JP3971853B2 - Steel material with excellent corrosion resistance - Google Patents

Steel material with excellent corrosion resistance Download PDF

Info

Publication number
JP3971853B2
JP3971853B2 JP25543198A JP25543198A JP3971853B2 JP 3971853 B2 JP3971853 B2 JP 3971853B2 JP 25543198 A JP25543198 A JP 25543198A JP 25543198 A JP25543198 A JP 25543198A JP 3971853 B2 JP3971853 B2 JP 3971853B2
Authority
JP
Japan
Prior art keywords
steel
rust
steel material
corrosion resistance
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25543198A
Other languages
Japanese (ja)
Other versions
JPH11310847A (en
Inventor
文雄 湯瀬
武典 中山
俊明 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25543198A priority Critical patent/JP3971853B2/en
Publication of JPH11310847A publication Critical patent/JPH11310847A/en
Application granted granted Critical
Publication of JP3971853B2 publication Critical patent/JP3971853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に橋梁など維持管理の遂行が困難な構造物で、塗装されて乃至無塗装で使用される構造材に適した耐食性に優れた鋼材の技術分野に属するものである。
【0002】
【従来の技術】
例えば山間部や海岸地帯など、塩水や融雪塩が飛来するなどの塩分腐食環境下にある道路橋等の橋梁構造物に使用する鋼材は、耐食性向上のため、従来から塗装されて用いられている。しかし、この塗装塗膜は必ず経時劣化するため、耐食性維持のために、一定周期で塗装しなおす維持管理の必要性がある。
【0003】
一方、近年では、これらの橋梁には、従来の多数桁橋梁に代わり、2主桁橋梁に代表されるような主桁の数が少ない少数主桁橋梁が多く用いられるようになっている。この少数主桁橋梁は、多数桁橋梁に比して、使用鋼材量(鋼重)や橋材片数が削減可能で、施工性も良く、環境保護や工期の短縮の点で利点を有する。そして、このような少数主桁橋梁には、橋梁設置後の維持管理の負荷やコストの最小化と、橋梁自体の高寿命化が強く求められている。
【0004】
したがって、このような少数主桁橋などを含め、鉄塔や建築物などの構造材に用いられる鋼材には、前記塩分腐食環境下において、無塗装で使用(裸使用)されても、また、塗装されて使用され、使用中に塗装皮膜が劣化乃至破壊されても、いずれにしても橋梁設置後の維持管理が不要であるような高い耐食性を維持する鋼材が強く求められている。
【0005】
従来、この種鋼材の耐食性の向上のために、母材である鋼材側からの改善技術が種々提案されている。例えば、この代表例として、P :0.15% 以下やCu:0.2 〜0.6 % 、Cr:0.3 〜1.25% 、Ni:0.65% 以下を含む耐候性鋼がある。この耐候性鋼は、JIS G 3114 (溶接構造用耐候性熱間圧延鋼材) あるいはJIS G 3125 (高耐候性圧延鋼材) の2 種が規格化されている。この耐候性鋼は、前記微量元素の作用によって、鋼材の使用中に、鋼表面に生成する錆が、裸耐候性に代表される高い耐食性を有する緻密な安定錆層 (耐候性錆) となる自己防食機能を有している。そして、このような性質により、耐候性鋼は、前記橋梁など、これまで様々な構造物のメンテナンスフリーの構造材として、基本的に無塗装で使用されてきた。
【0006】
しかし、前記塩分腐食環境下では、塩分の影響により、耐候性鋼の特徴である前記安定錆層が形成されにくくなる。そして、この安定錆層が形成されなくなると、前記耐候性鋼の耐食性は著しく低下してしまう。これは、前記塩分の多い腐食環境下では、鋼の腐食に伴って、錆皮膜中のpHが特に低下することに起因している。即ち、通常、鋼の腐食がわずかでも始まると、まず、Fe→Fe2++2e- と、これに続くFe2++2H2O→Fe(OH)2 +2H+ なる反応により、鋼表面のpHは低下し、錆皮膜中乃至錆皮膜と鋼との界面のpHも低下する。そして、これらのpHが一旦低下すると、電気的中性を保つために錆皮膜中の塩素イオンの輸率が増大し、塩素イオンの濃縮が錆皮膜と鋼との界面で生じる。この結果、この界面部分に塩酸雰囲気が形成され、鋼の腐食を促進するものである。また、これと同時に、錆皮膜中のpHの低下によって、鉄イオンの溶解度が大きくなり、耐候性鋼など耐食低合金鋼の防食機構の要である前記安定錆層の形成を阻害する現象も生じ、腐食加速状況が形成される。
【0007】
このため、前記錆皮膜中のpHの低下を防止するため、耐候性鋼の表面をアルカリ化し、前記腐食加速状況の形成を阻止する技術が提案されている。より具体的には、耐候性鋼の表面をアルカリ化するBe、Mg、Ca、Sr、Ba等の酸化物 (化学種) を、予め鋼中に分散しておき、前記鋼の腐食反応と同時に、これら化学種を作用させ、鋼表面のpHの低下を抑制する方法が、例えば、特開昭58−25458 号や特許第2572447 号公報などで提案されている。
【0008】
これら酸化物を添加して、腐食加速状況の形成を阻止する技術は、確かに、外界からの塩分等の影響を抑制する点では効果がある。しかしながら、やはり前記安定錆層自体を形成するのは、前記耐候性鋼と同様に困難乃至限界があり、十分な耐食性が得られていないのが実情である。また、鋼中に添加する酸化物自体が、溶接性や強度などの特性に悪影響を及ぼす懸念もある。
【0009】
このため、鋼材の耐食性向上の課題に対し、前記鋼材の成分組成の側からの改善ではなく、鋼材の表面処理により、この安定錆層自体を形成する技術が種々提案されている。例えば、特許登録第2699733 号公報や特開平06−93467 号公報には、基本的に、鋼材表面あるいは鋼材の錆層に硫酸クロムなどのCrイオンを含む水溶液を塗布し、これによって、大気環境中で形成される錆層および既に形成されている錆層の耐食性を高めるものである。より具体的には、前記塗布によって、塗布後に形成される錆層中に、0.3mass%以上のCrを始めとする、Cu、P 、Ni、Feなどが含有されることにより、形成される錆がα−FeOOH などの緻密な錆となって錆層の耐食性が高められるものである。
【0010】
【発明が解決しようとする課題】
この技術は、ウェザーアクト処理と称され、安定錆層の成分や組成自体に着目した点で注目すべき技術である。即ち、前記耐候性鋼や酸化物分散鋼などでは、添加元素を多く含み、鋼材施工時の溶接性や、溶製、圧延などの鋼材製造時の効率が、通常の鋼に比して、必然的に低下する。また、製造効率の低下や添加元素を多く含むことによる鋼材製造コストも高くつくとともに、溶接性が低下する分、鋼材施工コストも高くつく。したがって、これらの耐候性鋼を用いることなく、通常の炭素鋼や低合金鋼を用いて、安定錆層の成分や組成によって、鋼材の高い耐食性が実現可能であるならば、前記製造効率やコスト、あるいは施工効率やコストの面で多くの利点がある。
【0011】
しかしながら、前記硫酸クロムの塗布を主体とするウェザーアクト処理を施した場合、前記塩分腐食環境下において、無塗装で使用(裸使用)された場合、あるいは塗装して使用された際に塗装皮膜が劣化乃至破壊された場合に、必ずしも再現性良く高耐食性が発揮されないことを、本発明者は知見した。
【0012】
そして、この一因として、ウェザーアクト処理される鋼材の種類の問題があること、即ち、ウェザーアクト処理がその優れた耐食性の効果を、前記塩分腐食環境下において、再現性良く発揮するためには、鋼材の成分組成を調製する必要があることも知見した。
【0013】
したがって本発明は、これら従来の問題に鑑み、塩分腐食環境下において、硫酸クロム溶液の塗布に係るウェザーアクト処理の優れた耐食性の効果を、再現性良く発揮できる鋼材を提供することを目的とする。
【0014】
【課題を解決するための手段】
このための本発明の要旨は、鋼材表面あるいは鋼材の錆層に硫酸クロム溶液が塗布された鋼材であって、この鋼材が質量% にて、C :0.15% 以下、Si:0.10〜1.0 % 、Mn:1.5 % 以下、S :0.02% 以下、P :0.05% 以下、Cr:0.05% 以下、Ti:0.01〜 1.0% 、Ca:0.0001〜0.01% およびCu:0.05〜3.0 % とNi:0.05〜6.0 % の1 種または2 種を含有し、残部Feおよび不可避的不純物からなることである。
【0015】
このような要旨とすることにより、構造物としての使用中に鋼材表面に生成する錆を、緻密な安定錆層にすることができ、塩分腐食環境下でも、再現性良く高い耐食性を有することが可能となる。
【0016】
本発明者らは、硫酸クロムの塗布を主体とするウェザーアクト処理を施した場合に、再現性良く鋼の高耐食性が発揮されない原因が、鋼材の成分組成の内の、S やCrなどの含有量にあることを知見した。そして、一方でTiを含有することにより、ウェザーアクト処理の効果が高められることを知見した。
【0017】
これらの元素の耐食性への影響について以下に説明する。鋼材表面に生成した錆においては、緻密な安定錆層か否かの目安として、錆の非晶質度 (非晶質度合い) が重要となる。即ち、鋼材表面に生成する鉄錆の主要な成分は、α−FeOOH 、β−FeOOH 、γ−FeOOH およびFe3O4 の結晶性の錆と、非晶質の錆との5 種類からなる。この内、非晶質の錆は、結晶性の錆よりも極めて微細で緻密な安定錆層を形成する。しかも、例え、鋼材の使用中に結晶性の錆により錆皮膜としての欠陥部分が形成されたとしても、非晶質の錆部分がこの穴埋めを行い、欠陥部分を減少させる欠陥補修機能も有する。この結果、鋼材の長期の裸耐候性を保障する。したがって、鉄錆中の非晶質の錆の割合 (非晶質度) が高いほど、また、結晶性の錆成分の内でも微細で緻密なα−FeOOH の割合が高いほど高い耐食性を有する。
【0018】
一方、これ以外の錆、特にβ−FeOOH などの結晶性の錆は、錆中の前記非晶質やα−FeOOH の割合が高くても、この錆が起点となって腐食を進行させるため、極力抑制する必要がある。したがって、鉄錆中の非晶質の錆の割合 (非晶質度) や、微細で緻密なα−FeOOH の錆の割合が高いほど、安定錆層と言える。また、結晶性の錆成分の内でも特に腐食を促進しやすいβ−FeOOH の割合が少ないほど、緻密な安定錆層と言える。
【0019】
これに対し、まず、S が0.02% を越えて含有量されると、ウェザーアクト処理による前記安定錆層の形成を阻害して、耐食性劣化を招く。したがって、S 含有量を0.02% 以下とすることも本発明の特徴の一つである。。
【0020】
また、Crは、従来の耐候性鋼材では、P やCu、Niとともに、前記安定錆層を形成させるために必須の添加元素と認識され、前記した通り、JIS 規格などでも0.30〜1.25% 含有されている。また、前記特開昭58−25458 号や特許第2572447 号公報などでは、Crの添加は明示されていないものの、鉄原料や製鋼過程などからの不純物として、必然的に0.05% 以上含有されている。
【0021】
しかし、Crを0.05% 以上含有する場合、鋼のミクロな表面欠陥部において腐食がわずかでも始まると、化学平衡的に鉄原子に伴い微量溶解するCrイオンが、Clイオンの作用も加わり、前記鋼のミクロな表面欠陥部内におけるpHの低下の原因となり、欠陥内での凝縮水分の酸化性を促進し、腐食を誘発する作用がある。したがって、Crは前記緻密な安定錆層が生成したとしても、安定錆層の下部において、鋼の腐食を促進する作用があり、錆層と鋼との密着性を阻害して、錆層の剥離を助長したり、結果として、緻密な安定錆層の生成乃至維持を阻害する。それゆえ本発明では、Crの含有量を可能な限り少なくすることが必要で、Cr含有量低減の経済性も考慮して、その上限を0.05% 未満とする。
【0022】
そして、Crに代わる前記安定錆層の形成促進元素として、本発明では、Tiを選択した。Tiは、Crのような前記pHの低下の原因とならずに、前記安定錆層の形成促進効果があり、硫酸クロムの塗布を主体とするウェザーアクト処理の効果を相乗的に高めるという特異な性質を有する。具体的には、鉄錆中の非晶質の割合やα−FeOOH の錆の割合を高めるとともに、結晶性の錆成分の内でも特に腐食を促進しやすいβ−FeOOH の生成を抑制して、 微細で緻密な安定錆層の形成を促進する。この結果、錆層への塩化物イオンなどの腐食因子の進入を阻止し、緻密な安定錆層を維持して、耐食性を向上させる。
【0023】
因みに、Tiは、通常、溶鋼の脱酸や鋼材の強度維持のために添加されることが公知であり、前記特許第2572447 号公報などでも、この公知の目的のために0.03% 以下程度添加している。しかし、本発明におけるTiの目的は、前記した通り緻密な安定錆層の形成であり、この点が前記S やCrの低減とともに本発明の特徴の一つである。
【0024】
【発明の実施の形態】
次に本発明における鋼材の化学成分の限定理由について、以下に説明する。
C :0.15% 以下。C は、鋼の構造材用途としての 390〜630N/mm2級、乃至それ以上の要求強度を確保するための必須の元素であるが、0.15% を越えて含有量されると、鋼の溶接性や裸耐候性を劣化させる。したがって、C 含有量は0.15% 以下の、前記要求強度を確保できる量とする。
【0025】
Si:0.10〜1.0 % 。Siは溶鋼の脱酸や固溶強化のために必須の元素であり、また、緻密な安定錆層の形成を促進し、裸耐候性などの耐食性を向上させる効果も有する。しかし、0.10% 未満ではこれらの効果が不十分であり、逆に1.0 % を超えると、溶接性が低下する。したがって、Si含有量は0.10〜1.0 % の範囲とする。
【0026】
Mn:1.5 % 以下。Mnは、C に替わり 390〜630N/mm2級、乃至それ以上の強度確保のための必須の元素であるが、1.5 % を越えて含有量されると、MnS が鋼中に多量に生成して、裸耐候性などの耐食性劣化を招くおそれがある。したがって、Mn含有量は1.5 % 以下の範囲とする。
【0027】
S :0.02% 以下。S は、前記した通り、0.02% を越えて含有量されると、腐食の起点となるFeS 、MnS が鋼中に多量に生成して、ウェザーアクト処理による前記安定錆層の形成を阻害して、耐食性劣化を招く可能性がある。また、Niなどを過剰に含有した場合に、S との反応により、溶接金属の粒界に低融点のNiS 化合物を析出させ、凝固金属の粒界の延性を劣化させやすくなる。この点、S 含有量を0.02% 以下とすれば、前記低融点のNiS 化合物を析出させずに、Niをより多量に含有することが可能になるという利点もある。例えば、S が0.02% を越えた場合には、Niの上限値は3.0 % とすべきであるが、S 含有量を0.02% 以下とすることにより、前記した通り、Niを6.0 % まで含有することが可能となる。したがって、S 含有量は0.02% 以下、好ましくは0.01% 以下、更に好ましくは0.005 % 以下の範囲とする。
【0028】
P :0.05% 以下。P は、耐候性鋼にとって、鋼表面に生成する錆への塩化物イオンの進入を阻止し、緻密な安定錆層を形成して、耐食性を向上させる効果を有する。そして、前記従来の耐候性鋼では、この効果を発揮させるために、0.05% 程度以上、0.15% 以下程度の含有を必須としている。しかし、本発明においては、P の0.05% 程度以上の過度の含有は、溶接性を著しく阻害し、前記少数桁橋梁の施工上重要な、予熱なし(予熱フリー)で、高効率の大入熱溶接ができる溶接性の要求特性を満たすことができない。また、本発明では、Tiなどの含有により、緻密な安定錆層の形成が達成できるゆえ、P の過度の含有は必要ない。したがって、本発明では、P 含有量を極力低減することとし、P 含有量低減の経済性も考慮して、その上限を0.03% 未満とする。このP 量の低減は、溶接性の向上にも寄与する。
【0029】
Cr:0.05% 以下。Crは、前記した通り、鋼のミクロな表面欠陥部内におけるpHの低下の原因となり、欠陥内での凝縮水分の酸化性を促進し、腐食を誘発する作用があり、鋼材の裸耐候性を低下させる。したがって、本発明ではCrを0.05% 未満に可能な限り含有量を少なくする。このCr量の低減は、溶接性の向上にも大きく寄与するものである。
【0030】
Ti:0.01〜 1.0% 。Tiは、前記した通り、本発明では、Crに代わる前記安定錆層の形成促進元素として重要な元素であり、Crの如き前記pHの低下の原因となるような耐食性への悪影響はない。また、Tiは鋼材組織の結晶粒微細化による生成錆の微細化、あるいは靱性向上や溶接性の向上効果も有する。即ち、Tiの含有によって、溶接部の冷却過程において強力なフェライト変態核となるTiC やTiN 等を鋼中に分散析出させ、溶接熱影響部の組織のフェライト微細化に大きく寄与する。Ti含有量が0.01% 未満ではこの効果がなく、また1.0 % を越えてもその効果は飽和し経済的ではない。この点、Tiの効果をより発揮させるためには、0.03% を越えて含有することが好ましく、より好ましくは0.05% 以上含有する。またTiが0.5 % を越えると鋼の脆化が問題となる場合もあり、前記した通り経済的でもない。したがって、好ましくはTi含有量は0.03% を越え0.5 % 以下、より好ましくは0.05〜0.5 % の範囲とする。
【0031】
Cu:0.05〜3.0 % とNi:0.05〜6.0 % の1 種または2 種。CuとNiは、共に耐食性向上効果や溶接性の向上効果を有する元素であり、これらの1 種または2 種を含有することにより、これらの効果が発揮される。この内、Cuは電気化学的に鉄より貴な元素であり、鋼表面に生成する錆を緻密化して、ウェザーアクト処理による安定錆層の形成を促進し、耐候性などの耐食性を向上させる効果を有する。また、溶接性の向上にも寄与する。Cu含有量が0.05% 未満ではこの効果がなく、3.0 % を越えてもそれ以上の効果は得られず、逆に鋼材の製造のための熱間圧延などの加工の際に、素材の脆化を引き起こす可能性がある。この観点からは、Cu含有量の上限を1.5 % 以下とするのが好ましい。したがって、Cu含有量は0.05〜3.0 % の範囲、好ましくは0.05〜1.5 % の範囲とする。
【0032】
Niは、Cuと同様に、鋼表面に生成する錆を緻密化して、ウェザーアクト処理による安定錆層の形成を促進し、耐候性などの耐食性を向上させる効果を有する。また、溶接性の向上にも寄与する。更にNiは、Cuの前記熱間加工脆性を抑制する効果もある。したがって、Cuと併せて含有すると、耐食性向上効果、熱間加工脆性の抑制効果の相乗効果が期待できる。Niが0.05% 未満の含有量ではこのような優れた効果を得ることができない。しかし、一方、Niの過剰な含有は、完全オーステナイト組織における固液凝固温度範囲を広げて、低融点不純物元素のデンドライト粒界への偏析を助長するとともに、S と反応して溶接金属の粒界に、低融点のNiS 化合物を析出させ、凝固金属の粒界の延性を劣化させる。したがって、Niの過剰な含有は、耐溶接高温割れ性に悪影響を与えるので、その上限の含有量は6.0 % とすべきであり、結果としてNi含有量は0.05〜6.0 % の範囲とする。
【0033】
Ca:0.0001〜0.01% 。Caは、耐食性をより向上させる元素であり、また溶接性の向上効果も有する。Caの耐食性向上の作用の1 つは、耐食性に有害なS を固定して、鋼マトリックスを清浄化することである。また、更に他の作用として、鋼中に微量固溶したCaが鋼表面やミクロ的な欠陥部での腐食進行過程において、鉄の腐食反応に伴い微量溶解してアルカリ性を呈する。したがって、腐食 (アノード) 先端部の溶液pH緩衝効果を有し、腐食先端部での腐食を抑制する効果を有する元素である。これらは、前記Crのような溶解時にpHを下げる元素の作用とは全く逆の作用を持っている。したがって、CaをTiと併用すると、本発明のCrの低減効果やTiなどの安定錆層の形成促進効果と合わせ、裸耐候性などの耐食性向上の相乗効果が生じる。この相乗効果は、Caの含有量が0.0001% 未満ではこの効果が発揮されないが、過度に含有しても、その効果は飽和し、経済的ではない。特にCaは、過度に含有されると、鋼の清浄度を悪くし、耐候性鋼材の製造時、特に製鋼中の炉壁を損傷する可能性も有している。したがって、Caの含有量は0.0001〜0.01% の範囲とする。
【0034】
次に本発明鋼材の選択添加元素について説明する。
Mo:0.05〜3.0 % とW :0.05〜3.0 % の1 種または2 種。Mo:0.05〜3.0 % とW は、TiやNiと共存することにより、耐食性を向上させる効果を有する元素であり、選択的に含有させる。これらの1 種または2 種を含有することにより、鋼表面に生成する錆を緻密化して、ウェザーアクト処理による安定錆層の形成を促進し、耐候性などの耐食性を向上させる効果を有する。更に具体的には、ウェザーアクト処理により生成する錆を緻密化するとともに、錆の性質を塩化物イオンなどの腐食性アニオンと結びつきにくいカチオン選択性として、腐食性アニオンの錆層の浸透を抑制させる。この効果が、TiやNiの緻密な安定錆生成効果( 非晶質の錆や、α−FeOOH の錆の生成促進と、腐食を促進するβ−FeOOH の抑制) と相まって、鋼材の耐食性を向上させる。MoやW の含有量が、各々0.05 %未満ではこの効果がなく、また、含有量が各々3.0 % を越えると、この効果は飽和する。したがって、MoとW の含有量は、0.05〜3.0 % とする。
【0035】
Al:0.05〜0.50% 、La:0.0001〜0.05 %、Ce:0.0001〜0.05 %、Mg:0.0001〜0.05% の1 種又は2 種以上。 Al 、La、Ce、Mgは、共に耐食性向上効果を有する元素であり、選択的に含有させる。これらの1 種または2 種以上を含有することにより、鋼表面に生成する錆を緻密化して、ウェザーアクト処理による安定錆層の形成を促進し、耐候性などの耐食性を向上させる効果を有する。
【0036】
この内、AlはTiと複合添加することによりウェザーアクト処理による安定錆層の形成を一層促進する効果も有する。またAlは溶接性の向上効果も有する。したがって、本発明鋼材の耐食性をより一層向上させる場合には、Alを0.05〜0.50% の範囲で含有させる。更に、Alは、溶鋼の脱酸元素として、固溶酸素を捕捉するとともに、ブローホールの発生を防止して、鋼の靱性の向上のためにも有効な元素である。Al含有量が0.05% 未満では、これらの十分な効果が得られず、一方、Al含有量が0.50% を超えると、前記耐食性向上効果は飽和し、逆に、溶接性を劣化させたり、アルミナ系介在物の増加により鋼の靱性を劣化させる。
【0037】
また、La、Ce、Mgは鋼表面やミクロ的な欠陥部での腐食進行過程において、鉄の腐食反応に伴い微量溶解してアルカリ性を呈する。したがって、腐食 (アノード) 先端部の溶液pH緩衝効果を有し、腐食先端部での腐食を抑制する効果を有する元素である。これらは、前記Crのような溶解時にpHを下げる元素の作用とは全く逆の作用を持っている。したがって、本発明の、Crの低減効果やTiなどの安定錆層の形成促進効果と併用すると、より一層の耐食性向上の相乗効果が期待できる。この効果は、各々の含有量が0.0001%未満では発揮されないが、過度に含有しても、その効果は飽和し経済的ではないし、鋼の機械的性質も悪くする。したがって、各々の含有量は、La:0.0001〜 0.05 %、Ce:0.0001〜 0.05 %、Mg:0.0001〜0.05%の範囲とする。
【0038】
Zr、Ta、Nb、V 、Hfの内から1 種又は2 種以上を合計で0.50% 以下。Zr、Ta、Nb、V 、Hfは、Tiと同様の効果を発揮し、生成する錆の非晶質化やα−FeOOH の割合を高くして、微細で緻密な錆を形成するとともに、β−FeOOH を抑制した安定錆層を形成する。しかし、その効果はTiに比べると劣っている。したがって、これらの元素は、Tiの効果を補完するものとして、選択的に含有する。
【0039】
これらのZr、Ta、Nb、V 、Hfの効果は、これらの元素の1 種または2 種以上を、合計 (総量) で、Tiの必要含有量以上、好ましくは、0.1%以上含有することにより発揮される。但し、0.50% を越えて含有しても、効果は同じであり、上限量は、合計 (総量) で0.50% 程度とする。
【0040】
このような成分組成からなる本発明の鋼材は、溶接性が優れるという利点も有する。即ち、前記少数主桁橋梁などの構造材は、施工性や工期の短縮の点から、炭酸ガスアーク溶接やエレクトロガスアーク溶接により、入熱量5KJ/mm以上、場合によっては入熱量100 乃至300KJ/mm以上の大入熱溶接が施される。したがって、構造材に使用される鋼材としては、構造材としての強度等の機械的な性質は勿論、予熱の必要が無く、これら大入熱溶接等の高効率溶接が可能な、優れた溶接性を耐食性とともに併せ持つ鋼材が好ましく、本発明鋼材は、この点をも満足する。
【0041】
次に、本発明の安定錆層を形成するための、硫酸クロム溶液 (ウェザーアクト処理) について説明する。硫酸クロム溶液が、鋼材表面あるいは鋼材の錆層に塗布されることにより、鋼材表面に、クロムイオンが存在することとなる。この結果、塗布後に、大気環境中で形成される錆層中に、Crが含有されることにより、Crの効果によって、形成される錆がα−FeOOH などの緻密な錆となって錆層の耐食性が高められる。
【0042】
この際、鋼材中の前記Tiなどの安定錆層の形成促進元素が相乗作用して、鉄錆中の非晶質の割合やα−FeOOH の錆の割合を高めるとともに、結晶性の錆成分の内でも特に腐食を促進しやすいβ−FeOOH の生成を抑制して、微細で緻密な安定錆層の形成を促進する。この結果、錆層への塩化物イオンなどの腐食因子の進入を阻止し、緻密な安定錆層を維持して、耐食性を向上させる。
【0043】
このCrの効果を発揮するためには、0.3mass%以上のCrが錆層へ含有されることが好ましく、鋼材に塗布する硫酸クロム溶液のCr濃度もこれに見合った量とするのが好ましい。
【0044】
更に、Cr以外の含有元素について、これら元素の効果乃至本発明の意図する錆の生成を阻害しない範囲での、他の元素乃至不純物の含有は許容される。例えば、その他の元素として、Tiや、前記特開平06−93467 号公報に開示された、Cu、P 、Niの一種または二種以上を錆中に0.3mass%以上含有しても良い。Tiは、前記鋼材中のTiのように安定錆層の形成促進効果があり、鉄錆中の非晶質の割合やα−FeOOH の錆の割合を高めるとともに、結晶性の錆成分の内でも特に腐食を促進しやすいβ−FeOOH の生成を抑制して、微細で緻密な安定錆層の形成を促進する効果が期待できる。また、Cu、P 、Niは、これらの元素だけはCrと同等の効果は期待できないものの、Crと組み合わせて用いられることにより、錆の非晶質化やα−FeOOH 化に寄与する複合効果を有することが期待できる。
【0045】
次に、本発明における、これら緻密な安定錆層を形成する方法について説明する。まず、構造材としての使用前あるいは使用中の鋼材表面に、洗浄、清浄化や表面研磨などの適当な処理を行う。これらの処理は、鋼材表面を鏡面化する等のものから、鋼材表面の錆の除去、あるいは、鋼材表面や鋼材錆層の単なる清浄化のものまで、鋼材に要求される表面状況により、適宜選択的に行えば良い。また、勿論、鋼材錆層を除去せずに本発明形成方法を行う場合は、鋼材錆層の単なる清浄化あるいは、これらの処理をしなくても良い。
【0046】
次いで、本発明においては、鋼材表面乃至鋼材表面の錆層に対し、硫酸クロムを含有する水溶液や有機溶媒などの溶液を塗布する。この際、他の元素に比した前記Tiの緻密な錆の形成効果の優位性から、硫酸クロムの効果を補強するために、溶液が硫酸Tiを含有することが好ましい。硫酸クロム溶液中の好ましいTiの含有量は、 1.0〜50mass% である。その理由はTi添加の効果が現れるのには1.0mass%以上の濃度が必要であり、50mass% を超えても効果は飽和し経済的にも不利となるからである。また、Cu、Ni、P から選ばれる1種または2種以上を 0.1〜25.0mass% 含有したものが好ましい。25.0mass% を超える添加では効果が飽和し、経済的にも不利になるためである。そして、これらを硫酸塩溶液とするのは、溶液の安定性や鋼材への付き回り性の点からであり、塩化物などの他の化合物とした溶液とした場合には、溶液の安定性や鋼材への付き回り性が悪くなり、安定錆層の生成が困難となりやすいからである。
【0047】
このような硫酸クロム溶液 (ウェザーアクト処理) を鋼材表面に塗布した鋼材は、特に積極的に処理せずとも、また、塩水や融雪塩が飛来するなどの塩分腐食環境下であっても、橋梁などの構造材として使用中に、緻密な安定錆層が比較的短時間で生成する点が大きな利点である。しかし、確実な裸耐候性などの耐食性を保障する品質保証の観点から、鋼材を製造後、必要により酸洗等の前処理を施した後、酸化ポテンシャルを制御したガスなどの雰囲気中で熱処理する、あるいは、燐酸塩やクロメートや酸化剤などの薬剤により化学的に表面処理し、鋼材の製造過程中で生成している錆を非晶質化するなどの処理を行って、積極的に緻密な安定錆層を形成しても良い。
【0048】
また、本発明は、新規な構造物用の鋼材だけではなく、既存の構造物として使用中の塗装乃至非塗装鋼材の耐食性を向上させるためにも使用できる。即ち、既存の構造物として使用中の鋼材の表面の塗膜乃至錆を、全部乃至部分的に( 例えば腐食部分のみ) 剥離乃至剥離せずに清浄化し、本発明の溶液を、鋼材表面乃至鋼材の錆層に塗布しても、その後の時間的な経過によって緻密な錆を生成させることが可能である。したがって、本発明は、既存の構造物の補修乃至保守管理としても使用可能である。
【0049】
次に、本発明鋼材の製造方法を説明する。本発明鋼材は、通常の厚みが50mm以上の厚鋼板の製造方法により製造可能である。即ち、鋼の連続鋳造や造塊法による溶製後、分塊圧延乃至熱間鍛造や、厚板圧延などの熱間加工を行い、所定の製品板厚に製造される。なお、これら熱間加工条件や熱間加工後の冷却や熱処理の条件は、鋼材の、例えば橋梁の構造材としての、 390〜630N/mm2級乃至それ以上の強度などの機械的性質の要求や仕様に応じて、適宜決定される。したがって、通常の熱間加工の他に、溶接性を保障する低合金化乃至低炭素当量化を確保した上で、前記強度等の機械的性質を確保するために、熱間加工後の加速冷却などの強制冷却や制御圧延が施されても良い。また、熱間加工後の熱処理も、必要により、圧延オンラインでの直接焼入れ(DQ)やオフラインでの焼入れ焼戻し(QT)などが適宜施される。
【0050】
【実施例】
次に、以上説明した本発明鋼材の意義について、実施例を挙げて説明する。表1に示す種々の化学成分を有する鋼塊を各々溶製し、これら鋼塊を熱間圧延後加速冷却により強制冷却して板厚が50mmの厚鋼板を製造した。表1のNo.1は低炭素鋼、No.2はTi入り低合金鋼、No.3〜10は本発明耐候性鋼である。そして、これらの厚鋼板から試験片を切り出し、試験片表面をエメリー紙研磨およびバフ研磨により鏡面とし、この試験片表面に、 1〜45mass% の硫酸クロム水溶液や硫酸ジルコニウム水溶液など、およびこれらに加えてCr、Ni、Cuの硫酸塩を含む水溶液を鋼材表面に塗布する処理を行った。
【0051】
これらの処理を行った試験片を、無塗装使用を模擬した裸の試験片のまま(表2の発明例No.6〜24)、および、塗装使用を模擬して橋梁などの塗装に通常使用されるフタル酸樹脂を50μm 塗布した塗装試験片(表3の発明例 No.30〜43) として、耐食性試験を行った。この耐食性試験は大気暴露試験にて行い、実際の塩分腐食環境下を模擬して、週 1回の5.0%塩水散布を行い、試験片は南向きに、かつ水平に対し30°の傾斜で設置して、1 年間の大気暴露試験を行い、長期耐久性を評価した。なお、塩水噴霧試験等の比較的短期間の腐食促進試験があるなかで、あえて1 年間の大気暴露試験を行ったのは、本発明鋼材の用途が、特に塩分腐食環境下の橋梁等の構造材であるため、この実際の使用条件下の腐食に適合した試験でないと、正確な評価ができないためである。。
【0052】
大気暴露後の裸試験片は、平均板厚の減少量 (腐食減量) の測定により評価した。平均板厚減少量は、大気暴露試験の前後での供試材の平均板厚をマイクロメーターで測定し、密度を考慮して平均板厚減少量(mm)を算出した。そして、これらの結果から耐食性の総合評価(×〜◎◎◎◎◎)を行った。これらの結果を表2に示す。
【0053】
また、塗装試験片については、塗膜に予め傷をつけて人工塗膜欠陥を設けるとともに、前記裸の試験片と同じ条件で大気暴露試験を行い、試験後の人工塗膜欠陥部のふくれ幅の測定により耐食性を評価した。そして、これらの結果から耐食性の総合評価(×〜◎◎◎)を行った。これらの結果を表3に示す。なお、表2、3において、平均板厚の減少量 (腐食減量) はmm単位で示し、人工塗膜欠陥部のふくれ幅は、0.80mm以上をA 、 0.5〜0.8mm をB 、0.5mm 以下をC として記載している。
【0054】
また、大気暴露試験後の試験片表面に生成した錆中の元素と元素量の分析・測定を、X 線回折法(XRD) および電子線プルーブX 線マイクロアナリシス(EPMA)により行うとともに、錆の組成を前記X 線回折法により分析した。より具体的には、前記「腐食防食 95 C −306( 341〜344 頁) 」に開示された粉末X 線回折法により行い、内部標準として一定重量比のZnO を鋼材から採取した錆試料に混合し粉末化したものをX線回折法により同定し、前記α−FeOOH 、β−FeOOH 、γ−FeOOH およびFe3O4 の4種類の結晶性錆の各々の固有の回折ピークの積分強度比と、予め求めた各々の錆成分の検量線から、各々の結晶性の錆成分の定量化を行った。そして、非晶質成分の割合(%) は錆の合計量からこれら各々の結晶性の錆成分量を差し引いて算出した。これらの結果も表2に示す。
【0055】
表2において、大気暴露試験の後の試験片表面の生成錆の組成は、非晶質+α-FeOOHの錆成分の分率を A:0〜30mass% 、B:31〜40mass% 、C:41〜50mass% 、D:51mass% 以上、β-FeOOHの錆成分の分率を A:31mass%以上、B:21〜30mass% 、C:11〜20mass% 、D:10mass% 以下として示している。
【0056】
また、比較のために、▲1▼表1に示す比較鋼や本発明に係る鋼を、本発明に係る処理をせずに( 無処理で) 、発明例と同様に裸試験片で耐食性試験を行った比較例No.1、3 、5 、▲2▼表1に示す比較鋼を本発明に係る処理を行い、発明例と同様に裸試験片で耐食性試験を行った比較例No.2、4 の結果を表2に示す。
【0057】
更に、▲3▼表1に示す比較鋼や本発明に係る鋼を、本発明に係る処理をせずに、発明例と同様に塗装試験片で耐食性試験を行った比較例No.25 、27、29 、▲4▼表1に示す比較鋼を本発明に係る処理を行い、発明例と同様に本発明例と同様に塗装試験片で耐食性試験を行った比較例No.26 、28の結果を表3に示す。
【0058】
表2、3の結果から明らかな通り、本発明に係る鋼を、本発明に係る処理をした発明例No.6〜24(表2)、発明例 No.30〜43(表3)は、無塗装および塗装の両者の場合において耐食性に優れている。
【0059】
これに対し、本発明に係る処理をしない比較例No.1、3 、5 (表2)、No.25 、27、29(表3)は、本発明に係る鋼を用いるか否かに拘らず、無塗装および塗装の両者の場合において耐食性に劣っている。また、比較鋼を本発明に係る処理を行った比較例No.2、4 (表2)、比較例No.26 、28(表3)は、無塗装および塗装の両者の場合において耐食性に劣っている。これらの比較例では、錆の組成が、α−FeOOH や非晶質の錆成分が主たる組織でありながら、Ti、Nb、Ta、Zr、V 、Hfの錆中の含有が無いか含有量が少ないために、β−FeOOH の結晶性の錆の割合 (分率) が多くなり、このβ−FeOOH が起点となって腐食が進行するため、耐食性が劣っているものと推考される。
【0060】
これら、試験片表面の錆層と地鉄の界面の塩化物イオンの濃縮度合いをEPMAにより測定した結果、発明例は、いずれも錆層と地鉄の界面の塩化物イオンの濃縮が少なかったのに対し、比較例は、錆層と地鉄の界面の塩化物イオンの濃縮が多く、前記耐食性試験の結果が裏付けられた。
【0061】
したがって、この結果から、本発明のより好ましい条件である鋼表面の錆の非晶質化と、β−FeOOH の結晶性の錆の抑制のためには、鋼材の成分の影響が大きいこと、即ち、ウェザーアクト処理がその優れた耐食性の効果を、前記塩分腐食環境下において、再現性良く発揮するためには、鋼材の成分組成を調製する必要があることが裏付けられる。
【0062】
【表1】

Figure 0003971853
【0063】
【表2】
Figure 0003971853
【0064】
【表3】
Figure 0003971853
【0065】
【発明の効果】
本発明によれば、特に塩分腐食環境下での耐食性が優れた鋼材を提供することができる。したがって、特に、この種耐食性が優れた鋼の用途を新規に、しかも大幅に拡大するものであり、工業的な価値は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of steel materials having excellent corrosion resistance suitable for structural materials that are used with or without painting, particularly for structures such as bridges that are difficult to perform maintenance.
[0002]
[Prior art]
For example, steel materials used for bridge structures such as road bridges in salty corrosive environments such as mountainous areas and coastal areas where salt water and snow melting salt come in are conventionally painted and used to improve corrosion resistance. . However, since this coating film always deteriorates with time, there is a need for maintenance management in which the coating film is repainted at regular intervals in order to maintain corrosion resistance.
[0003]
On the other hand, in recent years, a small number of main girder bridges with a small number of main girder, such as a two-main girder bridge, are often used for these bridges instead of the conventional multi-girder bridge. This minority main girder bridge can reduce the amount of steel material used (steel weight) and the number of bridge material pieces, has good workability, and has advantages in terms of environmental protection and shortening the construction period, compared to a large girder bridge. Such minority main girder bridges are strongly required to minimize the maintenance load and cost after the installation of the bridge and to increase the life of the bridge itself.
[0004]
Therefore, steel materials used for structural materials such as steel towers and buildings, including such minority main girder bridges, can be used without coating (bare use) in the above-mentioned salt corrosion environment. Therefore, there is a strong demand for a steel material that maintains high corrosion resistance so that maintenance and management after installation of a bridge is unnecessary in any case even if the coating film is deteriorated or destroyed during use.
[0005]
Conventionally, in order to improve the corrosion resistance of the seed steel material, various improvement techniques from the steel material side which is a base material have been proposed. For example, typical examples include weather resistant steels including P: 0.15% or less, Cu: 0.2 to 0.6%, Cr: 0.3 to 1.25%, Ni: 0.65% or less. This weather resistant steel is standardized in two types: JIS G 3114 (weather resistant hot rolled steel for welded structures) or JIS G 3125 (high weather resistant rolled steel). In this weather resistant steel, the rust generated on the surface of the steel during use of the steel material becomes a dense stable rust layer (weather resistant rust) having high corrosion resistance typified by bare weather resistance due to the action of the trace elements. Has a self-corrosion prevention function. Due to such properties, weathering steel has been basically used without coating as a maintenance-free structural material for various structures such as bridges.
[0006]
However, in the salt corrosion environment, the stable rust layer, which is a feature of the weather resistant steel, is hardly formed due to the influence of the salt. And if this stable rust layer is no longer formed, the corrosion resistance of the weathering steel will be significantly reduced. This is due to the fact that the pH in the rust film is particularly lowered with the corrosion of steel in the above-mentioned corrosive environment with much salt. In other words, when steel corrosion starts even slightly, first, Fe → Fe 2+ + 2e - And the following Fe 2+ + 2H 2 O → Fe (OH) 2 + 2H + By this reaction, the pH of the steel surface is lowered, and the pH of the rust film or at the interface between the rust film and steel is also lowered. And once these pH falls, in order to maintain electrical neutrality, the transport number of the chlorine ion in a rust film | membrane increases, and the concentration of a chlorine ion arises in the interface of a rust film | membrane and steel. As a result, a hydrochloric acid atmosphere is formed at the interface portion, which promotes corrosion of the steel. At the same time, a decrease in pH in the rust film increases the solubility of iron ions, which also causes a phenomenon that inhibits the formation of the stable rust layer, which is the key to the anticorrosion mechanism of corrosion resistant low alloy steels such as weather resistant steel. Corrosion acceleration situation is formed.
[0007]
For this reason, in order to prevent the pH in the rust film from being lowered, a technique for alkalizing the surface of the weathering steel and preventing the formation of the accelerated corrosion state has been proposed. More specifically, oxides (chemical species) such as Be, Mg, Ca, Sr, and Ba that alkalize the surface of the weathering steel are previously dispersed in the steel, and simultaneously with the corrosion reaction of the steel. For example, Japanese Patent Application Laid-Open No. 58-25458 and Japanese Patent No. 2572447 propose methods for causing these chemical species to act to suppress the decrease in the pH of the steel surface.
[0008]
The technique of adding these oxides to prevent the formation of the accelerated corrosion state is surely effective in suppressing the influence of salt content from the outside. However, the formation of the stable rust layer itself is difficult or limited in the same manner as the weather resistant steel, and the fact is that sufficient corrosion resistance is not obtained. In addition, there is a concern that the oxide itself added to the steel adversely affects properties such as weldability and strength.
[0009]
For this reason, various techniques for forming the stable rust layer itself by surface treatment of the steel material have been proposed for the problem of improving the corrosion resistance of the steel material, not by improving the component composition of the steel material. For example, in Japanese Patent Registration No. 2699733 and Japanese Patent Application Laid-Open No. 06-93467, an aqueous solution containing Cr ions such as chromium sulfate is basically applied to the surface of a steel material or a rust layer of the steel material. The corrosion resistance of the rust layer formed by (1) and the rust layer already formed is increased. More specifically, in the rust layer formed after coating by the above coating, rust formed by including Cu, P, Ni, Fe, etc. including 0.3 mass% or more of Cr. Becomes dense rust such as α-FeOOH, and the corrosion resistance of the rust layer is enhanced.
[0010]
[Problems to be solved by the invention]
This technique is called a weather act treatment, and is a technique to which attention should be paid in that it focuses on the components and composition of the stable rust layer. That is, the above-mentioned weathering steel and oxide dispersion steel contain a large amount of additive elements, and the weldability during construction of steel materials and the efficiency at the time of steel production such as melting and rolling are inevitably compared to those of ordinary steel. Decline. In addition, the steel production cost due to a decrease in production efficiency and a large amount of additive elements is high, and the steel construction cost is high due to the decrease in weldability. Therefore, if the high corrosion resistance of the steel material can be realized by using the normal carbon steel or low alloy steel without using these weathering steels and the components and composition of the stable rust layer, the production efficiency and cost are reduced. There are many advantages in terms of construction efficiency and cost.
[0011]
However, when a weather act treatment mainly comprising the application of chromium sulfate is applied, the coating film is not used in the above-mentioned salty corrosive environment, when used without coating (bare use), or when coated and used. The present inventor has found that high corrosion resistance is not always exhibited with good reproducibility when it is deteriorated or destroyed.
[0012]
And as one reason for this, there is a problem of the type of steel material subjected to weather act treatment, that is, in order that the weather act treatment exhibits its excellent corrosion resistance effect in the above-mentioned salt corrosion environment with good reproducibility. It has also been found that it is necessary to prepare the component composition of the steel material.
[0013]
Therefore, in view of these conventional problems, an object of the present invention is to provide a steel material capable of exhibiting the excellent corrosion resistance effect of the weather act treatment related to the application of the chromium sulfate solution with good reproducibility in a salt corrosion environment. .
[0014]
[Means for Solving the Problems]
The gist of the present invention for this purpose is a steel material in which a chromium sulfate solution is applied to the steel material surface or a rust layer of the steel material, and the steel material is in mass%, C: 0.15% or less, Si: 0.10 to 1.0%, Mn: 1.5% or less, S: 0.02% or less, P: 0.05% or less, Cr: 0.05% or less, Ti: 0.01 to 1.0%, Ca: 0.0001 to 0.01% and Cu: 0.05 to 3.0% and Ni: 0.05 to 6.0 % 1 or 2 types, and the balance consists of Fe and inevitable impurities.
[0015]
By adopting such a gist, the rust generated on the steel surface during use as a structure can be made into a dense stable rust layer, and it has high reproducibility and high corrosion resistance even in a salt corrosion environment. It becomes possible.
[0016]
The present inventors, when subjected to a weather act treatment mainly consisting of chromium sulfate application, the reason why the high corrosion resistance of steel is not exhibited with good reproducibility is the inclusion of S, Cr, etc. in the component composition of the steel material It was found that it was in quantity. And on the other hand, it discovered that the effect of a weather act process was heightened by containing Ti.
[0017]
The influence of these elements on the corrosion resistance will be described below. In the rust generated on the steel surface, the degree of amorphousness of the rust (amorphous degree) is important as a measure of whether it is a dense stable rust layer or not. That is, the main components of iron rust generated on the steel surface are α-FeOOH, β-FeOOH, γ-FeOOH and Fe. Three O Four There are 5 types of crystalline rust and amorphous rust. Among these, amorphous rust forms a very fine and dense stable rust layer than crystalline rust. Moreover, even if a defective portion as a rust film is formed by crystalline rust during use of the steel material, the amorphous rust portion fills this hole and has a defect repair function for reducing the defective portion. As a result, long-term bare weather resistance of the steel material is ensured. Therefore, the higher the proportion of amorphous rust in the iron rust (the degree of amorphousness), and the higher the proportion of fine and dense α-FeOOH among the crystalline rust components, the higher the corrosion resistance.
[0018]
On the other hand, other rust, especially crystalline rust such as β-FeOOH, even if the ratio of the amorphous or α-FeOOH in the rust is high, this rust serves as a starting point to promote corrosion. It is necessary to suppress as much as possible. Therefore, the higher the proportion of amorphous rust in the iron rust (amorphous degree) and the proportion of fine and dense α-FeOOH, the more stable the rust layer. In addition, among the crystalline rust components, the smaller the proportion of β-FeOOH that is particularly likely to promote corrosion, the denser the stable rust layer.
[0019]
On the other hand, when the S content exceeds 0.02%, the formation of the stable rust layer by the weather act treatment is inhibited and corrosion resistance is deteriorated. Therefore, it is one of the features of the present invention that the S content is 0.02% or less. .
[0020]
In addition, Cr is recognized as an indispensable additive element for forming the stable rust layer together with P, Cu, and Ni in conventional weathering steel, and as described above, 0.30 to 1.25% is also contained in JIS standards. ing. In addition, in JP-A-58-25458 and Japanese Patent No. 2572447, although the addition of Cr is not specified, it is necessarily contained by 0.05% or more as an impurity from an iron raw material or a steelmaking process. .
[0021]
However, when Cr is contained in an amount of 0.05% or more, even if corrosion starts even slightly in the micro surface defect portion of the steel, Cr ions that dissolve in a small amount along with iron atoms in chemical equilibrium are added to the action of Cl ions. This causes a decrease in pH in the microscopic surface defect portion, promotes oxidation of condensed water in the defect, and induces corrosion. Therefore, even if the dense stable rust layer is formed, Cr has an action of promoting the corrosion of the steel at the lower part of the stable rust layer, and inhibits the adhesion between the rust layer and the steel, thereby peeling the rust layer. And as a result, the formation or maintenance of a dense stable rust layer is hindered. Therefore, in the present invention, it is necessary to reduce the Cr content as much as possible, and the upper limit is made less than 0.05% in consideration of the economy of reducing the Cr content.
[0022]
In the present invention, Ti was selected as an element for promoting the formation of the stable rust layer instead of Cr. Ti has a unique effect of synergistically enhancing the effect of the weather act treatment mainly consisting of application of chromium sulfate without causing the decrease in pH as in Cr but having the effect of promoting the formation of the stable rust layer. Has properties. Specifically, the ratio of amorphous in iron rust and the ratio of α-FeOOH rust is increased, and the generation of β-FeOOH, which easily promotes corrosion among crystalline rust components, is suppressed. Promotes the formation of a fine and dense stable rust layer. As a result, entry of corrosion factors such as chloride ions into the rust layer is prevented, and a dense stable rust layer is maintained to improve the corrosion resistance.
[0023]
Incidentally, it is known that Ti is usually added for deoxidation of molten steel and maintenance of strength of steel, and the above-mentioned Patent No. 2572447 also adds about 0.03% or less for this known purpose. ing. However, the purpose of Ti in the present invention is to form a dense stable rust layer as described above, and this is one of the features of the present invention together with the reduction of S and Cr.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason for limiting the chemical composition of the steel material in the present invention will be described below.
C: 0.15% or less. C is 390 ~ 630N / mm for steel structural materials 2 Although it is an indispensable element for ensuring the required strength of the grade or higher, if the content exceeds 0.15%, the weldability and bare weather resistance of the steel deteriorate. Therefore, the C content is 0.15% or less, so that the required strength can be secured.
[0025]
Si: 0.10 to 1.0%. Si is an essential element for deoxidation and solid solution strengthening of molten steel, and also has an effect of promoting the formation of a dense stable rust layer and improving corrosion resistance such as bare weather resistance. However, if the content is less than 0.10%, these effects are insufficient. Conversely, if the content exceeds 1.0%, the weldability deteriorates. Therefore, the Si content is in the range of 0.10 to 1.0%.
[0026]
Mn: 1.5% or less. Mn is 390 ~ 630N / mm instead of C 2 Although it is an essential element for securing a strength of more than grade, if it exceeds 1.5%, a large amount of MnS may be generated in the steel, leading to deterioration of corrosion resistance such as bare weather resistance. There is. Therefore, the Mn content should be 1.5% or less.
[0027]
S: 0.02% or less. As described above, when the S content exceeds 0.02%, FeS and MnS, which are the starting points of corrosion, are produced in large amounts in the steel, which inhibits the formation of the stable rust layer by the weather act treatment. , Corrosion resistance may be deteriorated. Further, when Ni or the like is excessively contained, a NiS compound having a low melting point is precipitated at the grain boundary of the weld metal due to the reaction with S, and the ductility of the grain boundary of the solidified metal tends to be deteriorated. In this respect, if the S content is 0.02% or less, there is also an advantage that a larger amount of Ni can be contained without precipitating the low melting point NiS compound. For example, when S exceeds 0.02%, the upper limit of Ni should be 3.0%. However, by making the S content 0.02% or less, Ni is contained up to 6.0% as described above. It becomes possible. Therefore, the S content is 0.02% or less, preferably 0.01% or less, more preferably 0.005% or less.
[0028]
P: 0.05% or less. P has the effect of preventing corrosion ions from entering the rust generated on the steel surface and forming a dense stable rust layer for weathering steel. The conventional weathering steel must contain about 0.05% or more and 0.15% or less in order to exert this effect. However, in the present invention, an excessive content of about 0.05% or more of P significantly impairs the weldability, and is important for the construction of the small girder bridge. There is no preheating (preheating free) and high efficiency large heat input. The required characteristics of weldability that can be welded cannot be satisfied. Further, in the present invention, since the formation of a dense stable rust layer can be achieved by the inclusion of Ti or the like, the excessive inclusion of P is not necessary. Therefore, in the present invention, the P content is reduced as much as possible, and the upper limit is made less than 0.03% in consideration of the economics of reducing the P content. This reduction in P content also contributes to improved weldability.
[0029]
Cr: 0.05% or less. As described above, Cr causes a decrease in pH in the microscopic surface defects of the steel, promotes the oxidation of condensed water in the defects, and has the effect of inducing corrosion, reducing the bare weather resistance of the steel. Let Therefore, in the present invention, the Cr content is made as low as possible to less than 0.05%. This reduction of the Cr content greatly contributes to the improvement of weldability.
[0030]
Ti: 0.01 to 1.0%. As described above, Ti is an important element as an element for promoting the formation of the stable rust layer in place of Cr in the present invention, and there is no adverse effect on corrosion resistance that causes a decrease in pH such as Cr. Ti also has the effect of refinement of rust generated by crystal grain refinement of the steel structure, or improvement of toughness and weldability. That is, by containing Ti, TiC, TiN and the like, which are strong ferrite transformation nuclei in the cooling process of the welded portion, are dispersed and precipitated in the steel, which greatly contributes to the refinement of ferrite in the structure of the heat affected zone. If the Ti content is less than 0.01%, this effect is not obtained, and if it exceeds 1.0%, the effect is saturated and not economical. In this respect, in order to exhibit the effect of Ti more, it is preferable to contain more than 0.03%, more preferably 0.05% or more. Further, if Ti exceeds 0.5%, embrittlement of steel may be a problem, and it is not economical as described above. Accordingly, the Ti content is preferably more than 0.03% and 0.5% or less, more preferably 0.05 to 0.5%.
[0031]
One or two of Cu: 0.05 to 3.0% and Ni: 0.05 to 6.0%. Both Cu and Ni are elements having an effect of improving corrosion resistance and weldability, and these effects are exhibited by containing one or two of them. Among them, Cu is an element electrochemically more noble than iron, and it has the effect of improving the corrosion resistance such as weather resistance by densifying the rust generated on the steel surface and promoting the formation of a stable rust layer by weather act treatment. Have It also contributes to improved weldability. If the Cu content is less than 0.05%, this effect will not be achieved, and if it exceeds 3.0%, no further effect will be obtained. Conversely, the material will become brittle during processing such as hot rolling for steel production. May cause. From this viewpoint, it is preferable that the upper limit of the Cu content is 1.5% or less. Therefore, the Cu content is in the range of 0.05 to 3.0%, preferably in the range of 0.05 to 1.5%.
[0032]
Ni, like Cu, has the effect of densifying the rust generated on the steel surface, promoting the formation of a stable rust layer by the weather act treatment, and improving the corrosion resistance such as weather resistance. It also contributes to improved weldability. Further, Ni has an effect of suppressing the hot work brittleness of Cu. Therefore, when it is contained together with Cu, a synergistic effect of an effect of improving corrosion resistance and an effect of suppressing hot work brittleness can be expected. When the Ni content is less than 0.05%, such excellent effects cannot be obtained. However, excessive Ni content, on the other hand, widens the solid-liquid solidification temperature range in the fully austenitic structure, promotes segregation of low melting point impurity elements to the dendrite grain boundaries, and reacts with S to cause grain boundaries in the weld metal. In addition, a low melting point NiS compound is precipitated, and the ductility of the grain boundary of the solidified metal is deteriorated. Therefore, excessive Ni content adversely affects weld hot cracking resistance, so the upper limit content should be 6.0%, and as a result, the Ni content should be in the range of 0.05 to 6.0%.
[0033]
Ca: 0.0001 to 0.01%. Ca is an element that further improves the corrosion resistance and also has an effect of improving weldability. One of the effects of increasing the corrosion resistance of Ca is to fix S, which is harmful to corrosion resistance, and to clean the steel matrix. Further, as another function, Ca dissolved in a trace amount in the steel is dissolved in a trace amount in accordance with the corrosion reaction of iron in the progress of corrosion on the steel surface or on the microscopic defect portion and exhibits alkalinity. Therefore, it is an element having a solution pH buffering effect at the tip of the corrosion (anode) and suppressing corrosion at the tip of the corrosion. These have a completely opposite action to the action of elements that lower the pH when dissolved, such as Cr. Therefore, when Ca is used in combination with Ti, a synergistic effect of improving corrosion resistance such as bare weather resistance is produced together with the effect of reducing Cr of the present invention and the effect of promoting the formation of a stable rust layer such as Ti. This synergistic effect is not exhibited when the Ca content is less than 0.0001%, but even if contained excessively, the effect is saturated and is not economical. In particular, if Ca is contained excessively, the cleanliness of the steel is deteriorated, and there is a possibility of damaging the furnace wall during steelmaking, particularly during the production of weathering steel. Therefore, the Ca content is in the range of 0.0001 to 0.01%.
[0034]
Next, the selective additive element of the steel of the present invention will be described.
One or two of Mo: 0.05-3.0% and W: 0.05-3.0%. Mo: 0.05-3.0% and W 2 are elements having an effect of improving corrosion resistance by coexisting with Ti and Ni, and are selectively contained. By containing one or two of these, the rust produced on the steel surface is densified, and the formation of a stable rust layer by the weather act treatment is promoted, and the corrosion resistance such as weather resistance is improved. More specifically, the rust produced by the weather act treatment is densified, and the rust properties are made to be cation-selective that is not easily associated with corrosive anions such as chloride ions, thereby inhibiting the penetration of corrosive anions into the rust layer. . This effect, combined with the effect of Ti and Ni to produce dense and stable rust (amorphous rust and α-FeOOH rust formation and β-FeOOH suppression to promote corrosion) improve the corrosion resistance of steel. Let This effect is not obtained when the contents of Mo and W are each less than 0.05%, and this effect is saturated when the contents are each over 3.0%. Therefore, the contents of Mo and W are 0.05-3.0%.
[0035]
One or more of Al: 0.05 to 0.50%, La: 0.0001 to 0.05%, Ce: 0.0001 to 0.05%, Mg: 0.0001 to 0.05%. Al, La, Ce, and Mg are elements that have an effect of improving corrosion resistance, and are selectively contained. By containing one or more of these, the rust generated on the steel surface is densified, and the formation of a stable rust layer by the weather act treatment is promoted, and the corrosion resistance such as weather resistance is improved.
[0036]
Among these, Al also has the effect of further promoting the formation of a stable rust layer by the weather act treatment by being added in combination with Ti. Al also has an effect of improving weldability. Therefore, in order to further improve the corrosion resistance of the steel material of the present invention, Al is contained in the range of 0.05 to 0.50%. Furthermore, Al is an effective element for improving the toughness of steel by capturing solid solution oxygen as a deoxidizing element of molten steel and preventing the occurrence of blowholes. If the Al content is less than 0.05%, these sufficient effects cannot be obtained.On the other hand, if the Al content exceeds 0.50%, the corrosion resistance improving effect is saturated, conversely, the weldability is deteriorated, Deterioration of steel toughness due to increase of system inclusions.
[0037]
In addition, La, Ce, and Mg are dissolved in a trace amount with the corrosion reaction of iron and exhibit alkalinity in the progress of corrosion on the steel surface and microscopic defects. Therefore, it is an element having a solution pH buffering effect at the tip of the corrosion (anode) and suppressing corrosion at the tip of the corrosion. These have a completely opposite action to the action of elements that lower the pH when dissolved, such as Cr. Therefore, when combined with the effect of reducing Cr and promoting the formation of a stable rust layer such as Ti according to the present invention, a further synergistic effect of improving corrosion resistance can be expected. This effect is not exhibited when each content is less than 0.0001%. However, even if contained excessively, the effect is saturated and not economical, and the mechanical properties of the steel are also deteriorated. Therefore, the contents of La are 0.0001 to 0.05%, Ce is 0.0001 to 0.05%, and Mg is 0.0001 to 0.05%.
[0038]
0.5% or less total of one or more of Zr, Ta, Nb, V and Hf. Zr, Ta, Nb, V, and Hf exhibit the same effect as Ti, amorphize the generated rust and increase the proportion of α-FeOOH to form fine and dense rust, and β -A stable rust layer with reduced FeOOH is formed. However, the effect is inferior to Ti. Therefore, these elements are selectively contained as a supplement to the effect of Ti.
[0039]
The effect of these Zr, Ta, Nb, V, and Hf is that the total (total amount) of one or more of these elements exceeds the required content of Ti, preferably 0.1% or more. Demonstrated. However, even if the content exceeds 0.50%, the effect is the same, and the upper limit amount is about 0.50% in total (total amount).
[0040]
The steel material of this invention which consists of such a component composition also has the advantage that weldability is excellent. That is, structural materials such as the above-mentioned minority main girder bridges have a heat input of 5 KJ / mm or more, and in some cases, a heat input of 100 to 300 KJ / mm or more by carbon dioxide arc welding or electrogas arc welding in terms of workability and shortening of work period. High heat input welding is applied. Therefore, as a steel material used for structural materials, it has excellent mechanical properties such as strength as structural materials, as well as no need for preheating, and excellent weldability that enables high-efficiency welding such as high heat input welding. Is preferable in combination with corrosion resistance, and the steel of the present invention satisfies this point.
[0041]
Next, a chromium sulfate solution (weather act treatment) for forming the stable rust layer of the present invention will be described. When the chromium sulfate solution is applied to the steel material surface or the rust layer of the steel material, chromium ions are present on the steel material surface. As a result, after coating, the rust layer formed in the atmospheric environment contains Cr, so that the rust formed becomes dense rust such as α-FeOOH due to the effect of Cr. Corrosion resistance is improved.
[0042]
At this time, the formation promoting element of the stable rust layer such as Ti in the steel material has a synergistic effect to increase the amorphous ratio in the iron rust and the rust ratio of α-FeOOH, and the crystalline rust component. In particular, it suppresses the formation of β-FeOOH, which is particularly susceptible to corrosion, and promotes the formation of a fine and dense stable rust layer. As a result, entry of corrosion factors such as chloride ions into the rust layer is prevented, and a dense stable rust layer is maintained to improve the corrosion resistance.
[0043]
In order to exert the effect of Cr, it is preferable that 0.3 mass% or more of Cr is contained in the rust layer, and the Cr concentration of the chromium sulfate solution applied to the steel material is preferably set to an amount corresponding thereto.
[0044]
Further, for the contained elements other than Cr, the inclusion of other elements or impurities within the range that does not inhibit the effects of these elements or the formation of rust intended by the present invention is allowed. For example, as other elements, Ti, or one or more of Cu, P 2 and Ni disclosed in JP-A-06-93467 may be contained in an amount of 0.3 mass% or more in rust. Ti, like Ti in the steel, has the effect of promoting the formation of a stable rust layer, and increases the proportion of amorphous in iron rust and the proportion of rust in α-FeOOH, and even among crystalline rust components. In particular, it can be expected to suppress the formation of β-FeOOH that easily promotes corrosion and promote the formation of a fine and dense stable rust layer. In addition, Cu, P, and Ni cannot be expected to have the same effect as Cr only with these elements, but by using them in combination with Cr, they have a combined effect that contributes to rust amorphization and α-FeOOH. You can expect to have.
[0045]
Next, a method for forming these dense stable rust layers in the present invention will be described. First, an appropriate treatment such as cleaning, cleaning, or surface polishing is performed on the surface of a steel material before or during use as a structural material. These treatments are selected as appropriate depending on the surface conditions required for the steel material, from mirroring the steel surface to removing rust on the steel surface or simply cleaning the steel surface or rust layer. Just do it. Of course, when the present invention forming method is performed without removing the steel rust layer, the steel rust layer may not be simply cleaned or these treatments may be performed.
[0046]
Next, in the present invention, a solution such as an aqueous solution or an organic solvent containing chromium sulfate is applied to the steel material surface or the rust layer on the steel material surface. At this time, it is preferable that the solution contains Ti sulfate in order to reinforce the effect of chromium sulfate because of the superiority of the effect of forming dense rust of Ti as compared with other elements. The preferable Ti content in the chromium sulfate solution is 1.0 to 50 mass%. The reason is that a concentration of 1.0 mass% or more is necessary for the effect of Ti addition to appear, and even if it exceeds 50 mass%, the effect is saturated and economically disadvantageous. Moreover, what contained 0.1-25.0 mass% of 1 type, or 2 or more types chosen from Cu, Ni, and P is preferable. This is because if the amount exceeds 25.0 mass%, the effect is saturated, which is economically disadvantageous. These sulfate solutions are used from the viewpoint of the stability of the solution and the ability to attach to steel materials. When the solution is made of other compounds such as chloride, the stability of the solution and This is because the throwing power to the steel material is deteriorated and it is difficult to generate a stable rust layer.
[0047]
Steel materials with such a chromium sulfate solution (weather-acting treatment) applied to the surface of the steel material can be used for bridges even if they are not treated aggressively or in a salt-corrosion environment such as salt water or snowmelt salt flying. A great advantage is that a dense stable rust layer is formed in a relatively short time during use as a structural material. However, from the viewpoint of quality assurance to ensure reliable corrosion resistance such as bare weather resistance, after manufacturing the steel material, pre-treatment such as pickling as necessary is followed by heat treatment in an atmosphere such as a gas with controlled oxidation potential. Alternatively, the surface is chemically treated with chemicals such as phosphates, chromates, and oxidizing agents, and the rust generated during the manufacturing process of steel is amorphized to make it dense and aggressive. A stable rust layer may be formed.
[0048]
Moreover, this invention can be used not only for the steel material for new structures but also for improving the corrosion resistance of painted or non-painted steel materials that are in use as existing structures. That is, the coating film or rust on the surface of the steel material in use as an existing structure is completely or partially cleaned (for example, only the corroded portion) without peeling or peeling, and the solution of the present invention is cleaned with the steel surface or steel material. Even if it is applied to the rust layer, dense rust can be generated over time. Therefore, the present invention can also be used for repair or maintenance management of existing structures.
[0049]
Next, the manufacturing method of this invention steel material is demonstrated. The steel material of the present invention can be manufactured by a method for manufacturing a thick steel plate having a normal thickness of 50 mm or more. That is, after a steel is continuously cast or melted by an ingot-making method, hot working such as ingot rolling or hot forging or thick plate rolling is performed to produce a predetermined product plate thickness. These hot working conditions and conditions for cooling and heat treatment after hot working are 390 to 630 N / mm for steel materials, for example, as structural materials for bridges. 2 It is determined as appropriate according to the requirements and specifications of mechanical properties such as the strength of grade or higher. Therefore, in addition to normal hot working, in addition to ensuring low alloying or low carbon equivalent to ensure weldability, accelerated cooling after hot working is required to ensure the mechanical properties such as strength. For example, forced cooling or controlled rolling may be performed. In addition, the heat treatment after the hot working is appropriately subjected to rolling on-line direct quenching (DQ) or off-line quenching and tempering (QT) as necessary.
[0050]
【Example】
Next, the significance of the steel material of the present invention described above will be described with reference to examples. Steel ingots having various chemical components shown in Table 1 were melted, and the steel ingots were forcibly cooled by accelerated cooling after hot rolling to produce thick steel plates having a thickness of 50 mm. In Table 1, No. 1 is a low carbon steel, No. 2 is a Ti-containing low alloy steel, and Nos. 3 to 10 are weather resistant steels of the present invention. Then, test pieces are cut out from these thick steel plates, and the surface of the test piece is made into a mirror surface by emery paper polishing and buff polishing, and 1 to 45 mass% chromium sulfate aqueous solution, zirconium sulfate aqueous solution, and the like are added to these surfaces. Then, an aqueous solution containing Cr, Ni, Cu sulfate was applied to the steel surface.
[0051]
Test specimens that have undergone these treatments remain as bare specimens simulating unpainted use (Invention Examples No. 6 to 24 in Table 2), and are usually used for painting bridges and the like by simulating paint use. Corrosion resistance tests were conducted as coating test pieces (invention examples Nos. 30 to 43 in Table 3) coated with 50 μm of the phthalic acid resin. This corrosion resistance test is conducted in an atmospheric exposure test, simulating an actual salt corrosion environment, spraying 5.0% salt water once a week, and the test piece is installed southward and inclined at 30 ° to the horizontal. Then, a one-year atmospheric exposure test was conducted to evaluate long-term durability. In addition, among the relatively short-term corrosion acceleration tests such as the salt spray test, the one-year atmospheric exposure test was performed because the steel material of the present invention was used especially for structures such as bridges in a salt corrosion environment. This is because it is a material, and accurate evaluation cannot be performed unless the test is suitable for corrosion under the actual use conditions. .
[0052]
Bare specimens after exposure to the atmosphere were evaluated by measuring the reduction in average thickness (corrosion loss). The average plate thickness reduction amount was calculated by measuring the average plate thickness of the test material before and after the atmospheric exposure test with a micrometer and taking into account the density. And from these results, comprehensive evaluation of corrosion resistance (× to ◎◎◎◎◎) was performed. These results are shown in Table 2.
[0053]
In addition, for the coating test piece, the coating film was previously scratched to provide an artificial coating film defect, and an atmospheric exposure test was performed under the same conditions as the bare test piece, and the blister width of the artificial coating film defect part after the test Corrosion resistance was evaluated by measuring. And based on these results, comprehensive evaluation of corrosion resistance (× to ◎◎◎) was performed. These results are shown in Table 3. In Tables 2 and 3, the average plate thickness reduction (corrosion loss) is shown in mm, and the blistering width of the defective part of the artificial paint film is 0.80mm or more A, 0.5 to 0.8mm B, 0.5mm or less. Is written as C.
[0054]
In addition, analysis and measurement of elements and element amounts in the rust formed on the specimen surface after the atmospheric exposure test are performed by X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA). The composition was analyzed by the X-ray diffraction method. More specifically, the powder X-ray diffraction method disclosed in “Corrosion protection 95 C-306 (pages 341 to 344)” is used, and a constant weight ratio of ZnO as an internal standard is mixed with a rust sample taken from steel. The powdered material was identified by X-ray diffraction, and the α-FeOOH, β-FeOOH, γ-FeOOH and Fe Three O Four Each crystalline rust component was quantified from the integral intensity ratio of each intrinsic diffraction peak of each of the four types of crystalline rust and a calibration curve of each rust component determined in advance. The ratio (%) of the amorphous component was calculated by subtracting the amount of each of these crystalline rust components from the total amount of rust. These results are also shown in Table 2.
[0055]
In Table 2, the composition of the generated rust on the surface of the test piece after the atmospheric exposure test is as follows: A: 0-30 mass%, B: 31-40 mass%, C: 41 ~ 50 mass%, D: 51 mass% or more, the fraction of the rust component of β-FeOOH is shown as A: 31 mass% or more, B: 21-30 mass%, C: 11-20 mass%, D: 10 mass% or less.
[0056]
Further, for comparison, (1) the comparative steel shown in Table 1 and the steel according to the present invention were subjected to the corrosion resistance test using the bare test piece as in the invention example without the treatment according to the present invention (without treatment). Comparative Examples Nos. 1, 3, 5, and (2) Comparative Example No. 2 in which the comparative steels shown in Table 1 were treated according to the present invention and subjected to a corrosion resistance test using bare specimens as in the inventive examples. Table 2 shows the results of.
[0057]
Furthermore, (3) Comparative Examples No. 25, 27 in which the comparative steels shown in Table 1 and the steels according to the present invention were subjected to the corrosion resistance test on the coated specimens in the same manner as the inventive examples without being treated according to the present invention. 29, (4) The results of Comparative Examples Nos. 26 and 28, in which the comparative steels shown in Table 1 were treated according to the present invention, and the corrosion resistance test was performed on the coated specimens in the same manner as the inventive examples as in the inventive examples. Is shown in Table 3.
[0058]
As is apparent from the results of Tables 2 and 3, Invention Examples No. 6 to 24 (Table 2) and Invention Examples No. 30 to 43 (Table 3) in which the steel according to the present invention was treated according to the present invention were: Excellent corrosion resistance in both unpainted and painted cases.
[0059]
On the other hand, Comparative Examples No. 1, 3, 5 (Table 2), No. 25, 27, and 29 (Table 3) that are not treated according to the present invention depend on whether or not the steel according to the present invention is used. In addition, it is inferior in corrosion resistance in both cases of no painting and painting. Further, Comparative Examples Nos. 2 and 4 (Table 2) and Comparative Examples Nos. 26 and 28 (Table 3) in which the comparative steel was treated according to the present invention were inferior in corrosion resistance both in the case of no coating and in the case of coating. ing. In these comparative examples, the composition of rust is mainly composed of α-FeOOH and amorphous rust components, but Ti, Nb, Ta, Zr, V, and Hf are not contained in the rust or the content is Because of the small amount, the proportion (fraction) of crystalline rust of β-FeOOH increases, and corrosion progresses starting from this β-FeOOH, which is considered to be inferior in corrosion resistance.
[0060]
As a result of measuring the concentration of chloride ions at the interface between the rust layer on the test piece surface and the base iron by EPMA, all of the inventive examples had less chloride ion concentration at the interface between the rust layer and the base iron. On the other hand, in the comparative example, there was much concentration of chloride ions at the interface between the rust layer and the ground iron, confirming the results of the corrosion resistance test.
[0061]
Therefore, from this result, the influence of the components of the steel material is large in order for the rust amorphization of the steel surface, which is a more preferable condition of the present invention, and the suppression of β-FeOOH crystalline rust, that is, In order for the weather act treatment to exhibit the excellent corrosion resistance effect with good reproducibility in the above-described salt corrosion environment, it is proved that the component composition of the steel material needs to be prepared.
[0062]
[Table 1]
Figure 0003971853
[0063]
[Table 2]
Figure 0003971853
[0064]
[Table 3]
Figure 0003971853
[0065]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the steel materials excellent in the corrosion resistance especially in a salt corrosion environment can be provided. Therefore, in particular, the application of steel having excellent corrosion resistance is newly and greatly expanded, and industrial value is great.

Claims (8)

鋼材表面あるいは鋼材の錆層に硫酸クロム溶液が塗布された鋼材であって、この鋼材が質量% にて、 C:0.15% 以下、Si:0.10〜1.0%、Mn:1.5%以下、S :0.02% 以下、P :0.05% 以下、Cr:0.05% 以下、Ti:0.01〜1.0%、Ca:0.0001〜0.01% およびCu:0.05〜3.0%とNi:0.05〜6.0%の1種または2種を含有し、残部Feおよび不可避的不純物からなることを特徴とする耐食性に優れた鋼材。A steel material in which a chromium sulfate solution is applied to the surface of a steel material or a rust layer of the steel material, and the steel material is in mass%, C: 0.15% or less, Si: 0.10 to 1.0%, Mn: 1.5% or less, S: 0.02 % Or less, P: 0.05% or less, Cr: 0.05% or less, Ti: 0.01-1.0%, Ca: 0.0001-0.01% and Cu: 0.05-3.0% and Ni: 0.05-6.0% And a steel material excellent in corrosion resistance, characterized by comprising the balance Fe and inevitable impurities. 前記鋼材が、更にMo:0.05〜3.0%とW :0.05〜3.0%の1種または2種を含有する請求項1に記載の耐食性に優れた鋼材。The steel material excellent in corrosion resistance according to claim 1, wherein the steel material further contains one or two of Mo: 0.05 to 3.0% and W: 0.05 to 3.0%. 前記鋼材が、更にAl:0.05〜0.50% 、La:0.0001〜0.05% 、Ce:0.0001〜0.05% 、Mg:0.0001〜0.05% の1種又は2種以上を含有する請求項1または2に記載の耐食性に優れた鋼材。3. The steel material according to claim 1, further comprising one or more of Al: 0.05 to 0.50%, La: 0.0001 to 0.05%, Ce: 0.0001 to 0.05%, and Mg: 0.0001 to 0.05%. Steel material with excellent corrosion resistance. 前記鋼材が、更にZr、Ta、Nb、V 、Hfの内から1種又は2種以上を合計で0.50% 以下含有する請求項1乃至3のいずれか1項に記載の耐食性に優れた鋼材。The steel material having excellent corrosion resistance according to any one of claims 1 to 3, wherein the steel material further contains one or more of Zr, Ta, Nb, V, and Hf in a total amount of 0.50% or less. 前記硫酸クロム溶液が、更にNi、Cu、P 、Feのイオンまたは酸イオンの1種または2種以上を含有する請求項1乃至4のいずれか1項に記載の耐食性に優れた鋼材。The steel material excellent in corrosion resistance according to any one of claims 1 to 4, wherein the chromium sulfate solution further contains one or more of Ni, Cu, P, Fe ions or acid ions. 前記硫酸クロム溶液が、更にTiを含むNi、Cu、P 、Feのイオンまたは酸イオンの1種または2種以上を含有する請求項1乃至4のいずれか1項に記載の耐食性に優れた鋼材。The steel material excellent in corrosion resistance according to any one of claims 1 to 4, wherein the chromium sulfate solution further contains one or more of Ni, Cu, P, Fe ions or acid ions containing Ti. . 前記鋼材が厚みが50mm以上の厚板である請求項1乃至6のいずれか1項に記載の耐食性に優れた鋼材。The steel material excellent in corrosion resistance according to any one of claims 1 to 6, wherein the steel material is a thick plate having a thickness of 50 mm or more. 前記鋼材が塩分腐食環境下で使用される請求項1乃至7のいずれか1項に記載の耐食性に優れた鋼材。The steel material excellent in corrosion resistance according to any one of claims 1 to 7, wherein the steel material is used in a salt corrosion environment.
JP25543198A 1998-02-27 1998-09-09 Steel material with excellent corrosion resistance Expired - Lifetime JP3971853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25543198A JP3971853B2 (en) 1998-02-27 1998-09-09 Steel material with excellent corrosion resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4787098 1998-02-27
JP10-47870 1998-02-27
JP25543198A JP3971853B2 (en) 1998-02-27 1998-09-09 Steel material with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPH11310847A JPH11310847A (en) 1999-11-09
JP3971853B2 true JP3971853B2 (en) 2007-09-05

Family

ID=26388075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25543198A Expired - Lifetime JP3971853B2 (en) 1998-02-27 1998-09-09 Steel material with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3971853B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586489B2 (en) * 2004-10-22 2010-11-24 住友金属工業株式会社 Steel and structures with excellent beach weather resistance
JP5206386B2 (en) * 2008-12-15 2013-06-12 Jfeスチール株式会社 Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
JP5284769B2 (en) * 2008-12-24 2013-09-11 株式会社神戸製鋼所 Steel tank for crude oil tank with excellent corrosion resistance, upper deck of crude oil tank and crude oil tanker
JP5812268B2 (en) * 2011-07-29 2015-11-11 Jfeスチール株式会社 Steel offshore structure
CN115679331A (en) * 2021-07-27 2023-02-03 宝山钢铁股份有限公司 Reagent for stabilizing weather-resistant steel bridge rust layer and use method

Also Published As

Publication number Publication date
JPH11310847A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP4185552B2 (en) Steel material with excellent corrosion resistance
JP3860666B2 (en) Corrosion resistant steel for cargo oil tanks
JP4495668B2 (en) High corrosion resistance steel
JP5058574B2 (en) Anti-corrosion steel plate for ship ballast tanks to be anticorrosive and rust prevention method for ship ballast tanks
JP4525687B2 (en) Corrosion resistant steel for ships
JP5861335B2 (en) Welded joint with excellent corrosion resistance
JP2006169626A5 (en)
JP2010007109A (en) Method for producing steel excellent in corrosion resistance and toughness in z-direction
JP5958103B2 (en) Steel material for marine ballast tanks with excellent paint swell resistance
JP3568760B2 (en) Thick plate with excellent bare weather resistance and weldability
JP3971853B2 (en) Steel material with excellent corrosion resistance
JP6750082B1 (en) Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance
JP5942532B2 (en) Steel material with excellent corrosion resistance
JPH10287958A (en) High strength spring excellent in immunity to environmental embrittlement
JP3466076B2 (en) Steel with excellent corrosion resistance and weldability
KR100319302B1 (en) Steel excellent in anticorrosion and steel structures thereof
JP3393058B2 (en) Method of forming rust of steel with excellent corrosion resistance
JP2001164341A (en) Steel excellent in corrosion resistance in working area
JP4507668B2 (en) Manufacturing method of high corrosion resistant steel
JP3773745B2 (en) Method for producing low yield ratio and high Ti steel sheet excellent in bare weather resistance
WO2020026385A1 (en) Weld metal and solid wire for submerged arc welding
JP2020158853A (en) Steel material and producing method thereof
JP3648085B2 (en) Steel material with excellent corrosion resistance and structure using this steel material
JP4483378B2 (en) High corrosion resistant steel
JP2001262273A (en) Weather resistant steel tube excellent in weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

EXPY Cancellation because of completion of term