JP3588380B2 - Method for producing martensitic stainless steel sheet for line pipe - Google Patents
Method for producing martensitic stainless steel sheet for line pipe Download PDFInfo
- Publication number
- JP3588380B2 JP3588380B2 JP01308695A JP1308695A JP3588380B2 JP 3588380 B2 JP3588380 B2 JP 3588380B2 JP 01308695 A JP01308695 A JP 01308695A JP 1308695 A JP1308695 A JP 1308695A JP 3588380 B2 JP3588380 B2 JP 3588380B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- stainless steel
- rolling
- martensitic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、石油・天然ガスの輸送において用いられるラインパイプ用マルテンサイト系ステンレス鋼板の熱処理工程を簡略化すると共に、靭性の向上を図り、かつ溶接熱影響部の靭性に優れ、溶接熱影響部の硬度を低減した鋼板の製造方法に関するものである。
【0002】
【従来の技術】
ラインパイプとして使用される材料は、耐食性の他に内部を流れる輸送流体の圧力に耐える高い強度を持ち、溶接性に優れることが要求される。溶接性の代表的な特性としては、溶接部の靭性が優れていることが必要である。また、硫化水素を含有する流体を輸送する場合には、溶接部の硬さが低いことも要求される。勿論、母材の靭性も優れていることが必要である。
【0003】
従来のラインパイプ用マルテンサイト系ステンレス鋼板の製造方法としては、例えば特開平4−99154号公報のように鋼を焼き入れ・焼き戻し処理し、強度及び靭性の優れた鋼を作る方法が知られている。しかし、このような方法で鋼が製造されると、熱処理炉の使用、製造工程の複雑化、そしてこれらに伴って製造コストのアップにつながる。
【0004】
【発明が解決しようとする課題】
本発明は、このような現状を踏まえて鋼組成、圧延温度及び累積圧下量を制御することによって、従来の鋼で必須の焼き入れ処理工程を省略しても従来通り母材及び溶接部の靭性を維持できる、ラインパイプ用マルテンサイト系ステンレス鋼板の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために、多くの実験的検討を行った結果、鋼組成、熱間圧延温度及び累積圧下量を制御することによって、ラインパイプ用マルテンサイト系ステンレス鋼板が製造できることを見いだすに至った。すなわち本発明は、この知見に基づいて構成したものであり、その要旨は重量%にて、
C :0.005〜0.04%、 Si:0.01〜0.5%、
Mn:0.1〜1.0%、 S :0.010%以下、
P :0.025%以下、 Cr:10.0〜13.5%、
Ti:0.005〜0.03%、 N :0.015%以下、
Al:0.05%以下
を含有し、必要によっては、
Cu:0.5〜3.5%、 Ni:0.5〜4.0%、
Mo:0.8〜2.5%の1種または2種以上を含有し、
さらに必要によっては、
Ca:0.001〜0.005%、 REM:0.01〜0.05%
の1種または2種を含有し、残部Feおよび不可避的不純物からなり、C+N−3.4Ti≦0.03および40C+34N+Ni+0.3Cu−1.1Cr−1.8Mo≧−11を満足する鋼片を1000〜1250℃に再加熱後、1000℃以下の累積圧下量が40%以上、圧延終了温度がAr3 点以上となるように圧延し、その後鋼板を焼き戻し処理することを特徴とするラインパイプ用マルテンサイト系ステンレス鋼板の製造方法である。
【0006】
【作用】
以下に本発明について詳細に説明する。
先ず本発明において上記のような鋼成分に限定した理由について説明する。
C:CはCr炭化物などを形成し耐食性を劣化させる元素であるが、強力なオーステナイト形成元素であり、フェライト相の形成を抑制する効果があるために添加する。ただし、0.04%を超える量を添加するとCr炭化物などの炭化物が多量に析出して靭性を劣化させ、さらに溶接熱影響部の硬度を高めることにより溶接熱影響部の靭性が劣化する。従って、C含有量は0.04%以下とした。また、0.005%未満では必要な強度を得ることができないので、0.005〜0.04%の範囲とした。
【0007】
Si:Siは脱酸および強度上昇のため0.01%以上添加するが、添加量が多いと靭性および耐硫化物応力割れ性を低下させるため、上限を0.5%とした。
Mn:Mnは、脱酸および強度確保のために有効な元素であり、MnSを形成してSの無害化にも寄与する。しかし1.0%を超すと、粒界強度が低下して腐食環境下で割れ抵抗性を損なうので、上限を1.0%とした。またSの固定のためには少なくとも0.1%を必要とするので0.1〜1.0%の範囲とした。
【0008】
S:Sは硫化物系の介在物を形成し、熱間加工性を低下させ、また靭性を低下させる元素である。そのためにコストも考慮し含有量は0.010%以下としたが、望ましくは0.003%以下である。
P:Pは、粒界に偏析して粒界強度を弱め、靭性および耐硫化物応力割れ性を低下させるために0.025%以下とした。
【0009】
Cr:Crは、マルテンサイト系ステンレス鋼を構成する最も基本的かつ必須の元素であって、耐食性を付与するために必要な元素である。しかし含有量が10%未満では耐食性が充分ではなく、一方13.5%を超えて添加すると他の合金元素をいかに調整しても圧延終了時にはマルテンサイト単相にし難くなり、またコストを上昇させるのみで、特性の向上効果は経済性を考慮すると期待できない。そのためにCrの上限含有量は13.5%とした。
【0010】
Ti:Tiは、TiNやTi酸化物として分散して溶接熱影響部の粒成長を抑制し、靭性の劣化を抑制する。少なすぎると効果がなく、過剰に添加するとTiCが析出して靭性の劣化を招く。従って、Tiは0.005〜0.03%とした。
【0011】
N:Nは、鋼に不可避的に含有される元素であるが、溶接熱影響部の硬度を上昇させるとともに、母材および溶接熱影響部の靭性を低下させるので、上限含有量は0.015%とした。
Al:Alは脱酸のために添加する。しかし、0.05%を超えるとかえって酸化物を形成し、鋼の清浄度を減少させ、応力腐食割れに悪影響があるために、Alは0.05%以下とした。
【0012】
Cu:Cuは、CおよびNの含有量を低減させた鋼の母材は言うまでもなく、溶接熱影響部のミクロ組織をもマルテンサイト組織とし、靭性を改善するとともに、湿潤炭酸ガス環境における耐食性を改善するのに極めて有用な元素である。0.5%以下の添加では耐食性に対して効果がなく、一方3.5%よりも多く添加すると熱間加工性が低下するので、0.5〜3.5%の範囲とした。
【0013】
Ni:Niは、0.5%以上のCuと共存して溶接熱影響部の靭性をさらに改善する効果があり、同時に耐食性向上効果もある。しかし4%を超えて添加してもその効果は飽和するばかりか、コストを上昇させるのみで、また溶接熱影響部の硬度を上昇させるのみであるため、0.5〜4%の範囲とした。
また耐食性を考えると、CuおよびNiを複合添加することによって、CuまたはNiを単独で用いるよりも効果的である。
【0014】
Mo:MoはCrと同様、耐CO2 腐食性を向上させ、さらにSSC性を改善する効果を有するので必要に応じて添加することができる。0.8%未満では、効果が十分ではないので、その添加量を0.8%以上とした。一方、多量に添加してもその効果が飽和し、そればかりか母材および溶接熱影響部の靭性が低下し、また熱間変形抵抗が増して熱間加工性が低下するので、上限含有量は2.5%とした。
【0015】
Ca,REM:硫化物などの介在物の形状を球状化させて無害化する有効な元素であり、熱間加工性の向上、耐食性の向上に十分効果のある元素である。少なすぎるとその効果が無く、多すぎると介在物が増加して耐硫化物応力割れ抵抗性を低下させ、また熱間加工性および耐食性を劣化させるので、Caは0.001〜0.005%、REMは0.01〜0.05%とした。
【0016】
以上述べた成分範囲の鋼は、良好な耐CO2 特性を示すが、Cr,Mo等のフェライト生成元素の多い成分では、溶接熱影響部にフェライト相が生成して靭性が劣化する。従って、フェライト生成元素の含有量を制限する必要がある。従来の知見から、C,N,Ni,Cuはフェライト相の生成を抑制し、Cr,Moは促進する。各元素濃度を変化させた鋼を溶製し、実験的に各々の寄与率を決定した。その結果、40C+34N+Ni+0.3Cu−1.1Cr−1.8Mo≧−11を満足すれば、本発明で規定した条件で熱延後、冷却を特別制御しない場合でもフェライト相は生成せず、マルテンサイト単相となることがわかった。焼き入れ処理を省略するにはC,N,Ni,Cu,Cr,Moはこの関係を満足する必要がある。
【0017】
次にTi,N,Cの含有量の関係について述べる。TiNとして固定されたNは溶接熱影響部の硬度上昇に寄与せず、従って靭性劣化に寄与しないのでTiNとなっていないNすなわち(N−3.4Ti)とCとの和が0.03以下であることが、溶接熱影響部の硬度と靭性を良好とするために必要である。
【0018】
次に熱間圧延条件について説明する。
まず、上記の条件を満足する鋼を溶製する。その後鋼片を1000〜1250℃に再加熱する。これは1000℃以上にすることによって鋼中の炭化物を固溶させ、1250℃以下にすることによって、オーステナイト粒径の粗大化を防止する。またこの再加熱によって鋼中の組織をオーステナイト単相にする。次に鋼が未再結晶域で圧延されるためには1000℃以下で、また鋼の靭性が劣化しないためには、累積圧下量が40%以上、圧延終了温度がAr3 点以上となるように圧延する。前者は、未再結晶のオーステナイト粒を生成し、組織の細分化を目的とするための操作であり、後者は圧延終了時にオーステナイト単相にするための操作である。鋼板の組織をマルテンサイト単相にすることによって、高強度な鋼材を提供できる。その後焼き戻し処理することによって、必要な強度に調整する。
【0019】
以上のような本発明法により、従来鋼よりも靭性の優れたラインパイプ用マルテンサイト系ステンレス鋼板の製造方法を提供する。
【0020】
【実施例】
本発明を実施例に基づいてさらに説明する。
まず表1に示す化学成分の鋼を溶製し、表2、表3に示す再加熱条件、1000℃以下の累積圧下量で圧延し、焼き戻し処理し、試験材を作成した。
耐CO2 腐食性は、40気圧のCO2 ガスに平衡した120℃の人口海水に試験片を浸漬し、腐食減量から腐食速度を測定した。母材及びHAZの靭性は、JIS4号シャルピー試験片を用いて遷移温度(vTrs)を測定した。この時の溶接条件は、入熱1.2kJ/mm、冷速40℃/Sをシミュレートしたものである。
表2と表3に試験結果を示す。
【0021】
【表1】
【0022】
【表2】
【0023】
【表3】
【0024】
【発明の効果】
以上述べたように、本発明は熱間圧延条件を制御することによって熱処理工程を簡略化し、従来通り優れた靭性と優れた耐食性を有するラインパイプ用マルテンサイト系ステンレス鋼板の製造方法を提供することを可能としたものであり、産業の発展に貢献するところ極めて大である。[0001]
[Industrial applications]
The present invention simplifies the heat treatment process of a martensitic stainless steel sheet for line pipe used in the transportation of oil and natural gas, improves the toughness, and excels in the toughness of the weld heat affected zone, And a method for producing a steel sheet with reduced hardness.
[0002]
[Prior art]
The material used as the line pipe is required to have high strength to withstand the pressure of the transport fluid flowing inside and excellent weldability in addition to corrosion resistance. As typical characteristics of weldability, it is necessary that the toughness of the welded portion is excellent. Further, when transporting a fluid containing hydrogen sulfide, it is also required that the hardness of the welded portion be low. Of course, the base material must also have excellent toughness.
[0003]
As a conventional method for producing a martensitic stainless steel sheet for a line pipe, there is known a method for producing steel having excellent strength and toughness by quenching and tempering steel as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-99154. ing. However, when steel is manufactured by such a method, the use of a heat treatment furnace, the complexity of the manufacturing process, and the resulting increase in manufacturing cost are caused.
[0004]
[Problems to be solved by the invention]
The present invention controls the steel composition, the rolling temperature and the cumulative rolling reduction in view of such a current situation, so that the toughness of the base material and the welded portion is maintained as before even if the quenching treatment step essential for the conventional steel is omitted. It is an object of the present invention to provide a method for producing a martensitic stainless steel sheet for line pipes, which can maintain the above conditions.
[0005]
[Means for Solving the Problems]
The present inventors have conducted many experimental studies in order to achieve the above object, and as a result, by controlling the steel composition, hot rolling temperature and cumulative rolling reduction, a martensitic stainless steel sheet for line pipe has been produced. It has been found that it can be manufactured. That is, the present invention is based on this finding, and the gist of the present invention is
C: 0.005 to 0.04% , Si: 0.01 to 0.5%,
Mn: 0.1 to 1.0%, S: 0.010% or less,
P: 0.025% or less, Cr: 10.0 to 13.5%,
Ti: 0.005 to 0.03%, N: 0.015% or less,
Al: contains 0.05% or less, and if necessary,
Cu: 0.5 to 3.5%, Ni: 0.5 to 4.0%,
Mo: contains one or more of 0.8 to 2.5%,
If necessary,
Ca: 0.001 to 0.005%, REM: 0.01 to 0.05%
A steel slab containing one or two of the following and consisting of the balance of Fe and unavoidable impurities, satisfying C + N-3.4Ti ≦ 0.03 and 40C + 34N + Ni + 0.3Cu-1.1Cr-1.8Mo ≧ -11 After reheating to 121250 ° C., the steel sheet is rolled so that the cumulative rolling reduction below 1000 ° C. is 40% or more, the rolling end temperature is Ar3 point or more, and then the steel sheet is tempered. This is a method for manufacturing a stainless steel sheet.
[0006]
[Action]
Hereinafter, the present invention will be described in detail.
First, the reason why the present invention is limited to the above steel components will be described.
C: C is an element that forms Cr carbide and deteriorates corrosion resistance, but is a strong austenite forming element and is added because it has an effect of suppressing the formation of a ferrite phase. However, when an amount exceeding 0.04% is added, a large amount of carbides such as Cr carbides precipitate to deteriorate toughness, and further increase the hardness of the heat affected zone, thereby deteriorating the toughness of the heat affected zone. Therefore, the C content is set to 0.04% or less. Further, if the strength is less than 0.005%, the required strength cannot be obtained, so the range is 0.005 to 0.04% .
[0007]
Si: Si is added in an amount of 0.01% or more for deoxidation and an increase in strength. However, the upper limit is set to 0.5% because a large amount of Si decreases toughness and sulfide stress cracking resistance.
Mn: Mn is an element effective for deoxidation and securing strength, and forms MnS and contributes to detoxification of S. However, if it exceeds 1.0%, the grain boundary strength is reduced and the cracking resistance is impaired in a corrosive environment, so the upper limit was made 1.0%. Further, since at least 0.1% is required for fixing S, the range is set to 0.1 to 1.0%.
[0008]
S: S is an element that forms sulfide-based inclusions, lowers hot workability, and lowers toughness. For this reason, the content is set to 0.010% or less in consideration of cost, but is desirably 0.003% or less.
P: P is set to 0.025% or less in order to segregate at the grain boundaries to weaken the grain boundary strength and to reduce toughness and sulfide stress cracking resistance.
[0009]
Cr: Cr is the most basic and essential element constituting martensitic stainless steel, and is an element necessary for imparting corrosion resistance. However, if the content is less than 10%, the corrosion resistance is not sufficient. On the other hand, if the content exceeds 13.5%, no matter how much other alloying elements are adjusted, it becomes difficult to form a martensite single phase at the end of rolling, and the cost increases. However, the effect of improving the characteristics cannot be expected in view of economy. Therefore, the upper limit content of Cr is set to 13.5%.
[0010]
Ti: Ti is dispersed as TiN or Ti oxide and suppresses grain growth in the heat affected zone by welding, thereby suppressing deterioration of toughness. If the amount is too small, there is no effect, and if the amount is excessively added, TiC precipitates and causes deterioration of toughness. Therefore, the content of Ti is set to 0.005 to 0.03%.
[0011]
N: N is an element inevitably contained in steel, but increases the hardness of the weld heat affected zone and decreases the toughness of the base metal and the weld heat affected zone, so the upper limit content is 0.015. %.
Al: Al is added for deoxidation. However, if the content exceeds 0.05%, an oxide is formed instead, the cleanliness of the steel is reduced, and stress corrosion cracking is adversely affected. Therefore, the content of Al is set to 0.05% or less.
[0012]
Cu: Cu is not only a steel base material in which the contents of C and N are reduced, but also the microstructure of the weld heat-affected zone has a martensite structure to improve toughness and corrosion resistance in a wet carbon dioxide gas environment. It is an extremely useful element to improve. The addition of 0.5% or less has no effect on the corrosion resistance, while the addition of more than 3.5% lowers the hot workability. Therefore, the content is set in the range of 0.5 to 3.5%.
[0013]
Ni: Ni has an effect of further improving the toughness of the heat affected zone by coexistence with 0.5% or more of Cu, and also has an effect of improving corrosion resistance. However, the addition of more than 4% not only saturates the effect but also increases the cost and also only increases the hardness of the weld heat affected zone. .
Considering the corrosion resistance, the combined addition of Cu and Ni is more effective than using Cu or Ni alone.
[0014]
Mo: Mo, like Cr, has the effect of improving the CO 2 corrosion resistance and further improving the SSC property, and therefore can be added as necessary. If the content is less than 0.8%, the effect is not sufficient, so the addition amount is set to 0.8% or more. On the other hand, even if it is added in a large amount, its effect is saturated, and in addition, the toughness of the base metal and the weld heat affected zone is reduced, and the hot deformation resistance is increased to reduce the hot workability. Was 2.5%.
[0015]
Ca, REM: an effective element that renders inclusions such as sulfides spherical and harmless, and is an element that is sufficiently effective in improving hot workability and corrosion resistance. If the content is too small, the effect is not obtained, and if the content is too large, inclusions increase to decrease resistance to sulfide stress cracking, and also deteriorate hot workability and corrosion resistance. , REM was 0.01 to 0.05%.
[0016]
Steels having the above-described component ranges exhibit good CO 2 resistance, but with components containing a large amount of ferrite-forming elements such as Cr and Mo, a ferrite phase is formed in the heat-affected zone by welding and the toughness is deteriorated. Therefore, it is necessary to limit the content of the ferrite forming element. From conventional knowledge, C, N, Ni, and Cu suppress the formation of a ferrite phase, and Cr and Mo promote. Steels in which the concentration of each element was changed were melted, and the respective contribution rates were experimentally determined. As a result, if 40C + 34N + Ni + 0.3Cu-1.1Cr-1.8Mo ≧ -11 is satisfied, a ferrite phase is not generated even if cooling is not specially controlled after hot rolling under the conditions specified in the present invention, and the martensite single crystal is not formed. It turned out to be a phase. To omit the quenching process, C, N, Ni, Cu, Cr, and Mo must satisfy this relationship.
[0017]
Next, the relationship between the contents of Ti, N, and C will be described. N fixed as TiN does not contribute to the increase in the hardness of the weld heat affected zone and therefore does not contribute to the deterioration of toughness. Therefore, the sum of N that is not TiN, that is, (N-3.4Ti) and C is 0.03 or less. Is necessary to improve the hardness and toughness of the heat affected zone.
[0018]
Next, the hot rolling conditions will be described.
First, steel satisfying the above conditions is melted. Thereafter, the billet is reheated to 1000-1250 ° C. By setting the temperature to 1000 ° C. or higher, carbides in the steel are dissolved, and by setting the temperature to 1250 ° C. or lower, coarsening of the austenite particle size is prevented. The reheating changes the structure in the steel to an austenitic single phase. Next, in order for the steel to be rolled in the non-recrystallized region, the temperature is set to 1000 ° C. or less. In order to prevent the toughness of the steel from deteriorating, the cumulative reduction is set to 40% or more and the rolling end temperature is set to 3 points or more for Ar. Rolled. The former is an operation for generating unrecrystallized austenite grains and for the purpose of refining the structure, and the latter is an operation for forming an austenite single phase at the end of rolling. By making the structure of the steel sheet a single phase of martensite, a high-strength steel material can be provided. Thereafter, tempering is performed to adjust the strength to a required level.
[0019]
According to the method of the present invention as described above, a method for producing a martensitic stainless steel sheet for a line pipe having better toughness than conventional steel is provided.
[0020]
【Example】
The present invention will be further described based on examples.
First, steels having the chemical components shown in Table 1 were melted, rolled under the reheating conditions shown in Tables 2 and 3 at a cumulative reduction of 1000 ° C. or less, and tempered to prepare test materials.
The CO 2 corrosion resistance was determined by immersing a test piece in artificial seawater at 120 ° C. equilibrated with 40 atm of CO 2 gas, and measuring the corrosion rate from corrosion weight loss. The transition temperature (vTrs) of the base material and the toughness of the HAZ was measured using a JIS No. 4 Charpy test piece. The welding conditions at this time simulate a heat input of 1.2 kJ / mm and a cooling speed of 40 ° C./S.
Tables 2 and 3 show the test results.
[0021]
[Table 1]
[0022]
[Table 2]
[0023]
[Table 3]
[0024]
【The invention's effect】
As described above, the present invention simplifies the heat treatment step by controlling the hot rolling conditions, and provides a method for producing a martensitic stainless steel sheet for line pipe having excellent toughness and excellent corrosion resistance as before. It is extremely large that contributes to the development of industry.
Claims (3)
C :0.005〜0.04%、
Si:0.01〜0.5%、
Mn:0.1〜1.0%、
S :0.010%以下、
P :0.025%以下、
Cr:10.0〜13.5%、
Ti:0.005〜0.03%、
N :0.015%以下、
Al:0.05%以下
残部Feおよび不可避的不純物からなり、C+N−3.4Ti≦0.03および40C+34N−1.1Cr≧−11を満足する鋼片を1000〜1250℃に再加熱後、1000℃以下の累積圧下量が40%以上、圧延終了温度がAr3 点以上となるように圧延し、その後鋼板を焼き戻し処理することを特徴とするラインパイプ用マルテンサイト系ステンレス鋼板の製造方法。In weight%,
C: 0.005 to 0.04% ,
Si: 0.01-0.5%,
Mn: 0.1-1.0%,
S: 0.010% or less,
P: 0.025% or less,
Cr: 10.0 to 13.5%,
Ti: 0.005 to 0.03%,
N: 0.015% or less,
Al: 0.05% or less Remaining iron and inevitable impurities, a steel slab satisfying C + N-3.4Ti ≦ 0.03 and 40C + 34N-1.1Cr ≧ -11 is reheated to 1000 to 1250 ° C., and then 1000 A method for producing a martensitic stainless steel sheet for a line pipe, characterized in that rolling is performed so that the cumulative reduction amount at 40 ° C. or less is 40% or more, and the rolling end temperature is an Ar3 point or more, and then the steel sheet is tempered.
C :0.005〜0.04%、
Si:0.01〜0.5%、
Mn:0.1〜1.0%、
S :0.010%以下、
P :0.025%以下、
Cr:10.0〜13.5%、
Ti:0.005〜0.03%、
N :0.015%以下、
Al:0.05%以下
を基本成分とし、さらに、
Cu:0.5〜3.5%、
Ni:0.5〜4.0%、
Mo:0.8〜2.5%
の1種または2種以上を含有し、C+N−3.4Ti≦0.03および40C+34N+Ni+0.3Cu−1.1Cr−1.8Mo≧−11を満足する鋼片を1000〜1250℃に再加熱後、1000℃以下の累積圧下量が40%以上、圧延終了温度がAr3 点以上となるように圧延し、その後鋼板を焼き戻し処理することを特徴とするラインパイプ用マルテンサイト系ステンレス鋼板の製造方法。In weight%,
C: 0.005 to 0.04% ,
Si: 0.01-0.5%,
Mn: 0.1-1.0%,
S: 0.010% or less,
P: 0.025% or less,
Cr: 10.0 to 13.5%,
Ti: 0.005 to 0.03%,
N: 0.015% or less,
Al: 0.05% or less as a basic component.
Cu: 0.5 to 3.5%;
Ni: 0.5 to 4.0%,
Mo: 0.8 to 2.5%
A steel slab containing one or more of the following, and satisfying C + N-3.4Ti ≦ 0.03 and 40C + 34N + Ni + 0.3Cu-1.1Cr-1.8Mo ≧ -11, is reheated to 1000 to 1250 ° C. A method for producing a martensitic stainless steel sheet for line pipe, characterized in that rolling is performed so that the cumulative rolling reduction at a temperature of 1000 ° C. or less is 40% or more and the rolling end temperature is an Ar3 point or more, and then the steel sheet is tempered.
Ca :0.001〜0.005%、
REM:0.01〜0.05%
の1種または2種を含有し、C+N−3.4Ti≦0.03および40C+34N+Ni+0.3Cu−1.1Cr−1.8Mo≧−11を満足する鋼片を1000〜1250℃に再加熱後、1000℃以下の累積圧下量が40%以上、圧延終了温度がAr3 点以上となるように圧延し、その後鋼板を焼き戻し処理することを特徴とするラインパイプ用マルテンサイト系ステンレス鋼板の製造方法。The steel according to claim 1 or 2, further comprising:
Ca: 0.001 to 0.005%,
REM: 0.01-0.05%
A steel slab containing one or two of the following, satisfying C + N-3.4Ti ≦ 0.03 and 40C + 34N + Ni + 0.3Cu-1.1Cr-1.8Mo ≧ -11, is reheated to 1000 to 1250 ° C. A method for producing a martensitic stainless steel sheet for a line pipe, characterized in that rolling is performed so that the cumulative reduction amount at 40 ° C. or less is 40% or more, and the rolling end temperature is an Ar3 point or more, and then the steel sheet is tempered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01308695A JP3588380B2 (en) | 1995-01-30 | 1995-01-30 | Method for producing martensitic stainless steel sheet for line pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01308695A JP3588380B2 (en) | 1995-01-30 | 1995-01-30 | Method for producing martensitic stainless steel sheet for line pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08199236A JPH08199236A (en) | 1996-08-06 |
JP3588380B2 true JP3588380B2 (en) | 2004-11-10 |
Family
ID=11823364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01308695A Expired - Fee Related JP3588380B2 (en) | 1995-01-30 | 1995-01-30 | Method for producing martensitic stainless steel sheet for line pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3588380B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1026273B1 (en) * | 1997-07-18 | 2007-12-19 | Sumitomo Metal Industries Limited | Martensite stainless steel of high corrosion resistance |
JP3485022B2 (en) * | 1999-05-17 | 2004-01-13 | 住友金属工業株式会社 | Martensitic stainless steel with excellent hot workability |
JP3666388B2 (en) * | 2000-12-19 | 2005-06-29 | 住友金属工業株式会社 | Martensitic stainless steel seamless pipe |
DE60228395D1 (en) | 2001-12-26 | 2008-10-02 | Jfe Steel Corp | Structural component of a vehicle made of martensitic stainless steel sheet |
EP2058412A4 (en) | 2006-08-31 | 2016-02-17 | Nippon Steel & Sumitomo Metal Corp | Martensitic stainless steel for welded structure |
JP6524440B2 (en) * | 2015-07-13 | 2019-06-05 | 日本製鉄株式会社 | Martensite steel |
-
1995
- 1995-01-30 JP JP01308695A patent/JP3588380B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08199236A (en) | 1996-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5055774B2 (en) | A steel plate for line pipe having high deformation performance and a method for producing the same. | |
EP0732418B1 (en) | Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same | |
JP2007270194A (en) | Method for producing high-strength steel sheet excellent in sr resistance property | |
JP3303647B2 (en) | Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance | |
JPH06293915A (en) | Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance | |
JP3588380B2 (en) | Method for producing martensitic stainless steel sheet for line pipe | |
JP4949210B2 (en) | Steel excellent in toughness of weld heat-affected zone and method for producing the same | |
JP5157030B2 (en) | Manufacturing method of high strength line pipe steel with excellent HIC resistance | |
JP2006265722A (en) | Production method of steel sheet for high-tension linepipe | |
JP3526722B2 (en) | Ultra high strength steel pipe with excellent low temperature toughness | |
JP3491148B2 (en) | High strength and high toughness seamless steel pipe for line pipe | |
JP2000178697A (en) | Martensitic stainless steel excellent in corrosion resistance and weldability | |
JP3850913B2 (en) | Manufacturing method of high strength bend pipe with excellent weld metal toughness | |
JP3422880B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness | |
JPH11189840A (en) | High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production | |
JP3422877B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness | |
JP5194807B2 (en) | Manufacturing method of high yield strength and high toughness thick steel plate | |
JP2618785B2 (en) | Method for producing high Ni alloy clad steel sheet with excellent sour resistance and low temperature toughness | |
JPH07268457A (en) | Production of thick steel plate for line pipe, having high strength and high toughness | |
JPH0813087A (en) | Steel for welded steel pipe excellent in ssc resistance in seam zone | |
JPH09227934A (en) | Manufacture of martensitic stainless steel excellent in low temperature toughness | |
JP2012046808A (en) | Thick high-tensile-strength steel sheet excellent in low temperature toughness at welding portion, and method for producing the same | |
JP2575250B2 (en) | Line pipe with excellent corrosion resistance and weldability | |
JPH09256115A (en) | Martensitic stainless steel, excellent in sour resistance and having superior weldability, and its production | |
JP2004332083A (en) | Method for producing high-strength bent pipe excellent in low-temperature toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040810 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040813 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110820 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120820 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |