JP4762926B2 - High weatherability steel with improved dense rust formation and steel structure using the same - Google Patents

High weatherability steel with improved dense rust formation and steel structure using the same Download PDF

Info

Publication number
JP4762926B2
JP4762926B2 JP2007021314A JP2007021314A JP4762926B2 JP 4762926 B2 JP4762926 B2 JP 4762926B2 JP 2007021314 A JP2007021314 A JP 2007021314A JP 2007021314 A JP2007021314 A JP 2007021314A JP 4762926 B2 JP4762926 B2 JP 4762926B2
Authority
JP
Japan
Prior art keywords
steel
mass
rust
iii
weather resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007021314A
Other languages
Japanese (ja)
Other versions
JP2008184678A (en
Inventor
正雄 木村
寛 紀平
康児 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007021314A priority Critical patent/JP4762926B2/en
Publication of JP2008184678A publication Critical patent/JP2008184678A/en
Application granted granted Critical
Publication of JP4762926B2 publication Critical patent/JP4762926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

本発明は、橋梁をはじめとする鋼構造物のミニマムメンテナンス化をはかるため、構造物の無塗装化を可能とする耐候性鋼材に関するもので、その中でもCu−Ni系高耐候性鋼の性能改善に関する。   The present invention relates to a weather-resistant steel material that enables non-painting of a structure in order to achieve minimum maintenance of steel structures including bridges, and in particular, improved performance of Cu-Ni high weather resistance steel About.

1933年に米国にて初めて商品化された従来型耐候性鋼は、1960年代に入って我が国にも導入され、JIS G3114に規定されたSMA耐候性鋼(以下、JIS−SMA材と略す。)が橋梁をはじめとする最小保全ニーズの高い鋼構造物に現在も広く適用されている。JIS−SMA材においては、主としてCuとCrによる緻密な保護性さびの形成作用が活用されて、長期の曝露による腐食速度の低減効果が発現する。   The conventional weathering steel commercialized for the first time in the United States in 1933 was introduced into Japan in the 1960s, and SMA weathering steel defined in JIS G3114 (hereinafter abbreviated as JIS-SMA material). Is still widely applied to steel structures with high minimum maintenance needs such as bridges. In the JIS-SMA material, the action of forming dense protective rust mainly by Cu and Cr is utilized, and the effect of reducing the corrosion rate due to long-term exposure is manifested.

一方、塩害が所定の範囲を超えて厳しくなると、Crは鋼/さび界面での結露水液性を低pH化するため、腐食を加速する。この不安定性を排除するためCr無添加とし、JIS−SMA材の規格を参考にして、耐塩害性をあげるため保護性さびの密着性を高めるCuを温存しつつNiを増量添加したのがCu−Ni系高耐候性鋼である。JIS−SMA材に形成する保護性さびの主たる機能が密着性向上と環境遮断性向上にあったのに対し、Cu−Ni系高耐候性鋼に形成する保護性さびの特徴は、さらに鋼/さび界面でのpH制御機能が加わった点にある(特許文献1参照)。   On the other hand, when salt damage becomes severe beyond a predetermined range, Cr lowers the pH of condensed water at the steel / rust interface, thus accelerating corrosion. In order to eliminate this instability, Cr is not added, and referring to the standard of JIS-SMA material, Cu is added to increase the amount of Ni while preserving Cu to enhance the adhesion of protective rust to increase salt damage resistance. -Ni-based high weathering steel. While the main function of protective rust formed on JIS-SMA material was to improve adhesion and environmental barrier properties, the characteristic of protective rust formed on Cu-Ni high weather resistance steel is The pH control function at the rust interface is added (see Patent Document 1).

Cu−Ni系高耐候性鋼への添加元素の効果に関し、C,Si,Mn,P,S,Cu,Ni,Cr,Mo, およびTiの各元素については、東京工業大学創造プロジェクト研究体SIG1(高耐候性鋼材の橋梁への適用に関する研究会)によって、(社)日本鉄鋼協会・橋梁研究会・耐候性鋼防食設計WGの協力を得て、下記式(I)に示される耐候性合金指標Vの計算方法が提案された(非特許文献1参照)。すなわち、これらの成分に関する限り、ニッケル系高耐候性鋼材の耐塩害性の高さは、共通認識として、V値によりおおむね把握できるようになったと言える。すなわち、V値は、その値が高いほど、ニッケル系高耐候性鋼材の耐塩害性が高いとされる一種の指標であり、主要元素の耐塩害性への寄与が表されている。なお、式(I)では、各元素の質量%を代入してV値を算出する。ただし、式(I)で扱っている元素以外の微量添加元素の効果や影響については、未だ定説がない。
V=1/{(1.0-0.16[C])・(1.05-0.05[Si])・(1.04-0.016[Mn])・(1.0-0.5[P])・(1.0-1.9[S])・(1.0-0.10[Cu])・(1.0-0.12[Ni])・(1.0-0.3[Mo])・(1.0-1.7[Ti])}・・・(1)
Regarding the effect of additive elements on Cu-Ni high weather resistance steel, each element of C, Si, Mn, P, S, Cu, Ni, Cr, Mo, and Ti is the Tokyo Institute of Technology Creation Project Research Group SIG1 (Study Group on Application of High Weathering Steel to Bridges), with the cooperation of Japan Iron and Steel Institute, Bridge Research Group, Weatherproof Steel Corrosion Design WG, weathering alloy shown in the following formula (I) A method for calculating the index V has been proposed (see Non-Patent Document 1). That is, as far as these components are concerned, it can be said that the high salt resistance of nickel-based high weathering steel materials can be generally grasped by the V value as a common recognition. That is, the V value is a kind of indicator that the higher the value, the higher the salt resistance of the nickel-based high weathering steel material, and the contribution of the main elements to the salt resistance is shown. In the formula (I), the V value is calculated by substituting the mass% of each element. However, there is still no established theory about the effects and influences of trace additive elements other than the elements handled in formula (I).
V = 1 / {(1.0-0.16 [C]) ・ (1.05-0.05 [Si]) ・ (1.04-0.016 [Mn]) ・ (1.0-0.5 [P]) ・ (1.0-1.9 [S]) ・(1.0-0.10 [Cu]) ・ (1.0-0.12 [Ni]) ・ (1.0-0.3 [Mo]) ・ (1.0-1.7 [Ti])} (1)

しかし、これらの添加元素だけでは十分な耐候性が得られず、さらなる改良の試みがなされた。特許文献1では、質量%で、Ti:0.01〜0.5%、La:0.0001〜0.05%、Ce:0.0001〜0.05%、Mg:0.0001〜0.05%の内から1種又は2種以上が含有されるとともに、「安定さび層」の形成のためにTiが必須とされ、さらに添加するLa、Ce、Mgの効果は、鉄の腐食反応に伴い微量溶解してアルカリ性になるためとしている。しかし、腐食の進行に伴うpHの低下が著しい部分ではその効果は十分ではない。また、特許文献2では、鋼表面をTi,Nb,Ta,Zr,V,Hf の内の1種または2種以上含有するさびによって被覆することによりβ−FeOOHさびの生成を抑制し、その結果耐食性が向上するとされている。しかし、飛来塩分量が多い場合には、β−FeOOHさびの生成を抑制することが困難になる問題があった。これら両文献で用いられている元素の効果を期待して、特許文献3では、これらの元素を同時に添加している。しかし、特許文献4に記載があるように、Ta、Ceの添加によるβ−FeOOHさびの生成を抑制する効果はTiに較べて小さく、単純にTaとCeを添加するだけではその効果は十分ではない。   However, sufficient weather resistance cannot be obtained with these additive elements alone, and further attempts have been made. In patent document 1, in mass%, Ti: 0.01-0.5%, La: 0.0001-0.05%, Ce: 0.0001-0.05%, Mg: 0.0001-0. In addition to containing one or more of 05%, Ti is essential for the formation of a “stable rust layer”, and the effects of La, Ce, and Mg added to iron corrosion reaction Along with this, a small amount is dissolved to become alkaline. However, the effect is not sufficient in a portion where the pH drop accompanying the progress of corrosion is remarkable. In Patent Document 2, the formation of β-FeOOH rust is suppressed by coating the steel surface with rust containing one or more of Ti, Nb, Ta, Zr, V, and Hf. Corrosion resistance is said to improve. However, when the amount of incoming salt is large, there is a problem that it is difficult to suppress the formation of β-FeOOH rust. In anticipation of the effect of the elements used in both of these documents, Patent Document 3 simultaneously adds these elements. However, as described in Patent Document 4, the effect of suppressing the formation of β-FeOOH rust due to the addition of Ta and Ce is smaller than that of Ti, and the effect is not sufficient by simply adding Ta and Ce. Absent.

三木千壽、市川篤司、鵜飼真、竹村誠洋、中山武典、紀平寛:土木学会論文集、 No.738/I-64, pp.271-281,2003.Chiaki Miki, Atsushi Ichikawa, Makoto Ukai, Masahiro Takemura, Takenori Nakayama, Hiroshi Kihira: Proceedings of Japan Society of Civil Engineers, No.738 / I-64, pp.271-281, 2003. 特許第3568750号公報Japanese Patent No. 3568750 特許第3648085号公報Japanese Patent No. 3648085 特開平11−241139号公報Japanese Patent Laid-Open No. 11-241139

そこで、本発明は、これまでに開発されたCu−Ni系高耐候性鋼の性能をさら改善して、メンテナンス間隔の延長が図れ、メンテナンスコストを低減できる高い耐候性を有する鋼材を提供することを目的とする。   Therefore, the present invention provides a steel material having high weather resistance that can further improve the performance of Cu-Ni high weather resistance steel developed so far, extend maintenance intervals, and reduce maintenance costs. With the goal.

本発明者らは、高純Cu−Ni系高耐候性鋼におけるCeとTaの添加効果を向上させるための方法について検討した。その結果、鋼中にセリウムを含有した析出粒子が存在し、そのサイズが1nm以上2μm以下であるものの個数が103個/cm3以上であり、かつ鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であればよいことを見出し本発明に至った。 The present inventors examined a method for improving the addition effect of Ce and Ta in high purity Cu—Ni high weather resistance steel. As a result, precipitated particles containing cerium are present in the steel, the number of particles having a size of 1 nm to 2 μm is 10 3 / cm 3 or more, and 50 mol% or more of the cerium element contained in the steel. The present invention has been found out that it may be in the state of Ce (III) or Ce (IV).

鋼が腐食した際に生じるFe(II)がさびを形成する反応は以下の式(2)、(3)のように記述できる。   The reaction in which Fe (II) formed when steel corrodes forms rust can be described as the following formulas (2) and (3).

Fe(II)→Fe(III)+e- ・・・(2)
Fe(III)+2H2O→FeOOH+3H+ ・・・(3)
CeおよびTaが添加された場合に耐候性が向上するメカニズムについては定かではないが、以下に記載する理由により式(2)および式(3)の反応が制御され、FeOOHの粒子が微細化・緻密化されて、高耐候性に優れたさびが形成されると考えられる。
Fe (II) → Fe (III) + e (2)
Fe (III) + 2H 2 O → FeOOH + 3H + (3)
The mechanism by which the weather resistance is improved when Ce and Ta are added is not clear, but for the reasons described below, the reactions of formulas (2) and (3) are controlled, and FeOOH particles are refined. It is considered that a rust that is densified and has excellent weather resistance is formed.

まず、式(2)の反応がCe添加により制御される。Ceが添加された鋼材が腐食すると、鋼材中の個溶したメタリックCeや析出したCe化合物は、鋼材表面に形成された水膜中にCe(III)イオンとして溶解する。大気腐食過程では湿潤と乾燥を繰り返すことになるため、Cu−Ni系高耐候性鋼の場合、湿潤時に腐食してFe(II)イオン、Ni(II)イオン、CuイオンなどとともにCe(III)イオンが溶解する。その中でFe(II)イオンは溶解度が高く、保護性さび形成に必要なさび微粒子に変化しにくいが、水溶液中にわずかに溶解している酸素により酸化され、溶解度の低いFe(III)イオンとなる。この過程で、Feイオンの溶解度が下がるため、さび微粒子の形成が化学的に駆動され、その際さびのコロイド粒の核発生サイトが存在すれば、さびの微細化・緻密化を大幅に促進する。コロイド粒の核発生サイトとして作用するためには、鋼中のセリウムを含有した粒子の平均サイズが微細であることが必要であり、また、溶解時にCe(III)イオンが有効に析出するためには、鋼中のセリウムの状態がCe(III)またはCe(IV)の状態であればよいとの考えで本発明にいたった。   First, the reaction of formula (2) is controlled by adding Ce. When the steel material to which Ce is added corrodes, the individually dissolved metallic Ce and the precipitated Ce compound in the steel material are dissolved as Ce (III) ions in the water film formed on the steel material surface. In the atmospheric corrosion process, wetting and drying are repeated, so in the case of Cu-Ni high weathering steel, it corrodes when wet and Fe (II) ions, Ni (II) ions, Cu ions, etc. together with Ce (III) Ions dissolve. Among them, Fe (II) ions have high solubility and are difficult to change to rust fine particles necessary for forming protective rust, but are oxidized by slightly dissolved oxygen in the aqueous solution and have low solubility Fe (III) ions It becomes. In this process, the solubility of Fe ions decreases, so the formation of rust particles is chemically driven, and if nucleation sites of rust colloidal particles are present, the rust refinement and densification are greatly promoted. . In order to act as a nucleation site for colloidal grains, it is necessary that the average size of the cerium-containing particles in the steel is fine, and Ce (III) ions are effectively precipitated during dissolution. Has arrived at the present invention based on the idea that the state of cerium in steel may be Ce (III) or Ce (IV).

次に、式(3)の反応がCeおよびTa添加により制御される。鋼中のセリウムがこのような形態であれば、核発生サイトおよびCe(III)イオンの共存で微細なさび発生が開始するが、その反応を加速度的に活性化するためにはCeと異なる構造をもつ核発生サイトの共存が必要となる。そのためにはCeと同時にTa添加を行えばよい。さび中のFeはFeの回りを6個の酸素が配位した正八面体をユニットとした構造をとり、さびを形成する。それに対して、Taの酸化物であるTa25は、Taの周りをとりまくOの配列を調べると、五角両錐型の部分と歪八面体構造の部分が混在した形になっている。つまり、正八面体を基本とする構造を有するさびが、溶液中から形成する過程で、Ta25がさびの核発生サイトとなり、さびの微細化・緻密化を大幅に促進するのである。これは、従来のCe添加だけでは期待できなかった効果である。なお、Ta25は製鋼中に生成して、鋼中に分散しており、その一部が鋼表面に露出し、前述のようにさびの安定化に寄与すると考えられる。 Next, the reaction of formula (3) is controlled by addition of Ce and Ta. If the cerium in the steel is in such a form, fine rust generation starts in the coexistence of nucleation sites and Ce (III) ions, but a structure different from Ce in order to activate the reaction at an accelerated rate. Coexistence of nucleation sites with For that purpose, Ta may be added simultaneously with Ce. Fe in the rust has a structure in which a regular octahedron in which six oxygens are coordinated around Fe is taken as a unit, and forms rust. On the other hand, Ta 2 O 5, which is an oxide of Ta, has a shape in which a pentagonal bipyramidal portion and a strained octahedral structure portion are mixed when the arrangement of O surrounding Ta is examined. That is, in the process of forming a rust having a regular octahedron structure from a solution, Ta 2 O 5 becomes a nucleation site of rust, which greatly promotes rust refinement and densification. This is an effect which cannot be expected only by adding conventional Ce. Incidentally, Ta 2 O 5 is formed during steelmaking, it is dispersed in the steel, partially exposed on the steel surface, believed to contribute to the stabilization of rust, as described above.

つまり、Cu−Ni系高耐候性鋼においては、CuやNiの作用によって、より緻密で密着性の高い保護性さびを形成できるが、従来型耐候性鋼材より腐食速度が低いため、形成するさび層に必要なさび粒子の量が少なく、より緻密なさび層を形成させるためには、式(2)および式(3)の反応によって生成するさび粒子をさらに微細にかつ緻密にする必要がある。Cu−Ni系高耐候性鋼にCeとTaを同時に添加すると、湿潤時の腐食反応によりCe(III)としてイオン化した後、乾燥時に酸素と反応して一部Ce(IV)状態でさび層中に取り込まれる。Ce(IV)は酸化力の強いイオンである。したがって、再び湿潤時に腐食して生ずるFeイオン等を急速に酸化する作用があるため、共存するTaとあわせてさび粒子の核発生を促し、さび粒子を微細化して、乾燥過程で形成するさび層をより緻密なものとすることが期待できる。   That is, in Cu-Ni high weathering steel, a protective rust having a higher density and higher adhesion can be formed by the action of Cu and Ni. However, the corrosion rate is lower than that of a conventional weathering steel, so the rust is formed. The amount of rust particles required for the layer is small, and in order to form a denser rust layer, it is necessary to make the rust particles generated by the reactions of the formulas (2) and (3) finer and denser. . When Ce and Ta are added to Cu-Ni high weathering steel at the same time, it is ionized as Ce (III) by the corrosion reaction when wet, then reacts with oxygen during drying and partially in the Ce (IV) state in the rust layer Is taken in. Ce (IV) is an ion having a strong oxidizing power. Therefore, it has the action of rapidly oxidizing Fe ions, etc. that are corroded again when wet, so it promotes nucleation of rust particles together with coexisting Ta, refines the rust particles, and forms a rust layer in the drying process Can be expected to be more precise.

本発明が長期の耐食性を改善することを検証するために、Cu−Ni高耐候性鋼の長期曝露を行った。Cu−Ni系高耐候性鋼材の経年腐食量(経年腐食減耗/mm)Yと経過年数Xとの関係は、初年腐食量をAs、さび安定化指数をBsとしたとき、式(4)によって示されることが知られている。
Y=As・XBs ・・・(4)
Cu−Ni系高耐候性鋼にCe微量添加を行って長期曝露試験供し、得たデータを用いて式(4)のAs値とBs値を評価・分析した。その結果、As値およびBs値がCeとTaの同時添加によってより小さな値になることが判明した。これは、微量といえどもCeおよびTaをCu−Ni系高耐候性鋼に添加すると、長期には腐食界面における保護性さび形成を補助する効果があることを実証したことになる。かかる実証結果を得て、以下の発明をなした。
In order to verify that the present invention improves long-term corrosion resistance, long-term exposure of Cu-Ni high weathering steel was performed. The relationship between the aging corrosion amount (aging corrosion depletion / mm) Y of Cu-Ni high weathering steel material and the elapsed time X is expressed by the equation (4) where As is the initial year corrosion amount and Bs is the rust stabilization index. It is known to be indicated by
Y = As · X Bs (4)
A small amount of Ce was added to Cu—Ni-based high weather resistance steel and subjected to a long-term exposure test, and the As value and Bs value of Formula (4) were evaluated and analyzed using the obtained data. As a result, it was found that the As value and the Bs value became smaller by the simultaneous addition of Ce and Ta. This proves that the addition of Ce and Ta to Cu-Ni high weathering steel, even in trace amounts, has the effect of assisting the formation of protective rust at the corrosion interface over a long period of time. Obtaining such verification results, the following invention was made.

(1)質量%で、C: 0.03%〜0.18%、Si:0.1%〜1.5%、Mn:0.2%〜1.5%、P: 0.02%以下、S: 0.02%以下、Cu:0.3%〜3%、Ni:1.0%〜6%、Ce:0.0001%〜0.03%、Ta:0.0001%〜0.05%を含有し、残部Feおよび不可避的不純物からなる耐候性鋼であって、該鋼中にセリウムを含有した析出粒子が存在し、そのサイズが1nm以上2μm以下であるものの個数が103個/cm3以上であり、かつ、鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることを特徴とする緻密さび生成性を高めた耐候性鋼。
(2)さらにTi:0.001質量%〜0.2質量%を含有し、Ce、Ta、Tiそれぞれの質量ppmの積 [Ce]×[Ta]×[Ti] の値が、10以上であることを特徴とする前記(1)に記載の緻密さび生成性を高めた耐候性鋼。
(3)さらに、質量%で、P:0.02%超〜0.2%、Cr:0.01%〜0.75%、Mo:0.01%〜0.60%、のうちいずれか1種以上を含有することを特徴とする前記(1)または(2)に記載の緻密さび生成性を高めた耐候性鋼。
(4)さらに、質量%で、Al:0.001%〜0.08%、V:0.001%〜0.05%、Nb:0.001%〜0.05%、N:0.001%〜0.010%のうちいずれか1種以上を含有することを特徴とする前記(1)〜(3)のいずれかに記載の緻密さび生成性を高めた耐候性鋼。
(5)さらに、Ca:0.0001質量%〜0.005質量%を含有することを特徴とする前記(1)〜(4)のいずれか1項に記載の緻密さび生成性を高めた耐候性鋼。
(6)カルシウム酸化物、カルシウムとアルミニウムの複合酸化物のいずれか1種以上が0.0001質量%以上、鋼中に存在することを特徴とする前記(5)に記載の緻密さび生成性を高めた耐候性鋼。
(7)前記(1)〜(6)のいずれかに記載の耐候性鋼が用いられた鋼構造物であって、該耐候性鋼の表層がさび層で覆われ、該さび層中のセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることを特徴とする鋼構造物。
(1) By mass%, C: 0.03% to 0.18%, Si: 0.1% to 1.5%, Mn: 0.2% to 1.5%, P: 0.02% or less , S: 0.02% or less, Cu: 0.3% to 3%, Ni: 1.0% to 6%, Ce: 0.0001% to 0.03%, Ta: 0.0001% to 0.00%. 10 3 weathering steel containing 05%, balance Fe and unavoidable impurities, and having precipitated particles containing cerium in the steel, the size of which is 1 nm or more and 2 μm or less / Cm 3 or more, and 50 mol% or more of the cerium element contained in the steel is in the state of Ce (III) or Ce (IV), and is a weather resistant steel with improved dense rust formation.
(2) Further, Ti: 0.001% by mass to 0.2% by mass, and the product of Ce, Ta and Ti by mass ppm [Ce] × [Ta] × [Ti] is 10 or more. The weather-resistant steel having improved dense rust formation as described in (1) above.
(3) Further, any one of P: more than 0.02% to 0.2%, Cr: 0.01% to 0.75%, Mo: 0.01% to 0.60% by mass% The weathering steel having improved dense rust formation as described in (1) or (2) above, which contains one or more kinds.
(4) Further, by mass%, Al: 0.001% to 0.08%, V: 0.001% to 0.05%, Nb: 0.001% to 0.05%, N: 0.001 % -0.010% of any one of the above, (1) to (3), the weatherproof steel with improved dense rust formation.
(5) Furthermore, Ca: 0.0001 mass% to 0.005 mass% is contained, The weather resistance which improved the dense rust formation property of any one of said (1)-(4) characterized by the above-mentioned. Steel.
(6) The dense rust-forming property as described in (5) above, wherein at least one of calcium oxide and a composite oxide of calcium and aluminum is present in the steel in an amount of 0.0001% by mass or more. Enhanced weathering steel.
(7) A steel structure in which the weathering steel according to any one of (1) to (6) is used, wherein a surface layer of the weathering steel is covered with a rust layer, and cerium in the rust layer A steel structure characterized in that 50 mol% or more of the element is in a state of Ce (III) or Ce (IV).

本発明によれば、高い耐候性を有する鋼材を製造することができる。本発明の鋼材を適用することにより、構造物の無塗装化等により、橋梁をはじめとする鋼構造物のミニマムメンテナンス化が可能となるため、産業上の利用価値は多大である。   According to the present invention, a steel material having high weather resistance can be produced. By applying the steel material of the present invention, the minimum maintenance of steel structures including bridges can be achieved by unpainting the structures, etc., so that the industrial utility value is great.

本発明の最良な実施形態について、以下に詳細に説明する。まず、基本的な鋼の構成について説明する。   The best embodiment of the present invention will be described in detail below. First, the basic steel structure will be described.

Cは、Cu−Ni高耐候性鋼に所定の強度を与えるため必須の元素である。またCは式(1)にもあるように、鋼材の耐候性を向上させる元素である。C濃度が0.03質量%未満では、強度もしくは耐候性が不十分となる。C濃度が0.18質量%超では、靱性が低下する問題が生じる。   C is an essential element for imparting a predetermined strength to the Cu—Ni high weather resistance steel. Moreover, C is an element which improves the weather resistance of steel materials as also in the formula (1). If the C concentration is less than 0.03% by mass, the strength or weather resistance is insufficient. If the C concentration is more than 0.18% by mass, there arises a problem that the toughness is lowered.

Siは、精錬時に脱酸に用いる基本元素である。またSiは式(1)にもあるように鋼材の耐候性を向上する元素である。Si濃度が0.1質量%未満では、耐候性が不十分となる。Si濃度が1.5質量%超では、靱性や溶接性が低下する問題が生じる。   Si is a basic element used for deoxidation during refining. Moreover, Si is an element which improves the weather resistance of steel materials as shown in Formula (1). When the Si concentration is less than 0.1% by mass, the weather resistance is insufficient. When the Si concentration exceeds 1.5% by mass, there arises a problem that toughness and weldability are lowered.

Mnは、強度を高め加工性を改善する基本元素である。またMnは式(1)にもあるように鋼材の耐候性を向上する元素である。Mn濃度が0.2質量%未満では、耐候性が不十分となる。Mn濃度が1.5質量%超では、靱性や溶接性が低下する問題が生じる。   Mn is a basic element that increases strength and improves workability. Further, Mn is an element that improves the weather resistance of the steel as shown in the formula (1). When the Mn concentration is less than 0.2% by mass, the weather resistance is insufficient. When the Mn concentration exceeds 1.5% by mass, there arises a problem that toughness and weldability are lowered.

Pは、式(1)にもあるように耐候性を大きく向上する元素ではあるが、靱性低下や溶接性低下が問題となる場合は、0.02質量%以下が良い。   P is an element that greatly improves the weather resistance as shown in the formula (1), but 0.02% by mass or less is preferable when a decrease in toughness or a decrease in weldability is a problem.

Sは、式(1)にあるように、耐候性を低下させる元素であるので、無添加とする。不可避的不純物としての混入分を考慮しても、S濃度が0.02質量%超では、耐候性が不十分となる。   Since S is an element that lowers the weather resistance as shown in the formula (1), it is not added. Even considering the amount of contamination as an unavoidable impurity, if the S concentration exceeds 0.02 mass%, the weather resistance is insufficient.

Cuは、前述および式(1)にあるように、耐候性を向上させる元素である。Cu濃度が0.3質量%未満では、耐候性が不十分となる。Cu濃度が3質量%超では熱間加工割れなどの問題が起きる。   Cu is an element that improves the weather resistance, as described above and in formula (1). When the Cu concentration is less than 0.3% by mass, the weather resistance is insufficient. If the Cu concentration exceeds 3% by mass, problems such as hot working cracks occur.

Niは、前述および式(1)にあるように、耐候性を向上させる元素である。Ni濃度が1.0%未満では、耐候性が不十分となり、従来のJIS−SMA材の耐候性と較べて有意な差異がでない。Ni濃度が6質量%超では、製造コストが高くなり工業的に問題となる。   Ni is an element that improves the weather resistance, as described above and in formula (1). When the Ni concentration is less than 1.0%, the weather resistance is insufficient, and there is no significant difference compared to the weather resistance of the conventional JIS-SMA material. If the Ni concentration exceeds 6% by mass, the production cost increases and this is industrially problematic.

CeおよびTaは、それぞれ、Ce:0.0001質量%〜0.03質量%、Ta:0.0001質量%〜0.05質量%の範囲で含有する。CeおよびTaが鋼中に添加されていると、前述のとおり、それぞれの単独添加では見いだされない画期的な効果が発現する。Ce濃度が0.0001質量%未満では、耐候性鋼へのCe添加効果が発現しない。Ce濃度が0.03質量%超では、熱間圧延工程で割れが発生する等の製造上の問題が生じる。また、Ceを微量添加すると鋳造工程において表面品質が安定化するため、以後の熱間圧延工程にかかる負荷が軽減され製造上のコストダウンにつながる可能性がある。Ta濃度が0.0001質量%未満では、耐候性鋼へのTa添加効果が発現しない。Ta濃度が0.05質量%超では、大幅な効果増は期待できず、かつ製造上のコスト増になる。   Ce and Ta are contained in the ranges of Ce: 0.0001% by mass to 0.03% by mass and Ta: 0.0001% by mass to 0.05% by mass, respectively. When Ce and Ta are added to the steel, as described above, an epoch-making effect that cannot be found by adding each of them alone appears. When the Ce concentration is less than 0.0001% by mass, the effect of adding Ce to the weathering steel is not exhibited. If the Ce concentration is more than 0.03 mass%, production problems such as cracking occur in the hot rolling process. Further, when a small amount of Ce is added, the surface quality is stabilized in the casting process, so that the load on the subsequent hot rolling process is reduced, which may lead to a reduction in manufacturing cost. When the Ta concentration is less than 0.0001% by mass, the effect of adding Ta to the weathering steel is not exhibited. If the Ta concentration exceeds 0.05 mass%, a significant increase in effect cannot be expected, and the manufacturing cost increases.

製鋼工程の鋼中の酸素濃度が高い初期に、Ce,Taを鋼中に入れてしまうと、Ce, Taが酸素等の元素との親和性が高いために、CeまたはTaの酸化物が早期にスラグ中に移行し、鋼中に留まる率が低下し、歩留りが低くなりこと、および、CeまたはTaの酸化物が粗大化し、さび中での作用効率が低下する。したがって、鋼中へのCe,Taの歩留りを高くするためには、主要合金元素添加および主要な脱酸工程が終了した段階の鋳造直前に、Ce,Taを添加することが望ましい。このような方法で製造することにより、セリウムを含有した微細析出粒子の平均サイズを小さく保ち、かつセリウム元素中のCe(III)またはCe(IV)の比率を高く保つことが可能になる。   If Ce and Ta are put into the steel in the early stage when the oxygen concentration in the steel in the steelmaking process is high, Ce and Ta have high affinity with elements such as oxygen, so the oxide of Ce or Ta is early. However, the rate of staying in the steel is lowered, the yield is lowered, and the oxide of Ce or Ta is coarsened, and the working efficiency in rust is lowered. Therefore, in order to increase the yield of Ce and Ta in steel, it is desirable to add Ce and Ta immediately before casting at the stage where the main alloy element addition and the main deoxidation process are completed. By producing by such a method, it becomes possible to keep the average size of fine precipitated particles containing cerium small and to keep the ratio of Ce (III) or Ce (IV) in the cerium element high.

鋼中にセリウムを含有した析出粒子が存在し、そのサイズが1nm以上2μm以下であるものの個数が103個/cm3以上であれば、その効果が発現する。粒子のサイズが1nm 未満であると、析出粒子の構造が不完全になりやすく前述したコロイド粒の核発生サイトとしての作用が著しく低下する。また、粒子のサイズが2μm超であると、単位質量あたりの比表面積が小さくなり、前述したコロイド粒の核発生サイトとしての作用が著しく低下する。セリウムを含有した析出粒子サイズの中で、そのサイズが1nm以上2μm以下であるものの個数が103個/cm3未満であると、腐食が進行する界面における微粒子の存在頻度が小さくなり、コロイド粒の核発生サイトとしての作用が著しく低下する。 The effect is manifested when there are precipitated particles containing cerium in the steel and the number of particles having a size of 1 nm or more and 2 μm or less is 10 3 / cm 3 or more. If the size of the particles is less than 1 nm, the structure of the precipitated particles tends to be incomplete, and the above-described action of the colloidal particles as nucleation sites is significantly reduced. In addition, when the particle size exceeds 2 μm, the specific surface area per unit mass becomes small, and the above-described action as a nucleation site of the colloidal particles is remarkably reduced. If the number of cerium-containing precipitated particles having a size of 1 nm or more and 2 μm or less is less than 10 3 / cm 3 , the frequency of the presence of fine particles at the interface where corrosion proceeds is reduced, and colloidal particles As a nucleation site, there is a marked decrease in the action.

さらに、鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であれば、その効果が発現する。比率が50 mol%未満であると、溶解時にCe(III)イオンが有効に析出せず、前述した、さび微粒子の形成が化学的に駆動されることが極端に少なくなる。本発明の通り、鋼中のセリウムの状態を規定することにより、単純にCeとTaを添加した場合に比べてさびの微細化・緻密化が著しく大幅に促進して耐候性が大幅に改善する。つまり、CeおよびTaがそれぞれ単独に添加された場合の効果を足し合わせたものとは全く異なる作用で、足し合わせにはない大幅な耐候性改善効果があることを見出したのが大きな特徴である。   Furthermore, if 50 mol% or more of the cerium element contained in the steel is in the state of Ce (III) or Ce (IV), the effect is manifested. When the ratio is less than 50 mol%, Ce (III) ions are not effectively precipitated at the time of dissolution, and the above-described formation of rust fine particles is extremely reduced. By defining the state of cerium in the steel as in the present invention, rust refinement and densification are remarkably promoted and weather resistance is greatly improved as compared with the case where Ce and Ta are simply added. . That is, it is a major feature that it has been found that there is a significant weather resistance improvement effect that is not in addition, with an action that is completely different from the addition of the effects when Ce and Ta are added individually. .

微細析出粒子のサイズと鋼中の密度の測定は、次のように行う。電子顕微鏡等で析出物の観察を行いそのサイズを測定し、電子線を照射した際に発生する蛍光X線より析出物にセリウムが含有するかを確認する。この測定を繰り返し、数100個程度以上のセリウム含有析出物について、サイズと鋼中の密度を求める。他の方法として、析出物だけを抽出し、その抽出物を電子顕微鏡で観察することもできる。析出物の抽出法としては、非特許文献:(社)日本鉄鋼協会・共同研究会・鉄鋼分析部会編:「日本鉄鋼業における分析技術」(1982)に記述がある方法が利用でき、10体積%アセチルアセトン−1質量%テトラメチルアンモニウムクロライド−メタノール溶液(以下、10%AA系溶液と記す)、4質量%スルホサリチル酸−1質量%塩化リチウム−メタノール溶液(以下、4%SSA系溶液と記す)などの有機溶媒を用いた定電位電解法や、6質量%臭素−酢酸メチル溶液や14質量%沃素−メタノール溶液中で当該鋼材の切り粉を溶解させるハロゲン有機溶媒法などによって、抽出残渣として分離できる。   The size of fine precipitate particles and the density in steel are measured as follows. The size of the precipitate is measured by observing the precipitate with an electron microscope or the like, and it is confirmed whether or not cerium is contained in the precipitate from the fluorescent X-ray generated when the electron beam is irradiated. This measurement is repeated, and the size and density in the steel are determined for about several hundreds of cerium-containing precipitates. As another method, only the precipitate can be extracted and the extract can be observed with an electron microscope. As a method for extracting precipitates, a method described in Non-Patent Literature: Japan Iron and Steel Institute, Joint Research Group, Steel Analysis Subcommittee: “Analytical Technology in the Japanese Steel Industry” (1982) can be used, and 10 volumes. % Acetylacetone-1 mass% tetramethylammonium chloride-methanol solution (hereinafter referred to as 10% AA solution), 4 mass% sulfosalicylic acid-1 mass% lithium chloride-methanol solution (hereinafter referred to as 4% SSA system solution) As an extraction residue, for example, by a potentiostatic electrolysis method using an organic solvent such as a halogen organic solvent method in which the steel chips are dissolved in a 6% by mass bromine-methyl acetate solution or a 14% by mass iodine-methanol solution. it can.

鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることの確認は、Ce吸収端近傍のX線エネルギー域でX線吸収率で測定することで可能である。試料にX線を照射し、そこからのCeの蛍光X線を半導体検出器等の検出器で測定する。この測定を、CeLIII吸収端が観察される5723eVを含む領域である5200〜6800eVの範囲で行う。 Confirmation that 50 mol% or more of the cerium element contained in steel is in the state of Ce (III) or Ce (IV) is possible by measuring the X-ray absorption rate in the X-ray energy region near the Ce absorption edge. It is. The sample is irradiated with X-rays, and Ce fluorescent X-rays therefrom are measured with a detector such as a semiconductor detector. This measurement is performed in a range of 5200 to 6800 eV, which is a region including 5723 eV where the CeL III absorption edge is observed.

測定結果の例を図1に示す。Ce LIII吸収端では、エネルギーの増加に対して吸収率が急激に大きくなるが、このエネルギーの値は、さび中のCeの価数に依存する。Ce(III)は金属状態のCeに比べて約1〜4eV、Ce(IV)は金属状態のCeに比べて約4〜7eV程度大きくなる。さらに、Ceが酸素と結合した場合、Ce(III)とCe(IV)では、それぞれ特徴的なピークが観察される。そのため、さび中のCeがCe(III)とCe(IV)の混合状態であることを容易に検出できる。測定された吸収率曲線を、Ce金属の曲線とCe(III)とCe(IV)の標準物質(Ce23とCeO2)の曲線との足し合わせで表現するように、各々の曲線の重みを決定すれば、それぞれの比率を求めることができる。この方法により決定した鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることが好ましい。 An example of the measurement result is shown in FIG. At the Ce L III absorption edge, the absorptance increases rapidly as the energy increases. The value of this energy depends on the valence of Ce in the rust. Ce (III) is about 1 to 4 eV higher than Ce in the metal state, and Ce (IV) is about 4 to 7 eV higher than Ce in the metal state. Furthermore, when Ce is combined with oxygen, characteristic peaks are observed for Ce (III) and Ce (IV), respectively. Therefore, it can be easily detected that Ce in the rust is a mixed state of Ce (III) and Ce (IV). For each curve, the measured absorption curve is expressed as the sum of the Ce metal curve and the Ce (III) and Ce (IV) standard (Ce 2 O 3 and CeO 2 ) curves. If the weight is determined, the respective ratios can be obtained. It is preferable that 50 mol% or more of the cerium element contained in the steel determined by this method is in the state of Ce (III) or Ce (IV).

鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることを確認する簡便的な方法としては、Ce(III)またはCe(IV)の状態が微細析出物に対応すると考え、前述した微細析出物の抽出法により得られた微細析出物の量と鋼中のセリウムの量から計算により求めることも可能である。但し、処理中にセリウムの状態が変わる可能性があるので、前述したX線吸収法等の直接的な方法で検証するのが望ましい。   As a simple method for confirming that 50 mol% or more of the cerium element contained in steel is in the state of Ce (III) or Ce (IV), the state of Ce (III) or Ce (IV) is finely precipitated. It can be determined by calculation from the amount of fine precipitates obtained by the above-described fine precipitate extraction method and the amount of cerium in steel. However, since the state of cerium may change during processing, it is desirable to verify by a direct method such as the X-ray absorption method described above.

前記に加えて、その鋼の表層がさび層で覆われ、さび中のセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であるようにすると、その耐候性鋼をより高めることができる。これは、鋼板表面が、既にこのようなさび層で覆われていると、すでに、コロイド粒の核発生サイトが十分存在することになり、前述した通り、さびの微細化・緻密化を大幅に促進するからである。さび中のセリウムのCe(III)またはCe(IV)の比率が50 mol%未満であると、溶解時にCe(III)イオンが有効に析出せず、前述した、さび微粒子の形成が化学的に駆動されることが極端に少なくなる。   In addition to the above, if the surface layer of the steel is covered with a rust layer so that 50 mol% or more of the cerium element in the rust is in the state of Ce (III) or Ce (IV), the weathering steel Can be increased. This is because if the steel plate surface is already covered with such a rust layer, there will already be enough nucleation sites for colloidal grains, and as described above, rust refinement and densification are greatly reduced. Because it promotes. When the ratio of Ce (III) or Ce (IV) of cerium in rust is less than 50 mol%, Ce (III) ions do not effectively precipitate during dissolution, and the formation of the aforementioned rust fine particles is chemically Driven extremely little.

さび中のセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることの確認は、Ce吸収端近傍のX線エネルギー域でX線吸収率で測定することで可能である。さびの場合には、さびを回収しX線透過フイルム等にはさみこんでX線を試料に照射する方法が簡便である。そして試料の透過前のX線強度(I0)と透過後のX線強度(I)をイオンチャンバー等の検出器で測定し、μt=-ln(I/I0)により試料厚さを含んだ吸収率μtを求めることができる。後は前述した鋼中のセリウムの分析と同様に行う。 Confirmation that 50 mol% or more of the cerium element in the rust is in the state of Ce (III) or Ce (IV) is possible by measuring the X-ray absorption rate in the X-ray energy region near the Ce absorption edge. is there. In the case of rust, a method of collecting the rust and sandwiching it in an X-ray transmission film or the like and irradiating the sample with X-rays is convenient. Then, the X-ray intensity (I 0 ) before transmission of the sample and the X-ray intensity (I) after transmission are measured with a detector such as an ion chamber, and the sample thickness is included by μt = −ln (I / I 0 ). The absorption rate μt can be obtained. The rest is performed in the same manner as the analysis of cerium in the steel described above.

鋼の表面を本発明のさび層で覆うには、相対湿度が40%RH以上の湿潤過程と相対湿度が34%RH以下の乾燥過程をそれぞれ1時間以上づつ交互に繰り返すサイクル試験を20回以上行う。湿潤過程と乾燥過程のサイクルをそれぞれ3〜10時間程度ずつ、繰り返し数としては試験期間全体が10日〜100日程度になるように、行えばさらに望ましい。必要に応じて1サイクルの最初に鋼の表面に、水もしくは希釈した海水等の水溶液を散布する。   In order to cover the surface of steel with the rust layer of the present invention, 20 or more cycle tests in which a humidity process with a relative humidity of 40% RH or more and a drying process with a relative humidity of 34% RH or less are alternately repeated for 1 hour or more are repeated. Do. It is more desirable to carry out the wet process and the dry process in a cycle of about 3 to 10 hours each, so that the number of repetitions is about 10 to 100 days. If necessary, water or an aqueous solution such as diluted seawater is sprayed on the steel surface at the beginning of one cycle.

1サイクルの例を以下に示す。
[1] 温度=28.0℃、相対湿度=90%RHに保持。保持時間=4時間36分
[2] [1]の最終状態から、温度=49.0℃、相対湿度=32%RH、まで連続的に、時間=2時間22分かけて変化させる。
[3] [2] の最終状態から、温度=54.0℃、相対湿度=25%RH、まで連続的に、時間=1時間40分かけて変化させる。
[4] [3] の最終状態から、温度=55.0℃、相対湿度=24%RH、まで連続的に、時間=1時間22分かけて変化させる。
[5] [4] の最終状態から、温度=54.0℃、相対湿度=25%RH、まで連続的に、時間=1時間22分かけて変化させる。
[6] [5]の最終状態から、温度=49.0℃、相対湿度=32%RH、まで連続的に、時間=1時間40分かけて変化させる。
[7] [6]の最終状態から、温度=28.0℃、相対湿度=90%RH、まで連続的に、時間=2時間22分かけて変化させる。
[8] 温度=28.0℃、相対湿度=90%RHに保持。保持時間=4時間36分
[9] 温度=28.0℃、相対湿度=95%RHに保持。保持時間=4時間00分
以上、本発明の基本的な構成について説明したが、本発明は、次のようにすることにより更に耐候性を向上することができる。
An example of one cycle is shown below.
[1] Temperature = 28.0 ° C. and relative humidity = 90% RH. Holding time = 4 hours and 36 minutes [2] The temperature is changed continuously from the final state of [1] to temperature = 49.0 ° C. and relative humidity = 32% RH over a period of time = 2 hours and 22 minutes.
[3] From the final state of [2], temperature = 54.0 ° C. and relative humidity = 25% RH are continuously changed over time = 1 hour 40 minutes.
[4] From the final state of [3], the temperature is changed continuously over a period of 1 hour and 22 minutes from 55.0 ° C. to a relative humidity of 24% RH.
[5] The temperature is continuously changed from the final state of [4] to temperature = 54.0 ° C. and relative humidity = 25% RH over a period of time = 1 hour 22 minutes.
[6] From the final state of [5], the temperature is continuously changed from 49.0 ° C. and relative humidity to 32% RH over a period of 1 hour and 40 minutes.
[7] From the final state of [6], temperature = 28.0 ° C. and relative humidity = 90% RH are continuously changed over a time = 2 hours 22 minutes.
[8] Temperature = 28.0 ° C, relative humidity = 90% RH. Retention time = 4 hours 36 minutes [9] Temperature = 28.0 ° C, relative humidity = 95% RH. Holding time = 4 hours 00 minutes The basic configuration of the present invention has been described above, but the present invention can further improve the weather resistance by the following manner.

本発明ではさらにTiを0.001質量%〜0.2質量%の範囲内で、Ce,Ti,Taのそれぞれの質量ppmの積 [Ce]×[Ta]×[Ti] が、10([ppm])以上となるように含有できる。このようにすると、さらに耐候性を向上することができる。これは、酸化物中でTiが(IV)価そしてTaが(III)価の状態をとるために、Ceが(III)価+(IV)価の状態をとりやすくなる、と考えられる。また、それぞれの酸化物の結晶構造は、Ce(III)がLa23型構造、Ce(IV)がホタル石型構造に対して、Ti(IV)がアナターゼまたはルチル型構造、Taが五角両錐と歪八面体を組み合わせた構造である。さびが正八面体を基本とする構造を有しているため、溶液中からさび形成が生じる過程で、これら添加元素が核発生サイトとなり、さびの微細化・緻密化を大幅に促進すると考えられる。このようにCe,Ti,Taの添加効果はお互いの相乗作用で発現するため、その濃度積によりその効果が評価できることを発見し、Ce,Ti,Taの各濃度を質量ppmで表した場合、その効果が発現する下限値は、10であることを見出した。 In the present invention, Ti is within a range of 0.001 mass% to 0.2 mass%, and the product [Ce] × [Ta] × [Ti] of each mass ppm of Ce, Ti, Ta is 10 ([[ ppm] 3 ) or more. If it does in this way, a weather resistance can be improved further. This is presumably because in the oxide, Ti is in the (IV) valence and Ta is in the (III) valence state, so that Ce is easily in the (III) valence + (IV) valence state. The crystal structure of each oxide is such that Ce (III) is a La 2 O 3 structure, Ce (IV) is a fluorite structure, Ti (IV) is an anatase or rutile structure, and Ta is a pentagon. It is a structure combining both pyramids and strained octahedron. Since rust has a structure based on a regular octahedron, it is considered that these additive elements become nucleation sites in the process of rust formation from the solution, and greatly promote rust refinement and densification. Thus, since the addition effect of Ce, Ti, Ta is expressed by the mutual synergistic action, it was discovered that the effect can be evaluated by the concentration product, and when each concentration of Ce, Ti, Ta is expressed in mass ppm, It has been found that the lower limit value at which the effect appears is 10.

本発明では、P:0.02質量%超〜0.2質量%、Cr:0.01質量%〜0.75質量%、Mo:0.01質量%〜0.60質量%、のうちいずれか1種以上を含有することで、さらに耐候性が向上する。   In the present invention, any of P: more than 0.02 mass% to 0.2 mass%, Cr: 0.01 mass% to 0.75 mass%, Mo: 0.01 mass% to 0.60 mass%, By including one or more kinds, the weather resistance is further improved.

Pは耐候性を大きく向上させるが、靱性低下や溶接性低下を十分に考慮しなければならない場合は、前述のように制限せざるをえない。しかし、靭性低下や溶接性低下が大きな問題にならない場合には、0.02質量%を超え、0.2%以下まで含有することで耐候性を向上させる効果が利用でき、望ましい。一方、0.2%を超えて添加すると、靭性低下や溶接性低下などの弊害が顕著になり、実用的でない。   P greatly improves the weather resistance, but it must be limited as described above when the toughness and weldability must be sufficiently taken into consideration. However, in the case where deterioration in toughness or weldability does not become a major problem, it is desirable that the content is more than 0.02% by mass and 0.2% or less because the effect of improving weather resistance can be used. On the other hand, if added over 0.2%, adverse effects such as a reduction in toughness and a decrease in weldability become remarkable, and this is not practical.

Crは、式(1)の注記にあるように、耐候性を飛来塩分があまり多すぎない地域では、鋼材の防食性を向上させる元素である。塩害がさほど厳しくない地区で使われることを前提に、さび安定化性能に悪影響を与えない範囲として0.75質量%を上限に設定する。ただし、構造物の部位によっては塩分のたまりやすい場合もあるので、望ましくは0.3質量%以下、さらに望ましくは0.1%以下とするのが良い。     As noted in the formula (1), Cr is an element that improves the corrosion resistance of steel in areas where the weather resistance is not too high. Assuming that the salt damage is not so severe, the upper limit is set to 0.75 mass% as a range that does not adversely affect the rust stabilization performance. However, depending on the site of the structure, salt may easily accumulate. Therefore, the content is desirably 0.3% by mass or less, and more desirably 0.1% or less.

Moは、式(1)にもあるように耐候性を向上させる元素であり、本願発明の効果によりMoの単独効果にはない効果を発現する。本願発明の効果を確実に発揮させるために、0.01質量%以上、0.60質量%以下とするのが良い。   Mo is an element that improves the weather resistance as shown in Formula (1), and expresses an effect that is not in the single effect of Mo due to the effect of the present invention. In order to reliably exhibit the effects of the present invention, the content is preferably 0.01% by mass or more and 0.60% by mass or less.

また、Al:0.001質量%〜0.08質量%、V:0.001質量%〜0.05質量%、Nb:0.001質量%〜0.05質量、N:0.001質量%〜0.010質量%のうちいずれか1種以上を含有することで、さらに耐候性が向上する。Al,V,Nbは、CeおよびTa添加効果を阻害しないが、補助する作用があることに考慮したものである。また耐候性鋼材の高強度化にもこれらの元素を活用できる。また、Nは添加されるアルミニウムと結びついてオーステナイト粒径を細粒化に有効に作用するためであり、これにより耐候性鋼の機械的特性を改善できる。また、腐食過程でNはアンモニウムイオンや亜硝酸イオン等に化学変化を起こすので、腐食界面の高pH化効果や防食インヒビター効果を発現し、鋼表面の不動態化をより確実にして耐候性鋼のさび安定化を補助する。多量の添加は靱性や溶接性を劣化させるとともに、製造工程に過剰な負荷をかける。   Al: 0.001% by mass to 0.08% by mass, V: 0.001% by mass to 0.05% by mass, Nb: 0.001% by mass to 0.05% by mass, N: 0.001% by mass By containing any one or more of ˜0.010 mass%, the weather resistance is further improved. Al, V, and Nb do not inhibit the Ce and Ta addition effect, but are considered to have an assisting action. These elements can also be used to increase the strength of weathering steel. Further, N is combined with the added aluminum to effectively act on the austenite grain size, thereby improving the mechanical properties of the weathering steel. In addition, N undergoes chemical changes to ammonium ions, nitrite ions, etc. during the corrosion process, so that the effect of increasing the pH of the corrosion interface and the effect of anti-corrosion inhibitors are exhibited, and the surface of the steel is more reliably passivated and weather resistant steel. Helps stabilize rust. A large amount of addition deteriorates toughness and weldability and places an excessive load on the manufacturing process.

さらに、Caを0.0001質量%〜0.005質量%を含有することで、耐食性を高く保つことができる。これは、緻密な保護性さびに覆われると、湿潤時に腐食界面のpHを上昇させる効果があるためである。Ca添加はCu−Ni系高耐候性鋼の長期耐候性改善へのCe添加効果を阻害せず、pH上昇によってよりさび安定化を補助する。   Furthermore, corrosion resistance can be kept high by containing 0.0001 mass%-0.005 mass% of Ca. This is because when covered with dense protective rust, there is an effect of increasing the pH of the corrosion interface when wet. Ca addition does not inhibit the effect of Ce addition to improve the long-term weather resistance of Cu-Ni high weather resistance steel, and assists rust stabilization by increasing the pH.

このCaの添加により形成される鋼中の介在物の内、最もpH上昇効果を発現するのはカルシウム酸化物で、その次がカルシウムとアルミニウムの複合酸化物であることを利用したものである。そこで、カルシウム酸化物または、カルシウムとアルミニウムの複合酸化物のいずれか1種以上が鋼中に存在していることが望ましい。その確認の方法としては、鋼を非水溶媒中で電気分解処理して介在物のみを取り出し、その構造をX線回折や電子顕微鏡で決定する方法が利用できる。   Of the inclusions in the steel formed by the addition of Ca, the effect of raising the pH is the calcium oxide, and the next is the utilization of the complex oxide of calcium and aluminum. Therefore, it is desirable that at least one of calcium oxide or a composite oxide of calcium and aluminum is present in the steel. As a method for the confirmation, there can be used a method in which steel is electrolyzed in a non-aqueous solvent, only inclusions are taken out, and the structure is determined by X-ray diffraction or an electron microscope.

以上説明した本発明の耐候性鋼を用いて製造された鋼構造物では、耐候性鋼の表層がさび層で覆われ、そのさび層中のセリウム元素の50mol%以上がCe(III)またはCe(IV)の状態となり、無塗装でも高い耐候性を有するようになるので、橋梁をはじめとする鋼構造物のミニマムメンテナンス化が可能となる。   In the steel structure manufactured using the weathering steel of the present invention described above, the surface layer of the weathering steel is covered with the rust layer, and 50 mol% or more of the cerium element in the rust layer is Ce (III) or Ce. Since it is in the state of (IV) and has high weather resistance even without painting, it becomes possible to make minimum maintenance of steel structures including bridges.

以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この例に限定されるものではない。本発明は、本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention, and the present invention is limited to this example. is not. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the present invention.

表1、2に記載した化学成分の鋼塊を溶解作製した後、加熱温度1100℃の熱間圧延により、圧延板を製造した。その圧延板から、所定の大きさの板を複数枚切り出し、その表面を耐水研磨紙で粒度600番仕上げまで表面研削したものを試料とした。試料を切り出し、電子顕微鏡で組織を析出物の観察を行い、電子線を照射した際に発生する蛍光X線より析出物にセリウムが含有するかを確認した。この測定を繰り返し、そのサイズが1nm以上2μm以下であるものの個数を測定した。   After melting and producing steel ingots having chemical components described in Tables 1 and 2, rolled sheets were produced by hot rolling at a heating temperature of 1100 ° C. A plurality of sheets having a predetermined size were cut out from the rolled sheet, and the surface was ground with water-resistant abrasive paper to a particle size of 600th finish. The sample was cut out, the precipitate was observed in the structure with an electron microscope, and it was confirmed from the fluorescent X-rays generated when the electron beam was irradiated whether the deposit contained cerium. This measurement was repeated, and the number of those having a size of 1 nm or more and 2 μm or less was measured.

鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることの確認のために、Ce吸収端近傍のX線エネルギー域でX線吸収率の測定を行った。試料を切り出し、試料にX線を照射し、そこからのCeの蛍光X線を半導体検出器で測定した。測定は、Ce LIII吸収端が観察される5723eVを含む領域である5200〜6800eVの範囲で行った。Ce(0)、Ce(III)、Ce(IV)の標準物質として、Ce金属、Ce23、CeO2、を用意し、実際の試料について測定された吸収率曲線を、これらの標準物質の曲線と比較することにより、鋼中のCe(III)またはCe(IV)の比率を求めた。各試料の測定結果を表3、4に示す。 In order to confirm that 50 mol% or more of the cerium element contained in steel is in the state of Ce (III) or Ce (IV), the X-ray absorption rate is measured in the X-ray energy region near the Ce absorption edge. It was. The sample was cut out, the sample was irradiated with X-rays, and the fluorescent X-rays of Ce from the sample were measured with a semiconductor detector. The measurement was performed in a range of 5200 to 6800 eV, which is a region including 5723 eV where the Ce L III absorption edge is observed. Ce metal, Ce 2 O 3 , and CeO 2 were prepared as standard substances for Ce (0), Ce (III), and Ce (IV), and the absorption curves measured for actual samples were prepared. The ratio of Ce (III) or Ce (IV) in the steel was determined by comparing with the curve of. The measurement results of each sample are shown in Tables 3 and 4.

試料の一部については、以下の方法により表面にさび層を形成させた。50×50×3mmのサイズに切り出し、塩水を滴下してサイクル試験を実施した。試料の片面前面、およびもう一方の面については端から3mm幅の範囲をテープでマスキングし、露出面を上にして、その表面に、海水を模擬した人工海水(NaCl:2.35質量%,MgCl2:1.07質量%, NaSO4:0.41質量%, CaCl2:0.15質量%を含有し、pH=8.2に調整)を12.7倍に希釈した塩水を、0.80ml滴下した。その後、上述した乾湿サイクル[1]−[9]に試料を保持した。次に、再び、希釈した人口海水を1回目と同様に滴下した。そして再び[1]−[9]の乾湿サイクル(合計24時間)に保持した。こうした、滴下と[1]−[9]の乾湿サイクルを5回繰り返した。その後は、滴下することなく、[1]−[9]の乾湿サイクルを27回繰り返した。そして試料を取り出し、表層に生成したさび中のセリウム元素の状態を、上述したX線吸収率法により評価した。 About a part of sample, the rust layer was formed in the surface with the following method. The sample was cut into a size of 50 × 50 × 3 mm, and a cycle test was performed by dripping salt water. The front side of the sample and the other side are masked with a tape within a range of 3 mm from the end, with the exposed surface facing upward, and artificial seawater (NaCl: 2.35 mass%, Salt solution containing MgCl 2 : 1.07% by mass, Na 2 SO 4 : 0.41% by mass, CaCl 2 : 0.15% by mass, adjusted to pH = 8.2) diluted 12.7 times. 0.80 ml was added dropwise. Then, the sample was hold | maintained in the dry-wet cycle [1]-[9] mentioned above. Next, the diluted artificial seawater was dropped again in the same manner as the first time. Then, it was again held in the dry and wet cycle [1]-[9] (total 24 hours). Such dripping and the wet and dry cycle of [1]-[9] were repeated 5 times. Thereafter, the wet and dry cycle of [1]-[9] was repeated 27 times without dripping. And the sample was taken out and the state of the cerium element in the rust produced | generated on the surface layer was evaluated by the X-ray absorption rate method mentioned above.

また、試料を150×50×3mmのサイズに切り出し、長期の暴露試験を実施した。暴露試験は10年間行い、満3,5,7,10年の各時点で試料回収を行い、非特許文献1に記載された酸洗方法を用いてさびを除去し、試料の質量減少量から腐食減耗量を算出した。暴露場所は千葉県富津市であり、年平均飛来塩分量は0.21mddである。得たデータを用いて式(4)のAs値とBs値を回帰分析により決定した。As値とBs値とともに、式(4)より計算した100年後の腐食量の比較結果を表3、4に示す。表3、4では、Ni添加量レベルごとに、本発明の効果を明らかにするために、各実施例および比較例の100年後の腐食量を、比率(f)で示してある。すなわち、Ni以外の添加元素の効果を明瞭にするため、比率(f)は、Ni添加量レベルごとの基準材の腐食量を基準とした。Niの添加量が、1.2,3.0,4.0〜5.0,5.5質量%の基準材は、それぞれ、比較例R2,R9,R14,R17である。   A sample was cut into a size of 150 × 50 × 3 mm and subjected to a long-term exposure test. The exposure test is conducted for 10 years, samples are collected at each of 3, 5, 7, and 10 years, rust is removed using the pickling method described in Non-Patent Document 1, and the amount of mass loss of the sample is determined. Corrosion loss was calculated. The place of exposure is Futtsu City, Chiba Prefecture, with an annual average salinity of 0.21 mdd. Using the obtained data, the As value and Bs value of the formula (4) were determined by regression analysis. Tables 3 and 4 show the comparison results of the corrosion amount after 100 years calculated from the formula (4) together with the As value and the Bs value. In Tables 3 and 4, in order to clarify the effect of the present invention for each Ni addition amount level, the corrosion amount after 100 years of each Example and Comparative Example is shown by the ratio (f). That is, in order to clarify the effect of additive elements other than Ni, the ratio (f) is based on the corrosion amount of the reference material for each Ni addition level. The reference materials having Ni addition amounts of 1.2, 3.0, 4.0 to 5.0, and 5.5% by mass are Comparative Examples R2, R9, R14, and R17, respectively.

試料成分中にCaが含有される場合には、鋼を10体積%アセチルアセトン−1質量%テトラメチルアンモニウムクロライド−メタノール溶液中で定電位分解して介在物のみを取り出し、その定電位分解による母相の溶解量から介在物量を定量した。また、取り出した介在物の構造と組成を透過電子顕微鏡およびエネルギー分散型X線分析装置で観察・分析し、カルシウム酸化物、カルシウムとアルミニウムの複合酸化物を同定した。結果を表3,4に示す。カルシウム酸化物、カルシウムとアルミニウムの複合酸化物のいずれか1種以上が鋼中に0.0001質量%以上存在することが確認された場合を○で示してある。   When Ca is contained in the sample component, the steel is subjected to constant potential decomposition in a 10% by volume acetylacetone-1 mass% tetramethylammonium chloride-methanol solution to take out only inclusions, and the parent phase is obtained by the constant potential decomposition. The amount of inclusions was quantified from the amount dissolved. Moreover, the structure and composition of the inclusions taken out were observed and analyzed with a transmission electron microscope and an energy dispersive X-ray analyzer, and calcium oxide and a composite oxide of calcium and aluminum were identified. The results are shown in Tables 3 and 4. A case where it is confirmed that 0.0001 mass% or more of calcium oxide or a complex oxide of calcium and aluminum is present in the steel is indicated by ◯.

表3,4の結果からわかるように、本発明例の100年後の腐食量は、Ni添加量レベルごとに基準となる、それぞれ比較例R2,R9,R14,R17と較べた比率(f)で1以下であり、本発明の効果が明瞭に確認できる。   As can be seen from the results of Tables 3 and 4, the corrosion amount after 100 years of the inventive example is a standard for each Ni addition level, and the ratio (f) compared to Comparative Examples R2, R9, R14, and R17, respectively. Therefore, the effect of the present invention can be clearly confirmed.

Figure 0004762926
Figure 0004762926

Figure 0004762926
Figure 0004762926

Figure 0004762926
Figure 0004762926

Figure 0004762926
Figure 0004762926

なお表3、4において、*1)〜*3)は、次のような記号の意味の定義を示す。
*1)◎:105個/cm超、○:103〜105個/cm、×:103個/cm未満。
*2)○:鋼に含有するセリウム元素のCe(III)またはCe(IV)の比率が50mol%以上、×:50mol%未満。
*3)○:カルシウム酸化物もしくはカルシウムとアルミの複合酸化物の存在を電子顕微鏡観察で確認済み。×:カルシウム酸化物もしくはカルシウムとアルミの複合酸化物の存在を電子顕微鏡観察で確認できなかった。
In Tables 3 and 4, * 1) to * 3) show definitions of the meaning of the following symbols.
* 1) ◎: More than 105 pieces / cm 3 , ◯: 103 to 105 pieces / cm 3 , x: less than 103 pieces / cm 3
* 2) ○: The ratio of Ce (III) or Ce (IV) of the cerium element contained in the steel is 50 mol% or more, and x: less than 50 mol%.
* 3) ○: The presence of calcium oxide or a composite oxide of calcium and aluminum has been confirmed by electron microscope observation. X: Presence of calcium oxide or composite oxide of calcium and aluminum could not be confirmed by observation with an electron microscope.

また、*4)は、次のような安定化指数Bsの基準値となる例を示す。
*4)1.2%Ni含有の本発明例1〜20、46〜52および比較例R1〜R8、R19は、比較例R2をさび安定化指数Bsの基準値として、比率(f)を求めた。また、3%Ni含有の本発明例21〜34および比較例R9〜13は比較例R9を、4〜5%Ni含有の本発明例35〜43および比較例R14〜R16、R18は比較例R14を、5.5%Ni含有の本発明例44、45は比較例R17を、それぞれさび安定化指数Bsの基準値として、比率(f)を求めた。
Further, * 4) shows an example that becomes a reference value of the following stabilization index Bs.
* 4) Inventive Examples 1 to 20, 46 to 52 and Comparative Examples R1 to R8 and R19 containing 1.2% Ni obtain the ratio (f) using Comparative Example R2 as a reference value for the rust stabilization index Bs. It was. Inventive Examples 21 to 34 and Comparative Examples R9 to 13 containing 3% Ni contain Comparative Example R9, Inventive Examples 35 to 43 containing 4 to 5% Ni and Comparative Examples R14 to R16 and R18 represent Comparative Example R14. In the inventive examples 44 and 45 containing 5.5% Ni, the ratio (f) was determined using the comparative example R17 as the reference value of the rust stabilization index Bs.

表1の本発明例1、21、表2の比較例R2、R9の化学成分を有する鋼材(厚さ10mm)ごとに図2に示すような橋梁を模擬した構造物を4体作製し、海岸より10mの位置に5年間放置した。各構造物のはりの側面部分の表面のさび層中のセリウム元素の中のCe(III)またはCe(IV)の状態である比率を本文記載の方法で測定し、それぞれ、本発明例1および21の成分の鋼材ではそれぞれ、62 mol%,71 mol%であることを確認した。一方、比較例R2および9の成分の鋼材では、両方ともさび層中のセリウム元素の中のCe(III)またはCe(IV)の状態である比率は、10 mol%以下であった。   For each of the steel materials (thickness 10 mm) having the chemical components of Invention Examples 1 and 21 in Table 1 and Comparative Examples R2 and R9 in Table 2, four structures simulating a bridge as shown in FIG. It was left for 5 years at a position of 10 m. The ratio of the state of Ce (III) or Ce (IV) in the cerium element in the rust layer on the side surface portion of the beam of each structure was measured by the method described in the text. It was confirmed that the steel materials of 21 components were 62 mol% and 71 mol%, respectively. On the other hand, in the steel materials of the components of Comparative Examples R2 and 9, the ratio of Ce (III) or Ce (IV) in the cerium element in the rust layer was 10 mol% or less.

また、各構造物のはりの側面部分の腐食量を、同じNi添加量レベルごとに比較すると、1.2%Niの本発明例1の成分の鋼材は、比較例R2の成分の鋼材腐食量の0.77倍(すなわち、比率f=0.77)、3.0%Niの本発明例21の成分の鋼材は、比較例R9の成分の鋼材腐食量の0.85倍(すなわち、比率f=0.85)であった。したがって、同じNi添加量レベルどうしで比較すると、本発明例の方が比較例に比べ腐食量が抑えられることがわかった。なお、その比率fは、表3,4で求めたAs、Bs値および式(4)の式においてX=5(年)とおいて算出される結果と良い一致を示した。   Further, when the corrosion amount of the side surface portion of the beam of each structure is compared for each same Ni addition amount level, the steel material of the component of Invention Example 1 of 1.2% Ni is the corrosion amount of the steel material of the component of Comparative Example R2. Is 0.77 times (ie, the ratio f = 0.77), and the steel material of the component of Invention Example 21 of 3.0% Ni is 0.85 times (ie, the ratio) of the steel material corrosion amount of the component of Comparative Example R9. f = 0.85). Therefore, it was found that the amount of corrosion was reduced in the inventive example compared to the comparative example when compared at the same Ni addition level. The ratio f was in good agreement with the As and Bs values obtained in Tables 3 and 4 and the result calculated at X = 5 (years) in the equation (4).

さびおよび標準物質(Ce23,CeO4)についての、Ce吸収端付近での吸収率μtの測定結果。Measurement results of the absorption rate μt near the Ce absorption edge for rust and standard substances (Ce 2 O 3 , CeO 4 ). 橋梁を模擬した構造物の概要。Outline of the structure simulating a bridge.

Claims (7)

質量%で、
C: 0.03%〜0.18%、
Si:0.1%〜1.5%、
Mn:0.2%〜1.5%、
P: 0.02%以下、
S: 0.02%以下、
Cu:0.3%〜3%、
Ni:1.0%〜6%、
Ce:0.0001%〜0.03%、
Ta:0.0001%〜0.05%
を含有し、残部Feおよび不可避的不純物からなる耐候性鋼であって、
該鋼中にセリウムを含有した析出粒子が存在し、そのサイズが1nm以上2μm以下であるものの個数が103個/cm3以上であり、かつ、鋼に含有するセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることを特徴とする緻密さび生成性を高めた耐候性鋼。
% By mass
C: 0.03% to 0.18%,
Si: 0.1% to 1.5%,
Mn: 0.2% to 1.5%
P: 0.02% or less,
S: 0.02% or less,
Cu: 0.3% to 3%,
Ni: 1.0% to 6%,
Ce: 0.0001% to 0.03%,
Ta: 0.0001% to 0.05%
A weather resistant steel comprising the balance Fe and unavoidable impurities,
There are precipitated particles containing cerium in the steel, the number of which is 1 nm or more and 2 μm or less is 10 3 / cm 3 or more, and 50 mol% or more of the cerium element contained in the steel is A weather-resistant steel with improved dense rust formation, characterized by being in the state of Ce (III) or Ce (IV).
さらにTi:0.001質量%〜0.2質量%を含有し、Ce、Ta、Tiそれぞれの質量ppmの積 [Ce]×[Ta]×[Ti] の値が、10以上であることを特徴とする請求項1に記載の緻密さび生成性を高めた耐候性鋼。   Further, Ti: 0.001% by mass to 0.2% by mass, and the value of the product [Ce] × [Ta] × [Ti] of each mass ppm of Ce, Ta, and Ti is 10 or more. The weather-resistant steel according to claim 1, which has improved dense rust formation. さらに、質量%で、P:0.02%超〜0.2%、Cr:0.01%〜0.75%、Mo:0.01%〜0.60%、のうちいずれか1種以上を含有することを特徴とする請求項1または2に記載の緻密さび生成性を高めた耐候性鋼。   Furthermore, in mass%, any one or more of P: more than 0.02% to 0.2%, Cr: 0.01% to 0.75%, Mo: 0.01% to 0.60% The weatherable steel with improved dense rust formation according to claim 1 or 2, characterized in that さらに、質量%で、Al:0.001%〜0.08%、V:0.001%〜0.05%、Nb:0.001%〜0.05%、N:0.001%〜0.010%
のうちいずれか1種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の緻密さび生成性を高めた耐候性鋼。
Furthermore, by mass%, Al: 0.001% to 0.08%, V: 0.001% to 0.05%, Nb: 0.001% to 0.05%, N: 0.001% to 0 .010%
The weatherproof steel with improved dense rust formation property according to any one of claims 1 to 3, characterized by containing at least one of them.
さらに、Ca:0.0001質量%〜0.005質量%を含有することを特徴とする請求項1〜4のいずれか1項に記載の緻密さび生成性を高めた耐候性鋼。   Furthermore, Ca: 0.0001 mass%-0.005 mass% are contained, The weatherproof steel which improved the dense rust formation property of any one of Claims 1-4 characterized by the above-mentioned. カルシウム酸化物、カルシウムとアルミニウムの複合酸化物のいずれか1種以上が0.0001質量%以上、鋼中に存在することを特徴とする請求項5に記載の緻密さび生成性を高めた耐候性鋼。   6. The weather resistance with improved dense rust formation according to claim 5, wherein at least one of calcium oxide and calcium-aluminum composite oxide is present in the steel in an amount of 0.0001% by mass or more. steel. 請求項1〜6のいずれか1項に記載の耐候性鋼が用いられた鋼構造物であって、該耐候性鋼の表層がさび層で覆われ、該さび層中のセリウム元素の50 mol%以上がCe(III)またはCe(IV)の状態であることを特徴とする鋼構造物。   A steel structure using the weathering steel according to any one of claims 1 to 6, wherein a surface layer of the weathering steel is covered with a rust layer, and 50 mol of cerium element in the rust layer A steel structure characterized in that at least% is in the state of Ce (III) or Ce (IV).
JP2007021314A 2007-01-31 2007-01-31 High weatherability steel with improved dense rust formation and steel structure using the same Expired - Fee Related JP4762926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021314A JP4762926B2 (en) 2007-01-31 2007-01-31 High weatherability steel with improved dense rust formation and steel structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021314A JP4762926B2 (en) 2007-01-31 2007-01-31 High weatherability steel with improved dense rust formation and steel structure using the same

Publications (2)

Publication Number Publication Date
JP2008184678A JP2008184678A (en) 2008-08-14
JP4762926B2 true JP4762926B2 (en) 2011-08-31

Family

ID=39727916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021314A Expired - Fee Related JP4762926B2 (en) 2007-01-31 2007-01-31 High weatherability steel with improved dense rust formation and steel structure using the same

Country Status (1)

Country Link
JP (1) JP4762926B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVI20150004U1 (en) 2015-02-09 2016-08-09 Cracco S R L STRUCTURE OF STACCIONATA.
CN110093557A (en) * 2019-03-28 2019-08-06 舞阳钢铁有限责任公司 A kind of high-strength building weather-resistant steel plate and its production method
CN111057945B (en) * 2019-06-27 2021-07-27 燕山大学 500 MPa-level high-toughness weather-resistant bridge steel and preparation method thereof
CN111020376A (en) * 2019-11-14 2020-04-17 舞阳钢铁有限责任公司 Low-yield-ratio high-toughness 770 MPa-grade weather-resistant bridge steel plate and production method thereof
CN114262841A (en) * 2021-10-26 2022-04-01 包头钢铁(集团)有限责任公司 420 MPa-level weather-resistant structural steel with impact work of more than 150J at-80 ℃ and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551667A (en) * 1991-08-27 1993-03-02 Nippon Steel Corp Seacoast high weather-resistant steel
JP3466076B2 (en) * 1998-02-27 2003-11-10 株式会社神戸製鋼所 Steel with excellent corrosion resistance and weldability
JP4768447B2 (en) * 2006-01-11 2011-09-07 株式会社神戸製鋼所 Weatherproof steel plate with excellent toughness of weld heat affected zone

Also Published As

Publication number Publication date
JP2008184678A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4762878B2 (en) Weatherproof steel with enhanced rust stabilization ability and method for producing the same
JP4185552B2 (en) Steel material with excellent corrosion resistance
EP2395120B1 (en) Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
JP6515282B2 (en) Corrosion resistant steel for acidic environment and method for preventing corrosion
KR102011250B1 (en) Steel
JP4762926B2 (en) High weatherability steel with improved dense rust formation and steel structure using the same
JP6556163B2 (en) Structural steel with excellent weather resistance
BR112017004145B1 (en) MANUFACTURING METHOD OF COLD-LAMINATED STEEL SHEET
JP5849868B2 (en) Steel material with excellent corrosion resistance
JP6653606B2 (en) Al-containing ferritic stainless steel and method for producing the same
KR20080097479A (en) Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
KR101609430B1 (en) Steel with rust layer excellent in weathering resistance in highly salty environment
JP2016199778A (en) Steel material and method for producing the steel material
JPWO2015145825A1 (en) Ferritic stainless steel and manufacturing method thereof
JP5958103B2 (en) Steel material for marine ballast tanks with excellent paint swell resistance
JPWO2019102817A1 (en) Corrosion-resistant steel for crude oil tanker upper deck and bottom plate, and crude oil tanker
JPWO2013129295A1 (en) Si-containing high-strength cold-rolled steel sheet, method for producing the same, and automobile member
WO2019021695A1 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
JP5942532B2 (en) Steel material with excellent corrosion resistance
JP2012072489A (en) Steel product for welded structure, excellent in weatherability
JP7196537B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier
JP6504973B2 (en) Al-containing ferritic stainless steel excellent in sulfide corrosion resistance and method for producing the same
JP2017226878A (en) Steel for bolt
Stypula et al. Corrosion behaviour of stainless steel in hot concentrated sulfuric acid–effect of fluoride impurities
JP7099436B2 (en) Ferritic stainless steel sheets for civil engineering, their manufacturing methods, and civil engineering structures using the steel sheets.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees