JP4185552B2 - Steel material with excellent corrosion resistance - Google Patents

Steel material with excellent corrosion resistance Download PDF

Info

Publication number
JP4185552B2
JP4185552B2 JP2007303333A JP2007303333A JP4185552B2 JP 4185552 B2 JP4185552 B2 JP 4185552B2 JP 2007303333 A JP2007303333 A JP 2007303333A JP 2007303333 A JP2007303333 A JP 2007303333A JP 4185552 B2 JP4185552 B2 JP 4185552B2
Authority
JP
Japan
Prior art keywords
rust
mass
corrosion resistance
steel
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007303333A
Other languages
Japanese (ja)
Other versions
JP2008208452A (en
Inventor
文雄 湯瀬
淳 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007303333A priority Critical patent/JP4185552B2/en
Priority to PCT/JP2008/051065 priority patent/WO2008093608A1/en
Priority to KR1020097016029A priority patent/KR101120343B1/en
Priority to CN2008800022925A priority patent/CN101589167B/en
Priority to TW097103510A priority patent/TW200902731A/en
Publication of JP2008208452A publication Critical patent/JP2008208452A/en
Application granted granted Critical
Publication of JP4185552B2 publication Critical patent/JP4185552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Description

本発明は、土木、建築、鉄塔、橋梁、建設機械、鋼管、タンクなどの鋼構造物、特に、硫黄酸化物が多い大気汚染環境において耐食性に優れることが求められる鋼構造物の素材として好適な耐食性に優れた鋼材に関する。   The present invention is suitable as a material for steel structures such as civil engineering, architecture, steel towers, bridges, construction machines, steel pipes, tanks, etc., and particularly steel structures that are required to have excellent corrosion resistance in an air-polluted environment rich in sulfur oxides. The present invention relates to a steel material having excellent corrosion resistance.

一般に、重化学工業地帯や、石炭の燃焼に伴う硫黄酸化物や粉塵が多量にある大気汚染環境や、硫黄、硫化水素がある温泉地、火山地帯などで鋼材の腐食が激しいのは、硫黄酸化物による弱酸性環境が原因であると考えられている。このような環境に適した耐食材料の一つとして、従来、合金鋼が用いられてきた。   In general, steel materials are heavily corroded in heavy chemical industries, air pollution environments that contain a large amount of sulfur oxides and dusts from coal combustion, hot springs and volcanic areas with sulfur and hydrogen sulfide, etc. It is thought to be caused by a weakly acidic environment. Conventionally, alloy steel has been used as one of corrosion resistant materials suitable for such an environment.

CrやNiを含有させて耐食性を向上させた鋼は、古くから知られており、各種ステンレス鋼として実用化されている。しかし、ステンレス鋼においては、高価な元素であるCrが通常13質量%以上含まれ、材料コストが非常に高価であるため、構造物や構造部材等に用いられることは稀にしかない。   Steel with improved corrosion resistance by containing Cr or Ni has been known for a long time and has been put into practical use as various stainless steels. However, stainless steel usually contains 13% by mass or more of an expensive element Cr, and the material cost is very high. Therefore, it is rarely used for a structure or a structural member.

一方、耐食性鋼材には、ステンレス鋼のほかに、保護性の錆により防食を行う低合金鋼も知られている。これら低合金鋼は、Cr、Cu、P等を含有した耐候性鋼およびCr、Cu、Mo等を含有した耐海水鋼に大別される。耐候性鋼は大気環境下で、また、耐海水鋼は海水中で優れた防食効果を発揮する。   On the other hand, as a corrosion-resistant steel material, low alloy steel that performs corrosion protection by protective rust is known in addition to stainless steel. These low alloy steels are roughly classified into a weather resistant steel containing Cr, Cu, P and the like and a seawater resistant steel containing Cr, Cu, Mo and the like. Weatherproof steel exhibits an excellent anticorrosion effect under atmospheric conditions, and seawater resistant steel exhibits excellent anticorrosion effects in seawater.

これらの低合金鋼は、ステンレス鋼に比して安価であり、普通鋼に比して耐食性に優れるため、構造部材としてもよく使用されている。しかし、酸性雨の環境やSOx環境では耐候性鋼特有の保護性錆が生成されず、所望の耐食性が得られない。   Since these low alloy steels are cheaper than stainless steel and superior in corrosion resistance compared to ordinary steel, they are often used as structural members. However, protective rust peculiar to weathering steel is not generated in an acid rain environment or SOx environment, and desired corrosion resistance cannot be obtained.

また、「耐硫酸鋼」とよばれるものがある。これは低合金耐食鋼のひとつで、鋼にCuを加え、さらに、少量の補助元素(SbやSnなど)を加えたものである。しかし、日本国内では昭和50年以降、大気中のSO濃度は大幅に減少し、前記のような硫黄酸化物による激しい腐食環境は温泉地などを除いてなくなったに等しいため、特に専用の材料は開発されていない。 There is also a so-called “sulfuric acid resistant steel”. This is one of the low alloy corrosion resistant steels, which is obtained by adding Cu to the steel and further adding a small amount of auxiliary elements (Sb, Sn, etc.). However, in Japan since 1975, the concentration of SO 2 in the atmosphere has been greatly reduced, and the severe corrosive environment caused by sulfur oxides is no longer present except in hot springs. Has not been developed.

以上のとおり、鉄の耐食性向上のためにはCr、Cu、Niなどの耐食性向上元素の添加が常用されている。これらの元素は、一般的に、添加量が多いほど高い耐食性が得られるが、添加量が多くなるにつれて、切断性や機械的特性、溶接性の低下をきたすことが多く、さらに、素材コストも高くなるため、元素添加量はなるべく低く抑えることが望ましい。このように、耐食性の向上と鋼材特性およびコストパフォーマンスの向上とは二律背反の関係にあり、両者を十分に満足するべく多くの検討が実施されているが、どこかのバランス点で妥協せざるをえない。   As described above, the addition of elements for improving corrosion resistance such as Cr, Cu, and Ni is commonly used for improving the corrosion resistance of iron. In general, the higher the added amount, the higher the corrosion resistance of these elements. However, as the added amount increases, the cutting performance, mechanical properties, and weldability often decrease, and the material cost also increases. Therefore, it is desirable to keep the element addition amount as low as possible. Thus, improvement in corrosion resistance and improvement in steel properties and cost performance are in a trade-off relationship, and many studies have been conducted to fully satisfy the two, but there is a compromise between some balance points. No.

一方、重油、石炭、ごみ等を燃焼させた排ガスに曝される煙道、煙突、ボイラー空気予熱器などの設備で問題となる耐硫酸露点腐食性環境では、硫酸露点腐食鋼が用いられる。これは、硫黄分を含有する燃料を燃焼させると、排ガス中にSOxが生じ、これが排ガス中の水分と化合して硫酸が生じる。そして、排ガスの温度が低下して硫酸の露点に到達すると、硫酸ガスが凝結して鋼材を腐食させる。このような硫酸露点腐食環境に用いられる鋼材として、従来より硫酸環境において耐食性を発揮する耐硫酸露点腐食鋼材が開発されてきている。一般に、耐硫酸腐食性に有効なSb、Cuを複合添加した低合金鋼が実用に供されてきている。近年でも、低C−低Si−Cu添加の耐硫酸露点腐食鋼が提案されている(特許文献1)。   On the other hand, sulfuric acid dew-point corrosion steel is used in a sulfuric acid dew-point corrosive environment that is problematic in facilities such as flues, chimneys, and boiler air preheaters that are exposed to exhaust gas that burns heavy oil, coal, garbage, and the like. This is because, when a fuel containing a sulfur content is burned, SOx is generated in the exhaust gas, and this is combined with moisture in the exhaust gas to generate sulfuric acid. And when the temperature of exhaust gas falls and reaches the dew point of sulfuric acid, sulfuric acid gas condenses and corrodes steel materials. As a steel material used in such a sulfuric acid dew point corrosion environment, a sulfuric acid dew point corrosion steel material that exhibits corrosion resistance in a sulfuric acid environment has been developed. In general, low alloy steels containing Sb and Cu, which are effective in resistance to sulfuric acid corrosion, have been put into practical use. In recent years, sulfuric acid dew-point corrosion steel added with low C-low Si-Cu has been proposed (Patent Document 1).

ところで、近年、東アジア地域では急速な経済発展に伴い、エネルギー需要が急速に増大している。特に、中国では、石炭の生産・消費量が急ピッチで増加し、二酸化硫黄(SO)排出量が年間2000万トンと日本国内での排出量の20倍を超えるとの試算もある。こうした中国での大気汚染が大気循環を通じて長距離輸送され、日本でもSOxが原因とされる酸性雨(pHが4.5以下)が降っている地域も観察されるようになってきた。
特開2006−241476号公報(請求項1)
By the way, in recent years, energy demand is rapidly increasing in the East Asian region with rapid economic development. In particular, in China, the production and consumption of coal is increasing at a rapid pace, and it is estimated that sulfur dioxide (SO 2 ) emissions will be 20 million tons per year, more than 20 times that in Japan. This kind of air pollution in China has been transported over long distances through the air circulation, and even in Japan, areas where acid rain (pH of 4.5 or less) caused by SOx has been observed have been observed.
JP 2006-241476 A (Claim 1)

しかしながら、従来の鋼材では、pHが4.5以下の酸性雨が降り、硫黄酸化物が多い大気汚染環境下において優れた裸耐食性を有するものはなく、土木、建築、鉄塔、橋梁、建設機械、鋼管、タンクなどの鋼構造物の用途に応じて十分に高い耐食性を発揮することができなかった。特に、日本で用いられる鋼材は、それらの用途に応じた耐食性を十分に有するものではなかった。   However, in conventional steel materials, there is no acid rain having a pH of 4.5 or less, and there is no material having excellent bare corrosion resistance in an air polluted environment with a large amount of sulfur oxides. Civil engineering, architecture, steel towers, bridges, construction machinery, It was not possible to exhibit sufficiently high corrosion resistance depending on the use of steel structures such as steel pipes and tanks. In particular, steel materials used in Japan do not have sufficient corrosion resistance according to their use.

そこで、本発明の課題は、酸性雨が降り、硫黄酸化物が多い大気汚染環境においても優れた耐食性を発揮する鋼材の提供を目的とする。   Then, the subject of this invention aims at provision of the steel material which exhibits the outstanding corrosion resistance also in the air pollution environment where acid rain falls and there are many sulfur oxides.

前記知見に基づいて、前記の課題を解決するため、請求項1に係る本発明の耐食性に優れた鋼材は、
(A)質量%にて、C:0.02〜0.15%、Si:0.10〜1.0%、Mn:0.1〜1.5%、S:0.02〜0.5%、Ti:0.02〜0.15%、Ca:0.0001〜0.01%およびAl:0.01〜0.50%を必須成分とし、さらに、Cu:0.05〜3.0%およびNi:0.05%〜6.0%から選ばれる少なくとも1種を含有し、残部Feおよび不可避的不純物からなり、Ni、Cu、SおよびTiの含有量の間に[(Ni+4.5×Cu)×S×2500×Ti>5]で表される関係を有し、かつ、
(B)表面が、S:0.3〜5.0質量%を含み、さらに、Ti、Cu、Ni、Nb、ZrおよびVから選ばれる少なくとも1種を合計で0.5〜10.0質量%含有する錆により被覆されており、かつ、
(C)表面に、β−FeOOH成分のX線回折法により求められる結晶子サイズが50nm未満である錆層が形成され、かつ前記錆層の分子吸着法により求められる比表面積が10m/g以上である
ことを特徴とする。
In order to solve the above problems based on the above knowledge, the steel material excellent in corrosion resistance of the present invention according to claim 1 is:
(A) In mass%, C: 0.02-0.15%, Si: 0.10-1.0%, Mn: 0.1-1.5%, S: 0.02-0.5 %, Ti: 0.02 to 0.15%, Ca: 0.0001 to 0.01% and Al: 0.01 to 0.50% as essential components, and Cu: 0.05 to 3.0 % And Ni: at least one selected from 0.05% to 6.0%, consisting of the balance Fe and unavoidable impurities, between the contents of Ni, Cu, S and Ti [(Ni + 4.5 × Cu) × S × 2500 × Ti> 5], and
(B) The surface contains S: 0.3 to 5.0% by mass, and at least one selected from Ti, Cu, Ni, Nb, Zr and V in total is 0.5 to 10.0% by mass. % Covered with rust, and
(C) A rust layer having a crystallite size of less than 50 nm determined by the X-ray diffraction method of the β-FeOOH component is formed on the surface, and the specific surface area determined by the molecular adsorption method of the rust layer is 10 m 2 / g. It is the above.

この鋼材では、大気汚染環境中でNi、Cu、TiおよびSの含有量が前記式(1)で表される特定の関係を有することによって、特有の不溶性硫化物皮膜からなる保護皮膜を作り高い耐食性を得ることができる。すなわち、硫黄酸化物が多い大気汚染環境において、Ni、Cu、Tiは、通常の大気腐食において生成錆(Ni、Cu:安定な非晶質錆生成促進、α錆生成促進、Ti:不安定なβ錆生成抑制)制御を行うほか、SOx環境では不溶性硫化物をつくり耐食性向上皮膜を生成することができる。そして、前記(B)の条件を満足することにより、腐食環境下での高耐食性を再現性よく発揮できる。さらに、前記(C)の条件を満足することによって、塩化物環境や硫黄酸化物が多い大気汚染環境のような厳しい腐食環境下でも、流れ錆や剥離錆を生じることがなく、優れた耐食性を発揮できる。   In this steel material, the content of Ni, Cu, Ti and S in the air-polluting environment has a specific relationship represented by the above formula (1), thereby making a high protective film made of a unique insoluble sulfide film. Corrosion resistance can be obtained. That is, in an air pollution environment with a lot of sulfur oxides, Ni, Cu, and Ti are generated rust in normal atmospheric corrosion (Ni, Cu: promotion of stable amorphous rust formation, promotion of α rust formation, Ti: unstable In addition to controlling β-rust generation, in the SOx environment, insoluble sulfides can be produced to produce a corrosion-resistant coating. By satisfying the condition (B), high corrosion resistance in a corrosive environment can be exhibited with good reproducibility. Furthermore, by satisfying the above condition (C), there is no flow rust or exfoliation rust even under severe corrosive environment such as chloride environment or air pollution environment with a lot of sulfur oxide, and excellent corrosion resistance. Can demonstrate.

請求項2に係る本発明の耐食性に優れた鋼材は、さらに、La:0.0001〜0.05質量%、Ce:0.0001〜0.05質量%、Mg:0.0001〜0.05質量%、Mo:0.05〜3.0質量%、Nb:0.005〜0.5質量%、V:0.01〜0.5質量%、Zr:0.005〜0.5質量%、B:0.0003〜0.003質量%、およびW:0.05〜3.0質量%から選ばれる少なくとも1種を含有することを特徴とする。   The steel material excellent in corrosion resistance of the present invention according to claim 2 is further La: 0.0001-0.05 mass%, Ce: 0.0001-0.05 mass%, Mg: 0.0001-0.05. Mass%, Mo: 0.05-3.0 mass%, Nb: 0.005-0.5 mass%, V: 0.01-0.5 mass%, Zr: 0.005-0.5 mass% B: 0.0003 to 0.003% by mass and W: 0.05 to 3.0% by mass.

この鋼材では、La、Ce、Mg、Mo、Nb、V、Zr、BおよびWから選ばれる少なくとも1種を、それぞれ特定の量含むことによって、さらに耐食性の向上を図ることができる。中でも、La、CeおよびMgは、腐食先端部のpH低下を抑制する作用や孔食の起点となり耐候性を低下させるMnSの生成を抑制する働き、さらに、腐食初期にZnとFeを安定的に腐食させる効果を有する。さらに、Nb、V、Zr、MoおよびBは保護性錆の生成促進に有効であり、また、NbおよびVは焼き入性を向上させ、強度の向上に有効である。Bは焼き入性を上昇させる働きをも有する。   In this steel material, the corrosion resistance can be further improved by including a specific amount of at least one selected from La, Ce, Mg, Mo, Nb, V, Zr, B and W. Among them, La, Ce, and Mg act to suppress the pH drop at the corrosion tip and to suppress the formation of MnS that becomes the starting point of pitting corrosion and lower the weather resistance. Furthermore, Zn and Fe are stably added in the early stage of corrosion. Has the effect of corroding. Furthermore, Nb, V, Zr, Mo and B are effective for promoting the generation of protective rust, and Nb and V are effective for improving the hardenability and improving the strength. B also has a function of increasing hardenability.

請求項3に係る本発明の耐食性に優れた鋼材は、表面に生成した錆の、X線回折法により求められる非晶質成分の分率が30質量%以上、かつβ−FeOOH成分の分率が30質量%以下であり、錆の分率がα−FeOOH/γ−FeOOH>0.6であることを特徴とする。   The steel material excellent in corrosion resistance of the present invention according to claim 3 has a rust generated on the surface, the fraction of the amorphous component determined by the X-ray diffraction method is 30% by mass or more, and the fraction of the β-FeOOH component Is 30% by mass or less, and the fraction of rust is α-FeOOH / γ-FeOOH> 0.6.

この鋼材では、表面に生成する錆において、耐食性の向上に有効な非晶質の錆の分率を30質量%以上、腐食を進行させる起点となる結晶性の錆(β−FeOOH成分)の分率が30質量%以下であり、錆の分率がα−FeOOH/γ−FeOOH>0.6であることによって、優れた耐食性を発揮し、SOx環境でも緻密な保護性錆を維持できる。   In this steel material, in the rust generated on the surface, the proportion of amorphous rust effective for improving the corrosion resistance is 30% by mass or more, and the fraction of crystalline rust (β-FeOOH component) that is the starting point for the progress of corrosion. When the ratio is 30% by mass or less and the fraction of rust is α-FeOOH / γ-FeOOH> 0.6, excellent corrosion resistance is exhibited, and dense protective rust can be maintained even in an SOx environment.

本発明に係る鋼材は、pHが4.5以下の酸性雨が降り、硫黄酸化物が多い大気汚染環境においても優れた耐食性を発揮することができる。特に、土木、建築、鉄塔、橋梁、建設機械、鋼管、タンクなどの鋼構造物、特に、硫黄酸化物が多い大気汚染環境において耐食性に優れることが求められる鋼構造物の素材として好適である。   The steel material according to the present invention can exhibit excellent corrosion resistance even in an air polluted environment where acid rain with a pH of 4.5 or less falls and there are many sulfur oxides. Particularly, it is suitable as a material for steel structures such as civil engineering, architecture, steel towers, bridges, construction machines, steel pipes, tanks and the like, and particularly steel structures that are required to have excellent corrosion resistance in an air pollution environment with a lot of sulfur oxides.

以下、本発明に係る耐食性に優れた鋼材(以下、「本発明の鋼材」という)について詳細に説明する。   Hereinafter, the steel material excellent in corrosion resistance according to the present invention (hereinafter referred to as “the steel material of the present invention”) will be described in detail.

本発明の鋼材は、質量%で、C、Si、Mn、S、Ti、CaおよびAlを必須成分とし、CuおよびNiから選ばれる少なくとも1種とを含有し、残部Feおよび不可避的不純物から構成され、Ni、Cu、およびTiの含有量の間に特定の関係を有するものである。以下、本発明の鋼材を構成する各成分の含有量の数値範囲およびその数値範囲の限定理由、ならびにNi、Cu、およびTiの含有量の関係について説明する。   The steel material of the present invention contains, by mass%, C, Si, Mn, S, Ti, Ca and Al as essential components, and contains at least one selected from Cu and Ni, and is composed of the balance Fe and inevitable impurities. And having a specific relationship between the contents of Ni, Cu, and Ti. Hereinafter, the numerical range of the content of each component constituting the steel material of the present invention, the reason for limiting the numerical range, and the relationship between the contents of Ni, Cu, and Ti will be described.

Cは鋼の強度改善に有効な元素であり、390〜630N/mm級またはそれ以上の強度を確保する上で有効な元素であるが、C含有量が0.15質量%を超える場合には鋼の溶接性や裸耐候性を劣化させる。一方、C含有量が0.02質量%未満では、上記強度確保が困難となる。かかる観点から、C含有量は0.02〜0.15質量%、好ましくは0.04〜0.10質量%である。 C is an element effective for improving the strength of steel, and is an element effective for securing a strength of 390 to 630 N / mm grade 2 or higher, but when the C content exceeds 0.15 mass%. Deteriorates the weldability and bare weather resistance of steel. On the other hand, when the C content is less than 0.02% by mass, it is difficult to ensure the strength. From this viewpoint, the C content is 0.02 to 0.15 mass%, preferably 0.04 to 0.10 mass%.

Siは溶鋼の脱酸や固溶強化に有効な元素であり、また、緻密な安定錆層の形成を促進し、裸耐候性などの耐食性を向上させる効果も有する。しかし、Si含有量が0.10質量%未満では、これらの効果が不十分である。また、Si含有量が1.0質量%を超える場合には、溶接性が低下する。このような観点から、Si含有量は0.10〜1.0質量%であり、好ましくは0.2〜0.8質量%である。   Si is an element effective for deoxidation and solid solution strengthening of molten steel, and also has an effect of promoting the formation of a dense stable rust layer and improving corrosion resistance such as bare weather resistance. However, when the Si content is less than 0.10% by mass, these effects are insufficient. Moreover, when Si content exceeds 1.0 mass%, weldability will fall. From such a viewpoint, the Si content is 0.10 to 1.0 mass%, preferably 0.2 to 0.8 mass%.

Mnは鋼強度の改善に有効な元素であり、Cに替わり390〜630N/mm級またはそれ以上の強度を確保する上で有用な元素であるが、Mn含有量が1.5質量%を超える場合には、MnSが鋼中に多量に生成して、裸耐候性などの耐食性の劣化を招くおそれがある。また、Mn含有量が0.1質量%未満では、鋼強度の確保が難しくなる。かかる観点から、Mn含有量は0.1〜1.5質量%であり、好ましくは0.3〜1.3質量%である。 Mn is an element effective for improving the steel strength, and is an element useful for securing a strength of 390 to 630 N / mm grade 2 or higher in place of C, but the Mn content is 1.5% by mass. When exceeding, MnS will produce | generate in large quantities in steel and there exists a possibility of causing deterioration of corrosion resistance, such as a bare weather resistance. Moreover, if Mn content is less than 0.1 mass%, it will become difficult to ensure steel strength. From such a viewpoint, the Mn content is 0.1 to 1.5% by mass, preferably 0.3 to 1.3% by mass.

Sは、従来、多すぎるとFeS、MnSなどの腐食起点を多く作るので低減するのが望ましい元素であるが、本発明の鋼材では、Cu、NiおよびTiの共存によって、SOx環境では不溶性硫化物を生成して耐食性向上皮膜を形成するため、耐食性の向上に有効な元素である。しかし、0.5質量%を越えて含有すると、機械的特性が劣化するとともに、腐食の起点となるFeS、MnSが鋼中に多量に生成して、前記安定錆層の形成を阻害して、耐食性劣化を招く可能性がある。また、Niなどを過剰に含有した場合に、Sとの反応により、溶接金属の粒界に低融点のNiS化合物を析出させ、凝固金属の粒界の延性を劣化させやすくなる。この観点から、S含有量を0.5質量%以下とすれば、前記低融点のNiS化合物を析出させずに、Niをより多量に含有することが可能になるという利点もある。そこで、S含有量は0.02〜0.5質量%、好ましくは0.01〜0.3質量%である。   Conventionally, S is an element that is desirable to be reduced because too many elements cause corrosion starting points such as FeS and MnS. However, in the steel of the present invention, insoluble sulfides in the SOx environment due to the coexistence of Cu, Ni and Ti. Is an element effective in improving corrosion resistance. However, if the content exceeds 0.5% by mass, the mechanical properties deteriorate, and FeS and MnS, which are the starting points of corrosion, are produced in large amounts in the steel, thereby inhibiting the formation of the stable rust layer, Corrosion resistance may be deteriorated. Further, when Ni or the like is excessively contained, a reaction with S causes a NiS compound having a low melting point to precipitate at the grain boundary of the weld metal, thereby easily deteriorating the ductility of the grain boundary of the solidified metal. From this viewpoint, if the S content is 0.5% by mass or less, there is an advantage that a larger amount of Ni can be contained without precipitating the low melting point NiS compound. Then, S content is 0.02-0.5 mass%, Preferably it is 0.01-0.3 mass%.

Pは、鋼材の表面に生成する錆への塩化物イオンの進入を阻止し、緻密な安定錆層を形成して、耐食性を向上させる効果を有する元素である。そのため、従来の耐候性鋼ではこの耐食性の向上効果を発揮させるため、0.05質量%程度以上、0.15質量%程度以下の含有を必須としていた。一方、0.05質量%程度を超える過度のPの含有は、溶接性を著しく劣化させる。これに対して、本発明では、Ti等の含有により、緻密な安定錆層を形成できるため、Pの過度の含有は不要である。そこで、溶接性の向上をも考慮して、Pを含有する場合は、P含有量は、0.001〜0.15質量%とすることが好ましい。ここで、Pは、通常、鋼の製造過程で低減され、不可避的に鋼中に残存する元素である。しかし、本発明において、Pは、耐食性を向上させるために有効な元素である。そのため、本発明の鋼材の製造工程においては、Pの残存量が多めとなるように、Pの低減の程度を緩和してもよい。   P is an element that has the effect of preventing the entry of chloride ions into the rust generated on the surface of the steel material and forming a dense stable rust layer to improve the corrosion resistance. For this reason, the conventional weathering steel is required to contain about 0.05% by mass or more and about 0.15% by mass or less in order to exhibit the effect of improving the corrosion resistance. On the other hand, the excessive P content exceeding about 0.05 mass% significantly deteriorates the weldability. On the other hand, in this invention, since a precise | minute stable rust layer can be formed by containing Ti etc., excessive content of P is unnecessary. Therefore, in consideration of improvement in weldability, when P is contained, the P content is preferably 0.001 to 0.15% by mass. Here, P is an element which is usually reduced in the manufacturing process of steel and inevitably remains in the steel. However, in the present invention, P is an element effective for improving the corrosion resistance. Therefore, in the manufacturing process of the steel material of the present invention, the degree of reduction of P may be relaxed so that the residual amount of P becomes larger.

Crは、ステンレス鋼に添加されているように一般には耐食性の向上に有効な元素である。しかし、大気の塩化物環境や海浜環境では却って悪影響を及ぼす。このような環境ではCr含有量を低減することにより、特に、耐孔あき性が向上する。このような耐孔あき性や、耐局部腐食性の改善、塩分環境下における耐食性向上には、特にCr含有量の低減が有効であり、この観点から、本発明の鋼材では、Crを含有する場合は、Cr含有量を0.1質量%以下にすることが好ましい。更にはCrフリー化(Cr含有量を0にする)することは望ましいが、過度に少なくするには経済的にコストが掛かる。また、Crは、鋼の製造過程で、原料の一部として用いられることが多いスクラップからもたらされる不可避的成分である。そこで、本発明においては、JIS−SMAに規定される耐候性鋼のように積極的に添加することは望ましくない。そのため、0.02質量%未満とすることが好ましい。   Generally, Cr is an element effective for improving the corrosion resistance as added to stainless steel. However, it adversely affects air chloride environments and beach environments. In such an environment, the perforation resistance is particularly improved by reducing the Cr content. In order to improve the perforation resistance, the local corrosion resistance, and the corrosion resistance in a salt environment, it is particularly effective to reduce the Cr content. From this viewpoint, the steel material of the present invention contains Cr. In this case, the Cr content is preferably 0.1% by mass or less. Furthermore, it is desirable to make Cr-free (Cr content is reduced to 0), but it is economically expensive to make it excessively small. In addition, Cr is an inevitable component derived from scrap that is often used as part of the raw material in the steel manufacturing process. Therefore, in the present invention, it is not desirable to positively add like the weathering steel defined in JIS-SMA. Therefore, it is preferable to make it less than 0.02 mass%.

Tiは、CuおよびNiと同様に、生成錆を緻密化し安定錆層の生成を促進する有益な作用を有しているとともに、非常に優れた耐食性も有しているため、本発明において非常に重要な必須添加元素である。特に、海浜・海洋環境で特徴的に生成するβ−FeOOHの生成を抑制する元素として、CuやNiと複合添加すると優れた効果を発揮する。また、鋼の清浄化という利点も併せ持っている。こうした効果は0.02質量%以上の添加で得られるが、0.03質量%を超えて添加するとその効果は著しく上昇する。しかし、過剰な添加を行っても、その効果は飽和傾向を示し、経済的にも好ましくない。さらに溶接の際にかえって害になる可能性があるので、Tiは0.15質量%を上限とした。また、上記事項は鋼材の腐食生成物の場合であるが、亜鉛の腐食生成物においてもTiを含有することにより緻密性が向上する効果がある。したがって、鋼自体および鉄と亜鉛の腐食生成物にも作用して耐食性を向上させる効果があるので、この観点からも非常に重要な元素である。そこで、Ti含有量は0.02〜0.15質量%であり、好ましくは0.03〜0.10質量%である。   Ti, like Cu and Ni, has a beneficial effect of densifying the generated rust and promoting the formation of a stable rust layer, and also has very excellent corrosion resistance. It is an important essential additive element. In particular, when Cu and Ni are added together as an element that suppresses the formation of β-FeOOH that is characteristically produced in the beach / marine environment, an excellent effect is exhibited. It also has the advantage of cleaning the steel. Such an effect can be obtained by addition of 0.02% by mass or more, but if the addition exceeds 0.03% by mass, the effect is remarkably increased. However, even if excessive addition is performed, the effect tends to saturate, which is not preferable economically. Further, since there is a possibility that it may be harmful in the case of welding, the upper limit of Ti is 0.15% by mass. Moreover, although the said matter is a case of the corrosion product of steel materials, there exists an effect which a compactness improves by containing Ti also in the corrosion product of zinc. Therefore, it acts on the steel itself and the corrosion products of iron and zinc and has the effect of improving the corrosion resistance, so it is also an extremely important element from this viewpoint. Therefore, the Ti content is 0.02 to 0.15 mass%, preferably 0.03 to 0.10 mass%.

Caは、塗膜欠陥部の腐食において重要な役割を有する元素である。つまり、Caは、塗膜欠陥内でのpH低下を緩衝する作用を有する元素であり、塗膜下腐食の進行過程において、鉄の腐食反応に伴う微量溶解でアルカリ性を呈する(アノード溶解先端部の溶液pH緩衝効果)元素である。このため、Caは、塗膜欠陥部での隙間腐食を抑制する作用を有し、溶解時にpHを上げて隙間腐食を抑制する働きを有する元素である。すなわち、腐食の先端部分で、鉄の溶解時にpHを上げるCaが存在すれば、隙間腐食の進行を抑制できる。この観点から、Caの含有量は0.0001〜0.01質量%、好ましくは0.0003〜0.005質量%である。   Ca is an element having an important role in corrosion of a coating film defect portion. In other words, Ca is an element that has an action of buffering the pH drop in the coating film defect, and exhibits alkalinity due to a small amount of dissolution accompanying the corrosion reaction of iron in the progress of corrosion under the coating film (at the tip of the anode dissolution tip). Solution pH buffering effect) element. For this reason, Ca is an element which has the effect | action which suppresses crevice corrosion in a coating-film defect part, raises pH at the time of melt | dissolution, and suppresses crevice corrosion. That is, if there is Ca that raises the pH when iron is dissolved at the tip of corrosion, the progress of crevice corrosion can be suppressed. In this respect, the content of Ca is 0.0001 to 0.01% by mass, preferably 0.0003 to 0.005% by mass.

Alは、Tiと複合添加することにより安定錆層の形成を一層促進し、ひいては耐食性を更に向上させる効果を有する元素である。また、Alは溶接性の向上効果も有する。更に、Alは、溶鋼の脱酸元素として、固溶酸素を捕捉するとともに、ブローホールの発生を防止して、鋼の靱性の向上のためにも有効な元素である。また、Alは表層で酸化物を形成するが、Alの酸化物粒子は小さく、空隙の少ないきわめて安定した緻密なスケールを形成し、レーザー切断性に寄与する。Al含有量が0.01質量%未満では、これらの効果が十分には得られず、一方、Al含有量が0.5質量%を超える場合には、上記の安定錆層形成の促進による耐食性向上の効果は飽和し、逆に、溶接性を劣化させたり、アルミナ系介在物の増加により鋼の靱性を劣化させる。このような観点から、Al含有量は0.01〜0.5質量%とすることが好ましく、特に好ましくは0.1〜0.5質量%である。   Al is an element that has the effect of further promoting the formation of a stable rust layer and further improving the corrosion resistance by being combined with Ti. Al also has an effect of improving weldability. Furthermore, Al is an element effective for improving the toughness of steel by capturing solid solution oxygen as a deoxidizing element of molten steel and preventing the occurrence of blowholes. Al forms an oxide on the surface layer, but the Al oxide particles are small, form a very stable and dense scale with few voids, and contribute to laser cutting properties. When the Al content is less than 0.01% by mass, these effects cannot be sufficiently obtained. On the other hand, when the Al content exceeds 0.5% by mass, the corrosion resistance by promoting the formation of the stable rust layer is described above. The improvement effect is saturated, and conversely, the weldability is deteriorated, and the toughness of the steel is deteriorated due to an increase in alumina inclusions. From such a viewpoint, the Al content is preferably 0.01 to 0.5% by mass, particularly preferably 0.1 to 0.5% by mass.

また、本発明の鋼材は、C、Si、Mn、S、P、Cr、Ti、CaおよびAl以外に、CuおよびNiから選ばれる少なくとも1種とを含有し、残部Feおよび不可避的不純物からなるものである。   Further, the steel material of the present invention contains at least one selected from Cu and Ni in addition to C, Si, Mn, S, P, Cr, Ti, Ca and Al, and consists of the balance Fe and inevitable impurities. Is.

本発明の鋼材において、Cuは、耐食性および溶接性の向上に有効な元素である。すなわち、Cuは、電気化学的に鉄より貴な元素であり、鋼表面に生成する錆を緻密化して、安定錆層の形成を促進し、耐候性などの耐食性を向上させる効果もある元素である。また、溶接性の向上にも寄与する。さらに、表面層において、一部酸化物になるが、多くは固溶状態で濃化し、表面スケールを緻密化し、密着性向上を高めることによりレーザー切断性の向上に有効な元素である。Cu含有量が0.05質量%未満の場合には、耐食性の向上が不充分となり、Cu含有量が3.0質量%を超える場合には耐食性の向上効果が飽和し、また、鋼材製造のための熱間圧延等の加工の際に、素材の脆化(以下、熱間加工脆性ともいう)を引き起こす可能性がある。これらの観点から、また、上記熱間加工脆性の発生をより確実に抑制するためにも、Cu含有量は0.05〜3.0質量%、好ましくは0.3〜1.5質量%である。   In the steel material of the present invention, Cu is an element effective for improving corrosion resistance and weldability. In other words, Cu is an electrochemically noble element than iron, and is an element that has the effect of densifying the rust generated on the steel surface, promoting the formation of a stable rust layer, and improving the corrosion resistance such as weather resistance. is there. It also contributes to improved weldability. Further, although part of the surface layer is an oxide, many are effective elements for improving the laser cutting property by concentrating in a solid solution state, densifying the surface scale, and improving the adhesion. When the Cu content is less than 0.05% by mass, the improvement in corrosion resistance is insufficient, and when the Cu content exceeds 3.0% by mass, the effect of improving the corrosion resistance is saturated. Therefore, there is a possibility of causing embrittlement of the material (hereinafter also referred to as hot work brittleness) during processing such as hot rolling. From these viewpoints, in order to more reliably suppress the occurrence of the hot work brittleness, the Cu content is 0.05 to 3.0% by mass, preferably 0.3 to 1.5% by mass. is there.

Niは、耐食性および溶接性の向上に有効な元素である。NiはCuの場合と同様に、鋼表面に生成する錆を緻密化して、安定錆層の形成を促進し、耐候性等の耐食性を向上させる効果を有する元素である。また、溶接性の向上にも寄与する。更に、Niは、前記熱間加工脆性を抑制する効果もある。従って、NiをCuと併せて含有させることにより、耐食性向上効果、熱間加工脆性の抑制効果の相乗効果が期待できる。また、NiはCuと同様、表面層において、一部酸化物になるが、多くは固溶状態で濃化し、表面スケールを緻密化し、密着性向上を高めることによりレーザー切断性を向上させる。Ni含有量が0.05質量%未満の場合、耐食性の向上が不充分となり、一方、Ni含有量が6.0質量%を超える場合、完全オーステナイト組織における固液凝固温度範囲を広げて、低融点不純物元素のデンドライト粒界への偏析を助長するとともに、Sと反応して溶接金属の粒界に、低融点のNiS化合物を析出させ、凝固金属の粒界の延性を劣化させ、ひいては、耐溶接高温割れ性に悪影響を与える。これらの観点から、Niを含有する場合は、Ni含有量は0.05〜6.0質量%、好ましくは0.5〜5.0質量%、さらに好ましくは1.0〜3.0質量%である。   Ni is an element effective for improving corrosion resistance and weldability. Ni is an element having the effect of densifying the rust generated on the steel surface, promoting the formation of a stable rust layer, and improving the corrosion resistance such as weather resistance, as in the case of Cu. It also contributes to improved weldability. Furthermore, Ni also has the effect of suppressing the hot work brittleness. Therefore, by containing Ni together with Cu, a synergistic effect of improving corrosion resistance and suppressing hot work brittleness can be expected. Ni, like Cu, partially becomes an oxide in the surface layer, but most of it concentrates in a solid solution state, densifies the surface scale, and improves the laser cutting property by improving the adhesion. When the Ni content is less than 0.05% by mass, the corrosion resistance is insufficiently improved. On the other hand, when the Ni content exceeds 6.0% by mass, the solid-liquid coagulation temperature range in the complete austenite structure is widened and reduced. It promotes the segregation of melting point impurity elements to the dendrite grain boundaries and reacts with S to precipitate a low melting point NiS compound at the grain boundaries of the weld metal, thereby degrading the ductility of the grain boundaries of the solidified metal. Adversely affects weld hot cracking. From these viewpoints, when Ni is contained, the Ni content is 0.05 to 6.0 mass%, preferably 0.5 to 5.0 mass%, more preferably 1.0 to 3.0 mass%. It is.

本発明の鋼材において、Ni、Cu、SおよびTiの含有量の間には、下記式(1)で表される関係を有することが必須である。Ni、Cu、SおよびTiの含有量が、式(1)の関係を満たすとき、SとNi、CuおよびTiとが、SOx環境下で不溶性硫化物皮膜からなる耐食性向上皮膜を形成して、高い耐食性を得ることができる。
(Ni+4.5×Cu)×S×2500×Ti>5 (1)
本発明の鋼材では、(a)保護性の高い非晶質錆の生成促進、(b)保護性が高く、熱力学的にも安定なα錆の生成促進、(c)塩化物環境下で特徴的に生成し、耐食性を劣化させるβ錆の生成抑制、(d)硫黄酸化物や粉塵が多量にある大気汚染環境(SOx環境)下で耐食性を向上させる耐食性向上皮膜生成促進、のすべてが相乗効果を発揮する。そのために、本発明者らは、各種実験を繰り返し、(a)〜(d)のすべての項目を満足させる必要な各元素の量を規定したのが上記の式(1)である。
In the steel material of the present invention, it is essential that the contents of Ni, Cu, S and Ti have a relationship represented by the following formula (1). When the contents of Ni, Cu, S, and Ti satisfy the relationship of the formula (1), S and Ni, Cu, and Ti form a corrosion resistance improving film made of an insoluble sulfide film in an SOx environment, High corrosion resistance can be obtained.
(Ni + 4.5 × Cu) × S × 2500 × Ti> 5 (1)
In the steel material of the present invention, (a) promotion of formation of highly protective amorphous rust, (b) promotion of formation of alpha rust that is highly protective and thermodynamically stable, (c) in a chloride environment The production of β rust, which is characteristically generated and deteriorates the corrosion resistance, (d) the corrosion resistance improvement coating that promotes the corrosion resistance under the air pollution environment (SOx environment) containing a large amount of sulfur oxide and dust, Demonstrate a synergistic effect. Therefore, the present inventors repeated various experiments, and the above formula (1) defines the amount of each element required to satisfy all the items (a) to (d).

本発明の鋼材では、Ni、Cu、Tiが通常の大気腐食において錆の生成の制御(Ni、Cu:安定な非晶質錆生成促進、α錆生成促進、Ti:不安定なβ錆生成抑制)が行われるとともに、S含有量が0.02〜0.5質量%の範囲で、Ni、Cu、Tiと共存することによって、重化学工業地帯や石炭の燃焼に伴う硫黄酸化物や粉塵が多量にある大気汚染環境(SOx環境)下で不溶性硫化物からなる耐食性向上皮膜を生成し、優れた耐食性を得ることができる。   In the steel material of the present invention, Ni, Cu and Ti control the generation of rust in normal atmospheric corrosion (Ni, Cu: promotion of stable amorphous rust formation, promotion of α rust formation, Ti: suppression of unstable β rust formation) ) And S content in the range of 0.02 to 0.5% by mass, coexisting with Ni, Cu, Ti, a large amount of sulfur oxide and dust accompanying heavy chemical industrial zone and coal combustion In the air pollution environment (SOx environment), a corrosion-resistant film made of an insoluble sulfide can be generated, and excellent corrosion resistance can be obtained.

さらに、本発明の鋼材において、さらなる耐食性の向上のために、La、Ce、Mg、Mo、Nb、V、Zr、WおよびBから選ばれる少なくとも1種を含むことが好ましい。   Furthermore, the steel material of the present invention preferably contains at least one selected from La, Ce, Mg, Mo, Nb, V, Zr, W and B for further improvement of corrosion resistance.

La、CeおよびMgは、腐食先端部のpH低下を抑制する作用や孔食の起点となり耐候性を低下させるMnSの生成を抑制する働き、さらに、腐食初期にZnとFeを安定的に腐食させる効果を有する。そこで、La、CeおよびMgを含有させる場合には、La含有量を0.0001〜0.05質量%、Ce含有量を0.0001〜0.05質量%、Mg含有量を0.0001〜0.05質量%とすることが好ましい。   La, Ce, and Mg act to suppress the pH drop at the corrosion tip and to suppress the generation of MnS that becomes the starting point of pitting corrosion and lower the weather resistance, and also stably corrodes Zn and Fe at the initial stage of corrosion. Has an effect. Therefore, when La, Ce and Mg are contained, the La content is 0.0001 to 0.05 mass%, the Ce content is 0.0001 to 0.05 mass%, and the Mg content is 0.0001 to 0.05 mass%. It is preferable to set it as 0.05 mass%.

さらに、Mo、Nb、V、ZrおよびBは保護性錆の生成促進に有効であり、また、NbおよびVは焼き入性を向上させ、強度の向上に有効である。Bは焼き入性を上昇させる働きをも有する。したがって、耐食性向上の観点から、Mo、Nb、V、ZrまたはBを含有させる場合は、Mo含有量を0.05〜3.0質量%、Nb含有量を0.005〜0.5質量%、V含有量を0.01〜0.5質量%、Zr含有量を0.005〜0.5質量%、B含有量を0.0003〜0.003質量%とするのが好ましく、さらに好ましくはMo含有量を0.1〜1.0質量%、Nb含有量を0.005〜0.10質量%、V含有量を0.01〜0.20質量%、Zr含有量を0.005〜0.10質量%、B含有量を0.0003〜0.0030質量%である。   Furthermore, Mo, Nb, V, Zr and B are effective for promoting the generation of protective rust, and Nb and V are effective for improving the hardenability and improving the strength. B also has a function of increasing hardenability. Therefore, from the viewpoint of improving corrosion resistance, when Mo, Nb, V, Zr or B is contained, the Mo content is 0.05 to 3.0 mass% and the Nb content is 0.005 to 0.5 mass%. The V content is preferably 0.01 to 0.5 mass%, the Zr content is preferably 0.005 to 0.5 mass%, and the B content is preferably 0.0003 to 0.003 mass%, more preferably. Has a Mo content of 0.1 to 1.0 mass%, an Nb content of 0.005 to 0.10 mass%, a V content of 0.01 to 0.20 mass%, and a Zr content of 0.005. -0.10 mass%, B content is 0.0003-0.0030 mass%.

また、Wも耐食性の向上に有効な元素であり、Wを含有させる場合は、W含有量を0.05〜3.0質量%とするのが好ましい。   W is also an element effective for improving corrosion resistance. When W is contained, the W content is preferably 0.05 to 3.0% by mass.

また、本発明の鋼材において、酸性雨が降るSOx環境下で不溶性の硫化物皮膜を形成して耐食性を向上させる効果が得られることから、Be、As、Sb、Bi、Ge、Sn、Pb、Se、Te、ZnおよびCdから選ばれる少なくとも1種を合計で0.002〜0.2質量%含有することが好ましい。これらの元素は、鋼中にあって水や酸にとけない硫化物をMnに変わって形成(Cr、Ti、Vなど)するかわりに、腐食にともない腐食環境中に溶出し、鋼の表面に不溶性の硫化物皮膜を形成する、と考えられる。   Further, in the steel material of the present invention, an effect of improving the corrosion resistance by forming an insoluble sulfide film in an SOx environment where acid rain falls is obtained, so that Be, As, Sb, Bi, Ge, Sn, Pb, It is preferable to contain 0.002 to 0.2 mass% in total of at least one selected from Se, Te, Zn and Cd. Instead of forming sulfides that are insoluble in water and acid in steel instead of Mn (Cr, Ti, V, etc.), these elements elute into the corrosive environment as a result of corrosion and form on the steel surface. It is thought that an insoluble sulfide film is formed.

本発明の鋼材は、前記のとおり、C、Si、Mn、S、P、Cr、TiおよびCaを必須成分とし、さらに、CuおよびNiから選ばれる少なくとも1種とを含有し、残部Feおよび不可避的不純物から構成され、Ni、Cu、およびTiの含有量の間に前記式(1)で表される特定の関係を有し、また必要に応じて前記La、Ce、Mg、Mo、Nb、V、Zr、WおよびBから選ばれる少なくとも1種を含むことによって、特有の不溶性硫化物皮膜からなる保護皮膜を作り高い耐食性を得ることができる。すなわち、硫黄酸化物が多い大気汚染環境において、Ni、Cu、Tiは、通常の大気腐食において生成錆(Ni、Cu:安定な非晶質錆生成促進、α錆生成促進、Ti:不安定なβ錆生成抑制)制御を行うほか、SOx環境では不溶性硫化物をつくり耐食性向上皮膜を生成することができる。   As described above, the steel material of the present invention contains C, Si, Mn, S, P, Cr, Ti, and Ca as essential components, and further contains at least one selected from Cu and Ni, with the remainder being Fe and inevitable. And a specific relationship represented by the formula (1) between the contents of Ni, Cu, and Ti, and, if necessary, the La, Ce, Mg, Mo, Nb, By containing at least one selected from V, Zr, W and B, a protective film made of a unique insoluble sulfide film can be formed and high corrosion resistance can be obtained. That is, in an air pollution environment with a lot of sulfur oxides, Ni, Cu, and Ti are generated rust in normal atmospheric corrosion (Ni, Cu: promotion of stable amorphous rust formation, promotion of α rust formation, Ti: unstable In addition to controlling β-rust generation, in the SOx environment, insoluble sulfides can be produced to produce a corrosion-resistant coating.

さらに、本発明の鋼材組織については、基本的にはフェライト+パーライトの混合組織であるが、例えば、橋梁などの構造物としての構造材としての必要強度390〜630N/mm級乃至それ以上の強度や靱性を確保し、また、優れた耐食性を有するためには、フェライト量が90%以上であることが好ましい。フェライト量が多くなり、鋼組織がフェライト相単層に近づくほど、鋼組織自体がミクロ電池を作り難く、裸耐候性などの耐食性が向上する。したがって、鋼材組織は、95%以上のフェライト量とするのがより好ましい。 Furthermore, the steel material structure of the present invention is basically a mixed structure of ferrite and pearlite, but for example, a required strength of 390 to 630 N / mm class 2 or more as a structural material as a structure such as a bridge. In order to ensure strength and toughness and to have excellent corrosion resistance, the ferrite content is preferably 90% or more. As the amount of ferrite increases and the steel structure approaches the ferrite phase monolayer, the steel structure itself is less likely to form a micro battery, and the corrosion resistance such as bare weather resistance is improved. Therefore, the steel structure is more preferably 95% or more of ferrite.

ここで、本発明の鋼材の表面における錆および錆層について以下に説明する。
本発明の鋼材の表面は、Sと、Ti、Cu、Ni、Nb、ZrおよびVから選ばれる少なくとも1種とを含有する錆により被覆される。これによって、塩分腐食環境下および硫黄酸化物が多い大気汚染環境下において、緻密で微細なα−FeOOH錆や非晶質の錆として生成するとともに、β−FeOOHの発生が極力抑制され、高い耐食性を再現性よく得ることができる。すなわち、鋼材表面乃至鋼材錆層に前記のSと、Ti、Cu、Ni、Nb、ZrおよびVから選ばれる少なくとも1種とを含有乃至存在させれば、その後、この鋼材表面乃至鋼材錆層に大気環境下で生成する錆が、これらの元素によって、塩分腐食環境下、大気汚染環境下であっても、微細で緻密なα−FeOOH錆や非晶質の錆として生成するとともに、この過程で、β−FeOOHの発生が極力抑制される。
Here, the rust and the rust layer on the surface of the steel material of the present invention will be described below.
The surface of the steel material of the present invention is covered with rust containing S and at least one selected from Ti, Cu, Ni, Nb, Zr and V. This produces dense and fine α-FeOOH rust and amorphous rust in a salt corrosion environment and an air-polluted environment rich in sulfur oxides, and the generation of β-FeOOH is suppressed as much as possible, resulting in high corrosion resistance. Can be obtained with good reproducibility. That is, if the steel surface or steel material rust layer contains or exists the aforementioned S and at least one selected from Ti, Cu, Ni, Nb, Zr and V, then the steel material surface or steel material rust layer Rust generated in the atmosphere is generated by these elements as fine and dense α-FeOOH rust or amorphous rust even in a salt corrosion environment or an air pollution environment. , Β-FeOOH is suppressed as much as possible.

これらのTiやSなどの、錆生成に対する作用は、錆の生成・成長段階に、イオン、コロイド的な性質を持つ微細化合物粒子または微細析出物(TiあるいはTiイオンが酸化、加水分解などによって生成したTiの水酸化物、オキシ水酸化物、酸化物、あるいは他の物質元素との反応性生物)などの形態で影響し、錆の結晶構造を乱し、成長を抑制して、錆の欠陥部分を埋める等の作用や硫化物形成により、腐食や剥離の起点になることを抑制するものと推察される。   The effect of these Ti and S on rust formation is that during the rust formation / growth stage, ions, colloidal fine compound particles or fine precipitates (Ti or Ti ions are produced by oxidation, hydrolysis, etc.) Affected by the form of Ti hydroxides, oxyhydroxides, oxides, or other biological elements), disturbing the crystal structure of rust, suppressing growth, and rust defects It is presumed that the starting point of corrosion and peeling is suppressed by the effect of filling the part and the formation of sulfide.

この鋼材の表面を被覆する錆において、Sの含有量は0.3〜5.0質量%である。Sが錆層中に含まれると、錆層自体が緻密で高い耐食性を有するものとなる。このメカニズムは明らかではないが、鋼材表面の不溶性硫化物とSやNi,Cu、Tiを含む微細で緻密な鉄錆が相乗効果をもたらして、耐食性が一層向上すると考えられる。表面の錆中のS含有量が0.3質量%未満では、耐食性の向上効果が発揮されず、5質量%を超えると、腐食に起点となり、却って耐食性を劣化させる虞がある。   In the rust covering the surface of the steel material, the S content is 0.3 to 5.0 mass%. When S is contained in the rust layer, the rust layer itself is dense and has high corrosion resistance. Although this mechanism is not clear, it is considered that the insoluble sulfide on the surface of the steel material and fine and fine iron rust containing S, Ni, Cu, and Ti have a synergistic effect, and the corrosion resistance is further improved. If the S content in the rust on the surface is less than 0.3% by mass, the effect of improving the corrosion resistance is not exhibited, and if it exceeds 5% by mass, the corrosion starts, and the corrosion resistance may be deteriorated.

さらに、表面の錆において、Sと、Ti、Cu、Ni、Nb、ZrおよびVから選ばれる少なくとも1種との合計含有量は0.5〜10.0質量%である。また、表面を被覆する錆において、Sと、Ti、Cu、Ni、Nb、ZrおよびVから選ばれる少なくとも1種との合計含有量の下限は、2.0質量%以上とすることが好ましく、さらに3.0質量%以上とすることが好ましい。   Furthermore, in the surface rust, the total content of S and at least one selected from Ti, Cu, Ni, Nb, Zr and V is 0.5 to 10.0% by mass. Further, in the rust covering the surface, the lower limit of the total content of S and at least one selected from Ti, Cu, Ni, Nb, Zr and V is preferably 2.0% by mass or more, Furthermore, it is preferable to set it as 3.0 mass% or more.

また、本発明の鋼材の表面に形成される錆層において、X線回折法により求められるβ−FeOOH成分の結晶子サイズが50nm未満である。さらに、前記錆層の分子吸着法により求められる比表面積が10m/g以上である。これによって、塩化物環境や硫黄酸化物が多い大気汚染環境のような厳しい腐食環境下でも、流れ錆や剥離錆を生じることがなく、優れた耐食性を発揮し、かつ外観の美しさも保持できる。特に、塩分腐食環境下では、錆層安定化はβ−FeOOH錆の存在に左右されるが、本発明者らは、特にβ−FeOOH錆の結晶子サイズと錆粒子の比表面積が錆層の耐食性の向上を決定する因子であり、β−FeOOH錆の結晶子サイズが50nmを超えると剥離錆層が形成し易くなるため、β錆の結晶子サイズを50nm未満とすることが有用である。つまり、錆層を構成する錆粒子の結晶子サイズを、錆の種類に関係なくむやみに下げるだけでは耐食性の著しい向上を達成することはできず、特にβ錆の結晶子サイズに着目してそのサイズを下げることが耐食性の向上には重要である。 Moreover, in the rust layer formed on the surface of the steel material of the present invention, the crystallite size of the β-FeOOH component obtained by the X-ray diffraction method is less than 50 nm. Furthermore, the specific surface area calculated | required by the molecular adsorption method of the said rust layer is 10 m < 2 > / g or more. As a result, even in severe corrosive environments such as chloride environments and air polluted environments with a lot of sulfur oxides, flow rust and peeling rust are not generated, and excellent corrosion resistance is maintained and the appearance is also maintained. . In particular, in a salt corrosion environment, the stabilization of the rust layer depends on the presence of β-FeOOH rust, but the inventors of the present invention particularly have a crystallite size of β-FeOOH rust and a specific surface area of rust particles of the rust layer. It is a factor that determines the improvement in corrosion resistance. When the crystallite size of β-FeOOH rust exceeds 50 nm, a peeled rust layer is easily formed. Therefore, it is useful to make the crystal size of β rust less than 50 nm. In other words, it is not possible to achieve a significant improvement in corrosion resistance simply by reducing the crystallite size of the rust particles constituting the rust layer, regardless of the type of rust. Lowering the size is important for improving corrosion resistance.

本発明では、錆の主成分がα−FeOOHおよび/または非晶質の錆からなるものとする。この内、特に非晶質の錆は、結晶性の錆よりも極めて微細で緻密な安定錆層を形成し、錆皮膜としての「欠陥部分」が形成されたとしても、非晶質の錆部分がこの穴埋めを行う「欠陥補修機能」を有する。したがって、鉄錆中の非晶質の錆の割合(非晶質度)が高いほど高い耐食性を示す。このため、本発明では、鋼材表面に生成する錆において、X線回折法により求めた非晶質成分の分率を30質量%以上とすることが好ましい。   In the present invention, the main component of rust is α-FeOOH and / or amorphous rust. Of these, especially amorphous rust forms an extremely fine and dense stable rust layer than crystalline rust, and even if a "defect part" as a rust film is formed, the amorphous rust part Has a “defect repair function” for filling this hole. Therefore, the higher the proportion of amorphous rust in the iron rust (the degree of amorphousness), the higher the corrosion resistance. For this reason, in this invention, it is preferable that the fraction of the amorphous component calculated | required by the X ray diffraction method shall be 30 mass% or more in the rust produced | generated on the steel material surface.

一方、これ以外の錆、特にβ−FeOOHなどの結晶性の錆は、錆中の前記非晶質やα−FeOOHの割合が高くても、この錆が起点となって腐食を進行させるため、極力抑制する必要がある。このため、本発明では、鋼材表面に生成する錆の、X線回折法により求められるβ−FeOOH成分の分率を30質量%以下とすることが好ましい。錆の非晶質成分の分率が30質量%未満、およびβ−FeOOH成分(β錆)の分率が30質量%を越える場合には、前記α−FeOOH、β−FeOOH、γ−FeOOHおよびFeの結晶性の錆成分が多くなり、鋼材表面の錆が緻密な安定錆層を形成していないので、鋼材の高耐食性を保証出来なくなる可能性がある。 On the other hand, other rust, especially crystalline rust such as β-FeOOH, even if the proportion of the amorphous or α-FeOOH in the rust is high, this rust serves as a starting point to promote corrosion. It is necessary to suppress as much as possible. For this reason, in this invention, it is preferable to make the fraction of (beta) -FeOOH component calculated | required by the X ray diffraction method of the rust produced | generated on the steel material surface below 30 mass%. When the fraction of the rust amorphous component is less than 30% by mass and the fraction of the β-FeOOH component (β rust) exceeds 30% by mass, the α-FeOOH, β-FeOOH, γ-FeOOH and Since the crystalline rust component of Fe 3 O 4 increases and the rust on the surface of the steel material does not form a dense stable rust layer, there is a possibility that the high corrosion resistance of the steel material cannot be guaranteed.

また、環境によっては非晶質錆が生成しない場合もあり、その場合はα錆(安定;酸性で生成しやすい)とγ錆(不安定;中性で生成しやすい)を比較して錆の保護性を評価することが有効である。そこで、本発明の鋼材では、錆の分率がα−FeOOH/γ−FeOOH>0.6であることが好ましい。ここで、本発明において、鋼材表面に生成した錆の、高い耐食性とは、SOx環境下での鋼材の耐食性を意味する。したがって、この高い耐食性を保証するためには、鋼材の0.5年間の大気暴露、もしくは、大気環境を模擬した酸性雨散布試験での評価結果に基づいて鋼材の耐食性を評価する必要がある。   In addition, amorphous rust may not be generated depending on the environment. In that case, rust is compared with α rust (stable; easily generated by acid) and γ rust (unstable; easily generated by neutral). It is effective to evaluate the protection. Therefore, in the steel material of the present invention, the fraction of rust is preferably α-FeOOH / γ-FeOOH> 0.6. Here, in this invention, the high corrosion resistance of the rust produced | generated on the steel material surface means the corrosion resistance of the steel material in a SOx environment. Therefore, in order to guarantee this high corrosion resistance, it is necessary to evaluate the corrosion resistance of the steel material based on the evaluation results in the atmospheric exposure of the steel material for 0.5 years or in the acid rain spray test simulating the atmospheric environment.

本発明において、錆の非晶質度を測定する手段としては、「腐食防食95C−306(341〜344頁)」の「粉末X線回折法による鉄錆成分の定量化およびその応用」に開示された粉末X線回折法が有効である。この文献では耐候性鋼材を対象に粉末X線回折法により、鋼材表面の前記鉄錆成分の定量化を試み、鉄錆中の非晶質の錆の割合(非晶質度)が高いほど、緻密な安定錆層となる耐食性改善モデルを裏付けている。より具体的な粉末X線回折法として、内部標準として一定質量比のCaFあるいはZnOなどを鋼材から採取した錆試料に混合し粉末化したものを通常のX線回折法により同定し、前記5種類の錆の各々の固有の回折ピークの積分強度比と、予め求めた各々の錆成分の検量線から、各々の結晶性の錆成分の定量化を行い、錆の合計量からこれら各々の結晶性の錆成分量を差し引いて非晶質成分の割合を算出する。これは、非晶質成分自体の回折ピークの積分強度比が求めにくく、定量化しにくいためである。 In the present invention, as a means for measuring the degree of amorphousness of rust, it is disclosed in “Quantification of iron rust components by powder X-ray diffraction method and its application” of “Corrosion protection 95C-306 (pages 341 to 344)”. The produced powder X-ray diffraction method is effective. In this document, quantification of the iron rust component on the surface of the steel material is attempted by a powder X-ray diffraction method for weathering steel material, and the higher the ratio of amorphous rust in the iron rust (amorphous degree), It supports the corrosion resistance improvement model that becomes a dense stable rust layer. As a more specific powder X-ray diffraction method, a powder obtained by mixing a rust sample taken from steel with a constant mass ratio of CaF 2 or ZnO as an internal standard is identified by a normal X-ray diffraction method. Each crystalline rust component is quantified from the integral intensity ratio of each unique diffraction peak of each type of rust and the calibration curve of each rust component determined in advance, and each of these crystals is calculated from the total amount of rust. The ratio of the amorphous component is calculated by subtracting the amount of the rust component. This is because the integral intensity ratio of the diffraction peaks of the amorphous component itself is difficult to obtain and is difficult to quantify.

次に、本発明の鋼材の製造方法を説明する。本発明の鋼材は、通常の厚鋼板の製造方法により製造可能である。即ち、鋼の連続鋳造や造塊法による溶製後、分塊圧延乃至熱間鍛造や、厚板圧延などの熱間加工を行い、所定の製品板厚に製造される。なお、これらの熱間加工条件や熱間加工後の冷却や熱処理の条件は、鋼材の、例えば橋梁の構造材としての、390〜630N/mm級乃至それ以上の強度などの機械的性質の要求や仕様に応じて、適宜決定される。したがって、通常の熱間加工の他に、溶接性を保障する低合金化乃至低炭素当量化を確保した上で、前記強度等の機械的性質を確保する方法を選べばよい。たとえば、本発明の鋼材組織を、フェライト量が90%以上とするために、熱間加工後の加速冷却などの強制冷却や制御圧延が施されても良い。また、熱間加工後の熱処理も、必要により、圧延オンラインでの直接焼入れ(DQ)やオフラインでの焼入れ焼戻し(QT)などが適宜施される。 Next, the manufacturing method of the steel material of this invention is demonstrated. The steel material of this invention can be manufactured with the manufacturing method of a normal thick steel plate. That is, after a steel is continuously cast or melted by an ingot-making method, hot working such as ingot rolling or hot forging or thick plate rolling is performed to produce a predetermined product plate thickness. These hot working conditions and conditions of cooling and heat treatment after hot working are the properties of steel such as strength of 390 to 630 N / mm grade 2 or higher as a structural material of a bridge. It is determined appropriately according to requirements and specifications. Therefore, in addition to normal hot working, a method for ensuring mechanical properties such as the above-mentioned strength may be selected after ensuring low alloying or low carbon equivalent to ensure weldability. For example, forced cooling such as accelerated cooling after hot working or controlled rolling may be performed so that the steel structure of the present invention has a ferrite content of 90% or more. In addition, the heat treatment after the hot working is appropriately subjected to rolling on-line direct quenching (DQ) or off-line quenching and tempering (QT) as necessary.

以下、本発明について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを対比して具体的に説明する。なお、以下の実施例は代表的なものであって、本発明はこれらの実施例に限定されるものでなない。   Hereinafter, the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention. The following examples are representative, and the present invention is not limited to these examples.

(例1〜21)
表1に示す化学組成を有する鋼塊を各々実験室レベルで大気溶解した。鋳型は薄板用45kgf角鋳型を用い、表1に示す化学組成のインゴットを製造した。次に、これらのインゴットを粗圧延した。加熱条件は1100℃×30分保持、熱延パススケジュールは特に指定せずに、仕上厚を25mm厚×有り幅×長さとした(ここで、「有り幅」とは、特に板の幅を規定せずに圧延に応じた幅のままにしたことを意味する。また、長さについても同様である。以下、同様)。その後、ガス切断を行い、各材とも300mm長さの板材を作成した。次いで、仕上圧延を行った。熱延条件は加熱1100℃×2hr、パス回数は5パス、仕上温度は900℃±50℃とした。仕上サイズは6mm厚×有り幅×長さ、冷却速度は70℃/secで、停止温度は650℃とした。その後、保持炉:600℃×60分で炉冷し、鋼板を製造した。これらの鋼板について、各々試験片を採取した。
(Examples 1 to 21)
Each steel ingot having the chemical composition shown in Table 1 was dissolved in the atmosphere at the laboratory level. A 45 kgf square mold for thin plate was used as the mold, and ingots having the chemical composition shown in Table 1 were produced. Next, these ingots were roughly rolled. Heating conditions were 1100 ° C x 30 minutes, no hot rolling pass schedule was specified, and the finishing thickness was 25 mm thick x width x length (where “width in width” specifically specifies the width of the plate This means that the width corresponding to the rolling is maintained, and the length is also the same. Thereafter, gas cutting was performed to prepare a plate material having a length of 300 mm for each material. Next, finish rolling was performed. The hot rolling conditions were heating 1100 ° C. × 2 hr, the number of passes was 5 passes, and the finishing temperature was 900 ° C. ± 50 ° C. The finishing size was 6 mm thick × the width × length, the cooling rate was 70 ° C./sec, and the stop temperature was 650 ° C. Thereafter, the furnace was cooled in a holding furnace: 600 ° C. × 60 minutes to produce a steel plate. Test pieces were collected from these steel plates.

Figure 0004185552
Figure 0004185552

Figure 0004185552
Figure 0004185552

さらに、採取した試験片から、50mm×50mm幅×3mm厚さの供試材を作製し、下記試験により耐食性を評価した。   Furthermore, from the collected test pieces, test materials having a size of 50 mm × 50 mm width × 3 mm thickness were prepared, and corrosion resistance was evaluated by the following test.

耐食性評価試験
複合サイクルタイプの促進ラボ試験を7日間行った。この複合サイクル試験は、1サイクルをpH=3.5の人工酸性雨噴霧を2時間、乾燥(温度60℃、湿度40%)を2時間、湿潤環境(温度40℃、湿度95%)に2時間置く工程を1サイクルとし、1日で4サイクル行った。そし、試験後に、液体ホーニングにより除錆後、重量測定を行い、腐食減量を測定した。No.1の腐食減量を100として各試験片の腐食量を標準化した。
Corrosion Resistance Evaluation Test A combined cycle type accelerated lab test was conducted for 7 days. This combined cycle test consists of 2 cycles of artificial acid rain spray with pH = 3.5 for 2 hours, drying (temperature 60 ° C., humidity 40%) for 2 hours, and a humid environment (temperature 40 ° C., humidity 95%). The time setting process was defined as one cycle, and four cycles were performed per day. And after the test, after removing the rust by liquid honing, the weight was measured and the corrosion weight loss was measured. No. The corrosion amount of each test piece was standardized with the corrosion weight loss of 1 as 100.

生成した錆の分析
耐食性評価試験を行った供試材から採取した錆試料について、β−FeOOH錆(ミラー指数:110)の結晶子サイズをX線回折法で測定した。一部の試料については、γ−FeOOH錆(β錆)(020)またはマグネタイト(220)の結晶子サイズを測定した。
Analysis of generated rust The crystallite size of β-FeOOH rust (Miller index: 110) was measured by an X-ray diffraction method for a rust sample collected from a test material subjected to a corrosion resistance evaluation test. For some samples, the crystallite size of γ-FeOOH rust (β rust) (020) or magnetite (220) was measured.

また、供試材から採取した錆試料を前述のX線回折法により同定し、α−FeOOH、β−FeOOH、γ−FeOOHおよびFeの3種類の錆の各々の固有の回折ピークの積分強度比と、予め求めた各々の錆成分の検量線から、各々の結晶性の錆成分の定量化を行い、錆の合計量からこれら各々の結晶性の錆成分量を差し引いて非晶質成分の割合およびさびの分率:α−FeOOH/γ−FeOOHを算出した。 In addition, a rust sample collected from the test material was identified by the above-mentioned X-ray diffraction method, and the intrinsic diffraction peak of each of the three types of rust of α-FeOOH, β-FeOOH, γ-FeOOH, and Fe 3 O 4 Quantify each crystalline rust component from the integral strength ratio and the calibration curve for each rust component obtained in advance, and subtract the amount of each crystalline rust component from the total amount of rust to obtain amorphous Component ratio and rust fraction: α-FeOOH / γ-FeOOH was calculated.

錆層の比表面積
自動容量吸着装置を用いて液体窒素温度でN吸着等温線を求め、この吸着等温線を用いてBETプロットを行い比表面積を求めた。
Specific surface area of rust layer An N 2 adsorption isotherm was determined at liquid nitrogen temperature using an automatic capacity adsorption device, and a specific surface area was determined by performing a BET plot using this adsorption isotherm.

錆中の元素分析
また、試験片を切断し、断面を走査型電子顕微鏡(SEM)にて100〜2000倍程度で観察し、表面の鉄層と地鉄が密着している箇所を任意に抽出し、錆層の合金元素(S、Ti、Cu、Ni、Nb、Zr、V)の濃縮度合い(含有量)を電子線プローブマイクロアナライザー(EPMA)により測定した。
Elemental analysis in rust In addition, the test piece is cut and the cross section is observed with a scanning electron microscope (SEM) at a magnification of about 100 to 2000 times, and the location where the iron layer on the surface is in close contact with the ground iron is arbitrarily extracted. Then, the degree of concentration (content) of the alloy elements (S, Ti, Cu, Ni, Nb, Zr, V) of the rust layer was measured by an electron beam probe microanalyzer (EPMA).

前記の耐食性評価試験、生成した錆の分析、錆層の比表面積および細孔径の測定、および錆中の元素分析の結果を表2に示す。   Table 2 shows the results of the corrosion resistance evaluation test, analysis of the generated rust, measurement of the specific surface area and pore diameter of the rust layer, and elemental analysis in rust.

Figure 0004185552
Figure 0004185552

Figure 0004185552
Figure 0004185552

表2に示すとおり、本発明例(No.6〜16)は比較例(No.1〜5)に比べて優れた耐食性を示した。また、本発明例は、耐食性も優れているだけでなく、β−FeOOH錆の結晶子サイズも小さく、さび層の比表面積も大きい。すなわち、本発明例は、耐食性も優れており、X線回折法により求めた非晶質成分の分率が30質量%以上で、β−FeOOH(β錆)成分の分率が30質量%以下で、さびの分率(α−FeOOH/γ−FeOOH)が0.6を超えるものが多い。これに対して、比較例は、この条件をいずれも満足せず、耐食性に劣ることが分かる。   As shown in Table 2, the inventive examples (Nos. 6 to 16) exhibited excellent corrosion resistance compared to the comparative examples (Nos. 1 to 5). In addition, the present invention example is not only excellent in corrosion resistance, but also has a small crystallite size of β-FeOOH rust and a large specific surface area of the rust layer. That is, the examples of the present invention have excellent corrosion resistance, the fraction of the amorphous component determined by X-ray diffraction method is 30% by mass or more, and the fraction of the β-FeOOH (β rust) component is 30% by mass or less. In many cases, the rust fraction (α-FeOOH / γ-FeOOH) exceeds 0.6. On the other hand, it can be seen that the comparative example does not satisfy any of these conditions and is inferior in corrosion resistance.

また、本発明例(No.6〜16)では、錆層中にSをはじめ、Cu、Ni、Tiなどの有効元素が濃縮しており、前記耐食性試験の結果が裏付けられた。   Further, in the present invention examples (Nos. 6 to 16), effective elements such as S, Cu, Ni, and Ti were concentrated in the rust layer, and the results of the corrosion resistance test were supported.

Claims (3)

(A)質量%にて、C:0.02〜0.15%、Si:0.10〜1.0%、Mn:0.1〜1.5%、S:0.02〜0.5%、Ti:0.02〜0.15%、Ca:0.0001〜0.01%およびAl:0.01〜0.50%を必須成分とし、さらに、Cu:0.05〜3.0%およびNi:0.05%〜6.0%から選ばれる少なくとも1種を含有し、残部Feおよび不可避的不純物からなり、Ni、Cu、SおよびTiの含有量の間に[(Ni+4.5×Cu)×S×2500×Ti>5]で表される関係を有し、かつ、
(B)表面が、S:0.3〜5.0質量%を含み、さらに、Ti、Cu、Ni、Nb、ZrおよびVから選ばれる少なくとも1種を合計で0.5〜10.0質量%含有する錆により被覆されており、かつ、
(C)表面に、β−FeOOH成分のX線回折法により求められる結晶子サイズが50nm未満である錆層が形成され、かつ前記錆層の分子吸着法により求められる比表面積が10m/g以上である
ことを特徴とする耐食性に優れた鋼材。
(A) In mass%, C: 0.02-0.15%, Si: 0.10-1.0%, Mn: 0.1-1.5%, S: 0.02-0.5 %, Ti: 0.02 to 0.15%, Ca: 0.0001 to 0.01% and Al: 0.01 to 0.50% as essential components, and Cu: 0.05 to 3.0 % And Ni: at least one selected from 0.05% to 6.0%, consisting of the balance Fe and unavoidable impurities, between the contents of Ni, Cu, S and Ti [(Ni + 4.5 × Cu) × S × 2500 × Ti> 5], and
(B) The surface contains S: 0.3 to 5.0% by mass, and at least one selected from Ti, Cu, Ni, Nb, Zr and V in total is 0.5 to 10.0% by mass. % Covered with rust, and
(C) A rust layer having a crystallite size of less than 50 nm determined by the X-ray diffraction method of the β-FeOOH component is formed on the surface, and the specific surface area determined by the molecular adsorption method of the rust layer is 10 m 2 / g. A steel material excellent in corrosion resistance characterized by the above.
さらに、La:0.0001〜0.05質量%、Ce:0.0001〜0.05質量%、Mg:0.0001〜0.05質量%、Mo:0.05〜3.0質量%、Nb:0.005〜0.5質量%、V:0.01〜0.5質量%、Zr:0.005〜0.5質量%、B:0.0003〜0.003質量%、およびW:0.05〜3.0質量%から選ばれる少なくとも1種を含有することを特徴とする請求項1に記載の耐食性に優れた鋼材。   Furthermore, La: 0.0001-0.05 mass%, Ce: 0.0001-0.05 mass%, Mg: 0.0001-0.05 mass%, Mo: 0.05-3.0 mass%, Nb: 0.005 to 0.5 mass%, V: 0.01 to 0.5 mass%, Zr: 0.005 to 0.5 mass%, B: 0.0003 to 0.003 mass%, and W The steel material excellent in corrosion resistance according to claim 1, comprising at least one selected from 0.05 to 3.0% by mass. 表面に生成した錆の、X線回折法により求められる非晶質成分の分率が30質量%以上、かつβ−FeOOH成分の分率が30質量%以下であり、錆の分率がα−FeOOH/γ−FeOOH>0.6であることを特徴とする請求項1または請求項2に記載の耐食性に優れた鋼材。   The fraction of the rust generated on the surface is 30% by mass or more of the amorphous component determined by the X-ray diffraction method, the fraction of the β-FeOOH component is 30% by mass or less, and the fraction of rust is α- The steel material excellent in corrosion resistance according to claim 1 or 2, wherein FeOOH / γ-FeOOH> 0.6.
JP2007303333A 2007-01-31 2007-11-22 Steel material with excellent corrosion resistance Expired - Fee Related JP4185552B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007303333A JP4185552B2 (en) 2007-01-31 2007-11-22 Steel material with excellent corrosion resistance
PCT/JP2008/051065 WO2008093608A1 (en) 2007-01-31 2008-01-25 Steel material having excellent corrosion resistance
KR1020097016029A KR101120343B1 (en) 2007-01-31 2008-01-25 Steel material having excellent corrosion resistance
CN2008800022925A CN101589167B (en) 2007-01-31 2008-01-25 Steel material having excellent corrosion resistance
TW097103510A TW200902731A (en) 2007-01-31 2008-01-30 Steel material having excellent corrosion resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007020522 2007-01-31
JP2007303333A JP4185552B2 (en) 2007-01-31 2007-11-22 Steel material with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2008208452A JP2008208452A (en) 2008-09-11
JP4185552B2 true JP4185552B2 (en) 2008-11-26

Family

ID=39785003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303333A Expired - Fee Related JP4185552B2 (en) 2007-01-31 2007-11-22 Steel material with excellent corrosion resistance

Country Status (4)

Country Link
JP (1) JP4185552B2 (en)
KR (1) KR101120343B1 (en)
CN (1) CN101589167B (en)
TW (1) TW200902731A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382203B2 (en) * 2010-07-29 2014-01-08 新日鐵住金株式会社 Steel for thermal cutting using oxygen
KR101243011B1 (en) * 2010-09-29 2013-03-12 주식회사 포스코 High strength low alloy hot-rolled steel sheet having excellent corrosion resistance and method for manufacturing the same
JP5747473B2 (en) * 2010-10-25 2015-07-15 新日鐵住金株式会社 Raw coal dry classification equipment
JP6048104B2 (en) * 2011-12-26 2016-12-21 Jfeスチール株式会社 Corrosion resistant steel for holding coal ships and coal / ore combined ships
KR101674341B1 (en) 2013-08-16 2016-11-08 신닛테츠스미킨 카부시키카이샤 Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
KR101518578B1 (en) 2013-09-10 2015-05-07 주식회사 포스코 Steel for complex corrosion resistance to hydrochloric acid and sulfuric acid having excellent wear resistance and surface qualities and method for manufacturing the same
CN103789614A (en) * 2014-01-16 2014-05-14 安徽省杨氏恒泰钢管扣件加工有限公司 Steel pipe material for automobile brake system and preparation method of steel pipe material
JP6180956B2 (en) * 2014-02-13 2017-08-16 株式会社神戸製鋼所 Painted steel with excellent corrosion resistance
CN103866188B (en) * 2014-03-31 2016-01-20 武汉钢铁(集团)公司 Yield strength is 460MPa level fire-resistant corrosion-resistant anti-seismic steel for building and production method
CN107002197A (en) * 2014-12-09 2017-08-01 杰富意钢铁株式会社 The structural steel having excellent weather resistance
JP6631842B2 (en) * 2015-12-25 2020-01-15 株式会社豊田中央研究所 Oxidation catalyst and method for producing iron compound particles
CN106498280B (en) * 2016-10-17 2018-06-05 日照钢铁控股集团有限公司 A kind of high-strength corrosion-resistant steel
CN107245631A (en) * 2017-04-28 2017-10-13 四川和鼎环保工程有限责任公司 Corrosion resistant photovoltaic panel frame framework
CN107557665A (en) * 2017-08-30 2018-01-09 包头钢铁(集团)有限责任公司 A kind of yield strength 345MPa levels rare earth Weather-resistance bridge steel plate and its production method
CN108165897A (en) * 2017-12-07 2018-06-15 安徽科汇钢结构工程有限公司 A kind of metal Steel material for steel structure net rack production
CN114990452B (en) * 2022-08-08 2022-11-01 中特泰来模具技术有限公司 Free-cutting die frame steel and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315344A (en) * 1998-04-30 1999-11-16 Kawasaki Steel Corp High coastal weather resistant steel
JP2000017382A (en) * 1998-07-03 2000-01-18 Nippon Steel Corp Steel excellent in sulfuric acid corrosion resistance
KR100319302B1 (en) * 1999-02-25 2002-01-04 구마모토 마사히로 Steel excellent in anticorrosion and steel structures thereof
JP4427207B2 (en) * 2001-05-01 2010-03-03 新日本製鐵株式会社 Steel excellent in cold workability, high temperature characteristics, and low temperature corrosion resistance, and its manufacturing method
JP4319817B2 (en) * 2001-11-19 2009-08-26 新日本製鐵株式会社 Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint

Also Published As

Publication number Publication date
KR101120343B1 (en) 2012-02-24
KR20090098912A (en) 2009-09-17
CN101589167B (en) 2011-10-12
TW200902731A (en) 2009-01-16
CN101589167A (en) 2009-11-25
JP2008208452A (en) 2008-09-11
TWI374195B (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP4185552B2 (en) Steel material with excellent corrosion resistance
CN109536827B (en) Steel sheet having improved resistance to acid dew point corrosion, method for producing same, and exhaust gas flow path component
US11091824B2 (en) Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member
TWI410503B (en) Corrosion resistant steel for crude oil sump and its manufacturing method, and crude oil sump
CN109082594B (en) Acid soil corrosion resistant steel for buried structure and manufacturing method thereof
JP2007262558A (en) Sulfuric acid dew point corrosion resistant steel having excellent hydrochloric acid resistance
WO2009084747A1 (en) Steel having excellent resistance to corrosion by hydrochloric acid and sulfuric acid and method for manufacturing the same
KR101417295B1 (en) Cold-rolled steel sheet having excellent sulfuric acid-corrosion resistant and surface properties and method for manufacturing thereof
CN109023070B (en) Steel for salt-resistant soil corrosion-resistant buried structure and manufacturing method thereof
JP5686632B2 (en) Sulfuric acid dew point corrosion steel and exhaust gas flow path components
JP5942532B2 (en) Steel material with excellent corrosion resistance
JP3568760B2 (en) Thick plate with excellent bare weather resistance and weldability
KR101417294B1 (en) Hot-rolled steel sheet having excellent multi-corrosion resistant and weldability and method for manufacturing thereof
CN109023071B (en) Neutral soil corrosion resistant steel for buried structure and manufacturing method thereof
KR100334679B1 (en) Steel for Coating Excellent in good Durability of Coated Film, and Manufacturing Process Thereof
JP3971853B2 (en) Steel material with excellent corrosion resistance
JP3466076B2 (en) Steel with excellent corrosion resistance and weldability
JP4507668B2 (en) Manufacturing method of high corrosion resistant steel
JPH11140586A (en) Steel product for flue and stack of lng-fired boiler for lng only
JP4483378B2 (en) High corrosion resistant steel
JP3773745B2 (en) Method for producing low yield ratio and high Ti steel sheet excellent in bare weather resistance
KR100544507B1 (en) The hot rolled sheet steel with the excellent anti-corrosion resistance to sulfuric acid
JP2000290754A (en) High corrosion resistance clad steel and chimney for coal fired power plant
CN115135797A (en) Steel sheet having excellent wear resistance and composite corrosion resistance, and method for producing same
CN115135791A (en) Steel sheet having excellent wear resistance and composite corrosion resistance, and method for producing same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4185552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees