JP6750082B1 - Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance - Google Patents

Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance Download PDF

Info

Publication number
JP6750082B1
JP6750082B1 JP2019203209A JP2019203209A JP6750082B1 JP 6750082 B1 JP6750082 B1 JP 6750082B1 JP 2019203209 A JP2019203209 A JP 2019203209A JP 2019203209 A JP2019203209 A JP 2019203209A JP 6750082 B1 JP6750082 B1 JP 6750082B1
Authority
JP
Japan
Prior art keywords
alloy
mass
corrosion resistance
corrosion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019203209A
Other languages
Japanese (ja)
Other versions
JP2021075758A (en
Inventor
室恒 矢部
室恒 矢部
賢司 岡崎
賢司 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2019203209A priority Critical patent/JP6750082B1/en
Priority to CN202010135609.5A priority patent/CN112779453B/en
Application granted granted Critical
Publication of JP6750082B1 publication Critical patent/JP6750082B1/en
Publication of JP2021075758A publication Critical patent/JP2021075758A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Ecology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】硫酸において腐食環境が最も厳しくなる約45〜65%濃度の硫酸環境中や、これにさらにCl−イオンを含む高腐食環境中においても耐食性に優れるFe−Ni−Cr−Mo−Cu合金を提供する。【解決手段】以下質量%にて、C:0.004〜0.025%、Si:0.02〜1.0%、Mn:0.03〜0.35%、P:≦0.040%、S:≦0.003%、Ni:30.0〜37.0%、Cr:22.0〜25.0%、Mo:7.0〜9.0%、N:0.15〜0.30%、Cu:2.5〜4.0%、Al:0.001〜0.1%および残部がFeおよび不可避的な不純物からなり、下記(1)式を満足するFe−Ni−Cr−Mo−Cu合金。Ni+Cr+3Mo+5Cu+25N≧89.0…(1)【選択図】図1PROBLEM TO BE SOLVED: To provide an Fe-Ni-Cr-Mo-Cu alloy having excellent corrosion resistance even in a sulfuric acid environment having a concentration of about 45 to 65%, which is the most severe corrosive environment in sulfuric acid, or in a highly corrosive environment containing Cl- ions. I will provide a. SOLUTION: In the following mass%, C: 0.004 to 0.025%, Si: 0.02 to 1.0%, Mn: 0.03 to 0.35%, P: ≦ 0.040%. , S: ≤0.003%, Ni: 30.0 to 37.0%, Cr: 22.0 to 25.0%, Mo: 7.0 to 9.0%, N: 0.15 to 0. 30%, Cu: 2.5 to 4.0%, Al: 0.001 to 0.1%, and the balance consists of Fe and unavoidable impurities, and Fe-Ni-Cr- satisfying the following equation (1). Mo-Cu alloy. Ni + Cr + 3Mo + 5Cu + 25N ≧ 89.0 ... (1) [Selection diagram] Fig. 1

Description

本発明は、化学プラント、廃液処理施設など極めて優れた耐食性が要求される環境において使用されるFe−Ni−Cr−Mo−Cu合金に関するものである。 TECHNICAL FIELD The present invention relates to an Fe—Ni—Cr—Mo—Cu alloy used in environments such as chemical plants and waste liquid treatment facilities where extremely excellent corrosion resistance is required.

Fe−Ni−Cr−Mo−Cu合金はその良好な耐食性から化学プラント、水処理施設、公害防止機器類、油井環境、食品プラント、火力・原子力プラント、海水環境などの様々な産業分野で適用されている。これらのような高い耐食性が求められる環境において、カーボンスチールや汎用合金であるSUS430、SUS304などを適用する場合、合金の耐食性が不足しているためその使用には大きな制約があった。 Fe-Ni-Cr-Mo-Cu alloys are applied in various industrial fields such as chemical plants, water treatment facilities, pollution control equipment, oil well environments, food plants, thermal power/nuclear power plants, seawater environments due to their good corrosion resistance. ing. When carbon steel or general-purpose alloys such as SUS430 and SUS304 are applied in an environment where high corrosion resistance is required such as these, the use of the alloy is greatly limited because the alloy has insufficient corrosion resistance.

特に近年、自動車、船舶用エンジンからの排ガスや発電所の排ガスに関して、基準値が厳格化してきており、SOを初めとする環境汚染物質の排出は適正に処理されなければならない。一方で、環境汚染物質の元となる不純物を多く含む粗悪燃料の使用も拡大もしており、環境問題への取り組みは急務となっている。このような動向に対し、排ガス処理装置の技術開発が進み、アルカリ性溶液や海水、あるいはその混合溶液を吸収液として処理装置内にて噴霧し、排ガスを無害化する技術が開発され実用化されている。 Particularly in recent years, the standard values have become stricter with respect to exhaust gas from automobiles, engines for ships, and exhaust gas from power plants, and the emission of environmental pollutants such as SO x must be properly treated. On the other hand, the use of inferior fuel containing a large amount of impurities, which are the source of environmental pollutants, is also expanding, and addressing environmental issues is an urgent task. In response to such trends, technological development of exhaust gas treatment equipment has progressed, and technology for detoxifying exhaust gas by spraying alkaline solution, seawater, or a mixed solution thereof as an absorbing liquid in the treatment equipment has been developed and put into practical use. There is.

排ガス処理装置内では、排ガスを連続的に循環処理するため、内部にて生成される廃液の腐食性は、HイオンやClイオンが濃縮する極めて腐食性の高い溶液である。また、従来から排ガス処理装置においては、排ガスに含まれるSOに起因する硫酸が生成されるため一般的に硫酸露点腐食と呼ばれる腐食が生じ、これまでに耐硫酸性を高めた合金が開発されている。 Since the exhaust gas is continuously circulated in the exhaust gas treatment device, the corrosiveness of the waste liquid generated inside is a highly corrosive solution in which H + ions and Cl ions are concentrated. Further, conventionally, in an exhaust gas treatment apparatus, sulfuric acid is generated due to SO x contained in the exhaust gas, so that corrosion generally called sulfuric acid dew point corrosion occurs, and an alloy having increased sulfuric acid resistance has been developed so far. ing.

しかしながら、近年においては、粗悪燃料の使用拡大や海水を吸収溶液に使用することなどにより、単なる硫酸環境だけではなくClイオンも含有するため腐食環境は一層厳しくなっている。従来からClイオンはステンレス鋼等の耐食合金の不動態皮膜を破壊する性質を有し、腐食を発生させることでよく知られているが、硫酸にClイオンが混ざると、その不動態皮膜を破壊する性質と酸による溶解が相乗効果として作用し、全面腐食が加速度的に進行するため、更なる耐全面腐食性の改善や新しい合金の開発が必要とされている。 However, in recent years, due to the expansion of use of poor fuel and the use of seawater as an absorbing solution, not only a simple sulfuric acid environment but also Cl ions are contained, so that the corrosive environment becomes more severe. Cl Conventionally - ions have the property of destroying the passive film corrosion resistant alloy such as stainless steel, it has been well known for generating corrosion, Cl sulfate - the ion is mixed, the passivation film Since the property of breaking iron and the dissolution by acid act as a synergistic effect, and general corrosion progresses at an accelerated rate, further improvement of general corrosion resistance and development of new alloys are required.

以上のような状況において、例えば、特許文献1においては、SUS304をベースとした合金にCuを添加し、耐硫酸腐食性を高めた合金が開示されているが、合金に対するCuの添加量はわずか0.4%までであり、それ以上のCuを含む合金においては検討がなされていない。想定している環境も硫酸濃度10%と濃度の低い環境でしか検討がなされていない。また、ベースとなる合金はSUS304であるため、厳しさを増す近年の腐食環境においては耐食性がそもそも不十分であると考えられる。 In the above situation, for example, Patent Document 1 discloses an alloy in which Cu is added to an alloy based on SUS304 to improve sulfuric acid corrosion resistance, but the amount of Cu added to the alloy is small. It is up to 0.4%, and no studies have been made on alloys containing more Cu. As for the assumed environment, only the environment with a low sulfuric acid concentration of 10% has been studied. Moreover, since the alloy serving as the base is SUS304, it is considered that the corrosion resistance is insufficient in the first place in the recent severe corrosive environment.

一方で、特許文献2において、合金に対するCuの添加量は2.91%と比較的高い濃度まで検討がなされているが、硫酸の濃度については98%と極めて高い濃度のみで検討がなされている。硫酸溶液は80%以上の高い濃度では非酸化性から酸化性に液性が変化し腐食性が低下するため腐食速度は低下する。即ち、腐食環境はマイルドになると言える。従って、近年の環境汚染防止装置を想定した場合、98%の硫酸を用いる事は最も厳しい腐食環境を模擬していないと考えられるため、腐食環境が最も厳しくなる45〜65%濃度の硫酸を用いるべきと考えられる。 On the other hand, in Patent Document 2, the addition amount of Cu to the alloy is examined up to a relatively high concentration of 2.91%, but the concentration of sulfuric acid is examined only at an extremely high concentration of 98%. .. When the sulfuric acid solution has a high concentration of 80% or more, the liquid property changes from non-oxidizing property to oxidizing property and corrosive property is lowered, so that the corrosion rate is lowered. That is, it can be said that the corrosive environment becomes mild. Therefore, assuming a recent environment pollution control device, it is considered that the use of 98% sulfuric acid does not simulate the most severe corrosive environment. Therefore, 45 to 65% sulfuric acid having the most severe corrosive environment is used. It should be considered.

特許文献3においても、合金に対するCu添加量は4.5%と非常に高い濃度まで検討がなされているが、硫酸濃度については一切記載がされておらず腐食環境について不明確であり、かつClイオンを添加した環境においては検討がなされていない。腐食形態については全面腐食を想定していると推察されるが、記述がなされていないためどのような腐食を想定しているかが不明瞭である。 In Patent Document 3 as well, the amount of Cu added to the alloy has been studied up to a very high concentration of 4.5%, but the sulfuric acid concentration is not described at all, and the corrosive environment is unclear, and Cl - it has not been examined in an environment with the addition of ions. Although it is presumed that assumes general corrosion Corrosion form, or assumes what corrosion because the description is not made is unclear.

特許文献4では、合金のCu添加量は2.86%までと比較的高い濃度まで検討されており、試験溶液においても塩酸、塩化アンモニウム、硫酸、硫酸アンモニウムを用いて100000ppmClを含む硫酸環境において検討がなされている。しかしながら、検討されている合金はその合金の適用部材を想定し、σ相等の有害な析出物を考慮したろう付け熱処理を模擬した熱処理が施された状態であり、焼鈍された金属組織の状態については何ら検討がなされていない。さらに、腐食形態は全面腐食ではなく孔食を考慮したものである。 In Patent Document 4, the Cu addition amount of the alloy is studied up to a relatively high concentration of 2.86%, and the test solution is also examined in a sulfuric acid environment containing 100,000 ppm Cl using hydrochloric acid, ammonium chloride, sulfuric acid, and ammonium sulfate. Has been done. However, the alloy under consideration is a state in which a heat treatment simulating brazing heat treatment in which harmful precipitates such as σ phase are taken into consideration is assumed on the assumption of a member to which the alloy is applied, and a state of an annealed metal structure. Has not been examined at all. Furthermore, the corrosion form takes into consideration pitting corrosion, not general corrosion.

ところで、酸にClイオンが混入する環境においてはCuの他にMoも有効であるため、特許文献5に示されているように8.77%のMoを含む高耐食合金も開発されているが、本文献において想定されている腐食形態はASTM G48 Method Dに従ったすきま腐食であるため、全面腐食については何ら考慮がなされていない。 By the way, since Mo is also effective in addition to Cu in an environment where Cl ions are mixed in the acid, a high corrosion-resistant alloy containing 8.77% Mo as shown in Patent Document 5 has also been developed. However, since the corrosion mode assumed in this document is crevice corrosion according to ASTM G48 Method D, no consideration is given to general corrosion.

特開平1−104748号公報JP-A-1-104748 特開昭56−93860号公報JP-A-56-93860 特開平4−346638号公報JP-A-4-346638 特開2018−172709号公報JP, 2018-172709, A 特開2010−31313号公報JP, 2010-31313, A

ステンレス鋼の初歩 2015(ステンレス協会発行、ステンレス協会「ステンレスの初歩」改訂委員会著、第64頁)Introduction to Stainless Steel 2015 (published by the Stainless Association, published by the Stainless Association “Introduction to Stainless Steel” Revised Committee, p. 64)

上述したように、近年の厳しさを増す環境汚染防止装置においては、上記合金類の耐食性は不十分であるか、考慮している腐食形態が異なると考えられ、優れた耐全面腐食性を有する材料の開発が望まれている。 As described above, in environmental pollution control devices that are becoming increasingly severe in recent years, it is considered that the corrosion resistance of the above alloys is insufficient, or the considered corrosion mode is different, and has excellent general corrosion resistance. Development of materials is desired.

本発明は上記事情に鑑みてなされたものであり、その目的は、硫酸において腐食環境が最も厳しくなる約45〜65%濃度の硫酸環境中や、これにさらにClイオンを含む高腐食環境中においても耐食性に優れるFe−Ni−Cr−Mo−Cu合金を提案することにある。 The present invention has been made in view of the above circumstances, and an object thereof is in a sulfuric acid environment having a concentration of about 45 to 65% where sulfuric acid has the most severe corrosive environment, and in a highly corrosive environment further containing Cl ions. In order to propose a Fe-Ni-Cr-Mo-Cu alloy having excellent corrosion resistance.

発明者らは上記課題を解決するべく鋭意検討を重ねた。これまでにステンレス鋼などの耐食合金にCuを添加すると耐酸性、特に耐全面腐食性が向上することは知見として得られていたが、そのメカニズムを明確にすることまでは十分ではなかった。発明者らは優れた耐全面腐食性を有する合金においては、酸と直接接触する合金表面にその理由があると考えた。ステンレス鋼は合金表面の不動態皮膜により優れた耐食性が担保されているが、その組成は非特許文献1によればFeとCrの水酸化物およびCrの酸化物から構成されていると考えられている。一方で、Cuを添加することでステンレス鋼の耐酸性が向上する理由は、不動態皮膜の組成、構造あるいは形態が変化することによるものと推察した。 The inventors have conducted extensive studies to solve the above problems. It has been known so far that the addition of Cu to a corrosion-resistant alloy such as stainless steel improves the acid resistance, particularly the general corrosion resistance, but it was not sufficient to clarify the mechanism. The inventors considered that the reason for the alloy having excellent general corrosion resistance is the alloy surface that is in direct contact with the acid. Although stainless steel has excellent corrosion resistance secured by the passivation film on the surface of the alloy, according to Non-Patent Document 1, the composition is considered to be composed of Fe and Cr hydroxides and Cr oxides. ing. On the other hand, it is speculated that the reason why the acid resistance of stainless steel is improved by adding Cu is that the composition, structure or morphology of the passive film is changed.

先述した近年の環境汚染防止装置を想定した場合、母材の成分系がSUS430やSUS304などの汎用ステンレス鋼に多量のCuを添加しても合金本体の耐食性が低いため、十分な耐食性が得られないと予想した。そこで、いわゆるスーパーオーステナイトステンレス鋼と呼ばれる汎用ステンレス鋼より耐食性が高い合金成分系をベースとして、その合金にCuを2.5%以上添加し、酸とClイオンが混在した環境において腐食試験を行った。その結果、従来の不動態皮膜とは別のCuを主体とする保護皮膜が合金表面に存在し、それが優れた耐食性をもたらしていることを見出した。 Assuming the above-mentioned recent environmental pollution control device, sufficient corrosion resistance can be obtained because the alloy body has low corrosion resistance even if a large amount of Cu is added to general-purpose stainless steel such as SUS430 or SUS304 I expected not to. Therefore, based on an alloy component system having higher corrosion resistance than general-purpose stainless steel called so-called super austenitic stainless steel, Cu is added to the alloy in an amount of 2.5% or more, and a corrosion test is performed in an environment in which acid and Cl ions are mixed. It was As a result, it was found that a protective film mainly containing Cu, which is different from the conventional passivation film, is present on the alloy surface, which brings about excellent corrosion resistance.

本発明者らは予備的な実験としてFe‐25%Ni−23%Cr−6%Mo−2.7%Cu−0.20%Nを主成分とする合金に対して5、10、20、40、60、80および98%の硫酸を用いて20、40、60、80、100℃および各濃度の沸点において浸漬試験を実施し、いわゆる温度と硫酸濃度の関係で腐食速度を表す等腐食線図を作成した。その結果、硫酸濃度が45〜65%の範囲において最も腐食速度が大きくなり、即ち腐食環境が最も厳しくなる濃度であることが分かった。尚、温度についは高温であるほど腐食速度が大きくなった。従来の知見通り、80%以上の高濃度硫酸は非酸化性から酸化性に液性が変化するため腐食性が低下することが確認された。 As a preliminary experiment, the inventors have found that Fe-25%Ni-23%Cr-6%Mo-2.7%Cu-0.20%N based alloys are 5, 10, 20, An immersion test was carried out using 40, 60, 80 and 98% sulfuric acid at 20, 40, 60, 80, 100°C and boiling points of each concentration, and an isocorrosion line showing the corrosion rate in the relationship between so-called temperature and sulfuric acid concentration. I made a diagram. As a result, it was found that the corrosion rate was the highest in the sulfuric acid concentration range of 45 to 65%, that is, the corrosion environment was the severest. Regarding the temperature, the higher the temperature, the higher the corrosion rate. As has been conventionally known, it has been confirmed that 80% or more high-concentration sulfuric acid changes its liquidity from non-oxidizing to oxidizing, so that its corrosiveness decreases.

次に電気炉で原料を溶解しAODあるいはVODを用いてFe−33%Ni−24%Cr−8%Mo−3%Cu-0.25%Nを基本成分とする鋼を溶解した。溶解した鋼は連続鋳造して鋳片(スラブ)とし、熱間鍛造により厚さ8mmの鍛造板とした。その後、焼鈍と酸洗を行い、さらに厚さ2〜3mmまで冷間圧延し、焼鈍と酸洗を行い、冷延板を作製した。最終焼鈍温度は1150℃で1分間行った。この冷延版から25mm×50mmの腐食試験片を採取し、表面を400番の耐水研磨紙で湿式研磨を行い、水洗後アセトンとエタノールを混合した溶液中において超音波洗浄を実施し腐食試験に供した。この溶解に当たってはNi、Cr、Mo、CuおよびNの合金元素濃度を種々に変化させた。 Next, the raw material was melted in an electric furnace, and the steel containing Fe-33%Ni-24%Cr-8%Mo-3%Cu-0.25%N as a basic component was melted using AOD or VOD. The molten steel was continuously cast into a slab (slab) and hot forged into a forged plate having a thickness of 8 mm. After that, annealing and pickling were performed, cold rolling was further performed to a thickness of 2 to 3 mm, annealing and pickling were performed, and a cold rolled sheet was produced. The final annealing temperature was 1150° C. for 1 minute. A 25 mm x 50 mm corrosion test piece was sampled from this cold rolled plate, the surface was wet-polished with No. 400 water-resistant abrasive paper, and ultrasonic cleaning was performed in a solution of acetone and ethanol mixed after water washing for corrosion test. I served. In this melting, the alloy element concentrations of Ni, Cr, Mo, Cu and N were variously changed.

上記腐食試験片を用いて、人工海水(八洲薬品株式会社製 アクアマリン)を通常の3.5倍に濃縮した溶液に硫酸濃度が50%、塩酸が0.5%となるように調整し、80℃の温度において96時間の浸漬による腐食試験に供した。浸漬腐食試験は腐食速度により評価され、その腐食速度が0.17mm/year未満であれば耐食性は優(◎)、0.17〜0.30mm/yearであれば可(○)、0.30mm/yearを超えた場合は劣(×)と判定した。その結果、硫酸、塩酸およびClイオンの腐食性物質に有効な合金成分元素であるNi、Cr、Mo、CuおよびNで表される特性式がNi+Cr+3Mo+5Cu+25N≧89.0を満たす合金において良好な耐食性が得られることを見出した。 Using the above corrosion test piece, a solution prepared by concentrating artificial seawater (Aquamarine manufactured by Yasu Chemical Co., Ltd.) to 3.5 times the normal concentration was adjusted so that the sulfuric acid concentration was 50% and the hydrochloric acid was 0.5%. It was subjected to a corrosion test by immersion at a temperature of 80° C. for 96 hours. The immersion corrosion test is evaluated by the corrosion rate. If the corrosion rate is less than 0.17 mm/year, the corrosion resistance is excellent (⊚), and if 0.17 to 0.30 mm/year, acceptable (∘), 0.30 mm When it exceeded /year, it was judged as poor (x). As a result, good corrosion resistance is achieved in alloys whose characteristic formulas represented by Ni, Cr, Mo, Cu and N, which are alloy component elements effective for corrosive substances of sulfuric acid, hydrochloric acid and Cl ions, satisfy Ni+Cr+3Mo+5Cu+25N≧89.0. It was found that

上述した通り、優れた耐食性を発揮する合金には表面の不動態皮膜に何らかの作用が働いていると考え、腐食試験後の試験片を上記腐食試験溶液から取り出した後に、直ちに蒸留水にて溶液を洗い流し、冷風で乾燥し、その後直ちにマーカス型高周波グロー放電発光表面分析装置(以下、GDS)により合金表面の詳細な分析を行った。GDSはArプラズマにより試料をスパッタリングさせ、スパッタさせた原子を原子発光させることで深さ方向の元素濃度プロファイリング分析を行う装置であり、これにより腐食試験後の表面からの元素濃度プロファイルを測定した。測定条件として励起モードはパルスモード、スパッタ方式はArスパッタ、スパッタ圧力は600MPa、スパッタ出力は8.75W、パルス周波数は100Hzとし、分析面積は4mmφとした。GDS分析装置には株式会社堀場製作所製 GD−Profiler2を用いた。 As described above, it is considered that the alloy exhibiting excellent corrosion resistance has some action on the passivation film on the surface, and after taking out the test piece after the corrosion test from the corrosion test solution, immediately dissolve the solution in distilled water. Was washed off, dried with cold air, and immediately after that, a detailed analysis of the alloy surface was performed by a Marcus type high frequency glow discharge emission surface analyzer (hereinafter referred to as GDS). The GDS is an apparatus for performing element concentration profiling analysis in the depth direction by sputtering a sample with Ar plasma and causing the sputtered atoms to emit atomic light. With this, the element concentration profile from the surface after the corrosion test was measured. As the measurement conditions, the excitation mode was a pulse mode, the sputtering method was Ar sputtering, the sputtering pressure was 600 MPa, the sputtering output was 8.75 W, the pulse frequency was 100 Hz, and the analysis area was 4 mmφ. As the GDS analyzer, GD-Profiler2 manufactured by Horiba Ltd. was used.

ステンレス鋼の耐食性はFeとCrの水酸化物およびCrの酸化物から構成される不動態皮膜により担保されていることを先述したが、GDS分析の結果、この不動態皮膜の上に不動態皮膜とは組成の異なるCuを主体とする別の保護皮膜の存在を確認した。即ち、本腐食環境において皮膜はCu主体の保護皮膜と不動態皮膜の2層構造となっていることを見出した。これらの皮膜が酸とClイオンの混合溶液中において良好な耐食性を与えていると考えた。皮膜の構造をさらに詳細に調査するためGDSによりさらに解析を進めた。その結果、Cuを主体とする保護皮膜と不動態皮膜の2層の皮膜がそれぞれ以下の厚さと組成を有している場合に良好な耐食性を発揮することが分かった。 As mentioned above, the corrosion resistance of stainless steel is ensured by the passivation film composed of Fe and Cr hydroxides and Cr oxides. As a result of the GDS analysis, the passivation film is formed on this passivation film. The existence of another protective film mainly composed of Cu having a different composition was confirmed. That is, it was found that in this corrosive environment, the film has a two-layer structure of a Cu-based protective film and a passive film. It was considered that these films give good corrosion resistance in a mixed solution of acid and Cl ions. In order to investigate the structure of the film in more detail, further analysis was conducted by GDS. As a result, it has been found that good corrosion resistance is exhibited when the two-layer coating consisting of a protective coating mainly composed of Cu and a passive coating has the following thickness and composition.

Cu主体の保護皮膜は0.005〜0.1μmの厚さを有し、且つその組成はCu:45%以上、Ni:10〜30%、Cr:5〜20%、Fe:10%以下を含む。尚、残部はMnやSiなどの合金成分から構成される。 The Cu-based protective film has a thickness of 0.005 to 0.1 μm, and its composition is Cu: 45% or more, Ni: 10 to 30%, Cr: 5 to 20%, Fe: 10% or less. Including. The balance consists of alloy components such as Mn and Si.

次にこのCu主体の保護皮膜と合金母材の間に存在する不動態皮膜は0.001〜0.005μmの厚さを有し、且つその組成はCr:40%以上、Ni:10〜40%、Fe:5〜20%、O:5〜10%を含む。尚、残部はCu、Mn、Siなどの合金成分から構成される。 Next, the passivation film existing between the Cu-based protective film and the alloy base material has a thickness of 0.001 to 0.005 μm, and its composition is Cr: 40% or more, Ni: 10-40. %, Fe: 5 to 20%, O: 5 to 10%. The balance consists of alloy components such as Cu, Mn and Si.

発明者らはこのメカニズムを次のように推察した。先ず、試験前の試料表面にはステンレス鋼と同じく一般的な不動態皮膜が存在していると考えられるが、その構造はFeとCrの水酸化物およびCrの酸化物とされており、厚さは数nmとされている。次に、本試験溶液のpHは1以下であるため熱力学的にはいわゆる脱不動態化pHの領域に達しているが、実際には本溶液中において完全には不動態皮膜の破壊が生じてはおらず、溶解と再生を繰返しながらも不動態皮膜は維持していると考えられる。仮に不動態皮膜が全く存在していなければ、試料は著しい腐食速度で溶解し、試験片の原形を留めていないと考えられるからである。このようなpHの低い溶液では、通常金属が溶解するいわゆるアノード反応の過程においてFe、Ni、Cr、Mo、Cuなどの合金元素が溶け出し、カソード反応として腐食溶液中のHイオンが還元される反応が主として対で起こる。本試験溶液のように極めて腐食性が強い溶液中では上記のアノード反応が活発に起こり、ある程度のアノード反応が起こると溶液中にはCu2+イオンが蓄積してくるため、カソード反応はHイオンの還元反応からCu2+イオンの還元反応が主となる。両者の酸化還元電位を比較すると水素電極を基準としてCu2+の酸化還元電位は+0.337Vに存在することからも推察される。これにより合金表面にCuを主体とする保護皮膜が生成され、優れた耐食性を与えていると推察した。 The inventors have speculated that this mechanism is as follows. First, it is considered that a general passivation film is present on the surface of the sample before the test as in the case of stainless steel, but its structure is assumed to be a hydroxide of Fe and Cr and an oxide of Cr. The length is set to several nm. Next, since the pH of this test solution is 1 or less, it has reached a so-called depassivation pH region thermodynamically, but actually, the passivation film is completely destroyed in this solution. However, it is considered that the passive film is maintained even after repeated dissolution and regeneration. This is because, if the passivation film is not present at all, it is considered that the sample dissolves at a remarkable corrosion rate and does not retain the original shape of the test piece. In such a low pH solution, alloying elements such as Fe, Ni, Cr, Mo, and Cu are usually dissolved during the so-called anodic reaction in which the metal is dissolved, and H + ions in the corrosion solution are reduced as a cathode reaction. Reactions mainly occur in pairs. Is extremely corrosive strong solution as in the present test solution occurs actively anode reaction described above, to come to accumulate Cu 2+ ions in the solution when the place is some degree of anode reaction and the cathode reaction is H + ions The main reaction is the reduction reaction of Cu 2+ ions. It can be inferred from the fact that the redox potentials of Cu 2+ exist at +0.337 V with reference to the hydrogen electrode when the redox potentials of the both are compared. As a result, it was speculated that a protective film mainly composed of Cu was formed on the surface of the alloy, giving excellent corrosion resistance.

また、純Cuを同腐食試験に供した結果、本発明鋼より優れた耐食性を有していたが、純Cuはコストが高く、また強度面から構造材料には全くの不向きである。尚、この皮膜はCuが主体であるが、GDSの測定結果からNi、Fe、Crも存在していた。Ni2+、Fe2+、Cr3+の酸化還元電位はそれぞれ−0.257V、−0.447V、−0.744Vであり、何れもCu2+の酸化還元電位より卑であるにも関わらず、皮膜中にこれら元素が存在していることから実際にはこれらイオンの還元反応が生じていると考えられる。また、Fe2+の酸化還元電位はCr3+のそれより貴であるため、Fe2+がCr3+より優先的に還元され、皮膜中にはCrよりFeが濃化するはずであるが、皮膜中のFe濃度はCr濃度より低かった。このメカニズムとしてFe2+が還元されても溶液のpHは1以下であるため還元されたFeが直ちに再溶解するためと推察した。 Further, as a result of subjecting pure Cu to the same corrosion test, it had better corrosion resistance than the steel of the present invention, but pure Cu is high in cost and completely unsuitable for a structural material from the viewpoint of strength. Although this film was mainly composed of Cu, Ni, Fe and Cr were also present from the GDS measurement results. The redox potentials of Ni 2+ , Fe 2+ , and Cr 3+ are −0.257 V, −0.447 V, and −0.744 V, respectively, and although they are all lower than the redox potential of Cu 2+ , they are in the film. It is considered that the reduction reaction of these ions actually occurs due to the presence of these elements in. Moreover, since the oxidation-reduction potential of Fe 2+ is nobler than that of Cr 3+, Fe 2+ is preferentially reduced than Cr 3+, although in the coating should Fe is concentrated from Cr, in the coating The Fe concentration was lower than the Cr concentration. As a mechanism for this, it was assumed that even if Fe 2+ was reduced, the pH of the solution was 1 or less, so that the reduced Fe was immediately redissolved.

すなわち、本発明のFe−Ni−Cr−Mo−Cu合金は、以下質量%にて、C:0.004〜0.025%、Si:0.02〜1.0%、Mn:0.03〜0.35%、P:≦0.040%、S:≦0.003%、Ni:30.0〜37.0%、Cr:22.0〜25.0%、Mo:7.0〜9.0%、N:0.15〜0.30%、Cu:2.5〜4.0%、Al:0.001〜0.1%を含有し、残部がFeおよび不可避的な不純物からなり、かつ下記の(1)式を満足することを特徴としている。
Ni+Cr+3Mo+5Cu+25N≧89.0 …(1)
That is, in the Fe-Ni-Cr-Mo-Cu alloy of the present invention, C: 0.004 to 0.025%, Si: 0.02 to 1.0%, Mn: 0.03 in mass% below. ~ 0.35%, P: ≤ 0.040%, S: ≤ 0.003%, Ni: 30.0-37.0%, Cr: 22.0-25.0%, Mo: 7.0- 9.0%, N: 0.15 to 0.30%, Cu: 2.5 to 4.0%, Al: 0.001 to 0.1%, with the balance being Fe and unavoidable impurities. And satisfies the following formula (1).
Ni+Cr+3Mo+5Cu+25N≧89.0 (1)

また、本発明のFe−Ni−Cr−Mo−Cu合金は、上記成分に加えてさらに、Nb:0.001〜0.03%、V:0.01〜0.1%、B:0.0001〜0.003%、Ti:0.001〜0.01%のうちから選ばれる1種または2種以上を含有してもよい。 Further, the Fe-Ni-Cr-Mo-Cu alloy of the present invention has Nb: 0.001 to 0.03%, V: 0.01 to 0.1%, B: 0. One or two or more selected from 0001 to 0.003% and Ti: 0.001 to 0.01% may be contained.

本発明のFe−Ni−Cr−Mo−Cu合金においては、上記成分の組成に加えて、合金表面にはCuを45%以上含有する皮膜を有することを特徴とする。 The Fe-Ni-Cr-Mo-Cu alloy of the present invention is characterized by having a coating containing 45% or more of Cu on the surface of the alloy in addition to the composition of the above components.

本発明のFe−Ni−Cr−Mo−Cu合金においては、上記Cuを45%以上含有する皮膜は0.005〜0.1μmの厚さを有することを特徴とする。 The Fe-Ni-Cr-Mo-Cu alloy of the present invention is characterized in that the film containing 45% or more of Cu has a thickness of 0.005 to 0.1 µm.

また、この皮膜と合金母材の間にはCr−Ni−Fe−Oから成る厚さ0.001〜0.005μmの不動態皮膜を有することを特徴とする。 Further, it is characterized in that a passivation film made of Cr-Ni-Fe-O having a thickness of 0.001 to 0.005 μm is provided between the film and the alloy base material.

さらに、Cuを主体とする皮膜はCu≧45%、Ni:10〜30%、Cr:5〜20%、Fe:10%以下を含み、残部はMnSiを不可避的不純物として含有する。不動態皮膜はCr:40%以上、Ni:10〜40%、Fe:5〜20%、O:5〜10%を含み、残部はMn、Si、Cuを不可避的不純物として含有することを特徴とする。
Further, the film mainly composed of Cu contains Cu≧45%, Ni:10 to 30%, Cr:5 to 20% and Fe:10% or less, and the balance contains Mn and Si as unavoidable impurities . The passive film contains Cr: 40% or more, Ni: 10-40%, Fe: 5-20%, O: 5-10%, and the balance contains Mn, Si, Cu as unavoidable impurities. And

本発明によれば、耐食性に優れるため環境汚染防止装置や各種プラントなどにおいて、酸による耐全面腐食の発生が懸念される環境下で使用される材料として好適に用いることができる。 INDUSTRIAL APPLICABILITY According to the present invention, since it has excellent corrosion resistance, it can be suitably used as a material used in an environment pollution control device, various plants, etc. in an environment where there is a concern that general acid corrosion resistance will occur.

Cu主体の保護皮膜および不動態皮膜を有する合金の深さ方向における元素プロファイルである。3 is an elemental profile in the depth direction of an alloy having a Cu-based protective film and a passive film.

次に本発明のFe−Ni−Cr−Mo−Cu合金が有すべき組成成分について説明する。
C:0.004〜0.025mass%
Cはオーステナイト相安定化元素である。しかし、多量に添加すると、CrおよびMo等と結合して炭化物を形成し、母材中の固溶Crおよび固溶Moの量が低下し、耐食性を低下させる。一方、Cの下限値は強度の低下を防止する観点から0.004mass%とする。よって、Cは0.004〜0.025mass%に制限する。好ましくは0.005〜0.023mass%であり、より好ましくは0.006〜0.021mass%である。
Next, the composition components that the Fe-Ni-Cr-Mo-Cu alloy of the present invention should have will be described.
C: 0.004 to 0.025 mass%
C is an austenite phase stabilizing element. However, when it is added in a large amount, it combines with Cr and Mo to form a carbide, and the amount of solid solution Cr and solid solution Mo in the base material decreases, resulting in a decrease in corrosion resistance. On the other hand, the lower limit of C is 0.004 mass% from the viewpoint of preventing the strength from decreasing. Therefore, C is limited to 0.004 to 0.025 mass%. It is preferably 0.005 to 0.023 mass%, and more preferably 0.006 to 0.021 mass%.

Si:0.02〜1.0mass%
Siは脱酸剤として添加される元素である。また、Siは溶鋼の流動性を高め、溶接性を良好にする元素でもあるため0.02mass%以上の添加が望ましい。しかし、Siはσ相などの金属間化合物の析出を促進し、また、粒界腐食感受性を増大させる元素でもあるので0.02〜1.0mass%とする。好ましくは0.02〜0.8mass%以下であり、より好ましくは0.02〜0.6mass%以下である。
Si: 0.02-1.0 mass%
Si is an element added as a deoxidizer. Further, Si is an element that enhances the fluidity of molten steel and improves weldability, so addition of 0.02 mass% or more is desirable. However, Si is an element that promotes precipitation of intermetallic compounds such as σ phase and also increases intergranular corrosion susceptibility, so the content is made 0.02 to 1.0 mass %. It is preferably 0.02 to 0.8 mass% or less, and more preferably 0.02 to 0.6 mass% or less.

Mn:0.03〜0.35mass%
Mnは脱酸作用を有する元素であるため、その効果を得るためには少なくとも0.03mass%以上は必要である。しかし、MnもSiと同様にσ相などの金属間化合物の析出を招くため、必要以上の添加は好ましくない。そのため、0.03〜0.35mass%にする必要がある。好ましくは0.03〜0.30mass%、より好ましくは0.03〜0.25mass%である。
Mn: 0.03 to 0.35 mass%
Since Mn is an element having a deoxidizing action, at least 0.03 mass% or more is necessary to obtain the effect. However, Mn causes precipitation of an intermetallic compound such as a σ phase like Si, so addition of Mn more than necessary is not preferable. Therefore, it is necessary to set the content to 0.03 to 0.35 mass %. It is preferably 0.03 to 0.30 mass%, more preferably 0.03 to 0.25 mass%.

P:0.040mass%以下
Pは不純物として不可避的に混入してくる元素であり、リン化物として結晶粒界に偏析するため熱間加工性を害し、耐食性全般を劣化させる元素である。従って、極力低減することが望ましい。しかしながら、Pの含有量を極端に低減させることは製造コストの増加を招く。よって本発明においては、Pは0.040mass%以下に制限する。好ましくは0.030mass%以下であり、より好ましくは0.020mass%以下である。
P: 0.040 mass% or less P is an element that is inevitably mixed as an impurity, and segregates as a phosphide at the grain boundaries to impair hot workability and deteriorate overall corrosion resistance. Therefore, it is desirable to reduce it as much as possible. However, extremely reducing the P content causes an increase in manufacturing cost. Therefore, in the present invention, P is limited to 0.040 mass% or less. It is preferably 0.030 mass% or less, more preferably 0.020 mass% or less.

S:0.003mass%以下
SはPと同様に不純物として不可避的に混入してくる元素であり、結晶粒界に偏析し易く、特に熱間加工性を著しく阻害し、耐食性に有害な元素である。0.003mass%を超えて含有するとその有害性が顕著に現れるので、0.003mass%以下に制御する必要がある。好ましくは0.002mass%以下、より好ましくは0.001mass%以下である。
S: 0.003 mass% or less S is an element that is unavoidably mixed as an impurity like P, is easily segregated at the grain boundaries, and particularly impairs hot workability, and is an element harmful to corrosion resistance. is there. If it is contained in excess of 0.003 mass%, the harmfulness thereof becomes remarkable, so it is necessary to control the content to 0.003 mass% or less. It is preferably 0.002 mass% or less, more preferably 0.001 mass% or less.

Ni:30.0〜37.0mass%
Niはσ相などの金属間化合物の析出を抑制し、耐全面腐食性を向上させ、特に合金の溶解速度を低下させる働きがある。含有量が30.0mass%を下回ると金属間化合物の析出が助長され、一方、37.0mass%を上回ると熱間加工性の劣化や熱間変形抵抗の増大、更にはコストの増加を招く。よって、Ni含有量は30.0〜37.0mass%である。好ましくは31.0〜36.0mass%、より好ましくは32.0〜35.0mass%である。
Ni: 30.0 to 37.0 mass%
Ni has a function of suppressing precipitation of intermetallic compounds such as σ phase, improving general corrosion resistance, and particularly decreasing the dissolution rate of the alloy. When the content is less than 30.0 mass%, precipitation of intermetallic compounds is promoted, while when it exceeds 37.0 mass%, deterioration of hot workability, increase of hot deformation resistance, and further increase of cost are caused. Therefore, the Ni content is 30.0 to 37.0 mass%. It is preferably 31.0 to 36.0 mass%, more preferably 32.0 to 35.0 mass%.

Cr:22.0〜25.0mass%
Crは合金の耐全面腐食性のみならず耐孔食性、耐すきま腐食性、耐応力腐食割れ性などの耐食性全般を向上させる極めて重要な元素である。その効果を十分得るには22.0mass%以上含有する必要がある。しかしながら、25.0mass%を超えて含有するとσ相などの金属間化合物の析出が助長され、かえって耐食性を劣化させるので、22.0〜25.0mass%とした。好ましくは22.2〜24.8mass%、より好ましくは22.4〜24.6mass%である。
Cr: 22.0 to 25.0 mass%
Cr is an extremely important element that improves not only general corrosion resistance of the alloy but also overall corrosion resistance such as pitting corrosion resistance, crevice corrosion resistance and stress corrosion cracking resistance. In order to sufficiently obtain the effect, it is necessary to contain 22.0 mass% or more. However, if the content exceeds 25.0 mass %, precipitation of intermetallic compounds such as σ phase is promoted and the corrosion resistance is rather deteriorated. Therefore, it is set to 22.0 to 25.0 mass %. It is preferably 22.2 to 24.8 mass%, more preferably 22.4 to 24.6 mass%.

Mo:7.0〜9.0mass%
Moも耐全面腐食性を向上させ、耐孔食性および耐すきま腐食性を向上させるのに有益な元素であるので、7.0mass%以上の含有量を必要とする。しかし、Moの過剰な添加はσ相などの金属間化合物の析出を助長し、耐食性を低下させる。よって、Moは7.0〜9.0mass%の範囲とする。好ましくは7.2〜8.5mass%、より好ましくは7.4〜8.0mass%である。
Mo: 7.0-9.0 mass%
Mo is also an element that is useful for improving general corrosion resistance and pitting corrosion resistance and crevice corrosion resistance, so a content of 7.0 mass% or more is required. However, excessive addition of Mo promotes the precipitation of intermetallic compounds such as σ phase and reduces the corrosion resistance. Therefore, Mo is set in the range of 7.0 to 9.0 mass %. It is preferably 7.2 to 8.5 mass%, more preferably 7.4 to 8.0 mass%.

Cu:2.5〜4.0mass%
Cuは耐酸性の向上、すなわち耐全面腐食性の向上に極めて有効であるため、積極的に添加される元素である。本発明においてはCuを主体とする保護皮膜が合金表面に生成し、耐全面腐食性を改善するという観点から極めて重要な役割を担う元素である。その効果を得るためには2.5mass%以上の添加が必要である。しかしながら、4.0mass%を超えて含有すると、Cuを主体とする保護皮膜の緻密性が損なわれ、かえって耐食性の低下を招く。従って、Cuの添加量は2.5〜4.0mass%とした。好ましくは2.7〜3.8mass%、より好ましくは2.9〜3.6mass%である。
Cu: 2.5-4.0 mass%
Cu is an element that is positively added because it is extremely effective in improving acid resistance, that is, improving general corrosion resistance. In the present invention, a protective film mainly composed of Cu is formed on the surface of the alloy, and is an element that plays an extremely important role from the viewpoint of improving the general corrosion resistance. In order to obtain the effect, it is necessary to add 2.5 mass% or more. However, if the content exceeds 4.0 mass%, the denseness of the protective film mainly composed of Cu is impaired and the corrosion resistance is rather deteriorated. Therefore, the addition amount of Cu is set to 2.5 to 4.0 mass %. It is preferably 2.7 to 3.8 mass%, more preferably 2.9 to 3.6 mass%.

N:0.15〜0.30mass%
NはCr、Mo、Ni、Cuと同様に耐全面腐食性、耐孔食性および耐すきま腐食性を向上させるのに有益な元素である。その効果を得るためには0.15mass%以上の添加が必要である。しかしながら、Nを0.30mass%を超えて含有すると窒化物の析出を招き、また熱間変形抵抗が極めて増加し、熱間加工性を阻害するので、Nの含有量は0.15〜0.30ass%とした。好ましくは0.19〜0.27mass%、より好ましくは0.20〜0.26mass%である。
N: 0.15 to 0.30 mass%
N, like Cr, Mo, Ni and Cu, is an element useful for improving general corrosion resistance, pitting corrosion resistance and crevice corrosion resistance. In order to obtain the effect, it is necessary to add 0.15 mass% or more. However, when N is contained in an amount of more than 0.30 mass %, precipitation of nitrides is caused, hot deformation resistance is extremely increased, and hot workability is impaired. Therefore, the content of N is 0.15 to 0. It was set to 30 ass %. It is preferably 0.19 to 0.27 mass%, more preferably 0.20 to 0.26 mass%.

Al:0.001〜0.1mass%
AlはCaO−SiO−Al−MgO−F系スラグの共存下で、脱酸によって脱硫を促進してSを低減し、熱間加工性を向上させる効果を有するため積極的に添加する必要があるが、0.001mass%未満の添加ではその効果はなく、また0.1mass%を超えて含有すると鋼板の美観や耐食性に影響を及ぼす巨大介在物の形成を助長し、さらにはNとの化合物であるAlNの析出が顕著になり、耐食性に有効なNの効果を低減させるので、Alの含有量を0.001〜0.1mass%とした。好ましくは0.001〜0.07mass%、より好ましくは0.001〜0.04mass%である。
Al: 0.001 to 0.1 mass%
In the presence of CaO—SiO 2 —Al 2 O 3 —MgO—F slag, Al has the effect of promoting desulfurization by deoxidation to reduce S and improving hot workability, and therefore is actively added. However, addition of less than 0.001 mass% has no effect, and addition of more than 0.1 mass% promotes formation of large inclusions that affect the aesthetics and corrosion resistance of the steel sheet, and further N The precipitation of AlN, which is a compound of, becomes remarkable, and the effect of N, which is effective in corrosion resistance, is reduced, so the Al content was made 0.001 to 0.1 mass %. It is preferably 0.001 to 0.07 mass%, more preferably 0.001 to 0.04 mass%.

Nb:0.001〜0.03mass%
NbはNbの炭化物として結晶粒界に析出し、溶接などによって熱影響を受けた場合に生じるCr炭化物の析出を抑制し、いわゆる鋭敏化を防止する。その効果を得るためには0.001mass%以上の添加が必要である。しかしながら、過剰な添加はσ相などの金属間化合物の析出が助長され、耐食性を劣化させるので0.001%〜0.03mass%とした。好ましくは0.003〜0.028mass%、より好ましくは0.006〜0.026mass%である。
Nb: 0.001 to 0.03 mass%
Nb is precipitated as a carbide of Nb at the crystal grain boundaries and suppresses the precipitation of Cr carbide that occurs when it is thermally affected by welding or the like, and prevents so-called sensitization. In order to obtain the effect, addition of 0.001 mass% or more is necessary. However, excessive addition promotes precipitation of intermetallic compounds such as σ phase and deteriorates corrosion resistance, so the content was made 0.001% to 0.03 mass %. It is preferably 0.003 to 0.028 mass%, more preferably 0.006 to 0.026 mass%.

V:0.01〜0.1mass%
VはVの炭窒化物として結晶粒界に析出し、Nbと同じく鋭敏化を防止する。その効果を得るためには0.01mass%以上の添加が必要である。しかしながら、過剰な添加は析出硬化を招き材料の加工が困難になる。そのため0.01〜0.1mass%とした。好ましくは0.02〜0.09mass%、より好ましくは0.03〜0.08mass%である。
V: 0.01 to 0.1 mass%
V precipitates as a carbonitride of V at the crystal grain boundary and prevents sensitization, like Nb. In order to obtain the effect, it is necessary to add 0.01 mass% or more. However, excessive addition causes precipitation hardening and makes it difficult to process the material. Therefore, it is set to 0.01 to 0.1 mass%. It is preferably 0.02 to 0.09 mass%, more preferably 0.03 to 0.08 mass%.

B:0.0001〜0.003mass%
Bは熱間加工性の向上に有効であるが、0.0001mass%未満ではその効果が少なく、0.003mass%を上回ると逆に熱間加工性が悪くなる。よって、Bは0.0001〜0.003mass%とした。好ましくは0.0003〜0.0027mass%、より好ましくは0.0006〜0.0024mass%である。
B: 0.0001 to 0.003 mass%
B is effective in improving the hot workability, but if it is less than 0.0001 mass%, the effect is small, and if it exceeds 0.003 mass%, the hot workability deteriorates. Therefore, B is set to 0.0001 to 0.003 mass%. It is preferably 0.0003 to 0.0027 mass%, more preferably 0.0006 to 0.0024 mass%.

Ti:0.001〜0.01mass%
TiはTiの炭化物として結晶粒界に析出し、Nbと同様に鋭敏化を防止する。しかし、過剰な添加は溶接を施した際にTiの炭化物が溶接部に多量に析出し、ナイフラインアタックと言われる腐食の原因となる。よって、Tiは0.001〜0.01mass%とした。好ましくは0.002〜0.009mass%、より好ましくは0.003〜0.008mass%である。
Ti: 0.001 to 0.01 mass%
Ti precipitates at the grain boundaries as a carbide of Ti and prevents sensitization, like Nb. However, excessive addition causes a large amount of Ti carbide to precipitate in the welded portion during welding, which causes corrosion called knife line attack. Therefore, Ti is set to 0.001 to 0.01 mass%. It is preferably 0.002 to 0.009 mass%, more preferably 0.003 to 0.008 mass%.

Ni+Cr+3Mo+5Cu+25N≧89.0 …(式1)
酸とClイオンが混在する環境において耐全面腐食性を向上させるためには、合金にNi、Cr、Mo、Cu、Nを添加することが有効である。各合金元素の作用としてNiは低pH環境、つまり酸溶液中において合金の腐食による溶解速度を遅らせる。Crは不動態皮膜を生成し、合金の耐食性の根源となる。Moはモリブデン酸イオンを生成することで不動態皮膜の再不動態化を促し、その効果としてNiと同様に酸溶液中における溶解速度を遅らせる。Nはアンモニアを生成してpH溶液を中和し、腐食速度を遅らせる。即ち、何れの合金元素も相乗効果として耐食性へ寄与し、その寄与度を各元素に重み付けをした(1)式の和が89.0以上を満足すれば、十分な耐食性が得られる。従って、Ni+Cr+3Mo+5Cu+25N≧89.0であることが必要である。好ましくはNi+Cr+3Mo+5Cu+25N≧94.0、より好ましくはNi+Cr+3Mo+5Cu+25N≧98.0である。
Ni+Cr+3Mo+5Cu+25N≧89.0 (Equation 1)
In order to improve the general corrosion resistance in an environment in which acid and Cl ions are mixed, it is effective to add Ni, Cr, Mo, Cu and N to the alloy. As a function of each alloying element, Ni delays the dissolution rate due to corrosion of the alloy in a low pH environment, that is, in an acid solution. Cr forms a passive film and is the source of the corrosion resistance of the alloy. Mo promotes repassivation of the passivation film by generating molybdate ions, and its effect is to delay the dissolution rate in an acid solution like Ni. N produces ammonia to neutralize the pH solution and slow the rate of corrosion. That is, any alloy element contributes to the corrosion resistance as a synergistic effect, and if the sum of the equation (1) in which the degree of contribution is weighted to each element satisfies 89.0 or more, sufficient corrosion resistance can be obtained. Therefore, it is necessary that Ni+Cr+3Mo+5Cu+25N≧89.0. Preferably, Ni+Cr+3Mo+5Cu+25N≧94.0, and more preferably Ni+Cr+3Mo+5Cu+25N≧98.0.

Cu主体の保護皮膜は0.005〜0.1μmの厚さを有すること
前述したとおり、本発明のFe−Ni−Cr−Mo−Cu合金においては酸溶液中においてCu2+イオンが主として還元されて合金母材の表面に保護皮膜を生成する。保護皮膜の厚さが0.005μm未満では厚さが不十分であり十分な保護性が得られない。一方、0.1μmを超えた厚さを有すると皮膜の構造がポーラス状となり緻密性が失われ逆に保護性が損なわれる。従って、Cu主体の保護皮膜は0.005〜0.1μmの厚さが必要となる。好ましくは0.005〜0.090μm、より好ましくは0.005〜0.080μmである。
The Cu-based protective film has a thickness of 0.005 to 0.1 μm. As described above, in the Fe—Ni—Cr—Mo—Cu alloy of the present invention, Cu 2+ ions are mainly reduced in the acid solution. A protective film is formed on the surface of the alloy base material. If the thickness of the protective film is less than 0.005 μm, the thickness is insufficient and sufficient protection cannot be obtained. On the other hand, if the thickness exceeds 0.1 μm, the structure of the film becomes porous and the denseness is lost and conversely the protective property is impaired. Therefore, the Cu-based protective film is required to have a thickness of 0.005 to 0.1 μm. The thickness is preferably 0.005 to 0.090 μm, more preferably 0.005 to 0.080 μm.

Cu主体の皮膜と合金母材の間にはCr−Ni−Fe−Oから成る厚さ0.001〜0.005μmの不動態皮膜を有すること
腐食環境に不動態皮膜が晒されると不動態皮膜自体の溶解と再生、即ち再不動態化を繰返しながら徐々に腐食が進行する。厚さが0.001μm未満では溶解の速度が再生の速度より速いため、腐食の進行速度が速く十分な耐食性が得られない。一方、不動態皮膜は薄くて緻密なほど合金に良好な耐食性を与えることが知られているが、0.005μmを超えると緻密性が損なわれ、良好な耐食性が得られない。従って、不動態皮膜は0.001〜0.005μmの厚さが必要となり、好ましくは0.001〜0.004μm、より好ましくは0.001〜0.003μmである。
Between the Cu-based coating and the alloy base material, there should be a passivation coating made of Cr-Ni-Fe-O with a thickness of 0.001 to 0.005 µm. Passivation coating when the passivation coating is exposed to a corrosive environment. Corrosion gradually progresses by repeating dissolution and regeneration of itself, that is, repassivation. When the thickness is less than 0.001 μm, the rate of dissolution is faster than the rate of regeneration, so that the rate of progress of corrosion is fast and sufficient corrosion resistance cannot be obtained. On the other hand, it is known that the thinner and denser the passivation film is, the better corrosion resistance is given to the alloy. However, if it exceeds 0.005 μm, the denseness is impaired and good corrosion resistance cannot be obtained. Therefore, the passivation film needs to have a thickness of 0.001 to 0.005 μm, preferably 0.001 to 0.004 μm, and more preferably 0.001 to 0.003 μm.

Cuを主体とする保護皮膜の組成
Cuを主体とする保護皮膜が酸環境において良好な耐食性を与える理由は、純Cuが酸に対して良好な耐食性を有しているからである。従って、保護皮膜はCuが主体であることが望ましく、その濃度はCu≧45%が必要である。NiとCrも酸とClイオンに対する耐食性を有しているため、それぞれ10〜30%、5〜20%を含有することが望ましい。但し、本環境において溶解しやすいFeは10%以下であることが望ましく、残部は合金成分のMnやSiなどを含むが可能な限り少量であることが望ましい。
Composition of Cu-Based Protective Film The reason why the Cu-based protective film gives good corrosion resistance in an acid environment is that pure Cu has good corrosion resistance to acids. Therefore, the protective film is preferably composed mainly of Cu, and the concentration thereof needs to be Cu≧45%. Since Ni and Cr also have corrosion resistance to acids and Cl ions, it is desirable to contain 10 to 30% and 5 to 20%, respectively. However, Fe, which is easily dissolved in this environment, is preferably 10% or less, and the balance contains alloy components such as Mn and Si, but is preferably as small as possible.

不動態皮膜の組成
不動態皮膜は本発明の合金が腐食環境にさらされた際、上記Cuを主体とする保護皮膜が生成するまでの耐食性を担保する働きとCu主体の保護皮膜が破壊されて再生するまでの耐食性を担保する働きを有する。その作用を十分に得るためにはCrを40%以上含有することが望ましく、Ni、Fe、Oはそれぞれ10〜40%、Fe:5〜20%、O:5〜10%を含むことが望ましい。残部は合金成分のCu、Mn、Siなどを含むが可能な限り少量であることが望ましい。
Composition of Passive Film When the alloy of the present invention is exposed to a corrosive environment, the passive film has a function of ensuring corrosion resistance until the protective film mainly composed of Cu is produced and the protective film mainly composed of Cu is destroyed. It has the function of ensuring corrosion resistance until it is regenerated. In order to sufficiently obtain the action, it is desirable to contain Cr in an amount of 40% or more, and it is desirable that Ni, Fe, and O contain 10 to 40%, Fe: 5 to 20%, and O: 5 to 10%, respectively. .. The balance contains alloy components such as Cu, Mn and Si, but it is desirable that the amount is as small as possible.

Cuを主体とする保護皮膜と不動態皮膜の厚さの定義
Cuを主体とする保護皮膜をGDSにより表層から深さ方向に元素プロファイルを取ると、例えば一例として図1に示すように、Cuが最も多く含まれ、深さ方向に沿って徐々に濃度が低下するプロファイルとなる。しかしながら、ある程度の深さに達するとCuの保護皮膜の直下に存在する不動態皮膜が検出される。ここで、Cuを主体とする保護皮膜の厚さの定義として、表層からのCuが不動態皮膜のCrと交差する深さまでをCuを主体とする保護皮膜の厚さと定義する。
Definition of thickness of protective film mainly composed of Cu and passivation film When an element profile of a protective film mainly composed of Cu is taken in the depth direction from the surface layer by GDS, for example, as shown in FIG. The profile is the most contained, and the concentration gradually decreases along the depth direction. However, when the depth reaches a certain level, the passivation film existing immediately below the protective film of Cu is detected. Here, as the definition of the thickness of the protective film mainly composed of Cu, the thickness of the protective film mainly composed of Cu is defined up to the depth where Cu from the surface layer intersects Cr of the passive film.

次に、不動態皮膜の元素プロファイルはCr濃度が最も高く検出されるが、直ちに濃度は低下し先ずNiと交差し、次にFeと交差する。その後、母材成分のプロファイルとなる。不動態皮膜の厚さの定義として、上述したCuを主体とする保護皮膜中のCuが不動態皮膜中のCrと交差した深さ地点から不動態皮膜中のCrが不動態皮膜中のNiと交差した深さ地点までを不動態皮膜の厚さと定義する。 Next, the elemental profile of the passivation film is detected with the highest Cr concentration, but the concentration immediately decreases and first intersects with Ni and then with Fe. After that, the profile of the base material component is obtained. As a definition of the thickness of the passivation film, from the depth point where Cu in the above-mentioned Cu-based protective film intersects with Cr in the passivation film, Cr in the passivation film becomes Ni in the passivation film. The thickness of the passive film is defined up to the intersecting depth point.

Cuを主体とする保護皮膜と不動態皮膜の組成の定義
Cuを主体とする保護皮膜においては最表層のCuが最も濃化した深さ地点を保護皮膜の組成と定義する。同様に不動態皮膜の組成についてはCr濃度が最も高くなる深さ地点を不動態皮膜の組成と定義する。
Definition of composition of protective film mainly composed of Cu and passivation film In a protective film mainly composed of Cu, a depth point where Cu is most concentrated in the outermost layer is defined as a composition of the protective film. Similarly, regarding the composition of the passive film, the depth point where the Cr concentration is highest is defined as the composition of the passive film.

次に、本発明のFe−Ni−Cr−Mo−Cu合金の製造方法について説明する。
本発明のFe−Ni−Cr−Mo−Cu合金は、鉄屑、ステンレス屑、フェロニッケル、フェロクロムなどの原料を電気炉で溶解し、AOD(Argon Oxygen Decarburization)炉またはVOD(Vacuum Oxygen Decarbutization)炉にて、酸素および希ガスの混合ガスを吹錬して脱炭精錬し、生石灰、Fe−Si合金、Al等を添加してスラグ中のCr酸化物を還元処理した後、蛍石を添加してCaO−SiO−Al−MgO−F系スラグを形成して脱酸および脱硫し、連続鋳造法または造塊−分塊圧延法で鋼片とし、その後、上記鋼片を、熱間圧延し、あるいは、さらに冷間圧延して、薄鋼板、厚鋼板、形鋼、棒鋼、線材等の各種鋼材とするのが好ましい。
Next, a method for producing the Fe-Ni-Cr-Mo-Cu alloy of the present invention will be described.
The Fe-Ni-Cr-Mo-Cu alloy of the present invention melts raw materials such as iron scrap, stainless scrap, ferro-nickel, and ferrochrome in an electric furnace, and then uses an AOD (Argon Oxygen Decarburization) furnace or a VOD (Vacuum Oxygen Decarburization) furnace. At that, a mixed gas of oxygen and a noble gas is blown to decarburize and refine, and quick lime, Fe-Si alloy, Al, etc. are added to reduce the Cr oxide in the slag, and then fluorite is added. CaO—SiO 2 —Al 2 O 3 —MgO—F slag is formed, deoxidized and desulfurized, and made into a steel piece by a continuous casting method or an ingot-slump rolling method, and then the steel piece is heat-treated. It is preferable to carry out hot rolling or cold rolling to obtain various steel materials such as thin steel plate, thick steel plate, shaped steel, bar steel and wire rod.

スクラップ、フェロクロム、フェロニッケル、ステンレス屑などを所定の比率に調整した原料を、電気炉にて溶解し、AOD炉またはVOD炉にて酸素および希ガスの混合ガスを吹錬して脱炭精錬した。その後、生石灰、Fe−Si合金、Al等を添加してスラグ中のCr酸化物を還元処理した後、蛍石を添加してCaO−SiO−Al−MgO−F系スラグを形成して脱酸および脱硫した。その後、連続鋳造法で鋳片とした。表1に示した種々の成分組成に調整した後、連続鋳造して鋼片(スラブ)とした。表1中に示したC、Sの組成は、炭素・硫黄同時分析装置(酸素気流中燃焼−赤外線吸収法)を用いて、Nの組成は、酸素・窒素同時分析装置(不活性ガス−インパルス加熱溶融法)を用いて、また、上記以外の組成は蛍光X線分析を用いて、分析した値である。 A raw material prepared by adjusting scrap, ferrochrome, ferronickel, stainless scrap, etc. to a predetermined ratio is melted in an electric furnace and decarburized by blowing a mixed gas of oxygen and a rare gas in an AOD furnace or a VOD furnace. .. Thereafter, quicklime, Fe-Si alloy, after the addition of Al or the like reduction treatment of Cr oxides in the slag, a CaO-SiO 2 -Al 2 O 3 -MgO-F slag by addition of fluorite formation And deoxidized and desulfurized. Then, it was made into a slab by the continuous casting method. After adjusting to the various component compositions shown in Table 1, it was continuously cast into a steel slab (slab). The composition of C and S shown in Table 1 is obtained by using a carbon/sulfur simultaneous analysis apparatus (combustion in an oxygen stream-infrared absorption method), and the composition of N is determined by an oxygen/nitrogen simultaneous analysis apparatus (inert gas-impulse). The composition other than the above is the value analyzed by fluorescent X-ray analysis.

次いで、上記鋼片(スラブ)を8mmまで熱間圧延し、冷間圧延、熱処理および酸洗を繰り返して板厚1〜3mmの冷延コイルを製造した。最終焼鈍温度は1150℃で1分間行った。その板より幅:25mm、長さ:50mm、厚さ:2〜3mmの腐食試験片を採取した。腐食試験片は表面を400番の耐水研磨紙で湿式研磨を行い、水洗後アセトンとエタノールを混合した溶液中において超音波洗浄を実施し腐食試験に供した。この溶解に当たってはFe−33%Ni−24%Cr−8%Mo−3%Cu-0.25%Nを基本成分とし、Ni、Cr、Mo、CuおよびN量を種々に変化させた。 Then, the steel slab (slab) was hot-rolled to 8 mm, and cold rolling, heat treatment and pickling were repeated to manufacture a cold-rolled coil having a plate thickness of 1 to 3 mm. The final annealing temperature was 1150° C. for 1 minute. A corrosion test piece having a width of 25 mm, a length of 50 mm and a thickness of 2 to 3 mm was sampled from the plate. The surface of the corrosion test piece was wet-polished with water-resistant abrasive paper No. 400, and then ultrasonic cleaning was performed in a solution of acetone and ethanol mixed after water washing and subjected to the corrosion test. In this dissolution, Fe-33%Ni-24%Cr-8%Mo-3%Cu-0.25%N was used as a basic component, and the amounts of Ni, Cr, Mo, Cu and N were variously changed.

上記腐食試験片を用いて、人工海水(八洲薬品株式会社製 アクアマリン)を通常の3.5倍に濃縮した溶液に硫酸濃度が50%、塩酸が0.5%となるように調整し、80℃の温度において96時間の浸漬による腐食試験に供した。浸漬腐食試験は腐食速度により評価され、その腐食速度が0.17mm/year未満であれば耐食性は優(◎)、0.17〜0.30mm/yearであれば可(○)、0.3mm/yearを超えた場合は劣(×)と判定した。 Using the above corrosion test piece, a solution prepared by concentrating artificial seawater (Aquamarine manufactured by Yasu Chemical Co., Ltd.) to 3.5 times the normal concentration was adjusted so that the sulfuric acid concentration was 50% and the hydrochloric acid was 0.5%. It was subjected to a corrosion test by immersion at a temperature of 80° C. for 96 hours. The immersion corrosion test is evaluated by the corrosion rate. If the corrosion rate is less than 0.17 mm/year, the corrosion resistance is excellent (⊚), and if 0.17 to 0.30 mm/year, acceptable (∘), 0.3 mm. When it exceeded /year, it was judged as poor (x).

Figure 0006750082
Figure 0006750082

表1に示したNo.1〜13までの鋼板は本発明の条件を満たす発明例であり、優れた耐食性を有している。表1では、本発明の範囲を満たさない数値は括弧書きで示す。なお、No.3、5、6については、Cuを主体とする保護皮膜および不動態皮膜に関する数値が括弧書きとなっているが、これらの例は、より好ましい範囲である従属請求項の範囲を外れており、腐食速度がやや高めであるが、独立請求項1の範囲は満たしており、実用レベルである腐食速度0.30mm/year以下を満たしているので、本発明例に分類している。 No. shown in Table 1 The steel sheets 1 to 13 are examples of inventions satisfying the conditions of the present invention and have excellent corrosion resistance. In Table 1, numerical values that do not satisfy the scope of the present invention are shown in parentheses. In addition, No. Regarding 3, 5, and 6, the numerical values for the protective film and the passivation film mainly containing Cu are written in parentheses, but these examples are out of the scope of the dependent claims which are more preferable ranges, Although the corrosion rate is slightly high, the range of independent claim 1 is satisfied, and since the corrosion rate of 0.30 mm/year or less which is a practical level is satisfied, it is classified as an example of the present invention.

No.3の鋼板はCuが2.50%と低いため、Cuを主体とする保護皮膜の厚さが薄くなり、Cuを主体とする保護皮膜中のCu濃度も低くなったと推察される。 No. Since the steel sheet of No. 3 has a low Cu of 2.50%, it is speculated that the thickness of the protective film mainly composed of Cu was thin and the Cu concentration in the protective film mainly composed of Cu was also low.

No.5の鋼板はCrが22.00%と低いため不動態皮膜が形成し難いことに加えMnが0.35%と高いことが特徴である。Mnは酸溶液中において不動態皮膜を溶解しやすくする性質をもつため不動態皮膜の厚さが0.0008μmとなったと推察される。 No. The steel sheet of No. 5 is characterized by having a low Cr content of 22.00%, which makes it difficult to form a passivation film, and has a high Mn content of 0.35%. It is presumed that the thickness of the passivation film was 0.0008 μm because Mn has a property of easily dissolving the passivation film in the acid solution.

No.6の鋼板はMoが7.00%と低いため、本環境中においてモリブデン酸イオンによる再不動態化の効果を十分に得られなかったためと推察される。 No. It is speculated that since the steel sheet of No. 6 had a low Mo content of 7.00%, the effect of repassivation by molybdate ions was not sufficiently obtained in this environment.

一方、No.14〜23までの鋼板は比較例である。
No.14の鋼板は(1)式を満足するが、Ni含有量が低いためCuを主体とする保護被膜および不動態皮膜中のNi含有量が低い。そのため酸溶液中における溶解速度が速く、耐食性に劣る。
No.15の鋼板は(1)式を満足するが、Cr含有量が低いため不動態皮膜中のCr濃度が低く耐食性に劣る。
No.16の鋼板は(1)式を満足するが、Cr含有量が高いため不動態皮膜が厚くなり緻密性が損なわれたため耐食性に劣る。また、金属組織を観察した結果、高Cr含有であるためσ相の析出が認められた。σ相の析出が耐食性を劣化させている一因でもあると考えられる。
No.17の鋼板はMo含有量が低く(1)式を満足せず、不動態皮膜の再不動態化力が低い。そのため不動態皮膜中のCr濃度が低く耐食性に劣る。また、低Cu含有であるためCuを主体とする保護皮膜中のCu濃度も低く、厚さも不足していることも一因である。
No.18の鋼板は(1)式を満足するが、Mo含有量が高いためσ相の析出が認められた。その結果、耐食性に劣る。
No.19の鋼板はCu含有量が低く(1)式を満足しない。また、低Cu含有であるためCuを主体とする保護皮膜中のCu濃度が低く、厚さも不足している。そのため、耐食性に劣る。
No.20の鋼は(1)式を満足するが、Cu含有量が高いため、Cuを主体とする保護皮膜が厚くなり過ぎ構造がポーラス状となっていた。そのため、緻密性が失われ耐食性に劣る。
No.21の鋼板はN含有量が低く(1)式を満足しない。また、低N含有であるため、σ相が析出しており、耐食性に劣る。σ相の析出が不動態皮膜の厚さ不足とCr濃度不足を招き、溶解速度を高めたと考えられる。
No.22の鋼板は(1)式を満足するが、N濃度が高いためCr-Mo-N系窒化物の析出が認められた。その結果、耐食性に大きく寄与するNが有効に作用せず、耐食性に劣る。
No.23の鋼板は(1)式を満足するが、Alが高いためAl−Nの析出が認められた。その結果、耐食性に大きく寄与するNが有効に作用せず、耐食性に劣る。
On the other hand, No. Steel plates 14 to 23 are comparative examples.
No. The steel plate of No. 14 satisfies the formula (1), but since the Ni content is low, the Ni content in the protective film mainly containing Cu and the passivation film is low. Therefore, the dissolution rate in the acid solution is high and the corrosion resistance is poor.
No. The steel plate of No. 15 satisfies the formula (1), but since the Cr content is low, the Cr concentration in the passivation film is low and the corrosion resistance is poor.
No. The steel plate of No. 16 satisfies the formula (1), but the Cr content is high, so that the passivation film becomes thick and the denseness is impaired, resulting in poor corrosion resistance. Further, as a result of observing the metal structure, the precipitation of σ phase was recognized because of the high Cr content. It is considered that the precipitation of the σ phase is one of the factors that deteriorate the corrosion resistance.
No. The steel sheet of No. 17 has a low Mo content and does not satisfy the formula (1), and the repassivation force of the passivation film is low. Therefore, the Cr concentration in the passivation film is low and the corrosion resistance is poor. Further, because of the low Cu content, the Cu concentration in the protective film mainly composed of Cu is low, and the thickness is also insufficient.
No. The steel plates of No. 18 satisfied the formula (1), but the precipitation of σ phase was recognized because of the high Mo content. As a result, the corrosion resistance is poor.
No. The steel plate of No. 19 has a low Cu content and does not satisfy the formula (1). Further, since the Cu content is low, the Cu concentration in the protective film mainly composed of Cu is low and the thickness is insufficient. Therefore, it is inferior in corrosion resistance.
No. The steel No. 20 satisfies the formula (1), but since the Cu content is high, the protective film mainly containing Cu was too thick and the structure was porous. Therefore, the denseness is lost and the corrosion resistance is poor.
No. The steel plate of No. 21 has a low N content and does not satisfy the formula (1). Further, since the content of N is low, the σ phase is precipitated and the corrosion resistance is poor. It is considered that the precipitation of the σ phase caused the thickness of the passivation film to be insufficient and the Cr concentration to be insufficient, thereby increasing the dissolution rate.
No. The steel plate of No. 22 satisfied the formula (1), but the precipitation of Cr-Mo-N-based nitride was observed because the N concentration was high. As a result, N, which greatly contributes to the corrosion resistance, does not act effectively and the corrosion resistance is poor.
No. The steel plate of No. 23 satisfied the formula (1), but the precipitation of Al-N was recognized because of the high Al content. As a result, N, which greatly contributes to the corrosion resistance, does not act effectively and the corrosion resistance is poor.

本発明のFe−Ni−Cr−Mo−Cu合金は優れた耐食性を有するため、酸とClイオンが混在する全面腐食が腐食原因となる環境に好適に用いる事ができる。 Since the Fe-Ni-Cr-Mo-Cu alloy of the present invention has excellent corrosion resistance, it can be suitably used in an environment in which general corrosion in which acid and Cl - ions are mixed causes corrosion.

Claims (6)

以下質量%にて、
C:0.004〜0.025%、
Si:0.02〜1.0%、
Mn:0.03〜0.35%、
P:≦0.040%、
S:≦0.003%、
Ni:30.0〜37.0%、
Cr:22.0〜25.0%、
Mo:7.0〜9.0%、
N:0.15〜0.30%、
Cu:2.5〜4.0%、
Al:0.001〜0.1%および
残部がFeおよび不可避的な不純物からなり、下記の(1)式を満足することを特徴とするFe−Ni−Cr−Mo−Cu合金。
Ni+Cr+3Mo+5Cu+25N≧89.0 …(1)
In mass% below,
C: 0.004 to 0.025%,
Si: 0.02-1.0%,
Mn: 0.03 to 0.35%,
P: ≤0.040%,
S: ≤ 0.003%,
Ni: 30.0-37.0%,
Cr: 22.0 to 25.0%,
Mo: 7.0-9.0%,
N: 0.15 to 0.30%,
Cu: 2.5-4.0%,
Al: 0.001-0.1%, the balance consisting of Fe and unavoidable impurities, and satisfying the following formula (1): Fe-Ni-Cr-Mo-Cu alloy.
Ni+Cr+3Mo+5Cu+25N≧89.0 (1)
前記成分に加えてさらに、Nb:0.001〜0.03%、V:0.01〜0.1%、B:0.0001〜0.003%、Ti:0.001〜0.01%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載のFe−Ni−Cr−Mo−Cu合金。 In addition to the above components, Nb: 0.001 to 0.03%, V: 0.01 to 0.1%, B: 0.0001 to 0.003%, Ti: 0.001 to 0.01%. The Fe-Ni-Cr-Mo-Cu alloy according to claim 1, containing one or more selected from the above. 前記合金表面にはCuを45%以上含有する皮膜を有することを特徴とする請求項1または2に記載のFe−Ni−Cr−Mo−Cu合金。 The Fe-Ni-Cr-Mo-Cu alloy according to claim 1 or 2, wherein a film containing 45% or more of Cu is provided on the surface of the alloy. 前記皮膜は0.005〜0.1μmの厚さを有することを特徴とする請求項3に記載のFe−Ni−Cr−Mo−Cu合金。 The Fe-Ni-Cr-Mo-Cu alloy according to claim 3, wherein the coating has a thickness of 0.005 to 0.1 µm. 前記皮膜と合金母材の間にはCr−Ni−Fe‐Oから成る厚さ0.001〜0.005μmの不動態皮膜を有することを特徴とする請求項3または4に記載のFe−Ni−Cr−Mo−Cu合金。 The Fe-Ni according to claim 3 or 4, wherein a passivation film made of Cr-Ni-Fe-O having a thickness of 0.001 to 0.005 µm is provided between the film and the alloy base material. -Cr-Mo-Cu alloy. 前記Cuを45%以上含有する皮膜は、Cuの他にNi:10〜30%、Cr:5〜20%、Fe:10%以下を含み、残部はMnSiを不可避的不純物として含有し、
前記不動態皮膜は、Cr:40%以上、Ni:10〜40%、Fe:5〜20%、O:5〜10%を含み、残部はMn、Si、Cuを不可避的不純物として含有することを特徴とする請求項5に記載のFe−Ni−Cr−Mo−Cu合金。
The coating film containing 45% or more of Cu contains Ni: 10 to 30%, Cr: 5 to 20%, Fe: 10% or less in addition to Cu, and the balance contains Mn and Si as unavoidable impurities ,
The passivation film contains Cr: 40% or more, Ni: 10-40%, Fe: 5-20%, O: 5-10%, and the balance contains Mn, Si, Cu as unavoidable impurities. The Fe-Ni-Cr-Mo-Cu alloy according to claim 5.
JP2019203209A 2019-11-08 2019-11-08 Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance Active JP6750082B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019203209A JP6750082B1 (en) 2019-11-08 2019-11-08 Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance
CN202010135609.5A CN112779453B (en) 2019-11-08 2020-03-02 Fe-Ni-Cr-Mo-Cu alloy excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203209A JP6750082B1 (en) 2019-11-08 2019-11-08 Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP6750082B1 true JP6750082B1 (en) 2020-09-02
JP2021075758A JP2021075758A (en) 2021-05-20

Family

ID=72276758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203209A Active JP6750082B1 (en) 2019-11-08 2019-11-08 Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance

Country Status (2)

Country Link
JP (1) JP6750082B1 (en)
CN (1) CN112779453B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852229A (en) * 2022-12-20 2023-03-28 中国科学院赣江创新研究院 Acid corrosion resistant rare earth high-entropy alloy and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293306A (en) * 2021-05-28 2021-08-24 金川镍钴研究设计院有限责任公司 Preparation method of raw material for producing cupronickel B30 from copper-nickel slag

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262048A (en) * 1988-04-14 1989-10-18 Nippon Steel Corp Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation
JPH05247597A (en) * 1992-03-09 1993-09-24 Nippon Steel Corp High alloy austenitic stainless steel excellent in local corrosion resistance
JPH06128699A (en) * 1992-10-20 1994-05-10 Nippon Steel Corp High alloy austenitic stainless steel excellent in hot workability and local corrosion resistance and it production
SE525252C2 (en) * 2001-11-22 2005-01-11 Sandvik Ab Super austenitic stainless steel and the use of this steel
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
US9347121B2 (en) * 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
JP6446470B2 (en) * 2014-11-11 2018-12-26 新日鐵住金ステンレス株式会社 High corrosion resistance austenitic stainless steel sheet
JP6895787B2 (en) * 2017-03-31 2021-06-30 日鉄ステンレス株式会社 Austenitic stainless steel, brazed structures, brazed structural parts and exhaust gas heat exchange parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852229A (en) * 2022-12-20 2023-03-28 中国科学院赣江创新研究院 Acid corrosion resistant rare earth high-entropy alloy and preparation method thereof
CN115852229B (en) * 2022-12-20 2024-06-04 中国科学院赣江创新研究院 Acid corrosion resistant rare earth high-entropy alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2021075758A (en) 2021-05-20
CN112779453A (en) 2021-05-11
CN112779453B (en) 2024-05-24

Similar Documents

Publication Publication Date Title
JP5345070B2 (en) Alloy-saving duplex stainless steel with good corrosion resistance and toughness of weld heat affected zone
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
JP6206624B1 (en) Ferritic stainless steel sheet
US9238855B2 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
KR20130034042A (en) Ferritic stainless steel
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
JP2018172709A (en) Austenitic stainless steel, soldered structure, soldered structure component and exhaust gas heat exchange component
JP6750082B1 (en) Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance
JP5676896B2 (en) Ferritic stainless steel with excellent local corrosion resistance
JP4285302B2 (en) Stainless steel containing fine inclusions and method for producing the same
JP2005089828A (en) Ferritic stainless steel sheet improved in crevice corrosion resistance
JP2022041426A (en) Austenitic stainless steel sheet, and method for producing the same
JP7285050B2 (en) Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
WO2022025078A1 (en) Highly corrosion-resistant austenitic stainless steel and method for producing same
JP6745373B1 (en) Stainless steel excellent in corrosion resistance and method of manufacturing the same
JP3025406B2 (en) Ferritic and martensitic stainless steels with excellent machinability
JPH0371506B2 (en)
JP3971853B2 (en) Steel material with excellent corrosion resistance
JPH0534419B2 (en)
JP2005272938A (en) Stainless steel sheet for structure purpose having excellent bore expanding workability
WO2022049796A1 (en) Austenitic stainless steel sheet and method for producing same
JP6941003B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP3501882B2 (en) Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191203

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200812

R150 Certificate of patent or registration of utility model

Ref document number: 6750082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250