JP2006116736A - Coated stainless steel sheet excellent in corrosion resistance - Google Patents

Coated stainless steel sheet excellent in corrosion resistance Download PDF

Info

Publication number
JP2006116736A
JP2006116736A JP2004304419A JP2004304419A JP2006116736A JP 2006116736 A JP2006116736 A JP 2006116736A JP 2004304419 A JP2004304419 A JP 2004304419A JP 2004304419 A JP2004304419 A JP 2004304419A JP 2006116736 A JP2006116736 A JP 2006116736A
Authority
JP
Japan
Prior art keywords
phosphate
stainless steel
film
steel sheet
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004304419A
Other languages
Japanese (ja)
Inventor
Fumishiro Kumon
史城 公文
Hiroshi Tsuburaya
浩 圓谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2004304419A priority Critical patent/JP2006116736A/en
Publication of JP2006116736A publication Critical patent/JP2006116736A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated stainless steel sheet which produces no red rust even in a severe corrosive environment and is useful as a facing material, an interior material, a surface decorative material and the like. <P>SOLUTION: The coated stainless steel sheet has an undercoating film containing a magnesium salt and a phosphate provided thereto through a chemical forming film wherein a titanium and/or zirconium compound and a fluoride coexist. As the titanium and/or zirconium compound, hexafluorotitanate, hexafluorozirconate or a metal salt of each of them is used. At least one of magnesium hydrogen phosphate, magnesium phosphate and magnesium tripolyphosphate is used as the magnesium salt and at least one of zinc phosphate, aluminum dihydrogen tripolyphosphate, aluminum phosphate and calcium phosphate is used as the phosphate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、塗膜欠陥が発生しやすい曲げ部や切断端面においても優れた耐食性が維持され、環境負荷の大きなクロム化合物を含まない塗装ステンレス鋼板に関する。   The present invention relates to a coated stainless steel sheet that maintains excellent corrosion resistance even at a bent portion or a cut end face where a coating film defect is likely to occur and does not contain a chromium compound having a large environmental load.

外装材,内装材,表装材等では、耐食性の良好な溶融亜鉛めっき鋼板が塗装原板として従来から使用されている。しかし、大気汚染の進行に伴ってイオウ酸化物,窒素酸化物等による大気や雨水の酸性化が著しい昨今、塗装鋼板の平坦部,加工部,切断端面,塗膜疵付き部等の塗膜下で溶融亜鉛めっき層の腐食が促進され、内装建材,外装建材等としての耐久性が懸念される状況になってきている。たとえば、平坦部の耐食性は、Clイオン等の腐食性イオンが塗膜を透過して溶融亜鉛めっき層の腐食を促進させ、体積膨張した亜鉛系腐食生成物によって塗膜が押し上げられ、塗膜フクレとして観察される。   Conventionally, hot-dip galvanized steel sheets with good corrosion resistance have been used as coating raw materials for exterior materials, interior materials, and exterior materials. However, with the progress of air pollution, acidification of the atmosphere and rainwater due to sulfur oxides, nitrogen oxides, etc. has been remarkable recently. As a result, corrosion of the hot dip galvanized layer is promoted, and there is a concern about durability as an interior building material, an exterior building material, and the like. For example, the corrosion resistance of the flat portion is such that corrosive ions such as Cl ions penetrate the coating film to promote corrosion of the hot dip galvanized layer, and the coating film is pushed up by the volume-expanded zinc-based corrosion product. As observed.

溶融亜鉛めっき鋼板よりも優れた耐食性を得るため、塗装原板,塗装前処理,塗膜組成等について広汎な検討が進められている。
塗装原板に関しては、平坦部や塗膜疵付き部の耐食性に優れた溶融Zn-Al系合金めっき鋼板,溶融Zn-Al-Mg合金めっき鋼板,溶融アルミニウムめっき鋼板等が使用され始めているが、加工部や切断端面の耐食性は必ずしも満足されない。たとえば、塗装溶融Zn-55%Alめっき鋼板を曲げ加工すると、延性が乏しいZn-Al系合金めっき層にクラックが発生し、クラックを介して露出した下地鋼が腐食の起点となりやすい。溶融アルミニウムめっき鋼板でも、延性に乏しいFe-Al-Si合金層に発生したクラックがAl-Siめっき層に伝播し、腐食発生の起点になる傾向がみられる。
In order to obtain corrosion resistance superior to that of hot-dip galvanized steel sheets, extensive studies are being conducted on the coating original sheet, pre-coating treatment, coating composition, and the like.
With regard to the coating original sheet, hot-dip Zn-Al alloy-plated steel sheet, hot-dip Zn-Al-Mg alloy-plated steel sheet, hot-dip aluminum-plated steel sheet, etc., which have excellent corrosion resistance at the flat part and the coating wrinkled part, have begun to be used. The corrosion resistance of the part and the cut end face is not always satisfied. For example, when a coated hot-melt Zn-55% Al-plated steel sheet is bent, cracks occur in the Zn-Al alloy plating layer with poor ductility, and the underlying steel exposed through the cracks is likely to be the starting point of corrosion. Even in the hot-dip aluminum-plated steel sheet, cracks generated in the Fe—Al—Si alloy layer having poor ductility tend to propagate to the Al—Si plated layer and become a starting point of corrosion.

めっき層欠陥部を起点とする腐食は、自己修復作用のある化成皮膜をめっき層表面に形成する塗装前処理により抑制される。自己修復作用のある化成皮膜は、代表的には六価Cr→三価Crの酸化還元反応を利用したクロメート処理で形成されているが、クロメート処理では環境に有害な六価Crの溶出が懸念されることから、クロムフリーの化成皮膜に置き換えられる傾向にある。本出願人は、Ti,Zr等のバルブメタルのフッ化物を含むクロムフリーの化成皮膜を開発している(特許文献1,2)。化成皮膜に含まれるバルブメタルのフッ化物は、腐食性雰囲気に溶出した後で難溶性の化合物となって再析出することにより欠陥部を自己修復する。
特開2002-30458号公報 特開2002-38280号公報
Corrosion starting from a defective portion of the plating layer is suppressed by a coating pretreatment that forms a chemical conversion film having a self-repairing action on the surface of the plating layer. A chemical conversion film with a self-repairing action is typically formed by chromate treatment using the oxidation-reduction reaction of hexavalent Cr → trivalent Cr, but there is a concern about the elution of hexavalent Cr harmful to the environment in the chromate treatment. Therefore, it tends to be replaced with a chromium-free chemical conversion film. The present applicant has developed a chromium-free chemical conversion film containing a fluoride of valve metal such as Ti and Zr (Patent Documents 1 and 2). The valve metal fluoride contained in the chemical conversion film elutes into a corrosive atmosphere and then re-deposits as a poorly soluble compound, thereby self-repairing the defective portion.
JP 2002-30458 A JP 2002-38280 A

なかでも、溶融Zn-Al-Mg合金めっき鋼板を塗装原板に用い、クロムフリー系の塗装を施すと、加工部や切断端面においても優れた耐食性を呈する。優れた耐食性は、めっき層欠陥部や切断端面等の下地露出部を覆う緻密で難溶性のMg系腐食生成物に由来すると考えられ、腐食抑制機能のある腐食生成物の生成に必要なMgを下塗り塗膜から補給しても同様に加工部や切断端面の耐食性が改善される。本発明者等は、かかる観点から下塗り塗膜にマグネシウム塩を配合した塗装Zn-Al系合金めっき鋼板(特許文献3),塗装アルミニウムめっき鋼板(特許文献4)を提案している。
特願2003-411501号 特願2004-75704号
In particular, when a hot-dip Zn—Al—Mg alloy-plated steel sheet is used as a coating base plate and chromium-free coating is applied, excellent corrosion resistance is exhibited even in the processed part and the cut end face. The excellent corrosion resistance is considered to be derived from dense and poorly soluble Mg-based corrosion products that cover the exposed underlying parts such as plating layer defects and cut end faces, and Mg required for the production of corrosion products having a corrosion-inhibiting function. Even if it replenishes from the undercoat coating film, the corrosion resistance of the processed part and the cut end face is similarly improved. The present inventors have proposed a coated Zn—Al-based alloy-plated steel sheet (Patent Document 3) and a painted aluminum-plated steel sheet (Patent Document 4) in which a magnesium salt is blended in the undercoat film from such a viewpoint.
Japanese Patent Application No. 2003-411501 Japanese Patent Application No. 2004-75704

本発明者等は、化成皮膜のチタン及び/又はジルコニウム化合物と下塗り塗膜のマグネシウム塩が共存する系で優れた耐食性が発現する現象を更に調査・検討した。その結果、チタン及び/又はジルコニウム化合物とマグネシウム塩との共存に由来する耐食性向上効果は、亜鉛系,アルミニウム系等のめっき鋼板に留まらずステンレス鋼板を塗装原板とする場合でも有効であることが判った。そればかりか、ステンレス鋼板を塗装原板に使用した場合、ステンレス鋼特有の隙間腐食も防止されることを見出した。   The present inventors further investigated and examined the phenomenon in which excellent corrosion resistance was exhibited in a system in which the titanium and / or zirconium compound of the chemical conversion film and the magnesium salt of the undercoat film coexisted. As a result, it was found that the corrosion resistance improvement effect derived from the coexistence of titanium and / or zirconium compound and magnesium salt is effective not only for zinc-based and aluminum-based plated steel plates, but also for stainless steel plates as the coating base plate. It was. In addition, it has been found that when stainless steel plate is used as a coating original plate, crevice corrosion peculiar to stainless steel is also prevented.

本発明は、かかる知見をベースに完成されたものであり、チタン及び/又はジルコニウム化合物を含む化成皮膜とマグネシウム塩,リン酸塩を含む下塗り塗膜とを組み合わせることにより、加工部や切断端面の耐食性を向上させると共に、隙間腐食も抑制された塗装ステンレス鋼板を提供することを目的とする。   The present invention has been completed on the basis of such knowledge, and by combining a chemical conversion film containing titanium and / or a zirconium compound with an undercoat film containing magnesium salt and phosphate, a processed part or a cut end face can be obtained. It aims at providing the coated stainless steel plate which improved corrosion resistance and also suppressed crevice corrosion.

本発明の塗装ステンレス鋼板は、ステンレス鋼板を塗装原板に使用し、チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜を介し、マグネシウム塩,リン酸塩が配合された下塗り塗膜が設けられている。
チタン化合物及び/又はジルコニウム化合物としては、ヘキサフルオロチタン酸,ヘキサフルオロジルコニウム酸及びそれらの金属塩から選ばれた一種又は二種以上が使用される。
The coated stainless steel sheet of the present invention uses a stainless steel sheet as a coating original sheet, and is provided with an undercoat film in which magnesium salt and phosphate are blended via a chemical conversion film containing a titanium compound and / or a zirconium compound and fluoride. It has been.
As the titanium compound and / or the zirconium compound, one or more selected from hexafluorotitanic acid, hexafluorozirconic acid, and metal salts thereof are used.

マグネシウム塩には、リン酸水素マグネシウム,リン酸マグネシウム,トリポリリン酸マグネシウムの一種又は二種以上が使用される。リン酸塩には、リン酸亜鉛,トリポリリン酸二水素アルミニウム,リン酸アルミニウム,リン酸カルシウムの一種又は二種以上が使用される。
化成皮膜は、有機・無機複合皮膜であっても良い。複合皮膜の有機樹脂としては、フェノール樹脂,アクリル樹脂,アクリルオレフィン樹脂,ポリウレタン樹脂から選ばれた一種又は二種以上が使用される。
As the magnesium salt, one or more of magnesium hydrogen phosphate, magnesium phosphate, and magnesium tripolyphosphate are used. As the phosphate, one or more of zinc phosphate, aluminum trihydrogenphosphate, aluminum phosphate, and calcium phosphate are used.
The chemical conversion film may be an organic / inorganic composite film. As the organic resin of the composite film, one or more selected from phenol resin, acrylic resin, acrylic olefin resin, and polyurethane resin are used.

本発明の塗装ステンレス鋼板では、チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜が下地のステンレス鋼板表面に形成されている。化成皮膜は、下地のステンレス鋼板に強固に付着しており、曲げ加工等によってもステンレス鋼板から剥離し難い。仮に剥離した場合にあっても、皮膜欠陥部が自己修復作用によって補修され、腐食性雰囲気から下地のステンレス鋼板を保護する環境遮断能が持続される。   In the coated stainless steel plate of the present invention, a chemical conversion film containing a titanium compound and / or a zirconium compound and a fluoride is formed on the surface of the underlying stainless steel plate. The chemical conversion film adheres firmly to the underlying stainless steel plate and is difficult to peel off from the stainless steel plate even by bending. Even in the case of peeling, the film defect portion is repaired by the self-repairing action, and the environmental barrier ability to protect the underlying stainless steel plate from the corrosive atmosphere is maintained.

しかも、下塗り塗膜にマグネシウム塩,リン酸塩が配合されているので、塗膜割れの結果として露出した化成皮膜又はステンレス鋼板表面にMg,リン酸が供給され保護皮膜が再生される。したがって、塗膜の割れ部を介した化成皮膜又はステンレス鋼板表面への腐食性イオンの侵入がなくなり、塗膜下腐食や隙間腐食が防止される。
因みに、シリカ系皮膜を介して塗膜をステンレス鋼板表面に設けた場合、シリカ系皮膜の密着性が劣るため加工部でステンレス鋼板表面から塗膜が浮き上がりやすく、場合によっては剥離・脱落に近い現象が生じることがある。この状態の曲げ加工部に腐食性イオンが侵入すると、化成皮膜の浮上り部でステンレス鋼板の隙間腐食が進行する。一旦侵入した腐食性イオンは化成皮膜の浮上り部から系外に流出しがたいので、隙間部で腐食性イオンの濃度が上昇して隙間腐食が加速される。
And since magnesium salt and phosphate are mix | blended with the undercoat coating film, Mg and phosphoric acid are supplied to the chemical conversion film or stainless steel plate surface exposed as a result of a coating-film crack, and a protective film is reproduced | regenerated. Therefore, the invasion of corrosive ions to the chemical conversion film or the stainless steel plate surface through the cracked portion of the coating film is eliminated, and corrosion under the coating film and crevice corrosion are prevented.
By the way, when a coating film is provided on the surface of a stainless steel plate via a silica-based film, the adhesion of the silica-based film is inferior, so the coating film tends to float from the surface of the stainless steel plate in the processed part, and in some cases a phenomenon that is close to peeling or dropping off May occur. When corrosive ions enter the bent portion in this state, crevice corrosion of the stainless steel plate proceeds at the floating portion of the chemical conversion film. Since the corrosive ions once invaded hardly flow out of the system from the floating portion of the chemical conversion film, the concentration of the corrosive ions is increased in the gap portion and the crevice corrosion is accelerated.

チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜とマグネシウム塩,リン酸塩を含む下塗り塗膜との組合せは、塗装ステンレス鋼板の切断端面を腐食から保護する上でも有効である。端面腐食は、化成皮膜や下塗り塗膜で覆われていない切断端面が腐食性雰囲気に曝されることが原因であるが、本発明の塗装ステンレス鋼板では下塗り塗膜から溶出したマグネシウム塩,リン酸塩が切断端面に再析出することにより腐食抑制機能のある保護皮膜が切断端面に形成され、切断端面の耐食性が向上する。しかも、ステンレス鋼板に対する化成皮膜の密着性が高いため、ステンレス鋼板/化成皮膜の界面への腐食性イオンの侵入が確実に抑えられ、切断端面を起点とする下塗り塗膜の浮上りがなく、切断端面近傍の隙間腐食も防止される。   A combination of a chemical conversion film containing a titanium compound and / or a zirconium compound and a fluoride and an undercoat film containing a magnesium salt or a phosphate is also effective in protecting the cut end surface of the coated stainless steel sheet from corrosion. End face corrosion is caused by the fact that the cut end face not covered with the chemical conversion film or the undercoat film is exposed to a corrosive atmosphere. In the coated stainless steel sheet of the present invention, magnesium salt and phosphoric acid eluted from the undercoat film. By reprecipitation of the salt on the cut end face, a protective film having a corrosion inhibiting function is formed on the cut end face, and the corrosion resistance of the cut end face is improved. Moreover, since the adhesion of the chemical conversion film to the stainless steel plate is high, the invasion of corrosive ions to the stainless steel plate / chemical conversion film interface is surely suppressed, and there is no lifting of the undercoat film starting from the cut end surface. Crevice corrosion near the end face is also prevented.

塗装原板には、鋼種に格別の制約が加わるものではなく、従来から外装建材,内装建材,各種構造材等として用いられているフェライト系,オーステナイト系,マルテンサイト系,二相系等、各種ステンレス鋼板を使用できる。
ステンレス鋼板には、化成処理に先立って脱脂,酸洗,表面調整,洗浄等が施される。清浄化されたステンレス鋼板表面に化成処理液を塗布し、水洗することなく乾燥させると自己修復作用があり密着性に優れた化成皮膜が形成される。
There are no particular restrictions on the type of steel used for coating, and various stainless steels such as ferritic, austenitic, martensitic, and two-phase systems that have been used as exterior building materials, interior building materials, and various structural materials. Steel plate can be used.
The stainless steel plate is subjected to degreasing, pickling, surface adjustment, cleaning, etc. prior to chemical conversion treatment. When a chemical conversion treatment liquid is applied to the surface of the cleaned stainless steel plate and dried without washing with water, a chemical conversion film having a self-repairing action and excellent adhesion is formed.

化成処理液には、環境負荷の大きなクロムを含まないクロムフリー化成処理液が使用される。この種の化成処理液としては、エッチング作用のあるチタン化合物,フッ化物,有機樹脂を含む処理液(特許文献2),同様にエッチング作用のあるチタン化合物,ジルコニウム化合物,フッ化物を含む処理液(特許文献1)等がある。たとえば、ヘキサフルオロチタン酸(H2TiF6),ヘキサフルオロジルコニウム酸(H2ZrF6)及びそれらの金属酸塩等のフッ化物をプロポキシプロパノール(有機樹脂)に溶解したアミノメチル置換ポリビニルフェノールの水溶液として用意される。 As the chemical conversion treatment solution, a chromium-free chemical conversion treatment solution that does not contain chromium with a large environmental load is used. As this type of chemical conversion treatment liquid, a treatment liquid containing an etching titanium compound, a fluoride, and an organic resin (Patent Document 2), and similarly a treatment liquid containing an etching action titanium compound, a zirconium compound, and a fluoride ( Patent Document 1) and the like. For example, an aqueous solution of aminomethyl-substituted polyvinylphenol in which fluorides such as hexafluorotitanic acid (H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), and metal acid salts thereof are dissolved in propoxypropanol (organic resin) Prepared as.

チタン化合物,フッ化物,フェノール樹脂を含む有機-無機複合皮膜をクロムフリー皮膜として形成する場合、チタン化合物をTi換算付着量で1〜100mg/m2,フッ化物をF換算付着量で1〜200mg/m2の範囲に調整することが好ましい。チタン化合物は、塗装原板のステンレス鋼板表面から溶出したCr,Ni,Mo等の金属イオンと反応し,耐食性に優れた化成皮膜を形成する。有機樹脂を含む系では、チタン化合物,ジルコニウム化合物,Cr,Ni,Mo等の金属イオンが有機樹脂と反応し、難溶性の有機-無機複合皮膜を形成する。以下、有機-無機複合皮膜を例にとって説明するが、有機樹脂を含まない化成皮膜でも同様な機構で耐食性,塗膜密着性等が改善される。 When an organic-inorganic composite film containing a titanium compound, fluoride, and phenol resin is formed as a chromium-free film, the titanium compound is 1-100 mg / m 2 in terms of Ti, and the fluoride is 1-200 mg in terms of F. / M 2 is preferably adjusted in the range. The titanium compound reacts with metal ions such as Cr, Ni, and Mo eluted from the surface of the stainless steel plate of the coating original plate to form a chemical conversion film having excellent corrosion resistance. In a system including an organic resin, metal ions such as titanium compound, zirconium compound, Cr, Ni, and Mo react with the organic resin to form a hardly soluble organic-inorganic composite film. Hereinafter, an organic-inorganic composite coating will be described as an example. However, even with a chemical conversion coating not containing an organic resin, the corrosion resistance, coating adhesion, etc. are improved by the same mechanism.

少なすぎるチタン化合物では有機-無機複合皮膜の性能が劣り、優れた塗膜密着性,耐食性が得られない。逆に過剰量のチタン化合物では、有機-無機複合皮膜の性能改善効果が飽和し、却って塗装後の加工性や塗膜密着性が低下することにもなる。多すぎるチタン化合物は、化成処理コストからも好ましくない。フッ化物は化成処理液中でフッ素イオンに解離し、ステンレス鋼表面の表面に接触した状態では化成処理液中の酸成分と共にステンレス鋼表面をエッチングし不動態皮膜を高耐食性に改質する作用を呈する。フッ素イオンが少ないとエッチングが不足し、ステンレス鋼表面に対する有機-無機複合皮膜の密着性が低下する。逆に多すぎるフッ素イオンでは、過剰量の溶出金属が皮膜に取り込まれ、有機-無機複合皮膜が脆くなり、ステンレス鋼表面に対する有機-無機複合皮膜の密着性が低下する。   If the amount of the titanium compound is too small, the performance of the organic-inorganic composite film is inferior, and excellent coating adhesion and corrosion resistance cannot be obtained. Conversely, an excessive amount of titanium compound saturates the performance improvement effect of the organic-inorganic composite film, and on the contrary, the workability and paint film adhesion after coating are also lowered. Too much titanium compound is not preferable from the chemical conversion treatment cost. Fluoride dissociates into fluorine ions in the chemical conversion solution, and when in contact with the surface of the stainless steel surface, the surface of the stainless steel is etched together with the acid component in the chemical conversion solution to improve the passive film to high corrosion resistance. Present. When there are few fluorine ions, etching will be insufficient, and the adhesion of the organic-inorganic composite film to the stainless steel surface will decrease. On the other hand, if too much fluorine ions are used, an excessive amount of eluted metal is taken into the coating, the organic-inorganic composite coating becomes brittle, and the adhesion of the organic-inorganic composite coating to the stainless steel surface decreases.

有機-無機複合皮膜は、チタン化合物に替え、或いは更にZr換算付着量で0.1〜30mg/m2のジルコニウム化合物を含むことができる。ジルコニウム化合物は、チタン化合物と同様な作用を呈し、ステンレス鋼表面から溶出したCr,Ni,Mo等の金属イオンと共に有機樹脂と反応し、難溶性の有機−無機複合皮膜を形成する。ジルコニウム化合物の付着量が少ないと密着性,耐食性に及ぼす効果が十分でないが、過剰量のジルコニウム化合物では塗装後の加工性や塗膜密着性が低下し、化成処理コストも高くなる。 The organic-inorganic composite film may contain a zirconium compound in an amount of 0.1 to 30 mg / m 2 in terms of the amount of Zr conversion instead of the titanium compound. The zirconium compound exhibits the same action as the titanium compound, and reacts with an organic resin together with metal ions such as Cr, Ni, and Mo eluted from the stainless steel surface to form a hardly soluble organic-inorganic composite film. If the adhesion amount of the zirconium compound is small, the effect on adhesion and corrosion resistance is not sufficient. However, if the zirconium compound is excessive, the workability after coating and the adhesion of the coating film are lowered, and the chemical conversion treatment cost is increased.

化成処理後、クロムフリー化成皮膜の上に下塗り塗膜が設けられる。下塗り用の塗料組成物は、エポキシ,エポキシ・ウレタン,ポリエステル,アクリル,エポキシ変性ポリエステル,フェノキシ等をベース樹脂とし、マグネシウム塩,リン酸塩等の非クロム系防錆顔料を配合することにより調製される。マグネシウム塩,リン酸塩は、塗膜欠陥部では化成皮膜中のチタン化合物及び/又はジルコニウム化合物と反応し難溶性の皮膜を形成し、切断端面では溶出・再析出により腐食性雰囲気から切断端面を遮断する保護膜を形成する。   After the chemical conversion treatment, an undercoat film is provided on the chromium-free chemical conversion film. The coating composition for undercoating is prepared by blending non-chromium rust preventive pigments such as magnesium salts and phosphates with epoxy, epoxy-urethane, polyester, acrylic, epoxy-modified polyester, phenoxy, etc. as the base resin. The Magnesium salt and phosphate react with the titanium compound and / or zirconium compound in the chemical conversion film at the coating defects, forming a sparingly soluble film, and the cutting end face is removed from the corrosive atmosphere by elution and reprecipitation. A protective film for blocking is formed.

マグネシウム塩系防錆顔料にはリン酸水素マグネシウム,リン酸マグネシウム,トリポリリン酸マグネシウム等があり、リン酸塩系防錆顔料にはリン酸亜鉛,トリポリリン酸二水素アルミニウム,リン酸アルミニウム,リン酸カルシウム等がある。
非クロム系防錆顔料は、塗料不揮発分に対し2〜50質量%(好ましくは、5〜40質量%)の割合で添加することが好ましい。2質量%以上の添加量で防錆効果が得られるが、50質量%を超える過剰量の非クロム系防錆顔料を添加すると塗装後の加工性や塗膜密着性が低下することがある。下塗り塗料には、非クロム系防錆顔料の他に酸化チタン等の着色顔料,シリカ,炭酸カルシウム,硫酸バリウム等の体質顔料,有機ビーズ,有機樹脂粉末,無機骨材等の各種添加剤が必要に応じて配合される。ベース樹脂の分子量,ガラス転位温度,顔料,骨材の配合量等は、塗装鋼板の用途に応じて適宜調整される。
Magnesium salt rust preventive pigments include magnesium hydrogen phosphate, magnesium phosphate, magnesium tripolyphosphate, etc., and phosphate rust preventive pigments include zinc phosphate, aluminum trihydrogen phosphate, aluminum phosphate, calcium phosphate, etc. is there.
The non-chromium rust preventive pigment is preferably added at a ratio of 2 to 50% by mass (preferably 5 to 40% by mass) with respect to the non-volatile content of the paint. Although an antirust effect is obtained with an addition amount of 2% by mass or more, if an excessive amount of non-chromium anticorrosion pigment exceeding 50% by mass is added, workability and coating film adhesion after coating may be deteriorated. In addition to non-chromium anticorrosive pigments, the undercoat paint requires various additives such as colored pigments such as titanium oxide, extender pigments such as silica, calcium carbonate, and barium sulfate, organic beads, organic resin powder, and inorganic aggregates. Depending on the formulation. The molecular weight of the base resin, the glass transition temperature, the pigment, the blending amount of the aggregate, and the like are appropriately adjusted according to the application of the coated steel sheet.

下塗り塗膜は、下地の隠蔽,塗膜密着性,耐食性のため3μm以上の膜厚で形成することが好ましい。しかし、20μmを超える厚膜では、塗料消費量が多くなることは勿論、塗装鋼板の加工時に塗膜剥離が生じやすくなる。
下塗り塗料の上に、好ましくは10〜300μmの上塗り塗膜が設けられる。上塗り用には、ポリエステル,ウレタン,アクリル,シリコーン変性ポリエステル,シリコーンアクリル,ポリ塩化ビニル,ポリフッ化ビニリデン-アクリル等の熱硬化性又は熱可塑性樹脂をベースとし,必要に応じ着色顔料,体質顔料,有機系骨材,無機系骨材,メタリック粉末,潤滑剤,汚れ防止剤,防かび剤,紫外線吸収剤,光安定剤(酸化防止剤),光触媒粒子,艶消し剤等の各種添加剤が配合した塗料組成物が使用される。該塗料組成物には、下塗り塗料と同様にマグネシウム塩,リン酸塩系防錆顔料の一種又は二種以上を添加しても良い。
The undercoat coating film is preferably formed with a film thickness of 3 μm or more for concealing the base, adhesion of the coating film, and corrosion resistance. However, in the case of a thick film exceeding 20 μm, not only the paint consumption is increased, but coating film peeling is likely to occur during the processing of the coated steel sheet.
A top coat film of preferably 10 to 300 μm is provided on the undercoat paint. For top coating, it is based on thermosetting or thermoplastic resin such as polyester, urethane, acrylic, silicone-modified polyester, silicone acrylic, polyvinyl chloride, polyvinylidene fluoride-acrylic, and as necessary, colored pigment, extender pigment, organic Various additives such as mineral aggregates, inorganic aggregates, metallic powders, lubricants, antifouling agents, fungicides, UV absorbers, light stabilizers (antioxidants), photocatalyst particles, matting agents, etc. A coating composition is used. One or more of magnesium salts and phosphate-based anticorrosive pigments may be added to the coating composition in the same manner as the undercoat coating.

上塗り塗料をロールコータ等で塗布し焼き付けると、上塗り塗膜が下塗り塗膜に積層される。上塗り塗膜に替え、樹脂フィルムの貼付けで上層樹脂膜を形成しても良い。
このように、ステンレス鋼板の表面に有機-無機複合皮膜を介して非クロム系の下塗り塗膜を形成するとき、従来のクロメート皮膜の上にクロム系下塗り塗膜を設けた塗装ステンレス鋼板に匹敵する塗膜密着性,加工性が得られる。しかも、クロムを含んでいないことから、環境に優しい素材として種々の分野で使用される。
When the top coat is applied and baked with a roll coater or the like, the top coat is laminated on the undercoat. Instead of the top coat film, an upper resin film may be formed by pasting a resin film.
In this way, when a non-chromium undercoat is formed on the surface of a stainless steel plate via an organic-inorganic composite film, it is comparable to a coated stainless steel plate provided with a chromium-based undercoat on a conventional chromate film. Film adhesion and processability are obtained. And since it does not contain chromium, it is used in various fields as an environmentally friendly material.

板厚:0.4mmのSUS304ステンレス鋼2D仕上げ材を塗装原板に使用した実施例で本発明を具体的に説明するが、他の鋼種のステンレス鋼板や仕上げが異なるステンレス鋼板に対しても同様に適用されることは勿論である。
〔表面調整〕
ステンレス鋼板に、液温65℃のアルカリ脱脂水溶液(サーフクリーナー1089N-1:日本ペイント株式会社製)をスプレーして5秒間接触させた後、湯洗・水洗により洗浄して乾燥した。更に、液温:60℃のリン酸塩水溶液(サーフダインZS9100:日本ペイント株式会社製)をスプレーして5秒間接触させた後、湯洗・水洗で洗浄し乾燥した。
Thickness: 0.4 mm SUS304 stainless steel 2D finish material is used to illustrate the present invention in an example, but the same applies to stainless steel plates of other steel types and different finishes. Of course, it applies.
[Surface adjustment]
The stainless steel plate was sprayed with an alkaline degreasing aqueous solution (Surf Cleaner 1089N-1: manufactured by Nippon Paint Co., Ltd.) at a liquid temperature of 65 ° C. for 5 seconds, washed with hot water and washed with water and dried. Further, a phosphate aqueous solution (Surfdyne ZS9100: manufactured by Nippon Paint Co., Ltd.) having a liquid temperature of 60 ° C. was sprayed and contacted for 5 seconds, followed by washing with hot water and washing with water and drying.

〔化成処理〕
ヘキサフルオロチタン酸:55g/l,ヘキサフルオロジルコニウム酸:10g/l,アミノメチル置換ポリビニルフェノール:72g/lを含む温度20℃の塗布型クロムフリー化成処理液を表面調整後のステンレス鋼表面に塗布し、水洗することなく100℃で乾燥した。乾燥後のステンレス鋼表面を分析すると、Ti換算付着量:8mg/m2のチタン化合物,Zr換算付着量:2mg/m2のジルコニウム化合物,F換算付着量:16mg/m2のフッ化物,ポリビニルフェノール換算付着量:32mg/m2の有機成分を含む有機-無機複合皮膜が形成されていた。
[Chemical conversion treatment]
Applying a coating-type chromium-free chemical conversion treatment solution containing hexafluorotitanic acid: 55 g / l, hexafluorozirconic acid: 10 g / l, aminomethyl-substituted polyvinylphenol: 72 g / l to the surface of the stainless steel after the surface adjustment. And dried at 100 ° C. without washing with water. Analyzing the dried stainless steel surface, Ti equivalent deposition amount: 8 mg / m 2 titanium compound, Zr equivalent deposition amount: 2 mg / m 2 zirconium compound, F equivalent deposition amount: 16 mg / m 2 fluoride, polyvinyl Phenol equivalent adhesion amount: An organic-inorganic composite film containing an organic component of 32 mg / m 2 was formed.

比較のため、チタン化合物,ジルコニウム化合物を含まない水分散性シリカ及びフェノール樹脂を含む温度20℃の塗布型クロムフリー化成処理液を表面調整後のステンレス鋼表面に塗布し、水洗することなく100℃で乾燥したところ、Si換算付着量:70mg/m2の化合物を含む有機-無機複合皮膜が形成されていた。また、塗布型クロメート処理液(サーフコートNRC300NS:日本ペイント株式会社製)をロールコーターで塗布し、水洗することなく100℃で乾燥させたところ、全Cr換算付着量:25mg/m2のクロメート皮膜が形成されていた。 For comparison, an application-type chromium-free chemical conversion treatment solution containing a titanium compound, a water-dispersible silica not containing a zirconium compound, and a phenol resin at a temperature of 20 ° C. is applied to the surface of the stainless steel after the surface adjustment and washed at 100 ° C. without washing. When dried, an organic-inorganic composite film containing a compound having an Si equivalent adhesion amount of 70 mg / m 2 was formed. Moreover, when a coating type chromate treatment liquid (Surfcoat NRC300NS: manufactured by Nippon Paint Co., Ltd.) was applied with a roll coater and dried at 100 ° C. without washing with water, the total Cr equivalent coating amount: 25 mg / m 2 chromate film Was formed.

〔下塗り塗装〕
エポキシ樹脂をベースとし、防錆顔料の他に酸化チタン(着色顔料),硫酸バリウム(体質顔料),シリカ粉末(体質顔料)を配合した下塗り塗料を化成処理後の塗装原板に塗布し、215℃の乾燥・焼付けにより乾燥膜厚:5μmの下塗り塗膜を形成した。
チタン化合物,ジルコニウム化合物,フッ化物,有機成分を含む有機-無機複合皮膜が設けられた塗装原板には、リン酸水素マグネシウム,リン酸マグネシウム,リン酸亜鉛,トリポリリン酸アルミニウムを配合したクロムフリー下塗り塗料を塗布した。
[Undercoating]
Based on epoxy resin, in addition to rust preventive pigment, undercoat paint containing titanium oxide (colored pigment), barium sulfate (external pigment), silica powder (external pigment) is applied to the coated original plate after chemical conversion treatment, and 215 ° C An undercoat film having a dry film thickness of 5 μm was formed by drying and baking.
Chromium-free undercoat paint containing magnesium hydrogen phosphate, magnesium phosphate, zinc phosphate, and aluminum tripolyphosphate on the coating original plate provided with an organic-inorganic composite coating containing titanium compounds, zirconium compounds, fluorides, and organic components Was applied.

比較のため、同様な有機-無機複合皮膜を設けた塗装原板に変性シリカ配合クロムフリー下塗り塗料を塗布した。また、クロムフリー系の比較として、チタン化合物,ジルコニウム化合物を含まない有機-シリカ複合皮膜が形成された塗装原板に、リン酸水素マグネシウム,リン酸マグネシウム,リン酸亜鉛,トリポリリン酸アルミニウムを配合したクロムフリー下塗り塗料を塗布した。クロム系の比較として、クロメート皮膜が形成された塗装原板に、クロム酸ストロンチウムを配合したクロメート系下塗り塗料を塗布した。下塗り塗膜に含まれる防錆顔料の種類及び配合量を表1に示す。   For comparison, a chromium-free undercoat paint containing modified silica was applied to a coating original plate provided with the same organic-inorganic composite film. In addition, as a comparison of chromium-free systems, chromium containing magnesium hydrogen phosphate, magnesium phosphate, zinc phosphate and aluminum tripolyphosphate is added to the original coating on which an organic-silica composite film that does not contain titanium and zirconium compounds is formed. Free undercoat paint was applied. As a comparison with chromium, a chromate-based undercoating compound containing strontium chromate was applied to a coating original plate on which a chromate film was formed. Table 1 shows the types and amounts of the rust preventive pigments contained in the undercoat coating film.

Figure 2006116736
Figure 2006116736

〔上塗り塗装〕
次いで、シリコーン変性ポリエステル樹脂をベースとする上塗り塗料を塗布し、230℃の乾燥・焼付けにより乾燥膜厚15μmの上塗り塗膜を下塗り塗膜に積層した。
作製された各塗装鋼板から試験片を切り出し、評価対象の塗膜面を外側に設定して20℃の室内で2t曲げ加工した後、塗膜密着性試験,促進腐食試験,屋外暴露腐食試験に供した。
[Top coating]
Next, an overcoat paint based on a silicone-modified polyester resin was applied, and an overcoat film having a dry film thickness of 15 μm was laminated on the undercoat film by drying and baking at 230 ° C.
A test piece is cut out from each of the prepared coated steel sheets, the coating surface to be evaluated is set to the outside and bent for 2 tons in a room at 20 ° C, and then subjected to coating adhesion test, accelerated corrosion test, outdoor exposure corrosion test. Provided.

〔塗膜密着性試験〕
50mm×50mmの試験片を曲げ加工し、曲げ部に対する粘着テープの貼付け・引剥がしにより塗膜の剥離状況を観察した。剥離しなかった塗膜を◎,5%以下の剥離が発生した塗膜をO,5〜20%の剥離が発生した塗膜を△,21%以上剥離が発生した塗膜を×として塗膜密着性を評価した。
なお、加工ままの状態においては、何れの塗膜構成でも化成皮膜のクラックが下塗り,上塗り塗膜に伝播して塗膜のクラックが加工部に視認されたが、塗膜自体に剥離等の異常は生じていなかった。
[Coating adhesion test]
A test piece of 50 mm × 50 mm was bent, and the peeling state of the coating film was observed by sticking / peeling the adhesive tape on the bent part. The coating film which did not peel is ◎, the coating film where 5% or less peeling occurred is O, the coating film where 5-20% peeling occurred is Δ, the coating film where peeling occurs 21% or more is × Adhesion was evaluated.
In the as-processed state, the cracks in the conversion coating were propagated to the top coat and the cracks were observed in the processed part in any coating composition, but abnormalities such as peeling occurred in the coating itself. Did not occur.

〔塩水噴霧試験:CASS〕
塩水噴霧試験では、5%NaCl水溶液に塩化銅:0.26g/lを添加し、酢酸でpH3.1〜3.3に調整した腐食液を用い、49℃の雰囲気で腐食液を70mm×170mmの試験片に連続噴霧した後、480時間後に曲げ部,切断端面を観察した。
〔複合サイクル腐食試験:CCT〕
〔5%NaC1腐食液噴霧(35℃×1時間,pH7)→乾燥(50℃×4時間)→湿潤(50℃×3時間,相対湿度98%)〕を1サイクルとする腐食試験を90サイクル繰り返した後、曲げ部,切断端面を観察した。
[Salt spray test: CASS]
In the salt spray test, a corrosive solution prepared by adding 0.26 g / l of copper chloride to 5% NaCl aqueous solution and adjusting the pH to 3.1 to 3.3 with acetic acid was used, and the corrosive solution was 70 mm × 170 mm in an atmosphere of 49 ° C. After continuously spraying the test piece, the bent part and the cut end face were observed after 480 hours.
[Composite cycle corrosion test: CCT]
90 cycles of corrosion test with [5% NaC1 corrosion solution spray (35 ° C x 1 hour, pH 7) → drying (50 ° C x 4 hours) → wet (50 ° C x 3 hours, relative humidity 98%)]] After repeating, the bent part and the cut end face were observed.

〔屋外暴露腐食試験〕
屋外暴露腐食試験では、促進腐食試験とは逆に、腐食性飛来物を含む雨水が溜まりやすい下部の腐食が促進される状況になる。そこで、塗装ステンレス鋼板の下部塗膜面を外側に保持して2t折曲げ加工した100mm×200mmの試験片を用意した。千葉県市川市の東京湾岸から約5m内陸にある暴露試験場で一ヶ月間屋外暴露試験した後、曲げ部,切断端面を観察した。
[Outdoor exposure corrosion test]
In the outdoor exposure corrosion test, contrary to the accelerated corrosion test, the corrosion of the lower part where rainwater containing corrosive flying objects easily collects is accelerated. Therefore, a test piece of 100 mm × 200 mm prepared by bending the 2t bend while holding the lower coating film surface of the coated stainless steel plate on the outside was prepared. After an outdoor exposure test for one month at an exposure test site located about 5 m inland from Ichikawa City, Chiba Prefecture, the bent part and cut end face were observed.

塩水噴霧試験,複合サイクル腐食試験,屋外暴露試験の何れにおいても、試験片表面に赤錆が発生しなかった試験片を◎,発生した赤錆の面積率が10%以下を○,10〜20%を△,20%を超える面積率で赤錆が発生した試験片を×として曲げ部,切断端面の耐食性を評価した。   In any of the salt spray test, the combined cycle corrosion test, and the outdoor exposure test, the test piece in which red rust did not occur on the surface of the test piece was marked with ◎, the area ratio of the generated red rust was 10% or less, and 10 to 20%. The test piece in which red rust occurred at an area ratio exceeding Δ and 20% was evaluated as x, and the corrosion resistance of the bent portion and the cut end surface was evaluated.

表2の試験結果にみられるように、チタン化合物,ジルコニウム化合物とフッ化物を含むクロムフリー化成皮膜をマグネシウム塩,リン酸塩等のクロムフリー防錆顔料が配合された下塗り塗膜と組み合わせた試験番号1〜5(本発明例)では、塩水噴霧試験,複合サイクル腐食試験,屋外暴露試験の何れにおいても従来のクロメート系の試験番号8(比較例)に匹敵する加工部耐食性,端面耐食性が得られた。   As can be seen from the test results in Table 2, a chromium-free chemical conversion film containing a titanium compound, a zirconium compound and a fluoride is combined with an undercoat film containing a chromium-free rust preventive pigment such as magnesium salt or phosphate. In Nos. 1 to 5 (examples of the present invention), processed part corrosion resistance and end face corrosion resistance comparable to conventional chromate test number 8 (comparative example) are obtained in any of the salt spray test, combined cycle corrosion test, and outdoor exposure test. It was.

同じクロムフリー化成処理液を用いても変性シリカを防錆顔料として配合した下塗り塗膜を設けた試験番号6(比較例)では、耐食性が不足しており、切断端面での赤錆発生が顕著であった。また、シリカ,有機樹脂系の化成皮膜を設けた試験番号7(比較例)では、塗膜密着性,加工部耐食性の何れにも劣っていた。   In test number 6 (comparative example) provided with an undercoat film in which modified silica was blended as a rust preventive pigment even when the same chromium-free chemical conversion treatment solution was used, the corrosion resistance was insufficient and red rust generation on the cut end face was remarkable. there were. Moreover, in test number 7 (comparative example) which provided the silica and the organic resin type | system | group chemical conversion film, it was inferior to both coating-film adhesiveness and a process part corrosion resistance.

Figure 2006116736
Figure 2006116736

以上の例では、フッ化物と共にチタン化合物,ジルコニウム化合物の両者を含む化成皮膜を介して下塗り塗料を設けた場合を説明したが、チタン化合物,ジルコニウム化合物の何れか一方をフッ化物と共存させた化成皮膜でも同様に優れた耐食性,塗膜密着性が得られた。また、有機-無機複合皮膜に替えて有機樹脂を含まない化成皮膜を形成した場合でも、耐食性,塗膜密着性に優れた塗装ステンレス鋼板が製造された。   In the above example, the case where an undercoat paint is provided through a chemical conversion film containing both a titanium compound and a zirconium compound together with fluoride has been described. However, a chemical conversion in which either a titanium compound or a zirconium compound coexists with fluoride. In the same manner, excellent corrosion resistance and adhesion to the coating film were obtained. Moreover, even when a chemical conversion film not containing an organic resin was formed in place of the organic-inorganic composite film, a coated stainless steel sheet excellent in corrosion resistance and coating film adhesion was produced.

以上に説明したように、チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜をマグネシウム塩及びリン酸塩が配合された下塗り塗膜とを組み合わせることによって、腐食抑制機能のあるMg,Ti,Zr系等の腐食生成物が緻密なバリア層となり、塗膜欠陥部や切断端面が被覆される。その結果、製品形状に加工する際に塗膜に亀裂や剥離が発生しても、下地鋼の露出表面や切断端面が腐食起点になることが抑えられ、ステンレス鋼板本来の優れた耐食性が長期にわたって維持され、ステンレス鋼特有の隙間腐食も抑制される。化成皮膜により塗膜の密着性も改善されているので、過酷な腐食環境に曝される外装材,内装材,表装材等として広範な分野に使用される。しかも、化成皮膜,塗膜共にクロム化合物を含んでいないため、環境保全が重視される傾向に適した素材となる。   As described above, by combining a chemical conversion film containing a titanium compound and / or a zirconium compound and a fluoride with an undercoat film containing a magnesium salt and a phosphate, Mg, Ti having a corrosion inhibiting function , Zr-based corrosion products become a dense barrier layer, and coat defects and cut end surfaces are covered. As a result, even if cracks or delamination occur in the coating film when processed into a product shape, the exposed surface and cut end surface of the base steel are suppressed from becoming a starting point of corrosion, and the excellent corrosion resistance inherent to the stainless steel sheet can be maintained for a long time. The crevice corrosion peculiar to stainless steel is also suppressed. Since the adhesion of the coating film is also improved by the chemical conversion film, it is used in a wide range of fields such as exterior materials, interior materials, and cover materials that are exposed to severe corrosive environments. Moreover, since neither the chemical conversion film nor the coating film contains a chromium compound, it is a material suitable for a tendency where environmental conservation is important.

Claims (5)

チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜を介し、マグネシウム塩及びリン酸塩を含む下塗り塗膜がステンレス鋼表面に形成されていることを特徴とする耐食性に優れた塗装ステンレス鋼板。   Painted stainless steel sheet with excellent corrosion resistance, characterized in that an undercoat film containing magnesium salt and phosphate is formed on a stainless steel surface through a chemical conversion film containing a titanium compound and / or a zirconium compound and fluoride. . チタン化合物及び/又はジルコニウム化合物がヘキサフルオロチタン酸,ヘキサフルオロジルコニウム酸及びそれらの金属塩から選ばれた一種又は二種以上である請求項1記載の塗装ステンレス鋼板。   The coated stainless steel sheet according to claim 1, wherein the titanium compound and / or the zirconium compound is one or more selected from hexafluorotitanic acid, hexafluorozirconic acid, and metal salts thereof. 化成皮膜がフェノール樹脂,アクリル樹脂,アクリルオレフィン樹脂,ポリウレタン樹脂から選ばれた一種又は二種以上の有機樹脂を含む有機・無機複合皮膜である請求項1記載の塗装ステンレス鋼板。   The coated stainless steel sheet according to claim 1, wherein the chemical conversion film is an organic / inorganic composite film containing one or more organic resins selected from a phenol resin, an acrylic resin, an acrylic olefin resin, and a polyurethane resin. マグネシウム塩がリン酸水素マグネシウム,リン酸マグネシウム,トリポリリン酸マグネシウムの一種又は二種以上である請求項1記載の塗装ステンレス鋼板。   The coated stainless steel sheet according to claim 1, wherein the magnesium salt is one or more of magnesium hydrogen phosphate, magnesium phosphate, and magnesium tripolyphosphate. リン酸塩がリン酸亜鉛,トリポリリン酸二水素アルミニウム,リン酸アルミニウム,リン酸カルシウムの一種又は二種以上である請求項1記載の塗装ステンレス鋼板。   The coated stainless steel sheet according to claim 1, wherein the phosphate is one or more of zinc phosphate, aluminum trihydrogenphosphate, aluminum phosphate, and calcium phosphate.
JP2004304419A 2004-10-19 2004-10-19 Coated stainless steel sheet excellent in corrosion resistance Withdrawn JP2006116736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304419A JP2006116736A (en) 2004-10-19 2004-10-19 Coated stainless steel sheet excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304419A JP2006116736A (en) 2004-10-19 2004-10-19 Coated stainless steel sheet excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JP2006116736A true JP2006116736A (en) 2006-05-11

Family

ID=36535088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304419A Withdrawn JP2006116736A (en) 2004-10-19 2004-10-19 Coated stainless steel sheet excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JP2006116736A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026284A (en) * 2006-07-25 2008-02-07 Nippon Steel Corp Sample for evaluating corrosion resistance in end face of plated steel sheet, and end face corrosion resistance evaluation device and method
KR100928798B1 (en) 2007-11-13 2009-11-25 주식회사 포스코 Chromium-free resin solution composition with improved alkali resistance and processability, surface treatment method and surface treated steel sheet using same
JP2011168875A (en) * 2010-01-21 2011-09-01 Nisshin Steel Co Ltd Coated steel sheet having excellent corrosion resistance and alkali resistance
WO2012001981A1 (en) * 2010-06-30 2012-01-05 日新製鋼株式会社 Coated steel sheet having excellent corrosion resistance and alkali resistance
JP2012518696A (en) * 2009-02-20 2012-08-16 ソシエテ ヌヴェル デ クルール ジンシク Detoxification method to obtain zinc-containing pigment compounds without ecotoxicity
CN104760363A (en) * 2015-03-31 2015-07-08 苏州禾盛新型材料股份有限公司 PCM steel plate with high surface hardness and color coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026284A (en) * 2006-07-25 2008-02-07 Nippon Steel Corp Sample for evaluating corrosion resistance in end face of plated steel sheet, and end face corrosion resistance evaluation device and method
JP4714646B2 (en) * 2006-07-25 2011-06-29 新日本製鐵株式会社 Sample for end surface corrosion resistance evaluation of plated steel sheet, end surface corrosion resistance evaluation apparatus, and end surface corrosion resistance evaluation method
KR100928798B1 (en) 2007-11-13 2009-11-25 주식회사 포스코 Chromium-free resin solution composition with improved alkali resistance and processability, surface treatment method and surface treated steel sheet using same
JP2012518696A (en) * 2009-02-20 2012-08-16 ソシエテ ヌヴェル デ クルール ジンシク Detoxification method to obtain zinc-containing pigment compounds without ecotoxicity
US9840623B2 (en) 2009-02-20 2017-12-12 Societe Nouvelle Des Couleurs Zinciques Detoxification method for obtaining a zinc containing pigment compound with no ecotoxicity
JP2011168875A (en) * 2010-01-21 2011-09-01 Nisshin Steel Co Ltd Coated steel sheet having excellent corrosion resistance and alkali resistance
JP2015227058A (en) * 2010-01-21 2015-12-17 日新製鋼株式会社 Coated steel sheet having excellent corrosion resistance and alkali resistance
WO2012001981A1 (en) * 2010-06-30 2012-01-05 日新製鋼株式会社 Coated steel sheet having excellent corrosion resistance and alkali resistance
CN104760363A (en) * 2015-03-31 2015-07-08 苏州禾盛新型材料股份有限公司 PCM steel plate with high surface hardness and color coating

Similar Documents

Publication Publication Date Title
JP5055822B2 (en) Painted steel sheet with excellent coating adhesion
JP4312583B2 (en) Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance
JP5380033B2 (en) Painted metal material with excellent corrosion resistance and paint adhesion
JP4312635B2 (en) Painted aluminized steel sheet with excellent corrosion resistance
JP2002187234A (en) Non-chromium coated steel plate having excellent corrosion resistance
JP3567430B2 (en) Painted metal plate with excellent corrosion resistance
JP2006116736A (en) Coated stainless steel sheet excellent in corrosion resistance
US20130302600A1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JP5398310B2 (en) Painted steel sheet and exterior member
JP4795647B2 (en) Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion
JP2011168855A (en) Polyvinyl chloride coated steel sheet having excellent end face corrosion resistance
JP2007023309A (en) Hot-dip zinc alloy plated steel sheet having excellent corrosion resistance
JP3810677B2 (en) Coating plate, surface preparation method of coating plate and method of manufacturing coated steel plate with excellent corrosion resistance
CA2857022C (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JP2003293162A (en) Coated plated steel sheet having excellent corrosion resistance
JP2003293156A (en) Phosphate treated steel sheet excellent in corrosion resistance, adhesion for coating material and corrosion resistance after coating, and production method therefor
JP2001348673A (en) Organic-coated surface treated metallic material excellent in corrosion resistance, and its production method
JP3900070B2 (en) Non-chromic treatment of galvanized steel sheet
JP4354851B2 (en) Antirust treatment liquid for steel plate and antirust treatment method
US20150176135A1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JP2001247980A (en) Hexavalent chromium-free precoated steel sheet excellent in corrosion resistance
JP2004238699A (en) Surface-conditioning method, non-chromium coated original sheet and production method of non-chromium coated steel sheet
JP2000328263A (en) Surface treated metallic material excellent in corrosion resistance and production thereof
JP2004027330A (en) Organic composite galvanized steel plate
JP2004197113A (en) Organic composite galvanized steel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108