preferable to take a method in which an extraction residue is dispersed in an aqueous sodium hydroxide solution and nitrogen in the effluent is analyzed to convert it into an aluminum nitride amount.

本発明に示した成分の鋼材におけるSiの規定範囲では、アルカリ溶解法にて誤差の原因となる鋼中Siの形成量は鋼中AlN形成量に比べて無視できる程度となる。ただし、あまり高濃度な水酸化ナトリウム水溶液に残渣を長時間分散させると、溶解速度の遅いSiも溶出して分析誤差が生じやすくなるので、精度の高い分析作業にあたっては特段の留意が必要である。 In the specified range of Si in the steel material having the components shown in the present invention, the amount of Si 3 N 4 in steel that causes an error in the alkali melting method is negligible compared to the amount of AlN in steel. However, if the residue is dispersed in a very high concentration sodium hydroxide aqueous solution for a long period of time, Si 3 N 4 with a low dissolution rate will be eluted, and an analysis error will easily occur. is necessary.

本発明では、10%AA系溶液での電解抽出法と残渣のアルカリ溶解法を主構成とする工程で得た流出液の窒素分析値をもとに換算されたAlNの量値を用いて、鋼中の窒化アルミニウム量(α/質量ppm)に関わる規定を作成した。この化学分析工程は複雑かつ巧妙であり、操作には高度な知識と技能を要するので、専門の分析会社に依頼して作成した。   In the present invention, by using the amount of AlN converted based on the nitrogen analysis value of the effluent obtained in the step mainly comprising the electrolytic extraction method with 10% AA-based solution and the alkali dissolution method of the residue, A regulation relating to the amount of aluminum nitride (α / mass ppm) in steel was prepared. This chemical analysis process is complicated and sophisticated, and requires advanced knowledge and skills to operate.

そのほか、抽出残渣中の窒化アルミニウムの定量は、ZnOなどを内部標準剤として用いる定量X線分析法を用いてもできる。瑪瑙乳鉢を用いて非磁性抽出残渣に一定割合(例として10%)となるようにZnOをよく粉砕・混合した後に、X線回折により得られた回折角2θ=36.44°に現れるZnOのピーク高さを基準にして2θ=33.4°に現れるAlNのピーク高さを求めることで窒化アルミニウムの定量が可能である。   In addition, the quantitative determination of aluminum nitride in the extraction residue can be performed by a quantitative X-ray analysis method using ZnO or the like as an internal standard agent. After thoroughly pulverizing and mixing ZnO to a certain ratio (10% as an example) in the nonmagnetic extraction residue using an agate mortar, ZnO appearing at a diffraction angle 2θ = 36.44 ° obtained by X-ray diffraction By determining the peak height of AlN appearing at 2θ = 33.4 ° with reference to the peak height, the aluminum nitride can be quantified.

分析に必要な多量の鋼を前述の溶媒に溶解するには時間がかかるため、少量の非磁性抽出残渣でも分析を可能とするためには、放射光により得られる高輝度X線源を用いることもできる。そのほか、透過電子顕微鏡を用いた定量分析方法もある。抽出残渣を構成する各種微粒子の電子線回折像や粒子形状情報をもとに、任意に選んだ1000個以上の非磁性抽出残渣微粒子の回折パターンや粒子形状観察による同定を行い、測定したそれぞれの粒子長軸長さから同定物質の各分類に従って体積総和を求めて比重により質量に換算し、抽出残渣に占める窒化アルミニウムの質量比を求め、抽出前の鋼材の質量および得られた抽出残渣の総質量のデータを用いてα(質量ppm)に換算する。   Since it takes time to dissolve a large amount of steel required for analysis in the above-mentioned solvent, in order to enable analysis even with a small amount of nonmagnetic extraction residue, use a high-intensity X-ray source obtained by synchrotron radiation. You can also. In addition, there is a quantitative analysis method using a transmission electron microscope. Based on the electron diffraction pattern and particle shape information of various fine particles that make up the extraction residue, identification of more than 1000 arbitrarily selected non-magnetic extraction residue fine particles by diffraction pattern and particle shape observation was performed. The volume sum is obtained from the particle major axis length according to each classification of the identified substance, converted to mass by specific gravity, the mass ratio of aluminum nitride in the extraction residue is obtained, the mass of the steel before extraction and the total of the obtained extraction residue Convert to α (mass ppm) using mass data.

これらの物理的分析作業を行うにあたっては、予め人工的に混合した粉末を用いて前述の標準法で求めた窒化アルミニウム量と相関をとり、検量線を求めておくのが良い。他の鋼材成分に関わる分析は、専門の分析会社に依頼すれば信頼度の高い分析結果を誰でも容易に得られる。   In performing these physical analysis operations, it is preferable to obtain a calibration curve by correlating with the amount of aluminum nitride obtained by the above-mentioned standard method using a powder artificially mixed in advance. Analyzes related to other steel components can be easily obtained by anyone with a highly reliable analysis result by requesting a specialized analysis company.

本発明の効果をわかりやすくするため、表1中の3%Ni−0.35%Cu添加耐候性鋼での実験結果の例を図1に示す。ベース成分系となる比較例は表1の鋼材番号30N−01であり、発明例は表1の鋼材番号30N−04である。経過年数X(年)と腐食量Y(mm)は両対数プロットされているので、数式2にて示されるA値とB値をそれぞれX=1年のY軸上の切片および回帰曲線の傾きとして把握することができる。このように本発明でいうさび安定化能とは、回帰曲線の傾き、すなわちB値であるので、B値が小さくなると100年後の腐食量に大きな差異が生ずることがわかる。   In order to make the effects of the present invention easier to understand, an example of the experimental results with the 3% Ni-0.35% Cu added weathering steel in Table 1 is shown in FIG. The comparative example which becomes a base component system is steel material number 30N-01 in Table 1, and the invention example is steel material number 30N-04 in Table 1. Since the elapsed years X (years) and the amount of corrosion Y (mm) are log-log plotted, the A value and B value shown in Equation 2 are the intercept on the Y axis of X = 1 year and the slope of the regression curve, respectively. Can be grasped as. Thus, the rust stabilizing ability as used in the present invention is the slope of the regression curve, that is, the B value, and it can be seen that if the B value is reduced, the corrosion amount after 100 years is greatly different.

表1〜表8には、100年後の回帰予測腐食量比について、比較のベース成分鋼を基準にしてβ値として指標化した。目安としてβが1未満であることを満足すれば、本発明の効果があったと判定できる。窒化アルミニウムが所定量含有され、酸素含有量が既定値以下を満足すると、おおむねβ値が1未満となっている。表中にAlN溶鋼添加とあるのは、予め歩留まりを考慮してアルミニウムフォイルで包んだ所定量のAlN粉末を鋳型内部に設置し、そこに真空誘導加熱溶解炉による溶製鋼を注入して試作した鋼材であることを意味する。   In Tables 1 to 8, the regression predicted corrosion amount ratio after 100 years is indexed as a β value based on the comparative base component steel. If β is less than 1 as a guide, it can be determined that the effect of the present invention was achieved. When a predetermined amount of aluminum nitride is contained and the oxygen content satisfies a predetermined value or less, the β value is generally less than 1. In the table, the addition of AlN molten steel means that a predetermined amount of AlN powder wrapped in aluminum foil in advance is placed in the mold in consideration of the yield, and the molten steel produced by a vacuum induction heating melting furnace is injected into the mold. It means steel.

本実施例では、真空度200torrにおける溶製段階でC、Si、Mn等を所定量添加して脱酸素し、形成した酸化物を溶鋼から浮上させるため1600℃に保持したまま真空度200torr以下に20分以上放置し、その後に窒素歩留まりを高めるため500torrに99.9%の純窒素ガスで復圧し、鋳型注入して冷却・凝固させて鋳片を得た。なお、本実施例で用いた溶解炉の容量は50kgであるが、それ以外の容量であっても製造することができる。   In this example, a predetermined amount of C, Si, Mn, etc. was added in the melting stage at a vacuum degree of 200 torr to deoxygenate, and the formed oxide was floated from the molten steel, and kept at 1600 ° C. to a vacuum degree of 200 torr or less. After leaving for 20 minutes or more, in order to increase the nitrogen yield, the pressure was restored with 99.9% pure nitrogen gas to 500 torr, the mold was poured, cooled and solidified to obtain a slab. In addition, although the capacity | capacitance of the melting furnace used by the present Example is 50 kg, it can manufacture even if it is the capacity | capacitance other than that.

実際の製鋼においては、前述の各種手段により窒化アルミニウムを溶鋼に添加することができる。窒化アルミニウム粉末を溶鋼添加したものはα値が高く、β値がいずれも低い値となって、耐候性鋼材のさび安定能がより高くなっている。溶鋼に添加する窒化アルミニウム粉末の平均粒子長軸長さを種々変えてみたところ、さび安定化能に差異が生じたので、結果を表9〜表10に示す。鋼中窒化アルミニウムの粒子長軸長さと体積分率の測定は、前述の透過電子顕微鏡を用いて行った。   In actual steelmaking, aluminum nitride can be added to molten steel by the various means described above. The aluminum nitride powder to which molten steel is added has a high α value and a low β value, and the rust stability of the weather resistant steel material is higher. When the average particle long axis length of the aluminum nitride powder added to the molten steel was changed variously, differences were found in the rust stabilization ability, and the results are shown in Tables 9 to 10. The measurement of the particle major axis length and volume fraction of aluminum nitride in steel was performed using the transmission electron microscope described above.

Figure 0004762878
Figure 0004762878

Figure 0004762878
Figure 0004762878

この結果より、鋼中窒化アルミニウムの粒子長軸長さは1μm以下0.001μm以上に範囲にあるとよく、望ましくは0.5μm以下0.005μm以上の範囲、さらに望ましくは0.3μm以下0.005μm以上の範囲にあると、さび安定化能改善に効果があることがわかる。   From this result, the particle major axis length of aluminum nitride in steel should be in the range of 1 μm or less and 0.001 μm or more, desirably 0.5 μm or less and 0.005 μm or more, and more desirably 0.3 μm or less. When it is in the range of 005 μm or more, it can be seen that there is an effect in improving rust stabilization ability.

本発明の効果例を説明する図面である。It is drawing explaining the example of an effect of this invention.

Claims (6)

質量%で、
C :0.03%〜0.18%、
Si:0.1%〜0.65%、
Mn:0.2%〜1.4%、
P :0.03%以下、
S :0.02%以下、
Cu:0.3%〜2%、
Ni:0.2%〜6%、
N :0.002%〜0.01%、
Al:0.01%〜0.5%、
O :0.005%以下
を含有し、残部Feおよび不可避的不純物からなるとともに、粒子長軸長さ0.001〜1μmの窒化アルミニウムを5〜50質量ppm含有することを特徴とするさび安定化能を高めた耐候性鋼。
% By mass
C: 0.03% to 0.18%,
Si: 0.1% to 0.65%,
Mn: 0.2% to 1.4%
P: 0.03% or less,
S: 0.02% or less,
Cu: 0.3% to 2%,
Ni: 0.2% to 6%,
N: 0.002% to 0.01%,
Al: 0.01% to 0.5%,
Rust stabilization characterized by containing 5 to 50 ppm by mass of aluminum nitride containing 0.005% or less of O 2, the balance Fe and inevitable impurities, and a particle major axis length of 0.001 to 1 μm Weatherproof steel with enhanced performance.
質量%で、さらに、
P :0.03%超〜0.2%、
Cr:0.1%〜0.75%、
Mo:0.1%〜0.5%、
Ti:0.001%〜0.03%
のうちいずれか1種以上を含有することを特徴とする請求項1に記載のさび安定化能を高めた耐候性鋼。
In mass%,
P: more than 0.03% to 0.2%,
Cr: 0.1% to 0.75%
Mo: 0.1% to 0.5%,
Ti: 0.001% to 0.03%
The weathering steel with enhanced rust stabilization ability according to claim 1, comprising at least one of the above.
質量%で、さらに、
V :0.001%〜0.05%、
Nb:0.001%〜0.05%、
W :0.001%〜0.05%
のうちいずれか1種以上を含有することを特徴とする請求項1または2に記載のさび安定化能を高めた耐候性鋼。
In mass%,
V: 0.001% to 0.05%,
Nb: 0.001% to 0.05%,
W: 0.001% to 0.05%
The weatherproof steel with enhanced rust stabilization ability according to claim 1 or 2, wherein any one or more of them are contained.
質量%で、さらに、
Ca:0.0001%〜0.005%、
Mg:0.0001%〜0.005%
の一種または2種を含有すること特徴とする請求項1〜3のいずれか1項に記載のさび安定化能を高めた耐候性鋼。
In mass%,
Ca: 0.0001% to 0.005%,
Mg: 0.0001% to 0.005%
1 or 2 types of these, Weatherproof steel which improved the rust stabilization ability of any one of Claims 1-3 characterized by the above-mentioned.
溶鋼中に窒化アルミニウムを添加して製造することを特徴とする請求項1〜4のいずれか1項に記載のさび安定化能を高めた耐候性鋼の製造方法。   The method for producing weatherable steel with improved rust stabilization ability according to any one of claims 1 to 4, wherein aluminum nitride is added to molten steel. 脱酸後の溶鋼中に、アルミニウム及び窒素を添加するか、あるいは、アルミニウム、窒素及び窒化アルミニウムを添加して製造することを特徴とする請求項1〜4のいずれか1項に記載のさび安定化能を高めた耐候性鋼の製造方法。   The rust stabilization according to any one of claims 1 to 4, wherein aluminum and nitrogen are added to the molten steel after deoxidation, or aluminum, nitrogen and aluminum nitride are added. A method for producing weathering steel with increased chemical capacity.
JP2006340115A 2006-12-18 2006-12-18 Weatherproof steel with enhanced rust stabilization ability and method for producing the same Active JP4762878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340115A JP4762878B2 (en) 2006-12-18 2006-12-18 Weatherproof steel with enhanced rust stabilization ability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006340115A JP4762878B2 (en) 2006-12-18 2006-12-18 Weatherproof steel with enhanced rust stabilization ability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008150670A JP2008150670A (en) 2008-07-03
JP4762878B2 true JP4762878B2 (en) 2011-08-31

Family

ID=39653158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340115A Active JP4762878B2 (en) 2006-12-18 2006-12-18 Weatherproof steel with enhanced rust stabilization ability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4762878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133172A (en) * 2014-04-08 2016-11-16 株式会社神户制钢所 The steel plate of the HAZ tenacity excellent under extremely low temperature

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453835B2 (en) * 2009-02-20 2014-03-26 Jfeスチール株式会社 Corrosion resistant steel for ships
JP5453840B2 (en) * 2009-02-25 2014-03-26 Jfeスチール株式会社 Marine steel with excellent corrosion resistance
CN104532146B (en) * 2014-12-23 2016-08-31 攀钢集团西昌钢钒有限公司 A kind of high-strength weathering steel and the method for semisteel smelting high-strength weathering steel
CN108823350B (en) * 2018-08-08 2020-05-08 河钢股份有限公司承德分公司 Method for using waste copper and nickel plates as vanadium extraction coolant and smelting weathering steel
CN109797342B (en) * 2018-12-29 2020-11-24 江阴兴澄特种钢铁有限公司 High-strength, high-toughness and atmospheric corrosion-resistant steel plate for manufacturing steel structure and manufacturing method thereof
CN111996460B (en) * 2020-09-02 2021-06-29 燕山大学 500 MPa-grade weather-resistant bridge steel with-40 ℃ impact energy of not less than 54J in welding heat affected zone
CN113025879B (en) * 2021-02-01 2022-03-01 南京钢铁股份有限公司 Weather-resistant bridge steel and smelting method thereof
CN113046652B (en) * 2021-02-01 2022-03-01 南京钢铁股份有限公司 420 MPa-grade weather-proof bridge steel and manufacturing method thereof
CN113046627B (en) * 2021-02-01 2022-03-01 南京钢铁股份有限公司 345 MPa-grade weather-proof bridge steel and manufacturing method thereof
CN113025880B (en) * 2021-02-01 2022-03-01 南京钢铁股份有限公司 500 MPa-grade weather-resistant bridge steel and manufacturing method thereof
CN114199784A (en) * 2021-11-17 2022-03-18 南京钢铁股份有限公司 Method for measuring stabilization time of weathering steel rust layer and storage medium
CN114395656B (en) * 2022-01-27 2023-03-10 日照钢铁控股集团有限公司 Low-cost stable casting production method of weathering resistant steel based on thin slab
CN115717214B (en) * 2022-11-14 2023-07-14 鞍钢股份有限公司 Steel for coastal atmospheric environment refining pipeline and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230847A (en) * 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Low-alloy steel for oil well pipe excellent in corrosion resistance
JP3785271B2 (en) * 1997-10-01 2006-06-14 新日本製鐵株式会社 High weldability and weatherproof steel
JP4716546B2 (en) * 2000-07-19 2011-07-06 三菱製鋼室蘭特殊鋼株式会社 Non-tempered steel for hot forging containing no V
JP2003013173A (en) * 2001-06-27 2003-01-15 Yoshimura Gijutsu Jimusho:Kk Steel for machine structure superior in cold forgeability, and manufacuring method therefor
JP4205406B2 (en) * 2002-07-25 2009-01-07 株式会社神戸製鋼所 Machine structural steel with excellent cutting tool life and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133172A (en) * 2014-04-08 2016-11-16 株式会社神户制钢所 The steel plate of the HAZ tenacity excellent under extremely low temperature

Also Published As

Publication number Publication date
JP2008150670A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4762878B2 (en) Weatherproof steel with enhanced rust stabilization ability and method for producing the same
JP5852585B2 (en) Magnesium alloy having excellent ignition resistance and mechanical properties and method for producing the same
JP6394839B1 (en) Steel
TWI374195B (en)
KR101943240B1 (en) Structural steel material having excellent atmospheric corrosion resistance
KR20030077239A (en) Super duplex stainless steel with a suppressed formation of intermetallic phases and having an excellent corrosion resistance, embrittlement resistance, castability and hot workability
WO2014112445A1 (en) Duplex stainless steel material and duplex stainless steel pipe
JP5444093B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5053213B2 (en) High-strength steel with excellent corrosion resistance during painting in the coastal area and its manufacturing method
KR101821170B1 (en) Cost-effective ferritic stainless steel
JP4762926B2 (en) High weatherability steel with improved dense rust formation and steel structure using the same
JP4241552B2 (en) High-strength low-alloy steel with hydrogen penetration inhibition effect
KR101505260B1 (en) Hot rolled steel sheet for steel pipe and method of manufacturing the steel pope
KR100920597B1 (en) Method for manufacturing steel with resistance to coastal atmospheric corrosion having tensile strength of 50kgf/mm2 grade
JP5883369B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP6904438B2 (en) Steel plate and its manufacturing method
JP6094669B2 (en) Welded structural steel
JP3971853B2 (en) Steel material with excellent corrosion resistance
JP2572447B2 (en) Coastal corrosion-resistant steel and method of manufacturing the same
KR100559496B1 (en) Copper mother alloys containing barium for the use of manufactureing stainless steels
JP2021529888A (en) Magnesium alloy plate material and its manufacturing method
JP2018197391A (en) Ferritic stainless steel for plating bath
KR102353612B1 (en) Magnesium alloy, magnesium alloy plate using thereof, and method for manufacturing of magnesium alloy plate
JP4483378B2 (en) High corrosion resistant steel
JP2006273692A (en) Hydrated hardened body containing reinforcing bar excellent in salt damage resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350