JP5206386B2 - Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering - Google Patents

Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering Download PDF

Info

Publication number
JP5206386B2
JP5206386B2 JP2008317816A JP2008317816A JP5206386B2 JP 5206386 B2 JP5206386 B2 JP 5206386B2 JP 2008317816 A JP2008317816 A JP 2008317816A JP 2008317816 A JP2008317816 A JP 2008317816A JP 5206386 B2 JP5206386 B2 JP 5206386B2
Authority
JP
Japan
Prior art keywords
corrosion
steel
coating layer
coated
civil engineering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008317816A
Other languages
Japanese (ja)
Other versions
JP2010139449A (en
Inventor
之郎 釣
慶一郎 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008317816A priority Critical patent/JP5206386B2/en
Publication of JP2010139449A publication Critical patent/JP2010139449A/en
Application granted granted Critical
Publication of JP5206386B2 publication Critical patent/JP5206386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、例えば、河川および海洋等のように腐食環境の極めて厳しい条件下で用いられる有機被覆鋼材(特に、有機被覆鋼矢板および有機被覆鋼管矢板)の耐食性を評価し、将来の鋼材腐食量を予測するための、土木用有機被覆鋼材の腐食促進試験方法および腐食量予測方法に関するものである。   The present invention evaluates the corrosion resistance of organic coated steel materials (particularly organic coated steel sheet piles and organic coated steel sheet piles) used under extremely severe corrosive conditions such as rivers and oceans, and the future corrosion amount of steel materials. The present invention relates to a corrosion acceleration test method and a corrosion amount prediction method for organic-coated steel materials for civil engineering.

現在わが国の港湾鋼構造物には、鋼材の上にウレタンエラストマー、ポリエチレンあるいはエポキシ系の超厚膜形樹脂を被覆した有機被覆鋼材が、鋼材の防食性を確保するために用いられている。これらの土木用有機被覆鋼材は、防食コストを抑制するため、電気防食と併用することが一般的である。即ち、海中部の鋼材の防食は電気防食で担保し、干満帯、飛沫帯および海上大気部の鋼材の防食は有機被覆で担保するという考え方である。いずれにしろ、港湾施設に供するという性格上、海洋環境という極めて厳しい腐食環境において、20年から50年程度にわたる防食性能の維持が期待される。   Currently, in Japan's harbor steel structures, organic coated steel materials obtained by coating a steel material with urethane elastomer, polyethylene, or an epoxy-based ultra-thick film resin are used to ensure the corrosion resistance of the steel material. These organically coated steel materials for civil engineering are generally used in combination with cathodic protection in order to suppress the corrosion protection cost. That is, the idea is that the corrosion protection of steel materials in the sea is secured by electrocorrosion, and the corrosion protection of steel materials in the tidal zone, splash zone, and marine atmosphere is secured by organic coating. In any case, the anticorrosion performance is expected to be maintained for about 20 to 50 years in the extremely severe corrosive environment such as the marine environment due to the nature of being used for harbor facilities.

電気防食については長年の研究より、防食される鋼材の単位面積あたりに必要な犠牲陽極の質量が明らかになっており、所定の計算式を用いることにより、所定期間防食するために必要な犠牲陽極の質量を設計することが可能となっている。   With regard to cathodic protection, many years of research have revealed the mass of the sacrificial anode required per unit area of the steel material to be protected, and the sacrificial anode required for anticorrosion for a predetermined period of time by using a predetermined formula. It is possible to design the mass of

一方、干満帯、飛沫帯および海上大気部における鋼構造物の防食を担保する有機被覆については、各種腐食促進試験が提案されている(例えば、特許文献1、2)ものの、各種材料間の優劣を比較することにとどまり、腐食劣化機構の観点から実海洋環境を再現・促進した上で被覆鋼材の耐久寿命を予測する試験法が無いため、海洋における長期の暴露試験での実証に頼るほか無かった。   On the other hand, although various corrosion acceleration tests have been proposed for organic coatings that ensure corrosion protection of steel structures in the tidal zone, splash zone, and marine atmosphere, the superiority or inferiority between various materials has been proposed (for example, Patent Documents 1 and 2). However, there is no test method to predict the durable life of the coated steel material while reproducing and promoting the actual marine environment from the viewpoint of the corrosion degradation mechanism, so there is no choice but to rely on verification in long-term exposure tests in the ocean. It was.

ちなみに、特許文献1記載の技術は、塗装鋼板に塩水を噴霧する過程、紫外線を照射し散水する過程および湿潤過程を順に周期的に繰り返し、塗装の剥離・割れ・膨れ、色差、光沢度残存率、および塗膜の剥離強度を測定する腐食促進試験方法である。   Incidentally, the technique described in Patent Document 1 is a process in which salt water is sprayed on a coated steel sheet, the process of spraying UV light and watering, and the process of wetting are periodically repeated in order, peeling, cracking and swelling of the paint, color difference, gloss remaining rate And a corrosion acceleration test method for measuring the peel strength of the coating film.

また、特許文献2記載の技術は、2種の金属と1種の表面処理鋼材を用い、様々の腐食環境を2種の金属の腐食速度の比で定義し、前記の様々な腐食環境における表面処理鋼材と1種の金属との腐食速度の比を外挿し、実使用環境における耐久寿命を推定する予測手法である。   The technique described in Patent Document 2 uses two kinds of metals and one kind of surface-treated steel, and defines various corrosive environments by the ratio of the corrosion rates of the two kinds of metals. This is a prediction method for extrapolating the corrosion rate ratio between the treated steel and one kind of metal to estimate the durable life in the actual use environment.

しかしながら、特許文献1記載の技術は、建材等の屋根や外壁に用いられる塗装鋼板をその試験対象としているため、想定している腐食環境は一般的な屋外環境であり、海洋を模擬していない。また、試験後の評価基準は塗膜の劣化や外観の低下を中心としたものであるため、構造耐力(即ち、腐食後の残存板厚)によってその耐久性を評価すべき土木用鋼材への適用は不適切である。即ち、この種の建材用途に用いられる塗装鋼板の有機被覆層の膜厚は100μm程度であり、実使用環境でも容易に割れや膨れが発生するため、腐食促進試験においても塗膜の健全度が塗装鋼板の劣化指標となりうるが、土木用有機被覆鋼材では有機被覆層の膜厚が2mm以上と厚いため被覆層の耐久性が高く、塗膜の健全度よりはむしろ鋼材との接着界面における剥離の進展と剥離部における鋼材の腐食量が劣化指標となる。   However, since the technique described in Patent Document 1 uses a coated steel sheet used for a roof or outer wall of a building material or the like as a test target, the assumed corrosive environment is a general outdoor environment and does not simulate the ocean. . In addition, since the evaluation criteria after the test are centered on the deterioration of the coating film and the appearance, the structural steel (that is, the remaining plate thickness after corrosion) should be evaluated for its engineering steel material whose durability should be evaluated. Application is inappropriate. That is, the thickness of the organic coating layer of the coated steel sheet used for this kind of building material application is about 100 μm, and it easily cracks and swells even in an actual use environment. Although it can be a deterioration indicator for coated steel sheets, organic coated steel materials for civil engineering use organic coating layers with a thickness of 2 mm or more, so the durability of the coating layers is high, and peeling at the adhesion interface with the steel materials rather than the integrity of the coating film The progress of this and the amount of corrosion of the steel material at the peeled portion are degradation indicators.

一方、特許文献2記載の耐久寿命予測技術は、1種の金属(主として鋼)の上にもう1種の金属(例えば亜鉛合金等)がめっきされた金属板、さらにはその金属板に有機被覆を施したものを対象としており、主として鋼材にめっき処理を施さずに直接有機被覆したものを用いる土木用鋼材には適用できない。特許文献2記載の技術では、腐食の進行と共に有機被覆とめっきされた金属が完全に消失し、その後の金属板の耐久寿命は基材となる金属単体の腐食速度で決定される前提なっておるが、土木用有機被覆鋼材の海洋環境における腐食過程では、被覆層の剥離が進行し被覆層下の鋼材の腐食が進行する過程においても被覆層が鋼材上に残存するため、被覆層下の鋼材の腐食速度は、鋼材単体の腐食速度より遅くなるという大きな相違がある。
特開2008−185502号公報 特開2006−234802号公報
On the other hand, the durable life prediction technology described in Patent Document 2 is a metal plate in which another metal (for example, zinc alloy) is plated on one type of metal (mainly steel), and further, the metal plate is organically coated. It is not applicable to steel for civil engineering that uses a steel material that is directly organically coated without being plated. In the technique described in Patent Document 2, it is assumed that the organic coating and the plated metal completely disappear with the progress of corrosion, and the durable life of the subsequent metal plate is determined by the corrosion rate of the single metal as the base material. However, in the corrosion process of the organic coating steel for civil engineering in the marine environment, the coating layer remains on the steel material even in the process of peeling of the coating layer and corrosion of the steel material under the coating layer, so the steel material under the coating layer There is a big difference that the corrosion rate of is slower than the corrosion rate of a single steel material.
JP 2008-185502 A JP 2006-234802 A

本発明は、かかる事情を鑑み、土木用有機被覆鋼材の実海洋環境における腐食挙動を再現する腐食促進試験条件を明らかにし、被覆層の剥離の進展に伴って生じる剥離した被覆層下の鋼材腐食速度の分布から鋼材腐食量の分布を明らかにし、土木用有機被覆鋼材の残存耐力を推定するために必要な鋼材の残存板厚分布を予測する、土木用有機被覆鋼材の腐食促進試験方法および腐食量予測方法を提供することを目的とする。   In view of such circumstances, the present invention clarifies the corrosion acceleration test conditions for reproducing the corrosion behavior of the organic coating steel for civil engineering in the actual marine environment, and corrodes the steel under the peeled coating layer that occurs as the peeling of the coating layer progresses. Corrosion acceleration test method and corrosion of organic coating steel for civil engineering, which clarifies the distribution of steel corrosion amount from the velocity distribution and predicts the remaining thickness distribution of steel necessary for estimating the residual strength of organic coating steel for civil engineering An object is to provide a quantity prediction method.

上記目的を達成するため、本発明は以下の特徴を有している。   In order to achieve the above object, the present invention has the following features.

[1]鋼材にめっき処理を施さずに直接有機被覆した土木用有機被覆鋼材の海洋環境を模擬した腐食促進試験方法であって、既知の板厚の鋼材をめっき処理を施さずに部分的に有機被覆した部分有機被覆鋼材を用い、塩水噴霧過程、乾燥過程および湿潤過程を1サイクルとして複数サイクル曝露した後に、有機被覆を施さなかった鋼材露出部の錆を取り除き、被覆層端部からの被覆層下の平均錆浸入距離と鋼材露出部の平均板厚減少量を測定した際に、前記鋼材露出部の平均板厚減少量に対する前記被覆層端部からの被覆層下の平均錆浸入距離の比が5以上80以下であることを特徴とする土木用有機被覆鋼材の腐食促進試験方法。   [1] Corrosion promotion test method simulating the marine environment of organically coated steel for civil engineering that is directly organically coated without subjecting the steel to plating, and the steel with a known plate thickness is partially subjected to plating without being plated Using organically coated partially organic coated steel, after multiple exposures with salt water spraying, drying and wetting processes as one cycle, remove the rust from the exposed steel that was not organically coated, and coat from the end of the coating layer When measuring the average rust penetration distance under the layer and the average thickness reduction amount of the exposed steel part, the average rust penetration distance under the coating layer from the edge of the coating layer with respect to the average thickness reduction amount of the exposed steel part The ratio is 5 or more and 80 or less, the corrosion accelerated test method for organic-coated steel materials for civil engineering.

[2]前記[1]に記載の腐食促進試験方法を行った際に、被覆層下の錆浸入距離の経時変化から、被覆層端部から任意の距離L離れた鋼材表面において腐食が開始する猶予期間b(L)を求め、同時に、前記被覆層端部から任意の距離L離れた鋼材表面の板厚減少量の経時変化から腐食速度v(L)を求め、更に同時に、鋼材露出部の板厚減少量の経時変化から腐食促進倍率xを求めることにより、任意の曝露期間T後における前記被覆層端部から任意の距離L離れた位置での鋼材の板厚減少量δtを下記の式より予測することを特徴とする土木用有機被覆鋼材の腐食量予測方法。
δt = v(L)×(T/x − b(L))/365
[2] When the corrosion promotion test method described in [1] is performed, corrosion starts on the surface of the steel material at an arbitrary distance L from the edge of the coating layer due to the change over time of the rust penetration distance below the coating layer. The grace period b (L) is obtained, and at the same time, the corrosion rate v (L) is obtained from the change over time in the thickness reduction amount of the steel surface at an arbitrary distance L from the end portion of the coating layer. By obtaining the corrosion promotion magnification x from the change over time in the plate thickness reduction amount, the plate thickness reduction amount δt of the steel at an arbitrary distance L from the end of the coating layer after an arbitrary exposure period T is expressed by the following equation: A method for predicting the amount of corrosion of organic-coated steel for civil engineering, characterized by more predicting.
δt = v (L) × (T / x−b (L)) / 365

なお、上記[2]において最も好適な単位の組み合わせは、以下a)〜e)の組み合わせである。
a)被覆層端部から任意の距離L:mm
b)腐食が開始する猶予期間b(L):日
c)腐食速度v(L):mm/年
d)任意の曝露期間T:日
e)被覆層端部からL離れた鋼材の板厚減少量δt:mm
In addition, the most suitable combination of units in the above [2] is a combination of a) to e) below.
a) Arbitrary distance L from the edge of the coating layer: mm
b) Grace period in which corrosion starts b (L): day c) Corrosion rate v (L): mm / year d) Arbitrary exposure period T: day e) Reduction in plate thickness of steel material L apart from the edge of the coating layer Quantity δt: mm

また、本発明における「海洋環境」とは、海中環境から海浜環境、さらに、海に面することで生じる、干満帯や飛沫帯を含む環境を指す。   In addition, the “marine environment” in the present invention refers to an environment including a tidal zone and a splash zone generated by facing the sea from an underwater environment to a beach environment.

本発明によれば、土木用有機被覆鋼材の海洋環境における腐食挙動を模擬・促進することが可能であり、さらには任意の時間における鋼材腐食量分布を予測できるため、土木有機被覆鋼材の残存耐荷力の算出に必要な腐食後の残存板厚分布の提供が可能となる。   According to the present invention, it is possible to simulate / promote the corrosion behavior of an organically-coated steel material for civil engineering in the marine environment, and further to predict the corrosion amount distribution of the steel material at an arbitrary time. It is possible to provide a residual thickness distribution after corrosion necessary for force calculation.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明が対象としている土木用有機被覆鋼材とは、鋼材の上に、めっき処理を施さずに有機被覆層を被覆した鋼材で、被覆する有機被覆層は、ウレタンエラストマー、ポリエチレンあるいはエポキシ系の超厚膜形樹脂があげられる。また、有機被覆層と鋼材との密着性やその他の機能を付与するために、めっき処理を除いた表面処理(例えば、クロメート処理、燐酸鉄処理、シランカップリング剤処理、クロメート代替有機無機複合表面処理、など)を施したものも含む。   First, the organic coating steel material for civil engineering, which is the subject of the present invention, is a steel material in which an organic coating layer is coated on a steel material without performing plating treatment. The organic coating layer to be coated is made of urethane elastomer, polyethylene or epoxy And an ultra-thick film type resin. In addition, in order to provide adhesion and other functions between the organic coating layer and the steel material, surface treatment other than plating treatment (for example, chromate treatment, iron phosphate treatment, silane coupling agent treatment, chromate substitute organic / inorganic composite surface) Including those that have been treated.

一般に、土木用有機被覆鋼材は海洋のような厳しい腐食環境において長期の耐食性を確保するため、耐候性や耐久性に優れる厚さ2mm以上のウレタンエラストマー、ポリエチレンやエポキシ樹脂等を被覆層として適用している。そのため、通常の塗装鋼板と異なり、実使用環境において被覆層自体が劣化し、割れや剥落が生じることは稀であり、むしろ鋼材の形状上不可避的な被覆層の端部から剥離が進行し、一見健全な被覆層が残存しているにもかかわらず被覆層下で鋼材の腐食が進行するというものが主要な劣化形態となる。   Generally, in order to ensure long-term corrosion resistance in harsh corrosive environments such as the ocean, organic coated steel for civil engineering is applied as a coating layer with urethane elastomer, polyethylene, epoxy resin, etc. with a thickness of 2 mm or more that is excellent in weather resistance and durability. ing. Therefore, unlike a normal coated steel sheet, the coating layer itself deteriorates in an actual use environment, and it is rare that cracking or peeling occurs, rather, peeling progresses from the end of the coating layer unavoidable due to the shape of the steel material, Although the seemingly sound coating layer remains, the main deterioration mode is that the corrosion of the steel material proceeds under the coating layer.

また、土木用有機被覆鋼材は、その用途の特性上、経時変化による外観の劣化について問われることは少なく、むしろ厳しい腐食環境において長期に渡って耐力を保持することが求められる。   In addition, organic coated steel materials for civil engineering are rarely questioned about deterioration of appearance due to changes over time due to the characteristics of their use, but rather are required to maintain proof strength over a long period in a severe corrosive environment.

以上のことを考慮すると、実海洋環境における土木用有機被覆鋼材の劣化挙動を再現・促進し、残存耐力、即ち、残存板厚の観点から土木用有機被覆鋼材の耐久性を評価・予測することが重要となる。   Considering the above, the deterioration behavior of organic coated steel for civil engineering in the actual marine environment should be reproduced and promoted, and the durability of the organic coated steel for civil engineering should be evaluated and predicted from the viewpoint of residual strength, that is, residual sheet thickness. Is important.

なお、土木用の有機被覆鋼材はコスト縮減を目的として電気防食と併用することが一般的であり、この場合、海中部に露出した鋼材は電気防食によって防食される。その際、カソードに分極された鋼材表面で酸素還元反応が起こり、発生したアルカリによって被覆層が剥離する陰極剥離という現象が起こる。しかしながら、陰極剥離によって海中に露出した鋼材表面も電気防食によって防食されるため、鋼材の腐食は起こらず、腐食による鋼材の板厚減も発生しない。そのため、本発明で対象とする海洋環境とは主として電気防食の効果の及ばない干満帯、飛沫帯および海上大気部である。   In addition, it is common that the organic coating steel materials for civil engineering are used together with electro-corrosion for the purpose of cost reduction, and in this case, the steel material exposed in the sea is protected by electro-corrosion. At that time, an oxygen reduction reaction occurs on the surface of the steel material polarized on the cathode, and a phenomenon called cathode peeling occurs in which the coating layer peels off due to the generated alkali. However, since the steel material surface exposed to the sea due to cathodic peeling is also protected by electrocorrosion, the steel material does not corrode, and the steel plate thickness does not decrease due to corrosion. Therefore, the marine environment targeted by the present invention is mainly a tidal zone, a splash zone, and a marine atmosphere portion where the effect of cathodic protection does not reach.

本発明の腐食促進試験で用いる試験体は、腐食促進試験後の板厚減少量を測定するため、後述する鋼材露出部と被覆部の所定の部位の板厚を予め測定しなければならない。板厚の測定方法や測定点数について、本発明で限定するものではないが、例えば、測定方法としては各種マイクロメーターや、レーザー変位計等を用いることができる。なお、腐食促進試験後に同一部位の板厚を測定して板厚減少量を求めるため、腐食促進試験前に板厚を測定した部位の位置を記録することが重要である。   In order to measure the thickness reduction amount after the corrosion acceleration test, the specimen used in the corrosion acceleration test of the present invention must measure in advance the thickness of a predetermined portion of the steel material exposed portion and the coating portion described later. The thickness measurement method and the number of measurement points are not limited in the present invention. For example, various micrometers, laser displacement meters, and the like can be used as the measurement method. In addition, it is important to record the position of the portion where the plate thickness is measured before the corrosion acceleration test, in order to obtain the thickness reduction amount by measuring the plate thickness of the same portion after the corrosion acceleration test.

本発明の腐食促進試験に用いる試験体は、被覆層端部からの剥離の進展と、剥離部における鋼材の腐食という、実使用環境における腐食挙動を再現するため、鋼材露出部を有さなければならない。本発明では、鋼材露出部の面積や形状を特に制限するものではないが、例えば、100mm角の試験片を用いる場合には、中央部に幅20mm程度の鋼材露出部を設け、他の部分を所定の有機被覆層で覆ったものが一例として挙げられる。   The specimen used for the corrosion acceleration test of the present invention must have a steel exposed part in order to reproduce the corrosion behavior in the actual use environment, that is, the progress of peeling from the end of the coating layer and the corrosion of the steel in the peeling part. Don't be. In the present invention, the area and shape of the steel exposed portion are not particularly limited. For example, when a 100 mm square test piece is used, a steel exposed portion having a width of about 20 mm is provided at the center, and the other portions are attached. What covered with the predetermined | prescribed organic coating layer is mentioned as an example.

本発明の腐食促進試験は、試験体に塩分を供給する塩水噴霧過程と、実際の海洋環境における鋼材表面の濡れ/乾きを模した乾燥過程と湿潤過程を有し、塩水噴霧過程の後に乾燥過程、当該乾燥過程の後に湿潤過程という過程を1サイクルとしている。そしてこの1サイクルを、試験期間に応じて繰り返すことによって腐食を促進する試験方法である。   The corrosion acceleration test of the present invention has a salt spray process for supplying salt to the specimen, a drying process imitating the wet / drying of the steel surface in an actual marine environment, and a wetting process. After the salt spray process, the drying process A process called a wet process after the drying process is defined as one cycle. And it is the test method which accelerates | stimulates corrosion by repeating this 1 cycle according to a test period.

発明者らは、上記の条件を満たす試験体を様々な海洋環境に曝露し、その腐食挙動を評価したところ、被覆層端部からの被覆層下の平均錆浸入距離と鋼材露出部の平均板厚減の比が5以上80以下の範囲内に収まることを明らかにした(後述の図1参照)。即ち、被覆層端部から被覆層の剥離が進展し、引き続いて剥離した鋼材面で腐食が発生するが、この被覆層の剥離を引き起こす原因は、当初から露出している鋼材面でおこるアノード(金属溶解)反応の対反応である被覆層下のカソード反応によって生成したアルカリである。したがって、被覆層下の錆浸入の契機となる剥離現象は、鋼材露出部における腐食挙動と密接な関係が有り、被覆層端部からの被覆層下の平均錆浸入距離と鋼材露出部の平均板厚減の比が5以上80以下であることが、腐食挙動の観点から実海洋環境を模擬していることの根拠となる。   The inventors have exposed test specimens that satisfy the above conditions to various marine environments and evaluated their corrosion behavior.The average rust penetration distance under the coating layer from the edge of the coating layer and the average plate of the exposed steel material It was clarified that the thickness reduction ratio was within the range of 5 to 80 (see FIG. 1 described later). That is, the peeling of the coating layer progresses from the edge of the coating layer, and corrosion occurs on the peeled steel material surface. The cause of the peeling of the coating layer is the anode ( This is an alkali produced by the cathode reaction under the coating layer, which is the counter reaction of the (metal dissolution) reaction. Therefore, the peeling phenomenon that triggers rust intrusion under the coating layer is closely related to the corrosion behavior in the exposed steel part, and the average rust penetration distance under the coating layer from the edge of the coating layer and the average plate of the exposed steel part The thickness reduction ratio of 5 or more and 80 or less is the basis for simulating the actual marine environment from the viewpoint of corrosion behavior.

本発明では、実環境における耐久性が未知な試験体において、上記の条件を満たす腐食促進試験を試験期間を変えて実施し、その際の鋼材露出部の腐食量の経時変化と、被覆層下に浸入したさび浸入距離の経時変化およびさび浸入部にける鋼材の板厚減を測定する。実海洋環境における一般的な鋼材の腐食速度は既知であるので(例えば干満帯では0.1mm/年程度、飛沫帯では0.3mm/年程度)、鋼材露出部の腐食量の経時変化から本腐食促進試験における腐食速度を算出し、それを実環境における腐食速度で除することによって、腐食促進試験の促進倍率xが求まる。   In the present invention, in a test specimen whose durability in an actual environment is unknown, a corrosion acceleration test satisfying the above conditions is carried out by changing the test period. Measure the aging change of the rust penetration distance and steel sheet thickness reduction at the rust penetration part. Since the corrosion rate of general steel materials in the actual marine environment is known (for example, about 0.1 mm / year in the tidal zone and about 0.3 mm / year in the splash zone), the corrosion rate of the exposed portion of the steel material is changed over time. By calculating the corrosion rate in the corrosion acceleration test and dividing it by the corrosion rate in the actual environment, the acceleration factor x of the corrosion acceleration test is obtained.

次に、被覆層下への錆浸入距離の経時変化から、被覆層端部からLmm離れた被覆層下の鋼材に剥離の先端が到達し、試験開始から実際にその部位で腐食が開始するまでの猶予期間b(L)を求める。当然のことながら猶予期間bは被覆層端部からの距離Lの関数であり、距離Lが大きくなるほど腐食が開始する猶予期間bが大きくなる。   Next, from the change over time of the rust penetration distance under the coating layer, the peeling tip reaches the steel material under the coating layer that is L mm away from the end of the coating layer, and from the start of the test to the actual start of corrosion at that site. The grace period b (L) is obtained. As a matter of course, the grace period b is a function of the distance L from the end portion of the coating layer, and the grace period b in which corrosion starts increases as the distance L increases.

さらに、被覆層端部からLmm離れた、錆が浸入した鋼材面における腐食量(板厚減少量)の経時変化を測定し、横軸に試験時間から前記猶予期間b(L)を除いた時間をとり、縦軸にそのときの前記鋼材腐食量(板厚減少量)をとり、そのグラフの傾きから腐食速度v(L)を算出する。端部からLmm離れた鋼材表面の、腐食開始後からの腐食速度vは距離Lの関数であり、距離Lが小さいほどその値は鋼材露出部の腐食速度に漸近し、距離Lが大きくなるほどその値はは小さくなる。   Furthermore, the time-dependent change of the corrosion amount (thickness reduction amount) on the steel material surface infiltrated with rust that is L mm away from the edge of the coating layer is measured, and the horizontal axis represents the time obtained by removing the grace period b (L) from the test time. The corrosion rate v (L) is calculated from the slope of the graph, taking the steel corrosion amount (sheet thickness reduction amount) at that time on the vertical axis. The corrosion rate v of the steel material surface Lmm away from the end portion after the start of corrosion is a function of the distance L. The smaller the distance L, the closer the value is to the corrosion rate of the exposed steel material part, and the larger the distance L, the more The value becomes smaller.

本発明では、以上の腐食促進試験の結果を利用して、被覆層端部からLmm離れた鋼材表面の任意の時間Tにおける板厚減δtを以下の式を用いて予測するものである。
δt = v(L)×(T/x − b(L))/365
In the present invention, the plate thickness reduction δt at an arbitrary time T on the surface of the steel material that is L mm away from the end portion of the coating layer is predicted using the following formula, using the results of the corrosion acceleration test described above.
δt = v (L) × (T / x−b (L)) / 365

土木用鋼材である鋼矢板および鋼管矢板の形状、初期板厚の分布の範囲、被覆範囲は製品仕様として規定されておるので、それらの値を基に、上記予測式で得られた板厚減予想量δtを差し引けば、任意の時間Tにおける残存板厚と残存断面形状が予測できるので、公知の技術を用いて鋼構造物の残存耐荷性能や耐久寿命算定に資することができる。   The shape of steel sheet piles and steel pipe sheet piles for civil engineering, the range of initial sheet thickness distribution, and the coating range are specified as product specifications.Thus, based on these values, the sheet thickness reduction obtained by the above prediction formula By subtracting the expected amount δt, the remaining plate thickness and the remaining cross-sectional shape at an arbitrary time T can be predicted, so that it is possible to contribute to the remaining load resistance performance and durability life calculation of the steel structure using a known technique.

以下、本発明の実施例を示す。   Examples of the present invention will be described below.

(板厚の測定)
板厚6mmで100mm角の鋼板を用意し、その両面の黒皮スチールブラストを用いて除去した。ブラスト処理後の鋼板表面の粗度はRZ50μmであった。この鋼板の板厚をレーザー変位計を用いて、被覆面を上にして、全面を1mm間隔で測定した。測定にあたっては、腐食促進試験前後で試験片の位置(各測定点)がずれないようにレーザー変位計のステージに専用治具を取り付け、水平方向に対して常に同じ位置で板厚を測定できるようにした。
(Measurement of plate thickness)
A steel plate having a thickness of 6 mm and a square of 100 mm was prepared and removed using black skin steel blast on both sides. The roughness of the steel sheet surface after blasting was RZ 50 μm. The plate thickness of this steel plate was measured with a laser displacement meter with the coated surface facing up and the entire surface at 1 mm intervals. During measurement, a special jig is attached to the stage of the laser displacement meter so that the position of each specimen (each measurement point) does not shift before and after the corrosion acceleration test, so that the plate thickness can always be measured at the same position in the horizontal direction. I made it.

(有機被覆)
板厚測定完了後、鋼板中央部の表面を20mm幅でマスキングした後、ウレタンプライマー(パーマガード331プライマー/第一工業製薬(株)製)とウレタンエラストマー(パーマガード137/第一工業製薬(株)製)をそれぞれ50μmと3mm塗装し、1週間養生した。予めマスキングした所に沿って被覆層に切込みを入れ、被覆層を部分的に剥離し、鋼材露出部を作製した。試験片の側面および裏面をテープおよびシーラントを用いて防食した。
(Organic coating)
After the plate thickness measurement is completed, the surface of the central part of the steel plate is masked with a width of 20 mm, and then a urethane primer (Permguard 331 Primer / Daiichi Kogyo Seiyaku Co., Ltd.) and urethane elastomer (Permguard 137 / Daiichi Kogyo Seiyaku Co., Ltd.) )) Were coated at 50 μm and 3 mm, respectively, and cured for 1 week. A cut was made in the coating layer along the previously masked portion, and the coating layer was partially peeled off to produce a steel exposed portion. The side surface and the back surface of the test piece were protected against corrosion using tape and sealant.

(腐食促進試験の実施)
作製した試験片を乾湿繰替え試験機に投入し、腐食促進試験を行った。試験条件は、塩水噴霧過程を2.5時間行い、次に乾燥過程を3時間行い、その後湿潤過程を2.5時間行い、合計8時間を1サイクルとし、これを後述する試験期間だけ複数サイクル繰り返した。塩水噴霧過程では3%NaCl水溶液を用い、雰囲気温度35℃で試験を行った。乾燥過程では試験槽内を雰囲気温度60℃、相対湿度40%以下に維持し、湿潤過程では同様に雰囲気温度50℃、相対湿度65%以上に維持した。試験期間は、それぞれ30日、60日、80日、120日および180日実施した。
(Implementation of corrosion acceleration test)
The produced test piece was put into a wet and dry repeated tester, and a corrosion acceleration test was conducted. The test conditions were: a salt spray process for 2.5 hours, then a drying process for 3 hours, then a wetting process for 2.5 hours, with a total of 8 hours as one cycle, this being a plurality of cycles for the test period described later. Repeated. In the salt spray process, a 3% NaCl aqueous solution was used, and the test was performed at an ambient temperature of 35 ° C. In the drying process, the inside of the test tank was maintained at an atmospheric temperature of 60 ° C. and a relative humidity of 40% or lower, and similarly in the wet process, the atmospheric temperature was maintained at 50 ° C. and the relative humidity of 65% or higher. The test period was 30 days, 60 days, 80 days, 120 days and 180 days, respectively.

所定期間腐食促進試験を行った後、試験片を取り出し、水洗・乾燥した後、裏面および端面のシールを除去した。試験片を酸洗して鋼材露出部の錆を完全に除去した後、鋼材表面の有機被覆層を除去し、被覆層下への錆浸入距離をノギスを用いて測定した。再度、試験片を酸洗して被覆層下に浸入した錆を取り除いた後に、レーザー変位系を用いて腐食促進試験後の板厚を測定した。試験前に測定した試験片の鋼材板厚の値から、腐食促進試験後のそれを差し引き、試験片の腐食量(板厚減少量)の分布を求めた。   After performing the corrosion acceleration test for a predetermined period, the test piece was taken out, washed with water and dried, and then the seal on the back surface and the end surface was removed. After the test piece was pickled to completely remove rust on the exposed steel part, the organic coating layer on the steel material surface was removed, and the rust penetration distance under the coating layer was measured using calipers. The specimen was pickled again to remove rust that had entered under the coating layer, and the thickness after the corrosion acceleration test was measured using a laser displacement system. The steel plate thickness value of the test piece measured before the test was subtracted from that after the corrosion acceleration test to obtain the distribution of the corrosion amount (plate thickness reduction amount) of the test piece.

その結果、図1に示すように、腐食促進試験後の、被覆層下への平均錆浸入距離に対する、鋼材露出部の平均板厚減少量の比が5〜80の範囲内に収まっているので、上記試験方法で海洋環境における腐食挙動を満足していると判断できる。   As a result, as shown in FIG. 1, the ratio of the average thickness reduction amount of the exposed steel portion to the average rust penetration distance under the coating layer after the corrosion acceleration test is within the range of 5 to 80. It can be judged that the corrosion behavior in the marine environment is satisfied by the above test method.

(腐食量の予測)
図2に示すように、腐食促進試験を30日、60日、80日、120日および180日行った際の錆浸入距離の平均値を、試験期間に対してプロットした。各プロットに対して、最小二乗近似法を用いて直線を引き、被覆端部から任意の距離Lmmに位置する鋼材表面にて腐食が開始する猶予期間b(L)を求めた。
(Prediction of corrosion amount)
As shown in FIG. 2, the average value of the rust penetration distance when the corrosion promotion test was performed on the 30th, 60th, 80th, 120th and 180th days was plotted against the test period. For each plot, a straight line was drawn using a least square approximation method, and a grace period b (L) at which corrosion started on the surface of the steel material located at an arbitrary distance Lmm from the coating end was obtained.

次に、図3に示すように、複数の任意の距離L(ここでは2mm、5mm、10mmとする)における平均板厚減を縦軸にとり、横軸に試験期間から図1より求めたそれぞれの位置Lにおける猶予期間b(L)を差し引いたものをとり、データ−をプロットした。そして、最小二乗法を用いて被覆端部からの距離ごとに直線を引き、その傾きを被覆層端部からLmm離れた鋼材の腐食速度v(L)とした。   Next, as shown in FIG. 3, the average thickness reduction at a plurality of arbitrary distances L (here, 2 mm, 5 mm, and 10 mm) is taken on the vertical axis, and each horizontal axis is obtained from FIG. 1 from the test period. Data obtained by subtracting the grace period b (L) at position L was plotted. A straight line was drawn for each distance from the coating end using the least square method, and the inclination was defined as the corrosion rate v (L) of the steel material separated by L mm from the coating layer end.

一方、図3において、鋼材露出部の板厚減少量の経時変化から、腐食促進試験における鋼材露出部の腐食速度cを求めた。干満帯における鋼材の腐食速度は0.1mm/yであるので、促進倍率xは、
x = c/0.1
となる。
On the other hand, in FIG. 3, the corrosion rate c of the steel exposed portion in the corrosion acceleration test was obtained from the change over time in the thickness reduction amount of the steel exposed portion. Since the corrosion rate of steel in the tidal zone is 0.1 mm / y, the acceleration magnification x is
x = c / 0.1
It becomes.

以上の操作により求めた促進倍率x、腐食速度v(L)および猶予期間b(L)の値を用いて、被覆層端部から任意の距離Lにおける鋼材の任意の時間Tにおける板厚減少量δtを以下の式より求めた。
δt = v(L)×(T/x − b(L))/365
Using the values of the acceleration magnification x, the corrosion rate v (L) and the grace period b (L) obtained by the above operation, the thickness reduction amount of the steel material at an arbitrary time T from the coating layer end at an arbitrary time T. δt was determined from the following equation.
δt = v (L) × (T / x−b (L)) / 365

表1に、被覆端部からそれぞれ2mm、5mm、10mm離れた位置での鋼材の板厚減少量の予測式と、その式から導かれる各部位で50年後に予想される板厚減少量δtを示した。   Table 1 shows the prediction formula for the thickness reduction amount of steel at positions 2 mm, 5 mm, and 10 mm away from the coating edge, and the thickness reduction amount δt expected after 50 years at each part derived from the formula. Indicated.

Figure 0005206386
Figure 0005206386

本発明の実施例において、鋼材露出部の平均板厚減少量と被覆層下への平均錆浸入距離との関係を示す図である。In the Example of this invention, it is a figure which shows the relationship between the average board thickness reduction | decrease amount of a steel material exposure part, and the average rust penetration distance under a coating layer. 本発明の実施例において、試験期間と平均錆浸入距離との関係を示す図である。In the Example of this invention, it is a figure which shows the relationship between a test period and an average rust penetration distance. 本発明の実施例において、試験期間−猶予期間と板厚減少量との関係を示す図である。In the Example of this invention, it is a figure which shows the relationship between a test period-grace period, and board thickness reduction | decrease amount.

Claims (2)

鋼材にめっき処理を施さずに有機被覆した土木用有機被覆鋼材の海洋環境を模擬した腐食促進試験方法であって、既知の板厚の鋼材をめっき処理を施さずに部分的に有機被覆した部分有機被覆鋼材を用い、塩水噴霧過程、乾燥過程および湿潤過程を1サイクルとして複数サイクル曝露した後に、有機被覆を施さなかった鋼材露出部の錆を取り除き、被覆層端部からの被覆層下の平均錆浸入距離と鋼材露出部の平均板厚減少量を測定した際に、前記鋼材露出部の平均板厚減少量に対する前記被覆層端部からの被覆層下の平均錆浸入距離の比が5以上80以下であることを特徴とする土木用有機被覆鋼材の腐食促進試験方法。   This is an accelerated corrosion test method that simulates the marine environment of organically-coated steel for civil engineering that has been organically coated without steel plating, and is a part of a steel plate with a known plate thickness that is partially organically coated without being plated. After using organic coating steel material and exposing multiple cycles of salt spray process, drying process and wet process as one cycle, remove rust on exposed steel parts not coated with organic coating, average under coating layer from edge of coating layer When measuring the rust penetration distance and the average thickness reduction amount of the steel exposed portion, the ratio of the average rust penetration distance under the coating layer from the end portion of the coating layer to the average thickness reduction amount of the steel exposed portion is 5 or more A corrosion acceleration test method for organically-coated steel materials for civil engineering, characterized by being 80 or less. 請求項1に記載の腐食促進試験方法を行った際に、被覆層下の錆浸入距離の経時変化から、被覆層端部から任意の距離L離れた鋼材表面において腐食が開始する猶予期間b(L)を求め、同時に、前記被覆層端部から任意の距離L離れた鋼材表面の板厚減少量の経時変化から腐食速度v(L)を求め、更に同時に、鋼材露出部の板厚減少量の経時変化から腐食促進倍率xを求めることにより、任意の曝露期間T後における前記被覆層端部から任意の距離L離れた位置での鋼材の板厚減少量δtを下記の式より予測することを特徴とする土木用有機被覆鋼材の腐食量予測方法。
δt = v(L)×(T/x − b(L))/365
When the corrosion promotion test method according to claim 1 is performed, a grace period b (where corrosion starts on the surface of the steel material at an arbitrary distance L from the edge of the coating layer due to the change over time of the rust penetration distance under the coating layer. L) is obtained, and at the same time, the corrosion rate v (L) is obtained from the change over time in the thickness reduction amount of the steel surface at an arbitrary distance L from the end of the coating layer. Predicting the thickness reduction amount δt of the steel material at an arbitrary distance L from the end of the coating layer after an arbitrary exposure period T by obtaining the corrosion acceleration magnification x from the change over time of A method for predicting the amount of corrosion of organically coated steel for civil engineering.
δt = v (L) × (T / x−b (L)) / 365
JP2008317816A 2008-12-15 2008-12-15 Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering Expired - Fee Related JP5206386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317816A JP5206386B2 (en) 2008-12-15 2008-12-15 Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317816A JP5206386B2 (en) 2008-12-15 2008-12-15 Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering

Publications (2)

Publication Number Publication Date
JP2010139449A JP2010139449A (en) 2010-06-24
JP5206386B2 true JP5206386B2 (en) 2013-06-12

Family

ID=42349702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317816A Expired - Fee Related JP5206386B2 (en) 2008-12-15 2008-12-15 Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering

Country Status (1)

Country Link
JP (1) JP5206386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230143519A1 (en) * 2021-11-11 2023-05-11 Beihang University Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413293B2 (en) * 2010-04-22 2014-02-12 Jfeスチール株式会社 Corrosion accelerated test method for heavy anti-corrosion coated steel
JP5413292B2 (en) * 2010-04-22 2014-02-12 Jfeスチール株式会社 Corrosion accelerated test method for heavy anti-corrosion coated steel
JP5510352B2 (en) * 2010-04-22 2014-06-04 Jfeスチール株式会社 Pre-corrosion cross-section prediction method for heavy anti-corrosion coated steel materials, strength deterioration prediction method for heavy anti-corrosion coating structures, management method for heavy anti-corrosion coating structures
JP5510358B2 (en) * 2011-02-18 2014-06-04 Jfeスチール株式会社 Method for determining anticorrosion property of anticorrosion coated steel material and method for producing anticorrosion coated steel material
CN102967546B (en) * 2012-11-02 2015-05-13 工业和信息化部电子第五研究所 Method for rapidly testing organic coating in tropical ocean environment
CN109813260B (en) * 2019-02-25 2020-04-28 燕山大学 Immersion type composite plate thickness ratio detection device
CN112730205B (en) * 2020-12-04 2022-01-21 中国电器科学研究院股份有限公司 Method for predicting corrosion failure of electrical component under actual operation condition environment
CN113552053B (en) * 2021-07-13 2022-09-16 北京航空航天大学 Method for determining accelerated corrosion equivalent relation of protective coating

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143489A (en) * 1981-02-28 1982-09-04 Kawasaki Steel Corp Surface treated steel plate having coating layer of three layered structure and its production
JPH0874064A (en) * 1994-09-01 1996-03-19 Kawasaki Steel Corp Organic composite clad steel sheet excellent in corrosion resistance and its production
JP3393058B2 (en) * 1998-02-27 2003-04-07 株式会社神戸製鋼所 Method of forming rust of steel with excellent corrosion resistance
JP3971853B2 (en) * 1998-02-27 2007-09-05 株式会社神戸製鋼所 Steel material with excellent corrosion resistance
JP3414269B2 (en) * 1998-08-11 2003-06-09 住友金属工業株式会社 Surface-treated steel with excellent weather resistance
JP2000241340A (en) * 1999-02-25 2000-09-08 Nkk Corp Method and apparatus for measuring corrosion rate of weatherable steel material
JP2001201450A (en) * 2000-01-21 2001-07-27 Nkk Corp Exposure test method for uncoated steel material
JP2003329573A (en) * 2002-03-08 2003-11-19 Jfe Steel Kk Method for evaluating corrosion resistance of metallic material, method for predicting corrosion life thereof, metallic material, method for designing thereof, and method for manufacturing thereof
JP2003279469A (en) * 2002-03-25 2003-10-02 Sekisui House Ltd Composite degradation acceleration method
JP2005241400A (en) * 2004-02-26 2005-09-08 Jfe Steel Kk Method of evaluating corrosion resistance of indoor used steel sheet
JP4706489B2 (en) * 2005-01-26 2011-06-22 Jfeスチール株式会社 Method for predicting corrosion resistance of metal and coated metal plate, method for selecting coated metal plate
JP4867303B2 (en) * 2005-11-16 2012-02-01 Jfeスチール株式会社 Method for evaluating corrosion resistance of metal material, metal material, and corrosion acceleration test apparatus for metal material
JP2008185502A (en) * 2007-01-31 2008-08-14 Sekisui House Ltd Combined degradation test method for painting steel plate
JP4767887B2 (en) * 2007-03-22 2011-09-07 新日本製鐵株式会社 Corrosion test method for metallic materials for ship ballast tanks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230143519A1 (en) * 2021-11-11 2023-05-11 Beihang University Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment
US11892391B2 (en) * 2021-11-11 2024-02-06 Beihang University Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment

Also Published As

Publication number Publication date
JP2010139449A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5206386B2 (en) Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
Edavan et al. Corrosion resistance of painted zinc alloy coated steels
JP5065107B2 (en) Method for evaluating coating film corrosion resistance of metal materials for ballast tanks
PE Paint and coatings: applications and corrosion resistance
CN101717942B (en) Metal surface anti-corrosion layer structure and coating method thereof
JP5510352B2 (en) Pre-corrosion cross-section prediction method for heavy anti-corrosion coated steel materials, strength deterioration prediction method for heavy anti-corrosion coating structures, management method for heavy anti-corrosion coating structures
JP5413292B2 (en) Corrosion accelerated test method for heavy anti-corrosion coated steel
Howard et al. Accelerated tests for the prediction of cut-edge corrosion of coil-coated architectural cladding: Part I: cyclic cabinet salt spray
JP5413293B2 (en) Corrosion accelerated test method for heavy anti-corrosion coated steel
CN113150642A (en) Anticorrosive coating system for outer wall of tower cylinder of ocean wind turbine generator and coating method
Buchheit Corrosion resistant coatings and paints
Zhang Corrosion of zinc and zinc alloys
JP5459035B2 (en) Durability judgment method for coated steel
Schmidt et al. Corrosion protection assessment of barrier properties of several zinc-containing coating systems on steel in artificial seawater
JP4964699B2 (en) Organic resin-coated steel and building using the same
Elsner et al. Atmospheric Corrosion of Painted Galvanized and 55% Al‐Zn Steel Sheets: Results of 12 Years of Exposure
Arya et al. Service life of reinforced concrete (RC) systems with cement-polymer-composite (CPC) coated steel rebars
Kainuma et al. Long-term deterioration mechanism of hot-dip aluminum coating exposed to a coastal-atmospheric environment
JP5742259B2 (en) Coated steel for marine / river environment and manufacturing method thereof
Astuti et al. Corrosion prevention on reinforced concrete using steel coating of rebar
JP6206995B1 (en) Method for forming protective film and highly corrosion-resistant steel member having protective film
Ibrahim Effect of different sodium chloride (NaCl) concentration on corrosion of coated steel
Ezzeldin et al. Corrosion Performance of Buried Corrugated Galvanized Steel under Accelerated Wetting/Drying Cyclic Corrosion Test
JPS63265627A (en) Surface coated steel material and its manufacture
JP2001081585A (en) Method of preventing corrosion in steel structure by pasting of metallic thin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees