JP3501882B2 - Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member - Google Patents

Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member

Info

Publication number
JP3501882B2
JP3501882B2 JP20667295A JP20667295A JP3501882B2 JP 3501882 B2 JP3501882 B2 JP 3501882B2 JP 20667295 A JP20667295 A JP 20667295A JP 20667295 A JP20667295 A JP 20667295A JP 3501882 B2 JP3501882 B2 JP 3501882B2
Authority
JP
Japan
Prior art keywords
weight
less
stainless steel
steel pipe
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20667295A
Other languages
Japanese (ja)
Other versions
JPH0931602A (en
Inventor
武志 宇都宮
直道 密山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP20667295A priority Critical patent/JP3501882B2/en
Publication of JPH0931602A publication Critical patent/JPH0931602A/en
Application granted granted Critical
Publication of JP3501882B2 publication Critical patent/JP3501882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波造管性,耐粒界
腐食性,耐酸化性,耐硫酸性に優れ、排ガス伝熱部材と
して好適なフェライト系ステンレス鋼管の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferritic stainless steel pipe which is excellent in high-frequency pipe forming properties, intergranular corrosion resistance, oxidation resistance and sulfuric acid resistance and is suitable as an exhaust gas heat transfer member.

【0002】[0002]

【従来の技術】ボイラー空気予熱器等の排ガス用途に使
用される鋼材には、酸化が問題とされる高温用鋼及び硫
酸露点腐食が問題とされる低温用鋼がある。高温用には
シクロマル等の耐熱鋼が使用されており、低温用には低
C,NのSUS410Lや13Cr系ステンレス鋼製シ
ームレスパイプ等が使用されている。シームレスパイプ
は、溶接部を含んでおらず、構造信頼性に優れているも
のの、製造コストが高い。そのため、コスト面からの制
約を受ける場合、普通鋼のボイラー用鋼管が消耗品的に
使用されている。溶接鋼管を排ガス用途に使用すると、
使用条件によっては硫酸露点腐食の環境に曝されるた
め、溶接部の耐粒界腐食性が問題となる。溶接部の耐粒
界腐食性は、C,Nを固定するNbやTiの添加によっ
て改善されることが知られている。特開平5−1535
号公報では、Nb添加によって高温強度を向上させたス
テンレス鋼が開示されている。本発明者等も、C,N及
びCrの含有量に対応した適正量のNbを添加すること
により、耐粒界腐食性及び高周波造管性を改善したステ
ンレス鋼を特開平4−228547号公報で紹介した。
2. Description of the Related Art Steels used for exhaust gas such as boiler air preheaters include high temperature steels for which oxidation is a problem and low temperature steels for which sulfuric acid dew point corrosion is a problem. Heat resistant steel such as cyclomal is used for high temperatures, and low C, N SUS410L and 13Cr stainless steel seamless pipes are used for low temperatures. The seamless pipe does not include a welded portion and has excellent structural reliability, but the manufacturing cost is high. Therefore, when there is a cost constraint, a plain steel boiler steel pipe is used as a consumable item. When using welded steel pipe for exhaust gas applications,
Depending on the conditions of use, it is exposed to the environment of sulfuric acid dew point corrosion, so the intergranular corrosion resistance of the weld becomes a problem. It is known that the intergranular corrosion resistance of the welded portion is improved by adding Nb or Ti that fixes C and N. Japanese Patent Laid-Open No. 5-1535
The publication discloses stainless steel whose Nb addition improves the high temperature strength. The inventors of the present invention have also disclosed a stainless steel having improved intergranular corrosion resistance and high-frequency pipe forming property by adding an appropriate amount of Nb corresponding to the contents of C, N and Cr. Introduced in.

【0003】[0003]

【発明が解決しようとする課題】ボイラーの空気予熱器
等として使用される排ガス伝熱部材にあっては、排ガス
に含まれているSOx が結露した硫酸露点腐食環境に曝
されることから耐硫酸性が要求される。また、低温部に
使用される部材であっても、ボイラー運転中の排ガス温
度や圧力が高いため、耐酸化性に優れていることも必要
である。更に、重油に含まれている微量のVやNaによ
って生じるV25 含有燃焼灰に対する耐高温腐食性も
要求される。本発明は、このような問題を解消すべく案
出されたものであり、パイプに加工するための造管性や
溶接部の耐粒界腐食性に加えて、P及びCuの複合添加
によって耐硫酸性を改善すると共に、パイプ造管後の焼
鈍によって耐酸化性や耐食性を向上させ、排ガス伝熱部
材として好適なフェライト系ステンレス鋼を提供するこ
とを目的とする。
In the exhaust gas heat transfer member used as an air preheater and the like of the boiler [0006] is resistant since the SO x contained in the exhaust gas is exposed to the sulfuric acid dew-point corrosion environment condensation Sulfate is required. Further, even a member used in a low temperature part is required to have excellent oxidation resistance since the exhaust gas temperature and pressure during the boiler operation are high. Furthermore, high-temperature corrosion resistance to V 2 O 5 -containing combustion ash generated by trace amounts of V and Na contained in heavy oil is also required. The present invention has been devised to solve such a problem, and in addition to the pipe-forming property for processing into a pipe and the intergranular corrosion resistance of a welded portion, the addition of P and Cu improves resistance. An object of the present invention is to provide a ferritic stainless steel suitable for an exhaust gas heat transfer member, which has improved sulfuric acid resistance and improved oxidation resistance and corrosion resistance by annealing after pipe fabrication.

【0004】[0004]

【課題を解決するための手段】本発明の排ガス伝熱部材
用フェライト系ステンレス鋼管の製造方法は、その目的
を達成するため、C:0.03重量%以下,Si:1重
量%以下,Mn:1重量%以下,P:0.04〜0.1
5重量%,S:0.03重量%以下,Ni:0.6重量
%以下,Cr:10〜18重量%,Nb:0.2〜1.
0重量%,Cu:0.1〜0.4重量%,N:0.03
重量%以下を含み、残部が実質的にFeからなり、且つ
X=Nb−7×(C+N)−P−0.15で定義される
X値が0.103以上に調整された組成を有する溶接鋼
管に、酸素濃度10体積%以下の燃焼ガス雰囲気中で9
00〜1100℃に加熱する焼鈍を施すことを特徴とす
る。Cu及びPの含有量は、好ましくは0.15〜0.
3重量%及び0.04〜0.08重量%の範囲にそれぞ
れ規定される。本発明の鋼管は、さらにV:0.1重量
%以下に規制されているものが好ましい。さらにまた、
1.5重量%以下のMo及び/又は0.5重量%以下の
Alを含むこともできる。
In order to achieve the object of the method for producing a ferritic stainless steel pipe for an exhaust gas heat transfer member of the present invention, C: 0.03% by weight or less, Si: 1% by weight or less, Mn. 1% by weight or less, P: 0.04 to 0.1
5% by weight, S: 0.03% by weight or less, Ni: 0.6% by weight or less, Cr: 10-18% by weight, Nb: 0.2-1.
0% by weight, Cu: 0.1 to 0.4% by weight, N: 0.03
A weld containing less than or equal to wt%, the balance consisting essentially of Fe, and having a composition in which the X value defined by X = Nb-7 × (C + N) -P-0.15 is adjusted to 0.103 or more. 9 in a combustion gas atmosphere with an oxygen concentration of 10% by volume or less
It is characterized in that it is annealed by heating to 00 to 1100 ° C. The content of Cu and P is preferably 0.15 to 0.
3% by weight and 0.04 to 0.08% by weight, respectively. It is preferable that the steel pipe of the present invention is further regulated to V: 0.1% by weight or less. Furthermore,
It can also contain up to 1.5% by weight Mo and / or up to 0.5% by weight Al.

【0005】[0005]

【作用】本発明者等は、排ガス伝熱部材に要求される種
々の特性を調査検討した結果、耐硫酸性を向上させるた
めにはP及びCuの複合添加が有効であること、耐高温
腐食に対してはV含有量を規制する必要があること、ま
た耐酸化性及び耐食性の改善にはパイプ造管後の焼鈍条
件が効いていることを見い出した。本発明は、このよう
な知見に基づき完成されたものであり、排ガス伝熱部材
としての耐硫酸性,耐高温酸化性及び耐粒界腐食性を同
時に満足する。Cuは、本発明ステンレス鋼において最
も重要な特性である耐硫酸性を向上させる上で重要な役
割を果す合金元素である。一般に、ステンレス鋼では酸
等の腐食性が激しい環境下で活性溶解による全面腐食が
生じる。すなわち、−0.4V(vs. SCE)付近のF
eが溶け出す領域で腐食が進行する。しかし、ステンレ
ス鋼にCuを添加すると、Fe,Cr等の主要合金元素
と共に溶出したCuが電位を貴にし、活性域の高電位側
に存在する不動態領域の方向に変化することにより、腐
食が抑制されるものと推察される。
The present inventors have investigated various characteristics required for the exhaust gas heat transfer member, and as a result, have found that the combined addition of P and Cu is effective for improving the sulfuric acid resistance, and the high temperature corrosion resistance. It was found that it is necessary to regulate the V content, and that the annealing conditions after pipe making are effective in improving the oxidation resistance and the corrosion resistance. The present invention has been completed based on such findings, and simultaneously satisfies sulfuric acid resistance, high temperature oxidation resistance, and intergranular corrosion resistance as an exhaust gas heat transfer member. Cu is an alloying element that plays an important role in improving the sulfuric acid resistance, which is the most important property in the stainless steel of the present invention. Generally, stainless steel undergoes general corrosion due to active dissolution in an environment where corrosiveness such as acid is severe. That is, F near -0.4V (vs. SCE)
Corrosion proceeds in a region where e is melted. However, when Cu is added to stainless steel, Cu eluted along with main alloying elements such as Fe and Cr makes the potential noble and changes toward the passivation region existing on the high potential side of the active region, so that corrosion is caused. It is speculated that it will be suppressed.

【0006】Pは、鋼中から溶出した後、溶液中に存在
するOと結合してリン酸を生成し、リン酸の腐食防止作
用によって耐硫酸性を改善するものと推察される。耐硫
酸性に及ぼすPの効果は、安定化元素としてNbの代わ
りにTiを含む鋼では、酸素との結合力がPよりもTi
の方が大きいため、Pの耐硫酸性改善効果が奏せられな
いことからも推察される。JIS G4304等で規定
されている通常のステンレス鋼においては、加工性,靭
性等の面からP含有量が0.04重量%以下に厳しく制
限されている。しかし、本発明に従ったステンレス鋼の
ように、安定化元素を添加した成分系の材料を6.0m
mより薄い板厚で使用する場合には、Pを0.04重量
%以上含有させても靭性劣化の問題はなく、耐食性や機
械的性質を犠牲にすることなく安価に材料を供給するこ
とが可能である。
It is speculated that P, after being eluted from the steel, combines with O present in the solution to form phosphoric acid, and improves the sulfuric acid resistance by the corrosion inhibiting action of phosphoric acid. The effect of P on the sulfuric acid resistance is that in a steel containing Ti as a stabilizing element instead of Nb, the bonding force with oxygen is higher than that of P by Ti.
It is inferred from the fact that the effect of improving the sulfuric acid resistance of P cannot be exerted because it is larger. In the ordinary stainless steel defined by JIS G4304 or the like, the P content is severely limited to 0.04% by weight or less in terms of workability, toughness and the like. However, a material of a composition system containing a stabilizing element, such as the stainless steel according to the present invention, is added to 6.0 m.
When used with a plate thickness smaller than m, even if P is contained in an amount of 0.04 wt% or more, there is no problem of toughness deterioration, and the material can be supplied inexpensively without sacrificing corrosion resistance or mechanical properties. It is possible.

【0007】V25 腐食は、現象が複雑であり、腐食
原因が明らかになっていない。しかし、他の合金成分を
ほぼ同様な含有量で含む鋼について、Vの有無による腐
食性の相違を検討すると、V含有鋼の方が腐食減量が大
きくなる。これは、鋼中に含まれるVが排ガス中のVと
共同し、耐Vアタック性を低下するものと考えられる。
したがって、V25 腐食を低減する上では、V含有量
を低く、具体的には0.1重量%以下に規制することが
好ましい。排ガス伝熱部材用にステンレス鋼製パイプを
使用する場合、一般には造管ままで、過酷な加工を受け
たものではパイプを焼鈍した後、酸洗によって表面スケ
ールが除去される。しかし、使用環境中においても排ガ
スによる加熱を受けることから、必ずしも酸洗の必要は
ない。このようなことから、本発明は、焼鈍条件を規制
することにより、酸洗を省略している。
The phenomenon of V 2 O 5 corrosion is complicated, and the cause of corrosion has not been clarified. However, when the difference in the corrosiveness depending on the presence or absence of V is examined for steels containing other alloy components in almost the same contents, the V-containing steels have a larger corrosion weight loss. It is considered that this is because V contained in the steel cooperates with V in the exhaust gas to reduce the V attack resistance.
Therefore, in order to reduce V 2 O 5 corrosion, it is preferable to regulate the V content to a low level, specifically 0.1% by weight or less. When a stainless steel pipe is used for an exhaust gas heat transfer member, the pipe is generally left as it is, and if it is subjected to severe processing, the pipe is annealed and then the surface scale is removed by pickling. However, since it is heated by the exhaust gas even in the use environment, pickling is not always necessary. Therefore, in the present invention, pickling is omitted by regulating the annealing conditions.

【0008】焼鈍条件の規制は、酸洗を省略できるコス
トメリットに止まらず、耐酸化性を向上させる積極的な
効果も発揮する。酸素濃度が10体積%以下の雰囲気中
で焼鈍すると、Si,Mn等の易酸化性元素が優先的に
酸化され、表層に拡散して酸化物層となって濃縮する。
そのため、その後に酸化雰囲気に曝されても、更なる酸
化の進行が抑制される。酸素濃度が10体積%以下の雰
囲気には、都市ガスやブタン等の燃焼ガスが使用され
る。このときの焼鈍温度は、耐酸化性に有効な表層酸化
物層を形成するために900〜1100℃の温度範囲に
設定することが必要である。焼鈍温度が900℃に達し
ないと、材料の回復,再結晶が不十分なことから加工性
が低下するばかりでなく、Crの酸化に起因して素地の
Cr欠乏が生じ、耐食性及び耐酸化性を低下させる。逆
に1100℃を超える焼鈍温度では、結晶粒の粗大化が
生じ、材料の靭性が低下するだけでなく、酸化ロスによ
る実質的な板厚減少が生じる。
The regulation of the annealing conditions is not limited to the cost merit that the pickling can be omitted, but also exerts a positive effect of improving the oxidation resistance. When annealed in an atmosphere having an oxygen concentration of 10% by volume or less, easily oxidizable elements such as Si and Mn are preferentially oxidized and diffuse into the surface layer to be concentrated as an oxide layer.
Therefore, even if it is subsequently exposed to an oxidizing atmosphere, further progress of oxidation is suppressed. Combustion gases such as city gas and butane are used in an atmosphere having an oxygen concentration of 10% by volume or less. The annealing temperature at this time needs to be set in a temperature range of 900 to 1100 ° C. in order to form a surface oxide layer effective for oxidation resistance. If the annealing temperature does not reach 900 ° C, not only the workability is deteriorated due to insufficient recovery and recrystallization of the material, but also Cr deficiency of the base material occurs due to the oxidation of Cr, and corrosion resistance and oxidation resistance Lower. On the contrary, if the annealing temperature is higher than 1100 ° C., the crystal grains are coarsened, the toughness of the material is lowered, and the sheet thickness is substantially reduced by the oxidation loss.

【0009】以下、本発明ステンレス鋼に含まれる合金
元素及び含有量について説明する。 Cr:10〜18重量% ステンレス鋼の耐食性を確保する上で必須の合金元素で
あり、10重量%≧の含有量でCrの効果が顕著にな
る。本発明が対象とする用途に要求される特性は、12
Crレベルで十分に発現されるが、更に高いCrレベル
の材料においても同様な効果が期待できる。ただし、C
r含有量が15重量%を超えると、コスト高になるばか
りでなく、Nb添加による高温強度向上作用が低下する
傾向を示す。したがって、Crの含有量は、10〜18
重量%,好ましくは10〜15重量%の範囲に設定す
る。
The alloying elements and contents contained in the stainless steel of the present invention will be described below. Cr: 10-18% by weight It is an alloying element essential for ensuring the corrosion resistance of stainless steel, and the effect of Cr becomes remarkable when the content is 10% by weight ≧. The characteristics required for the intended use of the present invention are 12
Although it is sufficiently expressed at the Cr level, the same effect can be expected in a material having a higher Cr level. However, C
When the r content exceeds 15% by weight, not only the cost increases but also the effect of improving the high temperature strength by adding Nb tends to decrease. Therefore, the Cr content is 10 to 18
The weight ratio is set to preferably 10 to 15% by weight.

【0010】Nb:0.2〜1.0重量% 高温強度の改善に有効な合金元素であり、0.2重量%
以上の含有量でNbの添加効果が現れ、0.3重量%以
上で顕著になる。Nbは、Tiと同様にCやNを固定す
ることから、耐粒界腐食性を改善する作用も呈する。ま
た、0.3重量%以上のNbを添加しても、Tiと異な
り高周波造管性が劣化しない。しかし、0.8重量%を
超えるNbを添加するとスポット溶接部又はTIG溶接
部において高温割れが生じ易くなり、この傾向は1.0
重量%を超えるNb含有量で顕著になる。したがって、
Nbの含有量は、0.2〜1.0重量%,好ましくは
0.3〜0.8重量%の範囲に設定する。 Si:1重量%以下 製鋼時に脱酸剤として添加される元素であり、Si含有
量が高いと耐酸化性が向上する。しかし、1.0重量%
を超える多量のSiが含まれると、固溶強化によって材
質が硬化し、加工性が低下する。
Nb: 0.2 to 1.0% by weight Nb is an alloying element effective in improving high temperature strength, and 0.2% by weight.
With the above content, the effect of adding Nb appears, and becomes remarkable when the content is 0.3% by weight or more. Since Nb fixes C and N similarly to Ti, it also has an effect of improving intergranular corrosion resistance. Also, even if 0.3% by weight or more of Nb is added, the high-frequency pipe forming property does not deteriorate unlike Ti. However, if Nb in excess of 0.8 wt% is added, hot cracking tends to occur in the spot welds or TIG welds, and this tendency is 1.0
It becomes remarkable when the Nb content exceeds wt%. Therefore,
The Nb content is set in the range of 0.2 to 1.0% by weight, preferably 0.3 to 0.8% by weight. Si: 1% by weight or less This is an element added as a deoxidizer during steel making, and a high Si content improves the oxidation resistance. However, 1.0% by weight
If a large amount of Si exceeding 10 is included, the material is hardened by solid solution strengthening and the workability is deteriorated.

【0011】Mn:1重量%以下 Siと同様に製鋼時の脱酸剤として有効な元素である
が、1.0重量%を超える過剰のMnを添加すると、可
溶性化合物MnSを生成し、耐食性が低下する。 Cu:0.1〜0.4重量%,好ましくは0.15〜
0.3重量% 耐硫酸性を向上させ、材料の靭性改善に伴う高周波造管
性を向上させる上で有効な合金元素である。Cu含有量
が0.15重量%以下でも無添加の場合に比較して耐硫
酸性及び高周波造管性の向上がみられるが、本来の効果
を発現させるためには0.15重量%以上のCuを含有
させることが好ましい。しかし、Cuを過剰添加する
と、コスト高となるばかりでなく、材料を硬質にし、加
工性を低下させる。また、熱間加工性も、Cuの過剰添
加に伴って劣化する。したがって、Cuの含有量は、
0.1〜0.4重量%,好ましくは0.15〜0.3重
量%の範囲に設定する。
Mn: 1% by weight or less It is an element effective as a deoxidizing agent during steel making like Si, but when Mn in excess of 1.0% by weight is added, a soluble compound MnS is produced and corrosion resistance is improved. descend. Cu: 0.1-0.4% by weight, preferably 0.15-
0.3% by weight It is an alloying element effective in improving the sulfuric acid resistance and improving the high-frequency pipe forming property associated with the improvement in the toughness of the material. Even when the Cu content is 0.15% by weight or less, the sulfuric acid resistance and the high-frequency pipe forming property are improved as compared with the case of no addition, but in order to bring out the original effect, the content of 0.15% by weight or more It is preferable to contain Cu. However, if Cu is excessively added, not only the cost becomes high, but also the material becomes hard and the workability is deteriorated. The hot workability also deteriorates with the excessive addition of Cu. Therefore, the Cu content is
It is set in the range of 0.1 to 0.4% by weight, preferably 0.15 to 0.3% by weight.

【0012】P:0.04〜0.15重量%,好ましく
は0.04〜0.08重量% 耐硫酸性の改善に有効な合金元素であり、腐食の形態を
孔食等の局部腐食から全面腐食に変化させることにより
穴開き等の機能性が問題となる排ガス伝熱部材としての
用途に好適な元素である。このような作用・効果を発現
させるためには、0.04重量%以上のPを含有させる
ことが必要である。しかし、過剰添加は、結晶粒界にお
けるPの偏析を促進させ、鋼の耐粒界腐食性を低下させ
る。そのため、P含有量の上限を0.15重量%,好ま
しくは0.08重量%に規制する。 X=Nb−7×(C+N)−P−0.15≧0 X値は、本発明者等の実験結果として求められ、材料の
溶接部における粒界腐食感受性を評価する指標である。
C,Nの安定に必要なNb量を算出する類似の式は従来
から知られているが、本発明のように多量のPを含む鋼
においては、Pの影響も無視できない。すなわち、粒界
腐食の発生原因には、従来から指摘されているCr系炭
化物の粒界析出及びPの粒界偏析があるが、本発明で
は、適量のNbを添加することによって粒界に優先析出
させ、P偏析に起因する粒界腐食の発生を防止するもの
である。このような観点から、粒界腐食に及ぼすPの影
響を取り込んだX値によってNb量を算出し、耐粒界腐
食性を改善する。
P: 0.04 to 0.15% by weight, preferably 0.04 to 0.08% by weight It is an alloying element effective for improving the sulfuric acid resistance, and the form of corrosion is changed from local corrosion such as pitting corrosion. It is an element suitable for use as an exhaust gas heat transfer member in which functionality such as perforation becomes a problem by changing to general corrosion. In order to exhibit such actions and effects, it is necessary to contain 0.04% by weight or more of P. However, excessive addition promotes the segregation of P at the crystal grain boundaries and reduces the intergranular corrosion resistance of steel. Therefore, the upper limit of the P content is regulated to 0.15% by weight, preferably 0.08% by weight. X = Nb−7 × (C + N) −P−0.15 ≧ 0 The X value is obtained as an experimental result by the present inventors and is an index for evaluating the intergranular corrosion susceptibility at the welded portion of the material.
A similar formula for calculating the amount of Nb necessary for stabilizing C and N has been conventionally known, but in the steel containing a large amount of P as in the present invention, the influence of P cannot be ignored. That is, the cause of the grain boundary corrosion includes grain boundary precipitation of Cr-based carbide and grain boundary segregation of P, which have been conventionally pointed out. However, in the present invention, the addition of an appropriate amount of Nb gives priority to the grain boundary. It is to prevent precipitation of intergranular corrosion due to P segregation. From such a viewpoint, the amount of Nb is calculated by the X value that incorporates the effect of P on the intergranular corrosion, and the intergranular corrosion resistance is improved.

【0013】本発明のステンレス鋼においては、以上に
掲げた合金元素の外に、Ti,V,C,S,Ni,M
o,Al,N,O等を次のように規制することが好まし
い。 Ti:0.2重量%以下 一般には、Nbと同様に、Cの固定元素として耐食性や
加工性に有効であるといわれている。しかし、本発明に
従ったステンレス鋼では、Pの添加効果を消失させるこ
とから、Ti添加は好ましくない。ただし、微量のTi
は、Nを固定する上で有効であることから許容される。
この点、Ti含有量は、多くとも0.2重量%以下,好
ましくは0.1重量%以下に規制される。 V:0.1重量%未満 一般には、NbやTiと同様に、Cの固定元素として耐
食性や加工性に対して有効な合金元素として扱われてい
る。しかし、本発明が対象とする重油等の排ガス環境に
曝されるステンレス鋼では、Vアタックを促進する作用
があることからV添加は好ましくない。しかし、Cr原
料等の不純物として混入する場合もあり、V含有を厳し
く制限するとき使用可能な原料に加わる制約が大きくな
る。この点、本発明においては、V含有の許容量を、
0.1重量%,好ましくは0.05重量%に規制する。
In the stainless steel of the present invention, in addition to the alloying elements listed above, Ti, V, C, S, Ni, M
It is preferable to regulate o, Al, N, O, etc. as follows. Ti: 0.2 wt% or less Generally, it is said that it is effective as a fixing element of C for corrosion resistance and workability, like Nb. However, in the stainless steel according to the present invention, addition of Ti is not preferable because it eliminates the effect of adding P. However, a small amount of Ti
Is allowed because it is effective in fixing N.
In this respect, the Ti content is restricted to 0.2% by weight or less, preferably 0.1% by weight or less. V: less than 0.1% by weight Generally, like Nb and Ti, it is treated as a fixed element of C as an alloy element effective for corrosion resistance and workability. However, V addition is not preferable for stainless steel exposed to an exhaust gas environment such as heavy oil, which is the object of the present invention, because it has an action of promoting V attack. However, it may be mixed as an impurity such as Cr raw material, and when the V content is severely limited, the restriction on the usable raw material becomes large. In this respect, in the present invention, the allowable amount of V is
The amount is regulated to 0.1% by weight, preferably 0.05% by weight.

【0014】C:0.03重量%以下 鋼中に不可避的に含まれる合金元素であり、含有量の低
減に伴って材料が軟質化し加工性が向上すると共に、炭
化物の生成が少なくなり溶接性,耐粒界腐食性が向上す
る。また、Nb,Ti添加鋼においては、C含有量の低
減によりNb,Tiの消費が抑えられ、高温強度の向上
及びコストの低減が図られる。このようなことから、C
含有量を0.03重量%以下にすることが好ましい。 N:0.03重量%以下 Cと同様に不可避的不純物として鋼中に含まれる元素で
あり、N含有量が高いと、材料が硬質になり加工性が低
下すると共に、窒化物としてNb等の固定元素を多量に
消費する。この点から、N含有量の上限を0.03重量
%に設定することが好ましい。
C: 0.03% by weight or less It is an alloying element inevitably contained in steel. As the content decreases, the material softens and the workability is improved, and the formation of carbides is reduced, and the weldability is improved. , Intergranular corrosion resistance is improved. Further, in the Nb and Ti-added steel, the consumption of Nb and Ti is suppressed by reducing the C content, and the high temperature strength is improved and the cost is reduced. Because of this, C
The content is preferably 0.03% by weight or less. N: 0.03 wt% or less It is an element contained in steel as an unavoidable impurity like C, and when the N content is high, the material becomes hard and the workability is deteriorated, and Nb such as Nb is used as a nitride. Consume a large amount of fixed elements. From this point, it is preferable to set the upper limit of the N content to 0.03% by weight.

【0015】耐粒界腐食性は、Cr系炭化物の粒界析出
に起因する。したがって、粒界腐食を防止するために
は、V含有量の低減が最も重要であるが、本発明鋼のよ
うに固定元素を添加する場合には、Cと同様にNも結合
して固定元素が消費される。そのため、C+Nの総和で
C及びNをコントロールすることが必要である。また、
高温強度の向上には、固溶Nb量の増加、換言すれば
C,N量の低下が有効である。現在の精錬技術では、C
+Nを0.005重量%未満にすることは不可能に近
い。しかし、C+Nが0.04重量%を超えると、粒界
腐食感受性が増加し、高温強度が低下する。したがっ
て、0.005〜0.04重量%の範囲にC+N量を設
定することが好ましい。 S:0.03重量%以下 不可避的不純物として鋼中に含まれる元素であるが、S
含有量が高いと熱間加工性や耐食性が劣化する。そのた
め、S含有量の上限を0.03重量%に規定する。 Ni:0.6重量%以下 フェライト系ステンレス鋼の靭性改善に有効な合金元素
であるが、過剰のNi含有は鋼材コストを上昇させる原
因となる。本発明においては、通常のフェライト系ステ
ンレス鋼で規定されている0.6重量%以下にNi含有
量を規定した。
The intergranular corrosion resistance results from the intergranular precipitation of Cr-based carbide. Therefore, in order to prevent intergranular corrosion, it is most important to reduce the V content. However, when a fixed element is added as in the steel of the present invention, N is also bonded to C in the same manner as C to fix the fixed element. Is consumed. Therefore, it is necessary to control C and N with the sum of C + N. Also,
To improve the high temperature strength, it is effective to increase the amount of solute Nb, in other words, decrease the amounts of C and N. With the current refining technology, C
It is almost impossible to make + N less than 0.005% by weight. However, when C + N exceeds 0.04% by weight, the intergranular corrosion susceptibility increases and the high temperature strength decreases. Therefore, it is preferable to set the amount of C + N in the range of 0.005 to 0.04% by weight. S: 0.03% by weight or less An element contained in steel as an unavoidable impurity.
If the content is high, hot workability and corrosion resistance deteriorate. Therefore, the upper limit of the S content is specified to be 0.03% by weight. Ni: 0.6 wt% or less It is an alloying element effective in improving the toughness of ferritic stainless steel, but excessive Ni content causes a rise in steel material cost. In the present invention, the Ni content is specified to 0.6% by weight or less, which is specified for ordinary ferritic stainless steel.

【0016】Mo:1.5重量%以下 必要に応じて添加される合金元素であり、Crと同様に
耐食性及び高温強度を改善する作用を呈する。しかし、
過剰添加は鋼材コストを上昇させることから、Moを添
加する場合には含有量を1.5重量%以下に設定する。 Al:0.5重量%以下 Siと同様に製鋼段階で脱酸剤として添加される元素で
あるが、酸素との反応性が極めて高いため、鋼中に残存
したAlは、高周波造管時にTiと同様な酸化物を形成
し、ピンホールを発生させる原因となる。そのため、A
l含有量は、上限を0.5重量%に設定することが好ま
しい。 O:0.01重量%以下 C,Nと同様に不可避的不純物として鋼中に混入する元
素であり、O含有量が高いと加工性が著しく阻害され
る。また、高周波造管時にTi,Al等と結合して酸化
物を形成し、ピンホールを発生させる原因となる。その
ため、O含有量は、0.01重量%以下に規制する。
Mo: 1.5% by weight or less This is an alloying element added as necessary, and has the same effect as Cr, which improves the corrosion resistance and the high temperature strength. But,
Since excessive addition increases the cost of steel materials, the content is set to 1.5 wt% or less when Mo is added. Al: 0.5 wt% or less Like Si, it is an element added as a deoxidizing agent in the steelmaking stage, but since it has extremely high reactivity with oxygen, Al remaining in the steel is Ti during high-frequency pipe forming. It forms an oxide similar to that and causes pinholes. Therefore, A
The upper limit of the 1 content is preferably set to 0.5% by weight. O: 0.01 wt% or less Like C and N, it is an element mixed in steel as an unavoidable impurity, and if the O content is high, the workability is significantly impaired. In addition, when forming a high-frequency pipe, it combines with Ti, Al, etc. to form an oxide, which causes pinholes. Therefore, the O content is regulated to 0.01% by weight or less.

【0017】[0017]

【実施例】表1に示した組成のフェライト系ステンレス
鋼を実験室で溶製し、熱間圧延によって板厚4.5mm
の熱延板を製造した。熱延板を板厚2mmまで冷間圧延
し、900〜1050℃で仕上げ焼鈍を施し、供試材を
作製した。なお、表1において、Aグループは本発明に
従ったステンレス鋼であり、何れも安定化元素としてN
bがX[=Nb−7×(C+N)−P−0.15]≧0
の条件下で添加されている。Bグループは比較鋼であ
る。B1は、Nb,Cu,Pの含有量が本発明で規定し
た範囲を満足するものの、X値が本発明で規定した範囲
を外れる。B2はCuを含んでいない。B3は、Cuを
含んでいない他に、P含有量が低い。B4及びB5は、
本発明で規定した以上のTi,Vを含む。B6,B7
は、Nb,Cu,Pの含有量が本発明で規定した範囲を
満足していない。B8は、P含有量が本発明で規定した
範囲を超えている。なお、A1,B6,B7のステンレ
ス鋼としては、実ラインを使用して同じ条件下で製造し
たものを用意した。
Example A ferritic stainless steel having the composition shown in Table 1 was melted in a laboratory and hot-rolled to a plate thickness of 4.5 mm.
The hot rolled sheet was manufactured. The hot-rolled sheet was cold-rolled to a sheet thickness of 2 mm and finish-annealed at 900 to 1050 ° C to prepare a test material. In Table 1, Group A is stainless steel according to the present invention, and N is a stabilizing element.
b is X [= Nb−7 × (C + N) −P−0.15] ≧ 0
Is added under the conditions of. Group B is a comparative steel. In B1, the contents of Nb, Cu and P satisfy the range specified in the present invention, but the X value is out of the range specified in the present invention. B2 does not contain Cu. B3 does not contain Cu and has a low P content. B4 and B5 are
Includes Ti and V above the levels specified in the present invention. B6, B7
Does not satisfy the ranges specified in the present invention for the contents of Nb, Cu and P. B8 has a P content exceeding the range specified in the present invention. As the A1, B6, and B7 stainless steels, those manufactured under the same conditions using a real line were prepared.

【0018】[0018]

【表1】 [Table 1]

【0019】各供試材の耐食性を、次のように調査し
た。 耐硫酸性試験:70℃に保持した50%硫酸水溶液中に
試験片を2時間浸漬し、浸漬前後の重量変化を測定し
た。 電気化学試験:6000ppmのCl- 及び60000
ppmのSO4 2- を含む溶液を塩酸でpH3に調整した
温度80℃の水溶液を使用し、活性溶解の目安としてア
ノード分極曲線の極大電流密度を測定した。 硫酸−硫酸銅試験:溶接芯線を使用することなくTIG
溶接した試験片を500℃×10時間で熱処理した後、
JIS G0575に準じて調整した硫酸−硫酸銅溶液
中に60℃で16時間浸漬する試験を行い、曲げ及び断
面組織観察により粒界腐食発生の有無を調査した。 V25 腐食試験:試験片表面にV25 灰を塗布し、
900℃に3時間加熱し、加熱前後の腐食減量を測定し
た。 調査結果を示す表2にみられるように、比較鋼において
もCuを含有するものでは耐硫酸性が満足されるが、電
気化学試験においては特性が不十分であった。他方、P
を含有する比較鋼は、逆の傾向を示した。これに対し、
Cu及びPを複合添加した本発明ステンレス鋼では、両
試験とも他の比較鋼に比べて良好な耐食性が示された。
25 腐食についてみると、Vを含む比較鋼B5は、
A1及び既存のB6,B7と比較しても腐食減量が大き
くなっている。これは、鋼中に含まれているVが悪影響
を及ぼしたことを示すものである。また、粒界腐食発生
の有無を調査した硫酸−硫酸銅試験についてみると、X
値が0を上回る本発明鋼では粒界腐食の発生が検出され
なかったが、0を下回る比較鋼B1及びB6〜8では粒
界腐食が発生していた。
The corrosion resistance of each test material was investigated as follows. Sulfuric acid resistance test: A test piece was immersed in a 50% sulfuric acid aqueous solution kept at 70 ° C for 2 hours, and the weight change before and after the immersion was measured. Electrochemical test: 6000 ppm Cl - and 60,000
A solution containing ppm SO 4 2− was adjusted to pH 3 with hydrochloric acid at a temperature of 80 ° C., and the maximum current density of the anodic polarization curve was measured as a measure of active dissolution. Sulfuric acid-copper sulfate test: TIG without using a welding core wire
After heat treating the welded test piece at 500 ° C. for 10 hours,
A test of immersing in a sulfuric acid-copper sulfate solution adjusted according to JIS G0575 at 60 ° C. for 16 hours was performed, and the occurrence of intergranular corrosion was investigated by bending and observing the cross-sectional structure. V 2 O 5 corrosion test: V 2 O 5 ash is applied to the surface of the test piece,
It heated at 900 degreeC for 3 hours, and measured the corrosion weight loss before and after heating. As shown in Table 2 showing the investigation results, the comparative steels containing Cu also satisfy the sulfuric acid resistance, but the characteristics were insufficient in the electrochemical test. On the other hand, P
The comparative steels containing a showed the opposite trend. In contrast,
The stainless steel of the present invention to which Cu and P were added in combination showed better corrosion resistance than the other comparative steels in both tests.
Regarding V 2 O 5 corrosion, comparative steel B5 containing V
Corrosion weight loss is large compared to A1 and existing B6 and B7. This indicates that V contained in the steel had an adverse effect. In addition, looking at the sulfuric acid-copper sulfate test that investigated the occurrence of intergranular corrosion,
The occurrence of intergranular corrosion was not detected in the steels of the present invention in which the value exceeded 0, but the intergranular corrosion occurred in Comparative Steels B1 and B6 to 8 below 0.

【0020】[0020]

【表2】 [Table 2]

【0021】高周波造管機を使用して本発明鋼A1から
製造した鋼管の素材部,溶接部、及び造管後に種々の焼
鈍温度で焼鈍した鋼管について、耐硫酸試験及び酸化試
験を行った。酸化試験は、酸化性雰囲気中で900℃で
100時間連続加熱し、異常酸化発生の有無を調査し
た。試験結果を示す表3にみられるように、X値を調整
した本発明鋼A1では、溶接部においても母材部と同様
の耐食性を示していた。焼鈍後の鋼管は、造管ままの鋼
管に比較すると耐硫酸性に若干劣っているが、耐酸化性
において著しい改善効果が認められた。耐硫酸性につい
ても、900℃を超える温度で焼鈍した鋼管は、造管ま
まの鋼管に比較して腐食減量の増加度合いも少なくなっ
ていた。
A sulfuric acid resistance test and an oxidation test were carried out on the raw material portion, the welded portion of the steel pipe manufactured from the steel A1 of the present invention, and the steel pipe annealed at various annealing temperatures after the pipe manufacturing using a high-frequency pipe forming machine. In the oxidation test, continuous heating at 900 ° C. for 100 hours in an oxidizing atmosphere was conducted to examine whether abnormal oxidation occurred. As can be seen from Table 3 showing the test results, the steel A1 of the present invention having the adjusted X value exhibited the same corrosion resistance as the base metal part in the welded part. The annealed steel pipe was slightly inferior in sulfuric acid resistance to the as-made steel pipe, but a remarkable improvement effect was observed in the oxidation resistance. Regarding the sulfuric acid resistance, the steel pipe annealed at a temperature exceeding 900 ° C. also showed a smaller degree of increase in corrosion weight loss than the as-made steel pipe.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】以上に説明したように、本発明のステン
レス鋼においては、Nb,C,N,Pの含有量を相関的
に規制することにより、耐粒界腐食性,高周波造管性及
び高温強度特性に加え、耐硫酸性及び高温酸化特性も改
善している。このフェライト系ステンレス鋼は、優れた
高周波造管特性のため造管工程での歩留りも高く、焼鈍
後に酸洗を施す必要がないことから比較的安価に製造で
きる。更に、耐粒界腐食性に優れた溶接部が得られるこ
と及び優れた耐硫酸性を活用し、溶接施工のままで、或
いは構造用鋼板として過酷な腐食環境に曝される排ガス
伝熱部材,各種煙道,煙突等の構造材料として使用され
る。
As described above, in the stainless steel of the present invention, the intergranular corrosion resistance, high frequency pipe forming property and In addition to high temperature strength properties, sulfuric acid resistance and high temperature oxidation properties are also improved. This ferritic stainless steel has a high yield in the pipe forming process due to its excellent high-frequency pipe forming characteristics, and since it is not necessary to perform pickling after annealing, it can be manufactured relatively inexpensively. Further, by utilizing the fact that a welded portion having excellent intergranular corrosion resistance is obtained and excellent sulfuric acid resistance, an exhaust gas heat transfer member which is exposed to a severe corrosive environment as it is during welding or as a structural steel sheet, Used as a structural material for various flues and chimneys.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/08 C21D 6/00 102 C22C 38/00 - 38/60 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 9/08 C21D 6/00 102 C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.03重量%以下,Si:1重量
%以下,Mn:1重量%以下,P:0.04〜0.15
重量%,S:0.03重量%以下,Ni:0.6重量%
以下,Cr:10〜18重量%,Nb:0.2〜1.0
重量%,Cu:0.1〜0.4重量%,N:0.03重
量%以下を含み、残部が実質的にFeからなり、且つX
=Nb−7×(C+N)−P−0.15で定義されるX
値が0.103以上に調整された組成を有する溶接鋼管
に、酸素濃度10体積%以下の燃焼ガス雰囲気中で90
0〜1100℃に加熱する焼鈍を施すことを特徴とする
排ガス伝熱部材用フェライト系ステンレス鋼管の製造方
法。
1. C: 0.03% by weight or less, Si: 1% by weight
% Or less, Mn: 1% by weight or less, P: 0.04 to 0.15
% By weight, S: 0.03% by weight or less, Ni: 0.6% by weight
Below, Cr: 10 to 18% by weight, Nb: 0.2 to 1.0
% By weight, Cu: 0.1 to 0.4% by weight, N: 0.03 weight
% Or less, the balance consisting essentially of Fe, and X
= X defined by Nb-7 * (C + N) -P-0.15
Welded steel pipe having a composition whose value is adjusted to 0.103 or more
90 in a combustion gas atmosphere with an oxygen concentration of 10% by volume or less.
Characterized by performing annealing by heating at 0 to 1100 ° C
Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member
Law.
【請求項2】 鋼管組成が、さらにV:0.1重量%未
満に規制されているものである請求項 1 記載の排ガス伝
熱部材用フェライト系ステンレス鋼管の製造方法。
2. The steel pipe composition further comprises V: 0.1% by weight.
Exhaust Den of claim 1, wherein those which are regulated fully
A method for manufacturing a ferritic stainless steel pipe for a heat member.
【請求項3】 鋼管組成が、さらに1.5重量%以下の
Mo及び/又は0.5重量%以下のAlを含むものであ
る請求項 1 又は2記載の排ガス伝熱部材用フェライト系
ステンレス鋼管の製造方法。
3. The steel pipe composition further comprises 1.5% by weight or less.
Contains Mo and / or 0.5 wt% or less of Al
3. The ferrite system for exhaust gas heat transfer member according to claim 1 or 2.
Manufacturing method of stainless steel pipe.
JP20667295A 1995-07-20 1995-07-20 Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member Expired - Fee Related JP3501882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20667295A JP3501882B2 (en) 1995-07-20 1995-07-20 Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20667295A JP3501882B2 (en) 1995-07-20 1995-07-20 Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member

Publications (2)

Publication Number Publication Date
JPH0931602A JPH0931602A (en) 1997-02-04
JP3501882B2 true JP3501882B2 (en) 2004-03-02

Family

ID=16527216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20667295A Expired - Fee Related JP3501882B2 (en) 1995-07-20 1995-07-20 Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member

Country Status (1)

Country Link
JP (1) JP3501882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123663B1 (en) 2018-09-27 2020-06-17 주식회사 포스코 Ferritic stainless steel and ferritic stainless steel pipe with improved mechanical properties of weld

Also Published As

Publication number Publication date
JPH0931602A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
CN109536827B (en) Steel sheet having improved resistance to acid dew point corrosion, method for producing same, and exhaust gas flow path component
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
JP4258679B1 (en) Austenitic stainless steel
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP4823930B2 (en) Acid corrosion resistant steel
EP2163658A1 (en) Ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid, and method for production thereof
EP2412837A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
WO1996018751A1 (en) Duplex stainless steel excellent in corrosion resistance
JP5119605B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
JP6018364B2 (en) Duplex stainless steel for chemical tankers with excellent linear heatability
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
JP2005264217A (en) Thick hot rolled steel plate having excellent hic resistance and its production method
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JP6750082B1 (en) Fe-Ni-Cr-Mo-Cu alloy with excellent corrosion resistance
JP3529946B2 (en) Ferritic stainless steel for heat transfer member of exhaust gas and manufacturing method
WO1993017143A1 (en) High-chromium and high-phosphorus ferritic stainless steel excellent in weatherproofness and rustproofness
JP3620319B2 (en) Martensitic stainless steel with excellent corrosion resistance and weldability
JP4237072B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and workability
JP3501882B2 (en) Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member
JP2003166039A (en) Heat resistant austenitic steel excellent in characteristics for sensitization, high-temperature strength and corrosion resistance, and manufacturing method therefor
JP3588380B2 (en) Method for producing martensitic stainless steel sheet for line pipe
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JP3201081B2 (en) Stainless steel for oil well and production method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees