JP5742259B2 - Coated steel for marine / river environment and manufacturing method thereof - Google Patents

Coated steel for marine / river environment and manufacturing method thereof Download PDF

Info

Publication number
JP5742259B2
JP5742259B2 JP2011018807A JP2011018807A JP5742259B2 JP 5742259 B2 JP5742259 B2 JP 5742259B2 JP 2011018807 A JP2011018807 A JP 2011018807A JP 2011018807 A JP2011018807 A JP 2011018807A JP 5742259 B2 JP5742259 B2 JP 5742259B2
Authority
JP
Japan
Prior art keywords
layer
steel material
metal
metal layer
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011018807A
Other languages
Japanese (ja)
Other versions
JP2012158795A (en
Inventor
村瀬 正次
正次 村瀬
星野 俊幸
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011018807A priority Critical patent/JP5742259B2/en
Publication of JP2012158795A publication Critical patent/JP2012158795A/en
Application granted granted Critical
Publication of JP5742259B2 publication Critical patent/JP5742259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、表面に塗装あるいはライニングが施された被覆鋼材に係り、とくに海洋あるいは河川の環境下で、海水あるいは淡水が部材の一部または全部に掛かる状態、とくに、干満部、飛沫部といった完全に水没しない状態に晒される、土木・建築構造物の部材用として好適な、被覆鋼材及びその製造方法に関する。   The present invention relates to a coated steel material whose surface is coated or lined, and particularly in a state where seawater or fresh water is applied to a part or all of the member in an environment of the ocean or river, in particular, a complete part such as a tidal part or a splash part. The present invention relates to a coated steel material suitable for a member of a civil engineering / building structure that is exposed to a state where it is not submerged in water, and a method for producing the same.

海洋・河川環境で使用される代表的な鋼材としては、鋼矢板、鋼管杭、鋼管矢板などが挙げられる。これらの鋼材は、護岸や海洋構造物等を支える基礎として使用され、護岸や港湾施設などのインフラストラクチャーとして広く普及している。これら護岸や海洋構造物等の構造物は、その性格上、50〜100年の使用を考慮した、設計、施工を行う。
しかし、例えば海洋環境下で、とくに構造物に直接、海水が掛かるような場合には、鋼製部材の腐食速度が大きくなるため、一般的には、防食措置が必要であるとされている。防食措置としては、電気防食、塗装、ライニング、FRPカバーや金属カバー等による防食が、広く用いられている。なかでも、鋼に比較して腐食電位が卑な値を示す、ZnやA1、Mgなどの金属材料により、鋼材を電気化学的に防食する電気防食は、鋼製部材が完全に水没する海中部では極めて有効な防食方法である。しかし、電気防食は、干満部や飛沫部といった鋼製部材が完全に水没しない領域で使用される場合には、海中部に比較するとその防食作用を発揮できないといわれている。というのは、没水部では、鋼と卑な電位を示す金属との間に電気化学的なセルを形成するが、干満部・飛沫部ではこれらセルが形成しにくいためである。
Typical steel materials used in the marine / river environment include steel sheet piles, steel pipe piles, and steel pipe sheet piles. These steel materials are used as foundations for supporting revetments and offshore structures, and are widely spread as infrastructure for revetments and harbor facilities. These structures such as revetments and offshore structures are designed and constructed considering their use for 50 to 100 years.
However, for example, in a marine environment, particularly when seawater is directly applied to the structure, the corrosion rate of the steel member increases, so that it is generally considered that anticorrosion measures are necessary. As anti-corrosion measures, anti-corrosion, painting, lining, anti-corrosion by FRP cover, metal cover, etc. are widely used. In particular, the corrosion protection that electrochemically protects steel materials with metal materials such as Zn, A1, and Mg, which have a lower corrosion potential compared to steel, is a submarine part where steel members are completely submerged. Then, it is a very effective anticorrosion method. However, it is said that the anticorrosion cannot exhibit its anticorrosive action when used in a region where a steel member such as a tidal part or a splash part is not completely submerged compared to the sea part. This is because, in the submerged part, electrochemical cells are formed between the steel and the metal having a low potential, but these cells are difficult to form in the tidal part / splash part.

一方、塗装や有機ライニングといった防食方法は、干満部や飛沫部でも有効に防食作用を発揮するが、傷がつきやすいという問題や、塗装や有機ライニング自体の劣化や接着層の経年劣化という問題がある。従来の塗装を施された鋼構造物の防食寿命は、一般的に、長くても20〜30年程度であると言われている。とくに接着層の劣化が、防食寿命を決定するとされている。このようなことから、有機被覆層(塗膜)の接着耐久性を向上させることが要望されている。   On the other hand, anti-corrosion methods such as painting and organic lining are effective in anti-corrosion action even in the tidal and splash areas, but there are problems of being easily scratched, deterioration of the coating and organic lining itself, and deterioration of the adhesive layer over time. is there. It is said that the anticorrosion life of a steel structure with a conventional coating is generally about 20 to 30 years at the longest. In particular, deterioration of the adhesive layer is said to determine the anticorrosion life. For these reasons, it is desired to improve the adhesion durability of the organic coating layer (coating film).

このような要望に対し、例えば特許文献1には、粒状アルミニウム粉末、あるいはさらに該粒状アルミニウム粉末と等量以下の粒状亜鉛粉末を含む金属粉末と、アルキルシリケート縮合物とを含むプライマーを、被塗装面に塗布したのち、ポリフェニリンサルファイド樹脂を主体とする粉末塗料を付着し、焼付ける塗装体の製造方法が記載されている。このようなプライマーを使用することにより、塗膜の密着性が向上し、さらに耐熱性も向上するとしている。   In response to such a request, for example, Patent Document 1 discloses a primer containing granular aluminum powder, or metal powder containing granular zinc powder equal to or less than the granular aluminum powder, and an alkylsilicate condensate. A method of manufacturing a coated body is described in which a powder coating mainly composed of polyphenylin sulfide resin is applied and baked after being applied to the surface. By using such a primer, the adhesion of the coating film is improved and the heat resistance is also improved.

また、特許文献2には、ポリビニルブチラール樹脂、エポキシ樹脂、非クロメート系防錆顔料および体質顔料を含む主剤と、シランカップリング剤を含む添加剤とからなる2液型塗料組成物が記載されている。特許文献2に記載された技術では、上記した2液型塗料組成物を基材に塗装し、さらに得られた塗膜上にプライマーサーフェサーを塗装して得られた塗膜上に、さらに上塗り塗料を塗装して、被覆層を得るとしている。このような2液型塗料組成物を用いた塗膜を下塗り塗膜とすることにより、金属素材への付着性、さらには上層の塗膜との付着性が向上するとしている。   Patent Document 2 describes a two-component coating composition comprising a main agent containing a polyvinyl butyral resin, an epoxy resin, a non-chromate rust preventive pigment and an extender pigment, and an additive containing a silane coupling agent. Yes. In the technique described in Patent Document 2, the above-described two-component coating composition is applied to a base material, and a primer surfacer is applied onto the obtained coating film, and then a top coating material is further applied. The coating layer is obtained by painting. By using a coating film using such a two-component coating composition as an undercoat film, the adhesion to a metal material and further the adhesion to an upper coating film are improved.

特開昭54−29340号公報Japanese Patent Laid-Open No. 54-29340 特開2010−168524号公報JP 2010-168524 A

しかしながら、特許文献1に記載された技術では、耐食性向上のために、プライマーに、高価な金属粉末を多量に添加する必要があり、金属粉末を多量に添加した被覆層の密着性が低下するということに加えて、さらに経済的に不利となるという問題を残している。また、特許文献2に記載された技術では、金属素材への付着性、上層の塗膜との付着性は向上するが、依然として、基材と塗膜の界面における耐食性の向上は期待できないという問題がある。また、シランカップリング剤は、鋼と樹脂の間の密着性を改善する効果があるが、高価であり、その反応の制御も難しい。また、塗料に混合した場合、シランカップリング剤の自己縮合反応の進行などでその効果を失うため、塗料を実際に製造する場合や価格の点で問題を残している。   However, in the technique described in Patent Document 1, it is necessary to add a large amount of expensive metal powder to the primer in order to improve corrosion resistance, and the adhesion of the coating layer to which a large amount of metal powder is added is reduced. In addition, there remains the problem of further economic disadvantage. Further, in the technique described in Patent Document 2, the adhesion to a metal material and the adhesion to the upper coating film are improved, but the improvement in the corrosion resistance at the interface between the substrate and the coating film cannot be expected. There is. Silane coupling agents have the effect of improving the adhesion between steel and resin, but are expensive and difficult to control. In addition, when mixed with a paint, the effect is lost due to the progress of the self-condensation reaction of the silane coupling agent, which leaves problems in the case of actually producing the paint and in terms of price.

本発明は、かかる従来技術の問題を有利に解決し、被覆鋼材を使用した鋼構造物等の防食寿命の更なる延長が可能なように、防食性に優れた被覆鋼材およびその製造方法を提供することを目的とする。本発明が目的とする被覆鋼材は、基材と被覆層との密着性を適正に維持しつつ、基材と被覆層との界面における腐食反応を抑制して、被覆層の劣化を防止できる、防食性に優れた鋼材であり、安価で、海洋や河川環境下で、かつ干満部や飛沫部といった鋼構造物の部材が完全に水没しない領域での使用にも好適な被覆鋼材である。   The present invention provides a coated steel material excellent in anticorrosion properties and a method for producing the same so as to advantageously solve such problems of the prior art and further extend the anticorrosion life of a steel structure or the like using the coated steel material. The purpose is to do. The coated steel material intended by the present invention is capable of preventing the deterioration of the coating layer by suppressing the corrosion reaction at the interface between the substrate and the coating layer while properly maintaining the adhesion between the substrate and the coating layer. It is a steel material that is excellent in anticorrosion properties, is inexpensive, and is a coated steel material that is also suitable for use in an area where the steel structure member such as a tidal part or a splash part is not completely submerged in the ocean or river environment.

本発明者らは、上記した目的を達成するために、有機被覆鋼材において、有機被覆層の防食機能を失わせる剥離や膨れなど、有機被覆層の劣化に及ぼす各種要因について、鋭意研究を行った。その結果、有機被覆層の下地層として、例えば、Zn、Al、Mg等のような、炭素鋼の腐食電位より卑な電位を示す金属およびその合金からなる金属層を、非連続に、好ましくは所定範囲の付着量で鋼材表面を覆うように形成することが、安価で確実に、有機被覆層下の基材の腐食反応を抑制して、有機被覆層の劣化を抑制することができることを見出した。そして、さらに、上記した金属層は、鋼の腐食電位より卑な電位を示す金属およびその合金からなる金属粉末を、ブラスト法等により、鋼材表面に投射して、該金属粉末を鋼材表面に打ち込むことにより、金属層を非連続で、かつ鋼材との密着性に優れた層とすることが好ましいことを知見した。また、このような非連続な、炭素鋼の腐食電位より卑な電位を示す金属層を表面に形成した鋼材は、まったく金属層を持たない鋼材に比べて、腐食電位が卑となり、防食性が顕著に向上することを知見した。また、これら卑な電位を示す金属は、防食性を向上させるものの、樹脂層との密着性が悪いため、連続的に金属層を持つ鋼材では、塗膜が剥離しやすく結果的に防食寿命が延びない、あるいは密着性を確保できないので、機械的なダメージに弱くなるという問題点がある。   In order to achieve the above-mentioned object, the present inventors have conducted intensive research on various factors affecting the deterioration of the organic coating layer, such as peeling and swelling, which lose the anticorrosion function of the organic coating layer in the organic coating steel material. . As a result, as a base layer of the organic coating layer, for example, a metal layer made of a metal and an alloy thereof showing a lower potential than the corrosion potential of carbon steel, such as Zn, Al, Mg, etc., preferably discontinuously, It has been found that forming the steel surface so as to cover the surface of the steel with a predetermined amount of adhesion can suppress the corrosion reaction of the base material under the organic coating layer and can suppress the deterioration of the organic coating layer at a low cost. It was. Further, the metal layer described above projects a metal powder composed of a metal having a base potential lower than the corrosion potential of steel and an alloy thereof onto the surface of the steel material by a blast method or the like, and drives the metal powder onto the surface of the steel material. Thus, it was found that the metal layer is preferably discontinuous and has excellent adhesion to the steel material. In addition, such a discontinuous steel material on the surface of which a metal layer showing a lower potential than the corrosion potential of carbon steel has a lower corrosion potential and less corrosion resistance than a steel material having no metal layer at all. It was found that it was significantly improved. In addition, although these metals exhibiting a low potential improve corrosion resistance, they have poor adhesion to the resin layer. Therefore, in steel materials having a continuous metal layer, the coating film is easy to peel off, resulting in a corrosion protection life. There is a problem that it does not elongate or cannot secure adhesiveness, so that it is vulnerable to mechanical damage.

上記した被覆鋼材が、優れた防食性を保持できる機構について、本発明者らは、つぎのように考えている。
被覆鋼材における有機被覆層の劣化は、有機被覆層の端部あるいは部材のエッジ部分など、有機被覆層の付着が不十分な部位や、外力を受けて被覆層に傷がついた部分から始まる。有機被覆層の付着が不十分な部位や有機被覆層に傷がついた部分で鋼材が露出すると、露出した部位から鋼材の腐食がはじまり、その腐食反応の影響が順次、その周囲の、有機被覆層の健全な部分にまで及ぶようになる。鋼材が露出した部位では、鉄が溶解するアノード反応および水素イオン、酸素が還元されるカソード反応が生じて、腐食が進行する。このうち、カソード反応の一部が、周囲の健全な有機被覆層との界面である鋼材表面で起きると、このカソード反応による生成物(カソード生成物)が鋼材表面に形成されるため、鋼材と有機被覆層との接着強度の低下をもたらし、剥離、膨れ等の有機被覆層の劣化を引き起こすことになる。
The present inventors consider the mechanism by which the above-described coated steel material can maintain excellent corrosion resistance as follows.
Degradation of the organic coating layer in the coated steel material starts from a portion where the organic coating layer is insufficiently adhered, such as an end portion of the organic coating layer or an edge portion of the member, or a portion where the coating layer is damaged due to external force. If the steel material is exposed at a site where the organic coating layer is not sufficiently adhered or where the organic coating layer is scratched, the corrosion of the steel material begins from the exposed site, and the influence of the corrosion reaction sequentially increases the surrounding organic coating. It extends to the healthy part of the stratum. At the site where the steel material is exposed, an anode reaction in which iron dissolves and a cathode reaction in which hydrogen ions and oxygen are reduced occur, and corrosion proceeds. Among these, when a part of the cathode reaction occurs on the steel surface that is the interface with the surrounding healthy organic coating layer, a product (cathode product) by this cathode reaction is formed on the surface of the steel material. The adhesive strength with the organic coating layer is lowered, and the organic coating layer is deteriorated such as peeling or swelling.

この有機被覆層下でのカソード反応は、有機被覆層下の鋼材の電位が、鋼材が露出した部位に比較して、相対的に貴な電位を示すことから起きる現象である。このため、鋼材表面に、炭素鋼の腐食電位より卑な電位を示す金属層を形成すると、有機被覆層下の鋼材の電位を、炭素鋼の腐食電位より(例えば、傷などで鋼材が露出した部位の電位より)卑に保持することができ、被覆層下の炭素鋼材表面で起きうる反応がアノード反応が主になるため、有機被覆層下でのカソード反応の抑制が可能となる。これにより、カソード生成物の形成が抑制され、したがって有機被覆層の劣化が抑制されて、被覆鋼材の防食性が向上することになると考えられる。   This cathodic reaction under the organic coating layer is a phenomenon that occurs because the potential of the steel material under the organic coating layer shows a relatively noble potential compared to the portion where the steel material is exposed. For this reason, when a metal layer showing a lower potential than the corrosion potential of carbon steel is formed on the surface of the steel material, the potential of the steel material under the organic coating layer is more than the corrosion potential of the carbon steel (for example, the steel material is exposed due to scratches or the like). Since the anode reaction is the main reaction that can occur on the surface of the carbon steel material under the coating layer, the cathode reaction under the organic coating layer can be suppressed. Thereby, it is considered that the formation of the cathode product is suppressed, and thus the deterioration of the organic coating layer is suppressed, and the corrosion resistance of the coated steel material is improved.

なお、有機被覆層下でのカソード反応は、鋼材が露出した部位の周囲以外の、有機被覆層下でも起きるが、その反応速度は、極めて緩慢である。
また、本発明者らは、鋼材表面に卑な金属層の形成は、必ずしも連続した層とする必要はなく、非連続でも同等に効果を得ることができることを知見した。そして、このような金属層を非連続に付着させることにより、金属層の付着量を、通常の防食に使用される量よりは、遥かに少量とすることができ、経済的に有利となる。また、鋼材露出部を確保することは、密着性の劣るZn,Al,Mgなどの金属による密着不良を回避することができる。つまり、鋼材露出部があると、その部分は被覆層との密着力が高いため、被覆層全体の鋼材に対する密着力が大きくなる。
The cathode reaction under the organic coating layer also occurs under the organic coating layer other than around the portion where the steel material is exposed, but the reaction rate is extremely slow.
Further, the present inventors have found that the formation of a base metal layer on the surface of a steel material does not necessarily need to be a continuous layer, and the same effect can be obtained even when discontinuous. And by adhering such a metal layer discontinuously, the amount of metal layer deposited can be made much smaller than the amount used for normal corrosion protection, which is economically advantageous. Moreover, securing the steel exposed portion can avoid poor adhesion due to metals such as Zn, Al, and Mg having poor adhesion. That is, if there is a steel material exposed portion, the adhesion strength of the entire coating layer to the steel material increases because that portion has high adhesion strength to the coating layer.

なお、ここでいう「非連続に付着」とは、表面に金属層を付着させた鋼材の表面を、任意の場所で、上面から観察し、鉄の露出面積率が、面積率で20%以上となるように、金属層を付着させた場合をいうものとする。なお、鉄の露出面積率の測定は、好ましくは、1mm以上の領域で、例えば、EPMA(Electron Probe Micro Analyzer)でZn,Al,Mgの元素を分析し、各元素の検出量をマッピングし、その結果から、画像解析装置により、Zn,Al,Mgの元素が存在しない領域を算出し、鉄が露出した領域とする。 The term “non-continuous adhesion” as used herein refers to the surface of a steel material with a metal layer adhered to the surface at an arbitrary position from the top surface, and the exposed area ratio of iron is 20% or more in terms of area ratio. In this case, the metal layer is attached. In addition, the measurement of the exposed area ratio of iron is preferably performed in an area of 1 mm 2 or more, for example, by analyzing elements of Zn, Al, Mg with EPMA (Electron Probe Micro Analyzer) and mapping the detection amount of each element. From the result, the region where the elements of Zn, Al, and Mg do not exist is calculated by the image analysis device, and is set as the region where iron is exposed.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)基材である炭素鋼材の表面に金属層と有機被覆層とを順次形成した被覆鋼材であって、前記金属層が、炭素鋼の腐食電位より卑な電位を示すZn、A1、Mgのうちのいずれかの金属およびZn、A1、Mgのうちから選ばれた少なくとも2種の合金のうちから選ばれた少なくとも1種を、前記鋼材表面に非連続に、0.1〜10g/mの付着量で付着させた層であることを特徴とする防食性に優れた被覆鋼材。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) A coated steel material in which a metal layer and an organic coating layer are sequentially formed on the surface of a carbon steel material as a base material, wherein the metal layer has a potential lower than the corrosion potential of carbon steel, Zn, A1, Mg And at least one selected from the group consisting of at least two alloys selected from Zn, A1, and Mg, discontinuously on the surface of the steel material, in an amount of 0.1 to 10 g / m 2 . A coated steel material having excellent anticorrosion properties, characterized in that it is a layer adhered in an amount of adhesion.

(2)(1)において、前記金属層を付着させた炭素鋼材の腐食電位Ecorr(mV)が、SCE(飽和甘こう電極)基準で、下記(1)に示す条件を満足することを特徴とする被覆鋼材。
Ecorr≦Esteel−10mV ‥‥(1)
(ここで、Esteel:SCE(飽和甘こう電極)基準での基材である炭素鋼材の腐食電位(mV))
(3)基材である炭素鋼材の表面に金属層と有機被覆層とを順次形成した被覆鋼材であって、前記金属層が、炭素鋼の腐食電位より卑な電位を示す金属およびその合金のうちから選ばれた少なくとも1種を、前記鋼材表面に非連続に、0.1〜10g/m の付着量で付着させた層であり、前記金属層を付着させた炭素鋼材の腐食電位Ecorr(mV)が、SCE(飽和甘こう電極)基準で、次(1)式
Ecorr≦Esteel−10mV ‥‥(1)
(ここで、Esteel:SCE(飽和甘こう電極)基準での基材である炭素鋼材の腐食電位(mV)) に示す条件を満足することを特徴とする防食性に優れた被覆鋼材。
(2) (1), characterized corrosion potential Ecorr of carbon steel obtained by attaching the metal layer (mV) is in SCE (saturated calomel electrode) reference, that you meet the conditions shown in the following (1) Coated steel material.
Ecorr ≦ Esteel−10mV (1)
(Esteel: Corrosion potential (mV) of carbon steel as a base material based on SCE (saturated ginger electrode))
(3) A coated steel material in which a metal layer and an organic coating layer are sequentially formed on the surface of a carbon steel material that is a base material, wherein the metal layer has a potential lower than the corrosion potential of carbon steel and alloys thereof It is a layer in which at least one selected from the above is adhered to the surface of the steel material in a non-continuous manner with an adhesion amount of 0.1 to 10 g / m 2 , and the corrosion potential Ecorr (mV ) On the basis of SCE (saturated ginger electrode),
Ecorr ≦ Esteel−10mV (1)
(Here, Esteel: SCE (saturated calomel electrode) corrosion potential of carbon steel as a base material for the reference (mV)) that satisfy the condition shown, wherein the corrosion resistance excellent coating steel.

(4)(1)ないし(3)のいずれかにおいて、前記有機被覆層のうちの最も厚い層を、エポキシ系樹脂塗膜層またはポリウレタン系樹脂塗膜層とすることを特徴とする被覆鋼材。
(5)基材である炭素鋼材の表面に金属層と有機被覆層とを順次形成した被覆鋼材であって、前記金属層が、炭素鋼の腐食電位より卑な電位を示す金属およびその合金のうちから選ばれた少なくとも1種を、前記鋼材表に非連続に、0.1〜10g/mの付着量で付着させた層であり、前記有機被覆層のうちの最も厚い層を、エポキシ系樹脂塗膜層またはポリウレタン系樹脂塗膜層とすることを特徴とする防食性に優れた被覆鋼材。
(4) The coated steel material according to any one of (1) to (3), wherein the thickest layer among the organic coating layers is an epoxy resin coating layer or a polyurethane resin coating layer.
(5) the substrate der Ru surface of the carbon steel material a coated steel material are sequentially formed a metal layer and an organic coating layer, the metal layer, the metal and its indicating a lower potential than the corrosion potential of carbon steel at least one member selected from among the alloy, discontinuously in the steel material table surface, a layer was deposited at a coverage of 0.1 to 10 g / m 2, the thickest layer of the organic coating layer an epoxy resin coating layer or superior coated steel material corrosion resistance, characterized in that the polyurethane resin coating layer.

(6)基材とする炭素鋼材に、該鋼材の表面に下地調整のために行なう前処理と、該前処理を行なった表面に金属層を付着させる金属層付着処理と、該金属層の上層として有機被覆層を形成する塗装処理とを、順次行う、被覆鋼材の製造方法であって、前記前処理を、ブラスト処理、酸洗処理、溶剤洗浄処理のうちから選ばれた1種または2種以上からなる処理とし、前記金属層付着処理を、炭素鋼の腐食電位より卑な電位を示すZn、A1、Mgのうちのいずれかの金属およびZn、A1、Mgのうちから選ばれた少なくとも2種の合金のうちから選ばれた少なくとも1種の金属粉末を前記鋼材の表面に投射し、前記鋼材の表面に前記金属粉末を非連続に、0.1〜10g/m の付着量で付着させた金属層を形成する処理とすることを特徴とする防食性に優れた被覆鋼材の製造方法。
(7)(6)において、前記塗装処理が、前記金属層の上層として、少なくともエポキシ系樹脂塗料またはポリウレタン系樹脂塗料を塗布して塗膜層を形成し、有機被覆層のうちの最も厚い層とすることを特徴とする被覆鋼材の製造方法。
(6) A carbon steel material used as a base material is pretreated for surface preparation on the surface of the steel material, a metal layer adhesion treatment for adhering a metal layer to the pretreated surface, and an upper layer of the metal layer And a coating process for forming an organic coating layer in order, wherein the pretreatment is one or two selected from blasting, pickling and solvent washing The above-described treatment is performed, and the metal layer adhesion treatment is performed by using at least two metals selected from the group consisting of Zn, A1, and Mg and Zn, A1, and Mg, which have a lower potential than the corrosion potential of carbon steel. At least one kind of metal powder selected from among various kinds of alloys was projected onto the surface of the steel material, and the metal powder was discontinuously adhered to the surface of the steel material with an adhesion amount of 0.1 to 10 g / m 2 . It is excellent in corrosion resistance characterized by processing and to Rukoto forming a metal layer Method of manufacturing the steel.
(7 ) In ( 6), the coating treatment forms at least an epoxy resin paint or a polyurethane resin paint as an upper layer of the metal layer to form a coating film layer, and is the thickest layer among the organic coating layers. A method for producing a coated steel material.

本発明によれば、腐食環境の厳しい海洋や河川環境下で、かつ干満部や飛沫部といった鋼構造物の部材が完全に水没しない領域においても使用できる、防食性が一段と向上した被覆鋼材を、容易にしかも安価に製造でき、鋼構造物の耐久性向上を図ることができ、産業上格段の効果を奏する。また、本発明によれば、被覆層の劣化を抑制できるため、被覆層の補修間隔を延長できるなど、鋼構造物の維持・管理費用を軽減できるという効果もある。   According to the present invention, in a marine or river environment where the corrosive environment is severe, and in a region where a steel structure member such as a tidal part or a splash part is not completely submerged, the coated steel material with further improved anticorrosion properties, The steel structure can be manufactured easily and inexpensively, and the durability of the steel structure can be improved. Further, according to the present invention, since the deterioration of the coating layer can be suppressed, there is an effect that the maintenance and management costs of the steel structure can be reduced, such as the repair interval of the coating layer being extended.

本発明の被覆鋼材は、基材である炭素鋼材の表面に金属層と有機被覆層を順次形成した鋼材である。
本発明で基材とする鋼材は、通常公知の炭素鋼材がいずれも適用でき、用途に応じて選定すればよく、とくに限定する必要はない。
本発明の被覆鋼材は、基材である炭素鋼材の表面に、非連続に付着した金属層を有する。この金属層は、炭素鋼の腐食電位より卑な電位を示す金属およびその合金のうちから選ばれた少なくとも1種を、非連続に付着させた層とする。なお、上記したように、ここでいう「非連続に付着」とは、鋼材の表面を、上面から観察し、鉄の露出面積率が、面積率で20%以上となるように、付着している場合をいう。なお、鉄の露出面積率が20%未満では、有機被覆層の接着強度が低くなる。また、鉄の露出面積率が90%を超えると、鋼材の腐食電位が所望の範囲(1式)を満足するように調整することができなくなる。このため鉄の露出面積率は90%以下とすることが好ましい。
The coated steel material of the present invention is a steel material in which a metal layer and an organic coating layer are sequentially formed on the surface of a carbon steel material that is a base material.
As the steel material used as a base material in the present invention, any known carbon steel material can be applied, and it may be selected according to the use, and there is no particular limitation.
The coated steel material of the present invention has a metal layer adhering discontinuously on the surface of a carbon steel material as a base material. This metal layer is a layer in which at least one selected from a metal having a potential lower than the corrosion potential of carbon steel and an alloy thereof is deposited discontinuously. As described above, “discontinuously attached” here means that the surface of the steel material is observed from the top surface, and the exposed area ratio of iron is 20% or more in terms of area ratio. If you are. If the exposed area ratio of iron is less than 20%, the adhesive strength of the organic coating layer is low. If the exposed area ratio of iron exceeds 90%, the corrosion potential of the steel material cannot be adjusted so as to satisfy the desired range (1 formula). For this reason, the exposed area ratio of iron is preferably 90% or less.

このような金属層を、鋼材表面に付着させることにより、有機被覆層の劣化を抑制することができる。というのは、このような金属層の付着により、有機被覆層下の界面(鋼材表面)の電位が、有機被覆層が傷ついて鋼材表面が露出した部位の電位より卑となり、有機被覆層下の界面(鋼材表面)において腐食に係るカソード反応を抑制することができ、その結果、カソード反応生成物の形成が抑制され、有機被覆層と鋼材との接着強度の低下、すなわち有機被覆層の劣化が抑制されるためであると考えられる。   By attaching such a metal layer to the surface of the steel material, deterioration of the organic coating layer can be suppressed. This is because the adhesion of such a metal layer makes the potential of the interface under the organic coating layer (steel material surface) lower than the potential at the site where the organic coating layer is damaged and the steel material surface is exposed, and below the organic coating layer. Cathode reaction related to corrosion can be suppressed at the interface (steel material surface). As a result, formation of a cathode reaction product is suppressed, and the adhesion strength between the organic coating layer and the steel material is reduced, that is, the organic coating layer is deteriorated. This is considered to be suppressed.

金属層の付着に用いる金属としては、Zn、Al、Mgのいずれかとすることが好ましい。これら金属はいずれも、炭素鋼の腐食電位より卑な電位を示す。また、金属層の付着に用いる合金としては、上記した金属のうちから選ばれた少なくとも2種の合金とすることが好ましい。このような合金としては、Zn−Al、Zn−Mg、Zn−Al−Mgが例示できる。なお、この合金のなかでは、アノード反応の抑制が顕著で、かつ容易に卑な電位を維持することができる、Zn−Al合金がより好ましい。   The metal used for the adhesion of the metal layer is preferably Zn, Al, or Mg. All of these metals have a lower potential than the corrosion potential of carbon steel. Moreover, as an alloy used for adhesion of a metal layer, it is preferable to use at least two kinds of alloys selected from the metals described above. Examples of such alloys include Zn-Al, Zn-Mg, and Zn-Al-Mg. Among these alloys, a Zn—Al alloy is more preferable because the anode reaction is remarkably suppressed and a base potential can be easily maintained.

また、上記した金属層の付着量は、0.1〜10 g/m2とする。付着量が0.1 g/m2未満では、所望の効果を確保できなくなり、一方、10 g/m2を超えて付着させても、効果が概ね飽和するうえ、有機被覆層との密着性が低下する。このため、金属層の付着量は0.1〜10 g/m2の範囲に限定した。
上記したように、基材である鋼材表面に、金属層を付着させた鋼材は、腐食電位Ecorr(mV)が、SCE(飽和甘こう電極)基準で、次(1)式
Ecorr≦Esteel−10mV ‥‥(1)
に示す条件を満足する。なお、ここで、Esteelは、基材である炭素鋼材の、SCE(飽和甘こう電極)基準での腐食電位(mV)である。なお、腐食電位は、飽和甘こう電極を照合電極として、当該鋼材の腐食電位を測定して得られた電位(mV)値をいうものとする。
Moreover, the adhesion amount of the above-mentioned metal layer shall be 0.1-10 g / m < 2 >. If the adhesion amount is less than 0.1 g / m 2 , the desired effect cannot be ensured. On the other hand, even if the adhesion amount exceeds 10 g / m 2 , the effect is almost saturated and the adhesion with the organic coating layer decreases. To do. For this reason, the adhesion amount of the metal layer was limited to a range of 0.1 to 10 g / m 2 .
As described above, the steel material with a metal layer attached to the surface of the steel material as the base material has a corrosion potential Ecorr (mV) based on the SCE (saturated gypsum electrode) standard and the following equation (1)
Ecorr ≦ Esteel−10mV (1)
The conditions shown in are satisfied. Here, Esteel is the corrosion potential (mV) of the carbon steel material as the base material on the basis of SCE (saturated gypsum electrode). The corrosion potential refers to the potential (mV) value obtained by measuring the corrosion potential of the steel material using the saturated gypsum electrode as a reference electrode.

さらに、上記した金属層の上層として、本発明の被覆鋼材は、有機被覆層を有する。ここでいう「有機被覆層」には、下地層としてプライマー処理により形成されるプライマー層と、その上層である塗装などの処理により形成される塗膜とを含むものとする。
有機被覆層は、本発明により得られる基本的な効果に対して、影響は小さいと考えられ、本発明では、金属層の上層として形成される有機被覆層には、通常公知の樹脂を主剤とする塗料を塗布して形成された塗膜(有機被覆層)がいずれも適用できる。塗料としては、例えば、エポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、フタル酸樹脂等を主剤とする塗料が例示できるが、なかでも、長期間の耐久性が期待できる、エポキシ樹脂またはポリウレタン樹脂を主剤としたエポキシ樹脂系塗料、ポリウレタン樹脂系塗料を使用して形成されるエポキシ樹脂系塗膜、ポリウレタン樹脂系塗膜とすることが好ましい。
Furthermore, the coated steel material of the present invention has an organic coating layer as an upper layer of the metal layer. The “organic coating layer” here includes a primer layer formed by primer treatment as a base layer and a coating film formed by treatment such as painting, which is an upper layer.
The organic coating layer is considered to have a small influence on the basic effects obtained by the present invention. In the present invention, the organic coating layer formed as the upper layer of the metal layer has a generally known resin as a main ingredient. Any coating film (organic coating layer) formed by applying a paint to be applied can be applied. Examples of the paint include paints mainly composed of epoxy resin, polyurethane resin, acrylic resin, phthalic acid resin, etc. Among them, epoxy resin or polyurethane resin, which can be expected to have long-term durability, is mainly used. It is preferable to use an epoxy resin coating film and a polyurethane resin coating film formed using an epoxy resin coating or a polyurethane resin coating.

エポキシ樹脂としては、とくに限定されるものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、アクリル変性エポキシ樹脂、ウレタン変性エポキシ樹脂等が例示できる。また、ポリウレタン樹脂としては、とくに限定されるものではないが、例えば、ウレタン樹脂、エポキシ変性ウレタン樹脂等が例示できる。
なお、塗膜(有機被覆層)には、主剤に加えて、防錆のための防錆顔料、塗料の性状を維持するための体質顔料等が含まれることは言うまでもない。
Although it does not specifically limit as an epoxy resin, For example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, an acrylic modified epoxy resin, a urethane modified epoxy resin etc. can be illustrated. Further, the polyurethane resin is not particularly limited, and examples thereof include a urethane resin and an epoxy-modified urethane resin.
Needless to say, the coating film (organic coating layer) contains, in addition to the main agent, a rust preventive pigment for preventing rust, an extender pigment for maintaining the properties of the paint, and the like.

また、形成される有機被覆層の厚さは、本発明ではとくに限定する必要はなく、用途環境に応じた常用の膜厚とすることが好ましい。有機被覆層の全厚さとして、例えば、海洋環境用であれば、300〜500μm程度とすることが好ましい。
なお、海洋環境向け鋼構造物では、一般的に重防食塗装が要求されることから、有機被覆層の下地層として例えば、ジンクリッチプライマー、防錆プライマー等の有機ないし無機プライマー層を設けたり、最上層として、紫外線劣化を防止するフッ素系樹脂層を形成しても、何ら問題はない。なお、防食性の観点からは、このような下地層を含めた有機被覆層全体の厚さに対し、エポキシ樹脂系塗膜、ポリウレタン樹脂系塗膜等を最も厚い層とすることが好ましい。
In addition, the thickness of the organic coating layer to be formed is not particularly limited in the present invention, and it is preferable to use a conventional film thickness according to the application environment. The total thickness of the organic coating layer is preferably about 300 to 500 μm for marine environments, for example.
In addition, in steel structures for the marine environment, since heavy anti-corrosion coating is generally required, for example, an organic or inorganic primer layer such as a zinc rich primer or a rust preventive primer is provided as a base layer of the organic coating layer, There is no problem even if a fluorine-based resin layer that prevents ultraviolet deterioration is formed as the uppermost layer. From the viewpoint of anticorrosion properties, it is preferable that an epoxy resin-based coating film, a polyurethane resin-based coating film, etc. be the thickest layer with respect to the total thickness of the organic coating layer including such a base layer.

つぎに、本発明被覆鋼材の好ましい製造方法について説明する。
本発明では、基材とする鋼材に、好ましくは、該鋼材の表面を清浄化する前処理を施した後、該鋼材の表面に金属層を付着させる金属層付着処理を施し、ついで、該金属層の上層として有機被覆層を形成する塗装処理を、施す。
まず、前処理として、基材である鋼材表面の酸化層や汚染層を除去し、表面を清浄化する処理を施すことが好ましい。これにより、表面に適正な凹凸を付与するとともに、その後に行う金属層の形成を容易にすることができる。処理方法は、とくに限定する必要はないが、常用の、酸洗処理やブラスト処理、あるいは特定の溶剤(有機溶剤)中で超音波洗浄する溶剤洗浄処理等の方法とすることが好ましい。なお、ブラスト処理では、スチールショット、スチールグリッド、ガーネットを用いる方法がいずれも適用できる。
Below, the preferable manufacturing method of this invention coated steel material is demonstrated.
In the present invention, the steel material used as a base material is preferably subjected to a pretreatment for cleaning the surface of the steel material, and then a metal layer adhesion treatment for adhering a metal layer to the surface of the steel material, and then the metal material. A coating treatment is performed to form an organic coating layer as an upper layer of the layer.
First, as a pretreatment, it is preferable to remove the oxide layer and the contamination layer on the surface of the steel material, which is a base material, and to perform a treatment for cleaning the surface. Thereby, while providing an appropriate unevenness | corrugation to the surface, formation of the metal layer performed after that can be made easy. The treatment method is not particularly limited, but is preferably a commonly used method such as pickling treatment, blast treatment, or solvent washing treatment in which ultrasonic washing is performed in a specific solvent (organic solvent). In the blasting process, any method using steel shot, steel grid, and garnet can be applied.

ついで、金属層付着処理を施し、鋼材表面に金属層を非連続に形成する。金属層を付着させる方法としては、上記した、炭素鋼の腐食電位より卑な電位を示す金属およびその合金のうちから選ばれた少なくとも1種の金属粉末を、鋼材表面に投射する方法とする。金属粉末を、鋼材表面に投射することにより、非連続に形成された金属層とすることができる。   Subsequently, a metal layer adhesion process is performed, and a metal layer is discontinuously formed on the steel material surface. As a method of attaching the metal layer, a method of projecting at least one metal powder selected from the above-described metal showing a potential lower than the corrosion potential of carbon steel and an alloy thereof onto the steel surface is used. By projecting the metal powder onto the surface of the steel material, a metal layer formed discontinuously can be obtained.

使用する金属粉末は、平均粒径:10μm以下の粉末とすることが好ましい。平均粒径が10μmを超えて大きくなると、粉末自体の質量が大きくなりすぎて、鋼材表面に付着させる確率が低くなる。なお、0.01μm未満のような微粉末では、粉末の価格が高騰し、経済的に不利となるとともに、金属粉末を投射するに際して、微細すぎて粉末の取扱いに困難を生じる。なお、好ましい金属粒子の平均粒径は、0.1〜2μmである。また、金属粉末の平均粒径は、レーザ回折・散乱法を利用して測定した値を用いるものとする。   The metal powder used is preferably a powder having an average particle size of 10 μm or less. When the average particle size exceeds 10 μm, the mass of the powder itself becomes too large, and the probability of adhering to the steel surface becomes low. In addition, in the fine powder of less than 0.01 μm, the price of the powder rises and it is economically disadvantageous, and when the metal powder is projected, it is too fine to make it difficult to handle the powder. In addition, the average particle diameter of a preferable metal particle is 0.1-2 micrometers. The average particle size of the metal powder is a value measured using a laser diffraction / scattering method.

金属粉末の投射は、塗装前処理等で良く利用されるブラスト処理を応用して行うことができる。通常は、グリッド、ショットを用いるブラストマシーンで、グリッドやショットに代えて金属粉末を用い、圧縮空気を用いて、該金属粉末を鋼材表面に投射することが好ましいが、この方法に限定されないことは言うまでもない。鋼材表面に投射された金属粉末は、投射速度に応じて、表面に打ち込まれ、深さ方向に多少、喰い込み、鋼材表面に付着した状態で保持される。   The metal powder can be projected by applying a blasting process that is often used in a pre-coating process. Normally, it is preferable to use a metal powder instead of the grid or shot in a blast machine using a grid or shot, and project the metal powder onto the steel surface using compressed air, but this is not a limitation. Needless to say. The metal powder projected onto the steel material surface is driven into the surface according to the projection speed, bite in the depth direction, and is held in a state of adhering to the steel material surface.

なお、金属層の付着量は、金属粉末の投射量と、投射圧力、投射時間とにより調整することができるが、調整の容易さからは、金属粉末の投射量、投射圧力を一定とし、投射時間を変化させることが好ましい。所望の金属層付着量(0.1〜10 g/m2)を安定して確保するためには、金属粉末の投射量を1g/s〜100g/sとし、投射圧力を、0.1〜10MPaとして、投射時間を、5〜1000sとすることが好ましい。なお、投射圧力が、0.1MPa未満では、投射速度が小さすぎて、金属粉末が鋼材表面に付着する確率が低下し、所望の付着量を確保できなくなる。一方、10MPaを超えて投射圧力を大きくしても、得られる効果が飽和する。なお、より好ましくは、圧力:1〜3MPa、金属粉末の投射量:2〜10 g/s、投射時間:300s程度である。 In addition, although the adhesion amount of a metal layer can be adjusted with the projection amount of metal powder, a projection pressure, and a projection time, from the ease of adjustment, the projection amount of metal powder and a projection pressure are made constant, and it projects. It is preferable to change the time. In order to stably secure the desired metal layer adhesion amount (0.1 to 10 g / m 2 ), the projection amount of metal powder is set to 1 g / s to 100 g / s, and the projection pressure is set to 0.1 to 10 MPa. The time is preferably 5 to 1000 s. If the projection pressure is less than 0.1 MPa, the projection speed is too low, and the probability that the metal powder adheres to the surface of the steel material decreases, making it impossible to secure a desired amount of adhesion. On the other hand, even if the projection pressure is increased beyond 10 MPa, the obtained effect is saturated. More preferably, the pressure is 1 to 3 MPa, the projection amount of the metal powder is 2 to 10 g / s, and the projection time is about 300 s.

金属層の上層として有機被覆層を形成するために、ついで、塗装処理を施す。
塗装処理では、所定の塗料を、常用である、スプレー、刷毛塗り、あるいは粉体塗装等により、被塗装面である、金属層を付着させた鋼材表面に、所定の塗膜厚となるように、塗布し、乾燥、焼付けを行って、塗膜を形成する。なお、本発明では、塗膜と、その下地層であるプライマー層を含めて、有機被覆層と称する。
In order to form an organic coating layer as an upper layer of the metal layer, a coating treatment is then performed.
In the painting process, a predetermined paint is applied to the surface of the steel material to which the metal layer is adhered, which is the surface to be coated, by spraying, brushing, or powder coating, etc. , Applied, dried and baked to form a coating film. In addition, in this invention, a coating film and the primer layer which is the base layer are called an organic coating layer.

塗膜形成のための所定の塗料としては、市販の、エポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、フタル酸樹脂、ポリエステル樹脂等を主剤とする塗料とすることが好ましい。これらの塗料は、主剤である樹脂に加えて、例えば、粘度調達のための体質顔料であるTiO2、SiO2等や、防錆のための防錆顔料であるモリブデン化合物、バナジウム化合物、クロム化合物、金属亜鉛、アルミニウム、マグネシウム等を、例えば、水、有機溶剤等の溶剤に配合したものとすることが好ましい。なお、所定の塗膜厚は、目的に応じて適宜決定することが好ましい。なお、防錆目的であれば、エポキシ樹脂系塗料やポリウレタン系塗料がより好ましい。 As the predetermined coating material for forming the coating film, it is preferable to use a commercially available epoxy resin, polyurethane resin, acrylic resin, phthalic acid resin, polyester resin or the like as a main component. In addition to the main resin, these paints include, for example, TiO 2 and SiO 2 as extender pigments for viscosity procurement, and molybdenum compounds, vanadium compounds, and chromium compounds as rust preventive pigments for rust prevention. It is preferable that metal zinc, aluminum, magnesium or the like is blended in a solvent such as water or an organic solvent. The predetermined coating thickness is preferably determined as appropriate according to the purpose. For rust prevention purposes, epoxy resin paints and polyurethane paints are more preferable.

なお、防食性を向上させる必要のある使途には、塗膜の下地層としてプライマー層を形成するために、塗装処理の前に、プライマー処理を施してもよい。プライマー処理としては、市販の、ジンクリッチプライマー、ポリウレタン樹脂プライマー、エポキシ樹脂プライマー等を用いる処理とすることが好ましい。プライマー層の厚さは、とくに限定する必要はなく、常用される10〜100μm程度の範囲とすることが好ましい。なお、プライマー処理は、所定のプライマー液をスプレー塗布する方法や、鋼材をプライマー液に浸漬する方法等で行うことが好ましい。   In addition, in the use which needs to improve corrosion resistance, in order to form a primer layer as a base layer of a coating film, you may give a primer process before a coating process. The primer treatment is preferably a treatment using a commercially available zinc rich primer, polyurethane resin primer, epoxy resin primer or the like. The thickness of the primer layer is not particularly limited, and is preferably in the range of about 10 to 100 μm that is commonly used. The primer treatment is preferably performed by a method of spray-coating a predetermined primer solution or a method of immersing a steel material in the primer solution.

以下、実施例に基づいてさらに、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

基材である鋼材として、板厚6mmのSS400鋼板を用意した。ついで、基材であるこの鋼板に、前処理として、平均粒径0.5mmφのスチールボールを投射して、表面の酸化層および汚染層を取り除く、ブラスト処理を施し、鋼板表面を清浄化した。
ついで、清浄化した鋼板表面に、圧縮空気を利用したブラストマシーンを使用して、表1に示す条件で、金属粉末を投射し、基材である鋼板表面に、表1に示す付着量の金属層を非連続に付着、形成した。使用した金属粉末は、表1に示す、Zn粉、Al粉、5%A1−Zn合金粉、55%Al−Zn合金粉、0.5%Mg−1%Al−Zn合金粉の5種とした。なお、使用した金属粉末の平均粒径は、レーザ回折・散乱法を用いて測定した値で、いずれも、0.95μmであった。なお、付着量の調整は、投射圧力を0.01〜10MPaとし、投射時間を、200〜2000sの範囲に調整することにより行った。また、金属粉末の投射量は、0.1〜10g/sの範囲にほぼ一定とした。なお、一部の鋼板には、金属層の付着は行わなかった。
An SS400 steel plate having a thickness of 6 mm was prepared as a steel material as a base material. Next, a steel ball having an average particle diameter of 0.5 mmφ was projected as a pretreatment on this steel plate as a base material to remove the surface oxide layer and contamination layer, and a blast treatment was performed to clean the steel plate surface.
Next, using a blast machine using compressed air on the cleaned steel plate surface, metal powder is projected under the conditions shown in Table 1, and the amount of metal shown in Table 1 is applied to the steel plate surface as a substrate. The layers were deposited and formed discontinuously. The metal powder used was five types shown in Table 1, Zn powder, Al powder, 5% A1-Zn alloy powder, 55% Al-Zn alloy powder, 0.5% Mg-1% Al-Zn alloy powder. The average particle size of the metal powder used was a value measured using a laser diffraction / scattering method and was 0.95 μm in all cases. The adhesion amount was adjusted by adjusting the projection pressure to 0.01 to 10 MPa and adjusting the projection time to a range of 200 to 2000 s. Moreover, the projection amount of the metal powder was made almost constant in the range of 0.1 to 10 g / s. Note that the metal layer was not attached to some of the steel plates.

得られた鋼板から、試験材(大きさ:40mm×40mm)を採取し、蛍光X線分析を行い、金属層を形成する金属元素の量(カウント)を測定し、予め求めておいた検量線を用いて、金属層の付着量を推定した。金属元素としては、ZnまたはAl、Mgとした。検量線は、鋼板表面に付着した金属層を酸を用いて全溶解して得た金属の量と、当該鋼板表面の蛍光X線分析による当該元素のカウント数とを求めることにより作成したものを使用した。この検量線を用いて、分析した元素量(カウント)から鋼板表面の金属層の付着量を換算した。   A test material (size: 40 mm x 40 mm) is collected from the obtained steel plate, subjected to fluorescent X-ray analysis, and the amount (count) of metal elements forming the metal layer is measured. Was used to estimate the adhesion amount of the metal layer. As the metal element, Zn, Al, or Mg was used. The calibration curve was prepared by determining the amount of metal obtained by completely dissolving the metal layer adhering to the steel sheet surface using acid and the count number of the element by fluorescent X-ray analysis of the steel sheet surface. used. Using this calibration curve, the adhesion amount of the metal layer on the surface of the steel sheet was converted from the analyzed element amount (count).

また、得られた鋼板から、試験片(大きさ:20mm×20mm)を採取し、EPMAを用いて、Zn、A1、Mgについて元素分析を行い、約50倍にてZn、A1、Mgの元素マッピングを作成した。そして、Zn、A1、Mgが検出されなかった領域の面積を鉄が露出した面積として、画像処理により求め、鉄が露出した面積率(露出面積率)を算出した。鉄の露出面積率が20%以上であれば、金属層が非連続であるとし、それ以下であれば連続であるとして、判定した。   In addition, a specimen (size: 20mm x 20mm) was collected from the obtained steel plate, and elemental analysis was performed on Zn, A1, and Mg using EPMA, and the elements of Zn, A1, and Mg were approximately 50 times larger. Created a mapping. Then, the area of the region where Zn, A1, and Mg were not detected was defined as the exposed area of the iron by image processing, and the area ratio (exposed area ratio) where the iron was exposed was calculated. When the exposed area ratio of iron was 20% or more, it was determined that the metal layer was discontinuous, and when it was less than that, it was determined to be continuous.

また、得られた鋼板から、試験片(大きさ:20mm×20mm)を採取し、該試験片の裏面と端面をエポキシ樹脂でシールするとともに、該試験片の端部に、リード線を取付けて、電位測定が可能となるように調整した。これら試験片を、0.5M−NaC1溶液中に120分間浸漬し、飽和甘こう電極を照合電極として、当該試験片の腐食電位を測定した。なお、同様に、金属層の付着を行わない鋼板から採取した試験片についても、当該試験片の腐食電位を測定した。   In addition, a test piece (size: 20 mm × 20 mm) is taken from the obtained steel plate, and the back and end surfaces of the test piece are sealed with epoxy resin, and a lead wire is attached to the end of the test piece. Adjustment was made so that potential measurement was possible. These test pieces were immersed in a 0.5M-NaC1 solution for 120 minutes, and the corrosion potential of the test piece was measured using a saturated gypsum electrode as a reference electrode. Similarly, the corrosion potential of the test piece was also measured for a test piece taken from a steel plate to which no metal layer was attached.

ついで、得られた鋼板を、トルエン中に浸漬し、超音波洗浄を3分間実施して、さらに表面汚染層を取り除いた。その後、その鋼板表面上に有機被覆層を形成し塗装鋼板を得た。
形成した有機被覆層は、表1に示す、(a)エポキシ系樹脂被覆層、(b)ポリウレタン系樹脂被覆層、および(c)厚肉のエポキシ系樹脂被覆層の、3種とした。各有機被覆層の形成方法はつぎのとおりとした。
(a)エポキシ系樹脂被覆層
鋼板に、下地層として、ジンクリッチプライマー(関西ペイント社製:SDジンク1000(商品名))をスプレー塗布し、乾燥して、20μm厚のプライマー層を形成したのち、該プライマー層の上層として、変性エポキシ樹脂塗料(関西ペイント社製:エポマリン(商品名))をスプレー塗布し、焼付け(加熱温度:40℃)して200μm厚の下塗り塗膜を形成し、さらにフッ素樹脂塗料中塗塗料(関西ペイント社製:セラテクトマイルド中塗(商品名))をスプレー塗布し、焼付け(加熱温度:40℃)して30μm厚の中塗り塗膜を形成し、さらに、フッ素樹脂塗料(関西ペイント社製:セラテクトF(商品名))をスプレー塗布し、焼付け(加熱温度:40℃)して20μm厚の上塗り塗膜を形成して、4層からなる有機被覆層を得た。
(b)ポリウレタン系樹脂被覆層
鋼板に、下地層として、ポリウレタン樹脂プライマー(第一工業製薬社製:パーマガードプライマー(商品名))をスプレー塗布し、乾燥して、40μm厚のプライマー層を形成したのち、該プライマー層の上層として、ポリウレタン樹脂塗料(第一工業製薬社製:パーマガード137(商品名))をスプレー塗布し、250μm厚の塗膜を形成し、2層からなる有機被覆層を得た。
(c)厚肉エポキシ系樹脂被覆層
鋼板に、下地層として、エポキシ樹脂プライマー(関西ペイント社製:テクトバリアプライマー(商品名))をスプレー塗布し、乾燥して、40μm厚のプライマー層を形成したのち、該プライマー層の上層として、超厚膜型エポキシ樹脂塗料(関西ペイント社製:テクトバリアSP(商品名))をスプレー塗布し、焼付け(加熱温度:40℃)して300μm厚の塗膜を形成し、2層からなる有機被覆層を得た。
Subsequently, the obtained steel plate was immersed in toluene and subjected to ultrasonic cleaning for 3 minutes to further remove the surface contamination layer. Then, the organic coating layer was formed on the steel plate surface, and the coated steel plate was obtained.
The organic coating layers formed were of three types, as shown in Table 1, (a) an epoxy resin coating layer, (b) a polyurethane resin coating layer, and (c) a thick epoxy resin coating layer. The method for forming each organic coating layer was as follows.
(A) Epoxy resin coating layer Zinc rich primer (manufactured by Kansai Paint Co., Ltd .: SD Zinc 1000 (trade name)) is spray-coated on the steel sheet and dried to form a 20 μm thick primer layer As an upper layer of the primer layer, a modified epoxy resin paint (manufactured by Kansai Paint Co., Ltd .: Epomarin (trade name)) is spray applied and baked (heating temperature: 40 ° C.) to form a 200 μm-thick undercoat film. Spray coating of fluororesin paint intermediate coating (manufactured by Kansai Paint Co., Ltd .: Seratec mild intermediate coating (trade name)), baking (heating temperature: 40 ° C) to form a 30μm thick intermediate coating film, and fluororesin A paint (manufactured by Kansai Paint Co., Ltd .: Serratec F (trade name)) was spray applied and baked (heating temperature: 40 ° C.) to form a 20 μm-thick top coat film to obtain an organic coating layer consisting of four layers. .
(B) Polyurethane-based resin coating layer As a base layer, a polyurethane resin primer (Daiichi Kogyo Seiyaku Co., Ltd .: Perm Guard Primer (trade name)) is spray-coated on the steel sheet and dried to form a 40 μm thick primer layer. After that, as an upper layer of the primer layer, a polyurethane resin paint (manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: Permguard 137 (trade name)) is spray-coated to form a 250 μm thick coating layer, and an organic coating layer consisting of two layers Got.
(C) Thick epoxy-based resin coating layer Spray coating of epoxy resin primer (manufactured by Kansai Paint Co., Ltd .: Tectbarrier Primer (trade name)) as a base layer on a steel sheet and drying to form a 40 μm thick primer layer After that, as an upper layer of the primer layer, an ultra-thick film type epoxy resin paint (manufactured by Kansai Paint Co., Ltd .: Tekbarrier SP (trade name)) is spray applied and baked (heating temperature: 40 ° C.) to a 300 μm thick coating film And an organic coating layer consisting of two layers was obtained.

上記した有機被覆層を形成した後、1週間保留した塗装鋼板から採取した大きさ:50mm×50mmの試験片を用いて、塗装鋼板の有機被覆層(塗膜)の接着性を評価した。また、上記した塗装鋼材から大きさ:100mm×100mmの試験片を採取し、塗装鋼板の有機被覆層(塗膜)の耐劣化性を評価した。試験方法は次のとおりとした。
(1)有機被覆層(塗膜)の接着性評価試験
採取した試験片の中央に、有機被覆層を貫通し、鋼板面に達する円周状の人工欠陥(欠陥内径:10mmφ)を、ボール盤を用いて形成し、さらに、この円周状欠陥内の塗膜上に、10mmφの円筒型の鉄製治具を、エポキシ樹脂で貼り付け、その治具を引張試験機に取り付けて、5mm/minの引張速度で試験片面に対し垂直に引張り、基材鋼板から有機被覆層が剥離するときの応力(破断応力)を求め、有機被覆層(塗膜)の接着強度とし、有機被覆層の接着性を評価した。なお、破断応力が40MPa以上を合格とした。
(2)有機被覆層(塗膜)の耐劣化性試験
採取した試験片の中央に、有機被覆層を貫通し、基材(鋼板面)に達する円形の人工欠陥(直径:5mmφ)を、ボール盤を用いて形成した。これら人工欠陥付きの試験片を、複合サイクル試験機に装入し、塩水噴霧工程:2時間、乾燥工程:4時間、湿潤工程:2時間からなる複合サイクルを300〜600サイクル繰り返す、腐食試験をJASO M609に準拠して実施した。
After forming the organic coating layer described above, the adhesiveness of the organic coating layer (coating film) of the coated steel plate was evaluated using a test piece of size: 50 mm × 50 mm collected from the coated steel plate held for one week. Moreover, a test piece having a size of 100 mm × 100 mm was taken from the above-described coated steel material, and the deterioration resistance of the organic coating layer (coating film) of the coated steel sheet was evaluated. The test method was as follows.
(1) Adhesiveness evaluation test of organic coating layer (coating film) In the center of the collected specimen, a circular artificial defect (defect inner diameter: 10mmφ) that penetrates the organic coating layer and reaches the steel plate surface, Furthermore, a 10 mmφ cylindrical iron jig is attached to the coating film in the circumferential defect with an epoxy resin, and the jig is attached to a tensile testing machine. The test piece is pulled perpendicularly to the surface of the test piece at a tensile speed, and the stress (breaking stress) when the organic coating layer peels from the base steel sheet is obtained. The adhesive strength of the organic coating layer (coating film) is determined. evaluated. A fracture stress of 40 MPa or more was accepted.
(2) Deterioration resistance test of organic coating layer (coating film) A circular artificial defect (diameter: 5 mmφ) that penetrates the organic coating layer and reaches the base material (steel plate surface) in the center of the collected specimen is drilled. Formed using. These test pieces with artificial defects are loaded into a combined cycle testing machine, and the corrosion test is repeated 300 to 600 cycles of a combined cycle consisting of a salt spray process: 2 hours, a drying process: 4 hours, and a wetting process: 2 hours. This was performed according to JASO M609.

なお、塩水噴霧工程は、温度:35℃で、3.5%中性塩水を噴霧する工程であり、乾燥工程は、温度:60℃で相対湿度:40%の環境に晒される工程であり、湿潤工程は、温度:50℃で相対湿度:95%の環境に晒される工程とした。
腐食試験後、人工欠陥部の周囲の有機被覆層の剥離幅を測定した。なお、剥離幅の測定は人工欠陥部周囲をカッターの刃を入れて剥離し、欠陥周囲の剥離領域の被覆層を除去し、欠陥部から剥離距離を求める方法によった。測定箇所は円形の人工欠陥部に対し12時方向、3時方向、6時方向、9時方向の4箇所とした。それら測定値の中で、最大の値を、その鋼板の剥離幅と定義し、有機被覆層の耐劣化性を評価した。
The salt water spraying step is a step of spraying 3.5% neutral salt water at a temperature of 35 ° C, and the drying step is a step of being exposed to an environment of a temperature: 60 ° C and a relative humidity of 40%, and a wetting step Was a step exposed to an environment with a temperature of 50 ° C. and a relative humidity of 95%.
After the corrosion test, the peel width of the organic coating layer around the artificial defect was measured. The measurement of the peeling width was based on a method in which the periphery of the artificial defect portion was peeled off by inserting a cutter blade, the covering layer in the peeling region around the defect was removed, and the peeling distance was obtained from the defect portion. The measurement locations were four locations at 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock for circular artificial defects. Among these measured values, the maximum value was defined as the peel width of the steel sheet, and the deterioration resistance of the organic coating layer was evaluated.

なお、同じ有機被覆層を施したもの同士を比較し、鋼板上に金属層の付着を行なわなかったものより、剥離幅が2mm以上短くなったものを合格とした。
得られた結果を、表1に示す。
In addition, the thing which gave the same organic coating layer was compared, and the thing whose peeling width became 2 mm or more shorter than what did not adhere a metal layer on a steel plate was set as the pass.
The obtained results are shown in Table 1.

Figure 0005742259
Figure 0005742259

本発明例はいずれも、有機被覆層の接着強度が高く、さらに腐食試験後の有機被覆層の剥離距離が小さく、腐食環境下での有機被覆層の耐劣化性が向上していることがわかる。これに対し、本発明範囲から外れる比較例は、腐食試験後の有機被覆層の剥離距離が大きく、腐食環境下で、有機被覆層の劣化が大きいことを示している。
In all of the examples of the present invention, the adhesion strength of the organic coating layer is high, the peel distance of the organic coating layer after the corrosion test is small, and the deterioration resistance of the organic coating layer in a corrosive environment is improved. . On the other hand, the comparative example which deviates from the scope of the present invention shows that the peel distance of the organic coating layer after the corrosion test is large, and the organic coating layer is greatly deteriorated in a corrosive environment.

Claims (7)

基材である炭素鋼材の表面に金属層と有機被覆層とを順次形成した被覆鋼材であって、前記金属層が、炭素鋼の腐食電位より卑な電位を示すZn、A1、Mgのうちのいずれかの金属およびZn、A1、Mgのうちから選ばれた少なくとも2種の合金のうちから選ばれた少なくとも1種を、前記鋼材表面に非連続に、0.1〜10g/mの付着量で付着させた層であることを特徴とする防食性に優れた被覆鋼材。 A coated steel material in which a metal layer and an organic coating layer are sequentially formed on the surface of a carbon steel material that is a base material, wherein the metal layer has a potential lower than the corrosion potential of carbon steel , among Zn, A1, and Mg Any metal and at least one selected from at least two alloys selected from Zn, A1, and Mg are discontinuously deposited on the surface of the steel material in an amount of 0.1 to 10 g / m 2. A coated steel material having excellent anticorrosion properties, characterized by being an attached layer. 前記金属層を付着させた炭素鋼材の腐食電位Ecorr(mV)が、SCE(飽和甘こう電極)基準で、下記(1)に示す条件を満足することを特徴とする請求項1に記載の被覆鋼材。
Ecorr≦Esteel−10mV ‥‥(1)
(ここで、Esteel:SCE(飽和甘こう電極)基準での基材である炭素鋼材の腐食電位(mV))
Corrosion potential Ecorr of carbon steel obtained by attaching the metal layer (mV) is, SCE at (saturated calomel electrode) reference, according to claim 1, characterized that you meet the conditions shown in the following (1) Coated steel.
Ecorr ≦ Esteel−10mV (1)
(Esteel: Corrosion potential (mV) of carbon steel as a base material based on SCE (saturated ginger electrode))
基材である炭素鋼材の表面に金属層と有機被覆層とを順次形成した被覆鋼材であって、前記金属層が、炭素鋼の腐食電位より卑な電位を示す金属およびその合金のうちから選ばれた少なくとも1種を、前記鋼材表面に非連続に、0.1〜10g/m の付着量で付着させた層であり、前記金属層を付着させた炭素鋼材の腐食電位Ecorr(mV)が、SCE(飽和甘こう電極)基準で、下記(1)に示す条件を満足することを特徴とする防食性に優れた被覆鋼材。
Ecorr≦Esteel−10mV ‥‥(1)
ここで、Esteel:SCE(飽和甘こう電極)基準での基材である炭素鋼材の腐食電位(mV))
A coated steel material in which a metal layer and an organic coating layer are sequentially formed on the surface of a carbon steel material as a base material, wherein the metal layer is selected from a metal having a base potential lower than the corrosion potential of carbon steel and an alloy thereof And a corrosion potential Ecorr (mV) of the carbon steel material to which the metal layer is adhered is a layer in which at least one of the above materials is non-continuously adhered to the surface of the steel material with an adhesion amount of 0.1 to 10 g / m 2 . A coated steel material excellent in anticorrosion , characterized by satisfying the condition shown in the following (1) on the basis of SCE (saturated gypsum electrode).
Ecorr ≦ Esteel−10mV (1)
( Esteel: Corrosion potential (mV) of carbon steel as a base material based on SCE (saturated ginger electrode))
前記有機被覆層のうちの最も厚い層を、エポキシ系樹脂塗膜層またはポリウレタン系樹脂塗膜層とすることを特徴とする請求項1ないし3のいずれかに記載の被覆鋼材。   4. The coated steel material according to claim 1, wherein the thickest layer of the organic coating layers is an epoxy resin coating layer or a polyurethane resin coating layer. 基材である炭素鋼材の表面に金属層と有機被覆層とを順次形成した被覆鋼材であって、前記金属層が、炭素鋼の腐食電位より卑な電位を示す金属およびその合金のうちから選ばれた少なくとも1種を、前記鋼材表に非連続に、0.1〜10g/mの付着量で付着させた層であり、前記有機被覆層のうちの最も厚い層を、エポキシ系樹脂塗膜層またはポリウレタン系樹脂塗膜層とすることを特徴とする防食性に優れた被覆鋼材。 A coated steel material on the surface of the substrate der Ru carbon steel material are sequentially formed a metal layer and an organic coating layer, the metal layer, of the metal and its alloys show a lower potential than the corrosion potential of carbon steel at least one member selected from, in non-contiguous in the steel material table surface, a layer was deposited at a coverage of 0.1 to 10 g / m 2, the thickest layer of the organic coating layer, an epoxy resin coating layer or a polyurethane-based resin coating layer and to Rukoto coated steel material excellent in corrosion resistance characterized by. 基材とする炭素鋼材に、該鋼材の表面に下地調整のために行なう前処理と、該前処理を行なった表面に金属層を付着させる金属層付着処理と、該金属層の上層として有機被覆層を形成する塗装処理とを、順次行う、被覆鋼材の製造方法であって、
前記前処理を、ブラスト処理、酸洗処理、溶剤洗浄処理のうちから選ばれた1種または2種以上からなる処理とし、
前記金属層付着処理を、炭素鋼の腐食電位より卑な電位を示すZn、A1、Mgのうちのいずれかの金属およびZn、A1、Mgのうちから選ばれた少なくとも2種の合金のうちから選ばれた少なくとも1種の金属粉末を前記鋼材の表面に投射し、前記鋼材の表面に前記金属粉末を非連続に、0.1〜10g/m の付着量で付着させた金属層を形成する処理とすることを特徴とする防食性に優れた被覆鋼材の製造方法。
A carbon steel material as a base material is pretreated for surface preparation on the surface of the steel material, a metal layer adhesion treatment for adhering a metal layer to the pretreated surface, and an organic coating as an upper layer of the metal layer It is a manufacturing method of a coated steel material that sequentially performs a coating process for forming a layer,
The pretreatment is a treatment consisting of one or more selected from blast treatment, pickling treatment, and solvent washing treatment,
The metal layer deposition process, from among the at least two alloys selected from among any metal of Zn, A1, Mg indicating a lower potential than the corrosion potential of carbon steel and Zn, A1, Mg A process of projecting at least one selected metal powder onto the surface of the steel material to form a metal layer in which the metal powder is non-continuously adhered to the surface of the steel material with an adhesion amount of 0.1 to 10 g / m 2. and to method for producing a coated steel material excellent in corrosion resistance characterized by Rukoto.
前記塗装処理が、前記金属層の上層として、少なくともエポキシ系樹脂塗料またはポリウレタン系樹脂塗料を塗布して塗膜層を形成し、有機被覆層のうちの最も厚い層とすることを特徴とする請求項6に記載の被覆鋼材の製造方法。 The coating treatment is characterized in that, as an upper layer of the metal layer, at least an epoxy resin paint or a polyurethane resin paint is applied to form a coating film layer, which is the thickest layer of the organic coating layer. Item 7. A method for producing a coated steel material according to Item 6 .
JP2011018807A 2011-01-31 2011-01-31 Coated steel for marine / river environment and manufacturing method thereof Active JP5742259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018807A JP5742259B2 (en) 2011-01-31 2011-01-31 Coated steel for marine / river environment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018807A JP5742259B2 (en) 2011-01-31 2011-01-31 Coated steel for marine / river environment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012158795A JP2012158795A (en) 2012-08-23
JP5742259B2 true JP5742259B2 (en) 2015-07-01

Family

ID=46839566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018807A Active JP5742259B2 (en) 2011-01-31 2011-01-31 Coated steel for marine / river environment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5742259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922146B1 (en) * 2018-02-09 2018-11-26 (주) 신성메탈라이징 Manufacturing method of artificial reef

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252735A (en) * 1986-12-12 1988-10-19 住友金属工業株式会社 Coating steel material having excellent corrosion protection after coating

Also Published As

Publication number Publication date
JP2012158795A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5206386B2 (en) Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
JP2014019908A (en) Anticorrosion coated steel material
Buchheit Corrosion resistant coatings and paints
JP2013166991A (en) Surface-treated steel material having excellent corrosion resistance
JP6252400B2 (en) Repair base coating composition
JP5991379B2 (en) Al-Zn plated steel sheet
JP5402337B2 (en) Rust prevention coating method
JP2011227004A (en) Method for testing corrosion acceleration of double anticorrosive coating steel material
JP5742259B2 (en) Coated steel for marine / river environment and manufacturing method thereof
JP2006315238A (en) Weatherable structural steel material excellent in long-period durability in high flying chloride environment
JP4577238B2 (en) Resin-coated steel with excellent long-term durability in concentrated chloride environments and its manufacturing method
JP5459035B2 (en) Durability judgment method for coated steel
JP4964699B2 (en) Organic resin-coated steel and building using the same
JP4343570B2 (en) Steel base material and base material adjustment method
JP2005262526A (en) Coated aluminium plated steel sheet excellent in corrosion resistance
JP5735351B2 (en) Surface treated steel
JP5271748B2 (en) Coating method and anticorrosion coating
JP4595494B2 (en) Resin coated heavy duty steel
JP6623543B2 (en) Organic resin coated steel
JP2006116736A (en) Coated stainless steel sheet excellent in corrosion resistance
JP6517134B2 (en) One-component high corrosion resistant paint composition using Sn ion
JP7307324B2 (en) Composite structure
JP2013166993A (en) Surface-treated steel material having excellent corrosion resistance and method for producing the same
JP2008229998A (en) Heavy corrosion-proof coated steel material
JP2001081585A (en) Method of preventing corrosion in steel structure by pasting of metallic thin sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130605

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250