JP2004197113A - Organic composite galvanized steel - Google Patents

Organic composite galvanized steel Download PDF

Info

Publication number
JP2004197113A
JP2004197113A JP2002363348A JP2002363348A JP2004197113A JP 2004197113 A JP2004197113 A JP 2004197113A JP 2002363348 A JP2002363348 A JP 2002363348A JP 2002363348 A JP2002363348 A JP 2002363348A JP 2004197113 A JP2004197113 A JP 2004197113A
Authority
JP
Japan
Prior art keywords
zinc
organic
mass
organic composite
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002363348A
Other languages
Japanese (ja)
Inventor
Koichi Nose
幸一 能勢
Kiyokazu Ishizuka
清和 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002363348A priority Critical patent/JP2004197113A/en
Publication of JP2004197113A publication Critical patent/JP2004197113A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic composite galvanized steel which is excellent in various properties such as corrosion resistance and workability. <P>SOLUTION: The organic composite galvanized steel is composed in such a manner that a galvanizing film, a zinc phosphate based film of ≥0.3 g/m<SP>2</SP>, and an organic film of 0.3 to 2 g/m<SP>2</SP>are successively formed on at least a part of the steel surface. The zinc phosphate based film comprises ≥20 mg/m<SP>2</SP>Mg, and the mass ratio of Mg/P is ≥0.15. The organic film comprises clay mineral essentially consisting of phyllosilicate as a rust prevention additive. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、家電、建材等の用途に用いられる耐食性、加工性等の諸特性に優れた有機複合亜鉛系めっき鋼材に関するものである。
【0002】
【従来の技術】
自動車、家電、建材等の用途に用いられる亜鉛系めっき鋼材は、従来から、リン酸塩処理、クロメート処理、更には有機被覆処理を施し、耐食性、加工性等の付加価値を向上させて使用されることが多かった。近年環境上の問題から、特にクロメート処理された鋼板は、6価のクロムを含む可能性があることから嫌われる傾向にあり、リン酸塩処理に対する要望が高まっている。また、耐食性、加工性の観点からは、Zn−Ni系の合金めっき鋼板が良好な特性を示すことから、広く用いられているが、Niを含む合金めっきであることから製造コストが高価になるといった問題がある。このため、製造コストの安価な電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等にリン酸塩処理を施し、付加価値を向上させる試みがなされている。
【0003】
しかし、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等に対する従来のリン酸塩処理では、Zn−Ni系合金めっき鋼板に比較して、必ずしも十分な加工性が得られていない。更には、Zn−Ni系合金めっき上にクロメート皮膜、有機皮膜を形成した有機複合鋼板に比較すると、耐食性の点からも劣る。リン酸塩処理皮膜上に更に有機皮膜を形成した鋼板も公知ではあるが、十分な耐食性を確保しようとすると、有機皮膜の膜厚が厚くなり、溶接性や加工性、更にはコストの問題もあり、広く実用化されるには至っていない。
【0004】
上記課題に対し、本発明者等は、特開2001−131763号公報(特許文献1)において、Mgを含有する特定のリン酸亜鉛皮膜の上に有機皮膜を形成した、耐食性、加工性に優れた有機複合亜鉛系めっき鋼板を提案した。この鋼板は、良好な耐食性を有するも、近年、例えば自動車用途においては、防錆保証期間の延長の動きがあるように、いっそうの耐食性向上が望まれている。
【0005】
【引用文献】
(1)特許文献1(特開2001−131763号公報)
【0006】
【発明が解決しようとする課題】
本発明では、上記問題を解決し、優れた耐食性等の諸特性を有する有機複合亜鉛系めっき鋼材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、リン酸塩処理亜鉛系めっき鋼材の耐食性、加工性等の諸性能を改善するため、リン酸塩処理皮膜上に更に有機皮膜を形成することを検討した。しかし、公知の処理の組み合わせでは、リン酸塩皮膜と有機皮膜間の密着性が十分ではないこと、電着塗装時にフクレが発生しやすいこと、等の理由から、耐食性、加工性とも大きな改善効果が期待できないという問題があった。これら問題に対して鋭意検討を重ねた結果、亜鉛系めっき鋼材表面に、Mgを必須成分として含有するリン酸亜鉛系処理を施し、更にその上層に特定の防錆添加剤を含有する有機皮膜を形成すれば、極めて良好な特性を得ることができることを見いだし、本発明に至った。
【0008】
すなわち、本発明の要旨とするところは、以下の通りである。
(1)鋼材表面の少なくとも一部に、亜鉛系めっき皮膜、0.3g/m2 以上のリン酸亜鉛系皮膜、0.3〜2g/m2 の有機皮膜が順次形成されてなる有機複合亜鉛系めっき鋼材であって、前記リン酸亜鉛系皮膜が、20mg/m2 以上のMgを含有し、及び、Mg/P(質量比)が0.15以上であり、前記有機皮膜が、防錆添加剤として層状珪酸塩を主とする粘土鉱物を含有することを特徴とする有機複合亜鉛系めっき鋼材。
【0009】
(2)前記粘土鉱物が、Ca又はMgの内の1種以上を含有する層状珪酸塩粘土鉱物である前記(1)記載の有機複合亜鉛系めっき鋼材。
(3)前記防錆添加剤として、更にコロイダルシリカを含有する前記(1)記載の有機複合亜鉛系めっき鋼材。
(4)前記有機皮膜が、防錆添加剤と、エポキシ樹脂または変性エポキシ樹脂を少なくとも含有する前記(1)〜(3)のいずれかに記載の有機複合亜鉛系めっき鋼材。
【0010】
(5)前記有機皮膜の成分が、有機樹脂の固形分100質量部に対して、コロイダルシリカと他の防錆添加剤合計の固形分で10質量部以上100質量部以下であり、かつ、コロイダルシリカ以外の防錆添加剤の固形分が5質量部以上50質量部以下である前記(1)〜(4)のいずれかに記載の有機複合亜鉛系めっき鋼材。
【0011】
(6)前記亜鉛系めっき皮膜が、Cr、Mn、Fe、Co、Niの内の1種又は2種以上を、質量%の合計で0.05〜15%含有する前記(1)記載の有機複合亜鉛系めっき鋼材。
(7)前記亜鉛系めっき皮膜が、Ca、Mg、Ce、Y、Zr、Laの内の1種又は2種以上を、質量%の合計で0.01〜1%含有する前記(1)又は(5)に記載の有機複合亜鉛系めっき鋼材にある。
【0012】
【発明の実施の形態】
本発明に用いる亜鉛系めっき皮膜には、特に限定がなく、純亜鉛めっき、亜鉛系合金めっきのいずれの皮膜でも使用でき、その良好な耐食性、加工性改善効果を享受できるが、製造コストの観点からは、電気亜鉛めっき、溶融亜鉛めっき、合金化溶融亜鉛めっき等が好ましい。また、単層めっき、複層めっきのいずれも使用できるし、Ni、Cu等のプレめっき上に形成した亜鉛系めっきであっても構わない。さらに、めっき層中に特性上有効な有機あるいは無機の分散剤を分散させたいわゆる分散めっきであっても何ら問題となるところはなく、本特許の範疇とすることが出来る。
【0013】
Cr、Mn、Fe、Co、Ni:これらの合金めっき成分は、いずれか1種あるいは2種以上をめっき層に共存させることで、0.05%程度含有されたこれらの微量合金成分でも従来の亜鉛系合金めっきより高い耐食性を示すので、より高い耐食性を得たい場合には、これらの合金の1種あるいは2種以上を共存させた合金めっきを亜鉛系めっき被膜として採用できる。0.05%未満ではその効果が十分でなく、15%超ではその効果が飽和し、かつ加工性が著しく劣ってくるので、その範囲を0.015〜15%とした。
【0014】
Ca、Mg、Ce、Y、Zr、La:これらの微量添加元素は、亜鉛の耐食性腐食生成物である塩基性塩化亜鉛を安定化させたり、環境によっては単独で保護性の被膜を生成したり、他に保護性の水和被膜を生成する元素のある場合はそれらの水和被膜を補強したりして、耐食性を増すことができるので、さらに耐食性を必要とする場合には、これらの微量添加元素の内1種又は2種以上を含有させることができる。その場合、これらの質量%の合計で0.01%未満では効果が無いため、0.01%以上添加することが望ましく、1%近傍でその効果が飽和し、且つ1%超含有させることが難しいため、上限を1%とした。
【0015】
亜鉛系めっき皮膜の上に形成されるリン酸亜鉛系皮膜には、Mgを含有することが必須であって、この点は本発明のポイントの一つである。Mgの量としては、Mg/P(質量比)で0.15以上必要であり、この値未満では耐食性の向上効果はない。また、上限については特に限定されないが、一般的には0.78程度であり、これ以上Mgを含有させることは容易ではない。前記Mg/P比でMgを含有したリン酸亜鉛系皮膜を形成することで、その上層に形成する有機皮膜との密着性が極めて良好になるとともに、電着塗装の場合のフクレ発生を効果的に抑制できるようになる。このような効果の得られる理由は必ずしも明確ではないが、Mgの存在により、リン酸亜鉛系皮膜の可撓性が向上し、リン酸亜鉛系皮膜層での凝集破壊が抑制されること、また、アルカリ環境での溶解性が抑制されるようになること、等が考えられる。また、MgはZnの腐食生成物を安定化する効果が強いことからも、腐食の進行を抑え、耐食性の改善に寄与する。
【0016】
Mgの絶対量は、20mg/m2 以上必要であり、この条件で良好な耐食性が得られる。また、リン酸亜鉛系皮膜に、Mg以外にNi、Mn、Co、Fe、Cu、Al、Caの1種又は2種以上を含有させることも好適であり、いっそうの耐食性、加工性改善効果が得られる。前記リン酸亜鉛系皮膜量は、0.3g/m2 以上、好ましくは0.3〜2g/m2 であり、この下限未満では耐食性が不足する。上限を超えると、厳しい加工を実施した際の皮膜剥離が発生する恐れが高くなる。
【0017】
前記リン酸亜鉛系皮膜を形成する処理液としては、Znイオン、リン酸イオンを主成分として、更にZn以外の金属イオン、硝酸イオン、フッ化物等も必要に応じて添加された市販の処理液に、硝酸Mgを多量に添加した浴が好適に用いられる。皮膜中のMgの量及びMg/P比は、硝酸Mgの添加量によってコントロ−ルできるし、また、リン酸亜鉛皮膜の付着量は、処理時間を変化させることによって調整できる。
【0018】
有機皮膜については、防錆添加剤を含有することが優れた耐食性を得るために必須であり、防錆添加剤としては、層状珪酸塩を主とする粘土鉱物を必須成分として含有することが、本発明のもう一つのポイントである。層状珪酸塩を主とする粘土鉱物としては、蛇紋石−カオリン族、タルク−パイロフィライト族、スメクタイト族、バーミキュライト族、雲母族、層間欠損型雲母族、脆雲母族、緑泥石族、等を例示できる。粘土鉱物は、その微粒子性と珪酸塩であることから、コロイダルシリカと同様な耐食作用が期待できるが、さらにその構成成分としてCaあるいはMg、あるいはその両者を含有するものは防錆効果が高い。
【0019】
構成成分としてCa、Mg又はその両者を含有する層状珪酸塩粘土鉱物としては、タルク、モンモリロナイト、バーミキュライト、アタパルジャイト等が例示できる。また、モンモリロナイト等のイオン交換性のあるものでは、イオン交換してCa、Mgの含有量を増加させたものは、より防錆効果が高く、工業的には止水剤等で用いられるカルシウムベントナイト等が挙げられる。
【0020】
特に、Ca、Mgを含有した層状珪酸塩粘土鉱物では、CaやMgがアルカリ環境で耐食性の皮膜を形成すること、あるいはZnの耐食性腐食生成物である塩基性塩化亜鉛を安定化させる効果がある。これら層状珪酸塩粘土鉱物の利用は、環境への悪影響のほとんど無いこと、その入手が容易で工業的にも安価に精製・製造され市販されていることもメリットの一つである。
防錆添加剤として、更にコロイダルシリカを防錆添加剤として共存させることによって極めて優れた耐食性が得られる。この理由は明確でないが、コロイダルシリカの成膜作用と層状珪酸塩を主とする粘土鉱物の腐食抑制作用の協奏効果ではないかと推定される。
【0021】
有機皮膜の付着量は、0.3〜2g/m2 であり、この下限未満では耐食性、加工性改善効果が不足し、上限を超えると、溶接性が悪化する。
有機皮膜中の樹脂成分としては、エポキシ樹脂又は変性エポキシ樹脂が、耐食性、密着性の観点から望ましい。なお、有機樹脂、前述の防錆添加剤に加えて、ポリエチレン等のワックス成分、色調を制御するための顔料成分も必要に応じて共存させることが可能である。
【0022】
有機皮膜の組成として、有機樹脂の固形分100質量部に対して、コロイダルシリカと他の防錆添加剤合計の固形分で10質量部以上100質量部以下、かつ、コロイダルシリカ以外の防錆添加剤の固形分が5質量部以上50質量部以下とすることが望ましい。いずれの下限を下回っても耐食性が低下し、上限を超えても耐食性が低下するだけでなく溶接性も低下する傾向にあるからである。
【0023】
本発明の構成である、亜鉛系めっき皮膜+特定のリン酸塩皮膜+特定の有機皮膜は、鋼材の表面の少なくとも一部に形成されていれば良く、例えば、鋼板の場合、鋼板の一方の面又は両面に形成すれば良い。鋼板の一方の面にのみ形成する場合には、例えば、自動車車体用途であれば、塗装がつき廻りにくくより高度な鋼板の耐食性が要求される車体内面に相当する面に、また、例えば、燃料タンク用途であれば、タンク内面に相当する面に、本発明の皮膜構成を適用すればよい。なお、この場合、反対面については、特段の制限はなく、非めっき鋼板、亜鉛系めっきのみ、亜鉛系めっき+特定のリン酸塩皮膜、非めっき鋼板+特定のリン酸塩皮膜、等いずれも適用でき、必要に応じて選択すれば良い。
【0024】
【実施例】
以下に本発明の実施例を示す。
供試材としては、全て、板厚0.7mm、r(ランクフォード)値=1.9の冷延鋼板に、目付量30g/m2 (片面当たり)のめっきを両面に施した電気亜鉛めっき鋼板を使用した。
(実施例1〜8、比較例1〜4)
〈リン酸亜鉛系処理〉
供試材に表面調整(日本パーカライジング社製P1−Zn)の後、日本パーカライジング社製のリン酸亜鉛処理浴(Znイオン0.7g/l、Niイオン2.0g/l、リン酸イオン6.5g/l、硝酸イオン6g/l、フッ化物0.2g/l)をベースに、硝酸マグネシウム・6水和物をMgイオン濃度として0〜30g/lになるように、種々添加した浴を使用して、両面の処理を行った。処理はスプレー法により、処理時間1〜10secの間で変化させて付着量(片面当たり)を調整した。
【0025】
〈有機被覆〉
ビニル変性エポキシエステル樹脂にブロックイソシアネート硬化剤、変性ポリエチレンワックス、縮合アゾ系の赤色顔料を配合(それぞれの固形分質量比は、100:10:5:3)した水性樹脂をベースに、コロイダルシリカ(日産化学社製ST−NS)と層状珪酸塩粘土鉱物を各種配合比で添加した塗料を用い、ロールコータで回転数を制御しながら乾燥皮膜質量が0〜2.5g/m2 (片面当たり)になるように両面に塗布し、その後到達板温度で150℃になるように焼き付け、水冷した(表1中にビニル変性エポキシエステル樹脂とコロイダルシリカと層状珪酸塩粘土鉱物の固形分質量比を示した。表1下に使用した層状珪酸塩粘土鉱物の種類を示した)。
【0026】
〈性能評価方法〉
(1)リン酸亜鉛系皮膜中Mg、P量;皮膜を全て溶解し、ICP分析により定量した。また、リン酸亜鉛系皮膜量は、前記P量から、Hopeiteの構造を仮定の上計算で算出した。
(2)有機皮膜量;蛍光X線分析によりSiを定量し、組成比から皮膜量に換算した。
【0027】
(3)耐食性;サンプルを市販の洗浄油で洗浄後、Uビード曲げ加工(サンプル幅70mm、BHF=1ton、加工高さ=70mm、ビード部ポンチR=5mm、ビード部ダイスR=3mm、ポンチR=5mm、ダイスR=5mm、加工速度=25spm)を行い、その側面(ダイス側)を切り出して、脱脂した後、端面と裏面を粘着テープシールし、下記に示すCCT試験を行った。20サイクル後の赤錆発生状況を観察した。
評価基準は、「◎」;1%未満、「○」;1〜10%未満、「△」;10〜50%、「×」;50%超、とした。
【0028】
(4)CCT試験条件;塩水噴霧5%NaCl、35℃)6時間→乾燥(50℃、45%RH)3時間→湿潤(50℃、95%RH)14時間→乾燥(50℃、45%RH)1時間を1サイクルとした繰り返し。
(5)加工性;球頭ポンチ張り出し成形(ビード付き)を行い、張り出し可能成形高さを求めた。加工条件は、BHF=3ton、ポンチ40mmφ、40R、ブランク98mmφ、である。
評価基準は、「◎」;17.0mm超、「○」;16.5〜17.0mm、「△」;16.0〜16.5mm未満、「×」;16.0mm未満、とした。
【0029】
(6)塗装密着性;サンプルを市販のアルカリ脱脂液(pH=10.5、40℃、1分浸漬)、自動車用化成処理(日本ペイント製サーフダイン2500MZL)を施した後、自動車用カチオン電着塗装(日本ペイント製V20、20μm、170℃×20分焼き付け)を行った。一昼夜放置後50℃温水に浸漬し、10日後取り出して1mm間隔の碁盤目カット疵を入れ、粘着テープでの剥離を行った。
評価基準は、「◎」;剥離面積率0%、「○」;剥離面積率5%未満、「△」;剥離面積率5〜50%、「×」;剥離面積率50%超、とした。
【0030】
(7)溶接性;Cu−CrのCF型電極チップ(5mmφ)を用い、加圧力1960N、通電時間13サイクル、で適性電流範囲を測定した。
評価基準は、「◎」;1.5kA超、「○」;1.0〜1.5kA、「△」;0.3〜1.0kA未満、「×」;0.3kA未満、とした。
【0031】
【表1】

Figure 2004197113
【0032】
表1に示す、(*) 防錆添加剤は、本発明例No.1〜2及び比較例No.9、11、12がカルシウムベントナイト、本発明例No.3〜4がタルク、本発明例No.5がモンモリロナイト、本発明例No.6がバーミキュウライト、本発明例No.7がアタパルジャイト、本発明例No.8がカルシウムベントナイトとタルクを質量比50:50とする混合物とした。なお、比較例No.10には防錆添加剤を添加していない。
評価結果を表1に示すが、本発明の実施例では、良好な特性が得られるのに比較し、本発明の範囲から外れる比較例については、何らかの性能が悪化した。
【0033】
【発明の効果】
本発明によって、耐食性、加工性等の諸特性が極めて優れた有機複合亜鉛系めっき鋼材を得ることが可能になる。本発明の鋼材は、製造方法も簡易でコスト的にも優れ、自動、家電、建材等各種の用途に好適なものである。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an organic composite zinc-based plated steel material excellent in various properties such as corrosion resistance and workability used for applications such as automobiles, home appliances, and building materials.
[0002]
[Prior art]
Zinc-based galvanized steel materials used for automobiles, home appliances, building materials, etc. have been conventionally subjected to phosphate treatment, chromate treatment, and even organic coating treatment to improve the added value such as corrosion resistance and workability. Many times. In recent years, due to environmental problems, particularly a chromate-treated steel sheet tends to be disliked because it may contain hexavalent chromium, and there is an increasing demand for phosphate treatment. In addition, from the viewpoint of corrosion resistance and workability, Zn-Ni-based alloy-plated steel sheets are widely used because they exhibit good characteristics, but the production cost is high because of alloy plating containing Ni. There is a problem. For this reason, attempts have been made to improve the added value by subjecting an electrogalvanized steel sheet, a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and the like, which are inexpensive to manufacture, to a phosphate treatment.
[0003]
However, conventional phosphate treatment of electrogalvanized steel sheets, hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, etc., does not always provide sufficient workability compared to Zn-Ni-based alloy-coated steel sheets. . Furthermore, when compared with an organic composite steel sheet in which a chromate film and an organic film are formed on a Zn-Ni-based alloy plating, it is inferior in terms of corrosion resistance. A steel sheet further formed with an organic film on a phosphate-treated film is also known, but when trying to ensure sufficient corrosion resistance, the film thickness of the organic film becomes thicker, and the problems of weldability and workability, as well as cost, are raised. Yes, it has not been widely used.
[0004]
In order to solve the above-mentioned problems, the present inventors have disclosed in JP-A-2001-131763 (Patent Document 1) that an organic film is formed on a specific zinc phosphate film containing Mg, which is excellent in corrosion resistance and workability. We proposed an organic composite zinc-based coated steel sheet. Although this steel sheet has good corrosion resistance, in recent years, for example, in automotive applications, further improvement in corrosion resistance has been desired so as to extend the rust prevention guarantee period.
[0005]
[References]
(1) Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-131763)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems and to provide an organic composite zinc-based plated steel material having various properties such as excellent corrosion resistance.
[0007]
[Means for Solving the Problems]
The present inventors have studied to further form an organic film on the phosphate-treated film in order to improve various properties such as corrosion resistance and workability of the phosphate-treated galvanized steel material. However, with the combination of the known treatments, the adhesion between the phosphate film and the organic film is not sufficient, blisters are easily generated during electrodeposition coating, and the like, so that the corrosion resistance and the processability are greatly improved. There was a problem that could not be expected. As a result of intensive studies on these problems, a zinc phosphate-based treatment containing Mg as an essential component was applied to the surface of the galvanized steel material, and an organic film containing a specific rust-preventive additive was further formed on the surface. It has been found that when formed, extremely good characteristics can be obtained, and the present invention has been achieved.
[0008]
That is, the gist of the present invention is as follows.
(1) at least a portion, galvanized coating, 0.3 g / m 2 or more zinc phosphate coating, an organic composite zinc organic film of 0.3 to 2 g / m 2, which are sequentially formed in the steel surface The zinc phosphate-based coating contains 20 mg / m 2 or more of Mg, and has a Mg / P (mass ratio) of 0.15 or more, and the organic coating has rust prevention. An organic composite galvanized steel material comprising a clay mineral mainly composed of a layered silicate as an additive.
[0009]
(2) The organic composite zinc-based plated steel according to (1), wherein the clay mineral is a layered silicate clay mineral containing at least one of Ca and Mg.
(3) The organic composite zinc-plated steel material according to (1), further comprising colloidal silica as the rust preventive additive.
(4) The organic composite zinc-based plated steel according to any one of (1) to (3), wherein the organic film contains at least a rust preventive additive and an epoxy resin or a modified epoxy resin.
[0010]
(5) The component of the organic film is 10 parts by mass or more and 100 parts by mass or less in terms of the total solid content of colloidal silica and other rust-preventive additives based on 100 parts by mass of the solid content of the organic resin, and The organic composite zinc-plated steel material according to any one of (1) to (4), wherein the solid content of the rust preventive additive other than silica is 5 parts by mass or more and 50 parts by mass or less.
[0011]
(6) The organic according to (1), wherein the zinc-based plating film contains one or more of Cr, Mn, Fe, Co, and Ni in an amount of 0.05 to 15% by mass in total. Composite galvanized steel.
(7) The above (1) or wherein the zinc-based plating film contains one or more of Ca, Mg, Ce, Y, Zr, and La in an amount of 0.01 to 1% by mass%. An organic composite zinc-based plated steel according to (5).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The zinc-based plating film used in the present invention is not particularly limited, and any of pure zinc plating and zinc-based alloy plating can be used, and its good corrosion resistance and workability improvement effect can be enjoyed. For this reason, electrogalvanizing, hot-dip galvanizing, alloyed hot-dip galvanizing and the like are preferable. Either single-layer plating or multiple-layer plating can be used, or zinc-based plating formed on pre-plating of Ni, Cu, or the like may be used. Further, so-called dispersion plating in which an organic or inorganic dispersant effective in characteristics is dispersed in a plating layer does not cause any problem, and can be included in the scope of the present patent.
[0013]
Cr, Mn, Fe, Co, Ni: One or more of these alloy plating components coexist in the plating layer, so that even a small amount of these 0.05% alloy components can be used. Since it exhibits higher corrosion resistance than zinc-based alloy plating, if higher corrosion resistance is desired, alloy plating in which one or more of these alloys coexist can be used as the zinc-based plating film. If it is less than 0.05%, the effect is not sufficient, and if it exceeds 15%, the effect is saturated and the workability is remarkably deteriorated. Therefore, the range is set to 0.015 to 15%.
[0014]
Ca, Mg, Ce, Y, Zr, La: These trace addition elements stabilize basic zinc chloride, which is a corrosion-resistant corrosion product of zinc, or form a protective film alone depending on the environment. However, if there are other elements that form a protective hydrated film, these hydrated films can be reinforced to increase corrosion resistance. One or more of the additional elements can be contained. In this case, if the total of these mass% is less than 0.01%, there is no effect. Therefore, it is preferable to add 0.01% or more, and the effect is saturated at around 1%, and more than 1% is contained. Because it is difficult, the upper limit was set to 1%.
[0015]
It is essential that the zinc phosphate-based film formed on the zinc-based plating film contains Mg, which is one of the points of the present invention. The amount of Mg needs to be 0.15 or more in terms of Mg / P (mass ratio), and if less than this value, there is no effect of improving corrosion resistance. Although the upper limit is not particularly limited, it is generally about 0.78, and it is not easy to further contain Mg. By forming a zinc phosphate-based film containing Mg at the Mg / P ratio, the adhesion to an organic film formed thereon is extremely improved, and blister generation in the case of electrodeposition coating is effectively prevented. Can be suppressed. Although the reason why such an effect is obtained is not necessarily clear, the presence of Mg improves the flexibility of the zinc phosphate-based coating, and suppresses cohesive failure in the zinc phosphate-based coating layer. And the solubility in an alkaline environment is suppressed. Further, since Mg has a strong effect of stabilizing the corrosion product of Zn, Mg suppresses the progress of corrosion and contributes to improvement of corrosion resistance.
[0016]
The absolute amount of Mg needs to be 20 mg / m 2 or more, and good corrosion resistance can be obtained under these conditions. It is also preferable that the zinc phosphate-based coating contains one or more of Ni, Mn, Co, Fe, Cu, Al, and Ca in addition to Mg, thereby further improving the corrosion resistance and workability. can get. The amount of the zinc phosphate coating is 0.3 g / m 2 or more, and preferably 0.3 to 2 g / m 2 , and if it is less than the lower limit, the corrosion resistance is insufficient. If the upper limit is exceeded, there is a high possibility that film peeling will occur when severe processing is performed.
[0017]
As the treatment liquid for forming the zinc phosphate-based coating, a commercially available treatment liquid containing Zn ions and phosphate ions as main components, and further adding metal ions other than Zn, nitrate ions and fluorides as necessary. In addition, a bath containing a large amount of Mg nitrate is preferably used. The amount of Mg and the Mg / P ratio in the film can be controlled by the amount of Mg nitrate added, and the amount of the zinc phosphate film deposited can be adjusted by changing the treatment time.
[0018]
As for the organic film, it is essential to contain an anticorrosive additive in order to obtain excellent corrosion resistance, and as the anticorrosive additive, it is necessary to contain a clay mineral mainly composed of a layered silicate as an essential component. This is another point of the present invention. Examples of clay minerals mainly composed of layered silicates include serpentine-kaolin, talc-pyrophyllite, smectite, vermiculite, mica, delaminated mica, brittle mica, chlorite, and the like. Can be illustrated. Clay minerals can be expected to have the same corrosion resistance as colloidal silica because of their fine particle properties and silicates, but those containing Ca or Mg or both as constituents have a high rust prevention effect.
[0019]
Examples of the layered silicate clay mineral containing Ca, Mg, or both as constituents include talc, montmorillonite, vermiculite, and attapulgite. In the case of montmorillonite and the like having ion exchange properties, those in which the contents of Ca and Mg are increased by ion exchange have a higher rust prevention effect, and calcium bentonite which is industrially used as a water stopping agent and the like is used. And the like.
[0020]
In particular, in a layered silicate clay mineral containing Ca and Mg, Ca and Mg have an effect of forming a corrosion-resistant film in an alkaline environment or stabilizing basic zinc chloride which is a corrosion-resistant corrosion product of Zn. . One of the advantages of using these layered silicate clay minerals is that they have almost no adverse effect on the environment, and that they are easily available, are industrially inexpensive, are purified, manufactured and marketed.
Extremely excellent corrosion resistance can be obtained by coexisting colloidal silica as a rust preventive additive. Although the reason for this is not clear, it is presumed that it is a synergistic effect between the film-forming action of colloidal silica and the corrosion-inhibiting action of a clay mineral mainly composed of layered silicate.
[0021]
The amount of the organic film adhered is 0.3 to 2 g / m 2. If the amount is less than the lower limit, the effect of improving corrosion resistance and workability is insufficient. If the amount exceeds the upper limit, the weldability deteriorates.
As the resin component in the organic film, an epoxy resin or a modified epoxy resin is desirable from the viewpoint of corrosion resistance and adhesion. In addition, in addition to the organic resin and the above-mentioned rust-preventive additive, a wax component such as polyethylene and a pigment component for controlling a color tone can be coexisted as necessary.
[0022]
As the composition of the organic film, the total solid content of colloidal silica and other rust-preventive additives is 10 parts by mass or more and 100 parts by mass or less, and rust-preventive additives other than colloidal silica are added to 100 parts by mass of the solid content of the organic resin. It is desirable that the solid content of the agent be 5 parts by mass or more and 50 parts by mass or less. It is because the corrosion resistance tends to decrease when the amount is below any of the lower limits, and when the amount exceeds the upper limit, not only the corrosion resistance but also the weldability tends to decrease.
[0023]
The zinc-based plating film + the specific phosphate film + the specific organic film, which is the constitution of the present invention, may be formed on at least a part of the surface of the steel material. What is necessary is just to form on a surface or both surfaces. When formed on only one surface of a steel sheet, for example, in the case of an automobile body application, the coating is difficult to cover and the surface corresponding to the inner surface of the vehicle body, which is required to have higher corrosion resistance of the steel sheet, and, for example, a fuel For a tank application, the film configuration of the present invention may be applied to a surface corresponding to the inner surface of the tank. In this case, there is no particular limitation on the opposite surface, and any of non-plated steel sheets, zinc-based plating only, zinc-based plating + specific phosphate film, non-plated steel sheet + specific phosphate film, etc. It can be applied and can be selected as needed.
[0024]
【Example】
Examples of the present invention will be described below.
As the test materials, electrogalvanizing was performed on both sides of a cold-rolled steel sheet having a thickness of 0.7 mm and an r (Rankford) value of 1.9, and a plating weight of 30 g / m 2 (per side). A steel plate was used.
(Examples 1 to 8, Comparative Examples 1 to 4)
<Zinc phosphate treatment>
After surface conditioning (P1-Zn, manufactured by Nippon Parkerizing Co., Ltd.) on the test material, zinc phosphate treatment bath (0.7 g / l of Zn ion, 2.0 g / l of Ni ion, phosphate ion of 6, manufactured by Nippon Parkerizing Co., Ltd.). (5 g / l, nitrate ion 6 g / l, fluoride 0.2 g / l), and a bath containing various additions of magnesium nitrate hexahydrate so that the Mg ion concentration becomes 0 to 30 g / l. Then, both sides were processed. The treatment was carried out by a spray method and the amount of adhesion (per side) was adjusted by changing the treatment time from 1 to 10 sec.
[0025]
<Organic coating>
A colloidal silica (based on an aqueous resin in which a blocked isocyanate curing agent, a modified polyethylene wax, and a red pigment of a condensed azo compound are blended with a vinyl-modified epoxy ester resin (each solid content mass ratio is 100: 10: 5: 3)) Using a paint in which Nissan Chemical Industries' ST-NS) and a layered silicate clay mineral were added at various compounding ratios, the dry film mass was 0 to 2.5 g / m 2 (per side) while controlling the rotation speed with a roll coater. And then baked to reach 150 ° C at the plate temperature and water-cooled (Table 1 shows the solids mass ratio of vinyl-modified epoxy ester resin, colloidal silica and layered silicate clay mineral. The type of layered silicate clay mineral used is shown below Table 1).
[0026]
<Performance evaluation method>
(1) Amount of Mg and P in zinc phosphate-based coating: All coatings were dissolved and quantified by ICP analysis. The amount of the zinc phosphate-based film was calculated from the P amount by assuming a Hopeite structure.
(2) Organic film amount: Si was quantified by X-ray fluorescence analysis and converted into a film amount from a composition ratio.
[0027]
(3) Corrosion resistance: After washing the sample with a commercially available cleaning oil, U bead bending (sample width 70 mm, BHF = 1 ton, processing height = 70 mm, bead part punch R = 5 mm, bead part die R = 3 mm, punch R) = 5 mm, die R = 5 mm, processing speed = 25 spm), the side face (die side) was cut out, degreased, and the end face and back face were sealed with an adhesive tape, and a CCT test shown below was performed. The state of occurrence of red rust after 20 cycles was observed.
The evaluation criteria were as follows: “◎”; less than 1%, “1〜”: less than 1 to 10%, “△”: 10 to 50%, “x”: more than 50%.
[0028]
(4) CCT test conditions: salt spray 5% NaCl, 35 ° C) 6 hours → dry (50 ° C, 45% RH) 3 hours → wet (50 ° C, 95% RH) 14 hours → dry (50 ° C, 45%) RH) Repeated with 1 hour as 1 cycle.
(5) Workability: Ball-head punch overhanging (with beads) was performed, and the overhanging molding height was determined. The processing conditions are BHF = 3 ton, punch 40 mmφ, 40R, blank 98 mmφ.
The evaluation criteria were as follows: “◎”: more than 17.0 mm, “○”: 16.5 to 17.0 mm, “△”: 16.0 to less than 16.5 mm, “×”: less than 16.0 mm.
[0029]
(6) Coating adhesion: The sample was subjected to a commercial alkaline degreasing solution (pH = 10.5, immersed in 40 ° C. for 1 minute) and a chemical conversion treatment for automobiles (Surf Dine 2500MZL manufactured by Nippon Paint Co., Ltd.). Color coating (Nippon Paint V20, 20 μm, baking at 170 ° C. for 20 minutes) was performed. After standing all day and night, it was immersed in warm water at 50 ° C., taken out after 10 days, cut into squares at 1 mm intervals, and peeled off with an adhesive tape.
The evaluation criteria were as follows: "A": 0% peeled area ratio, "O": Less than 5% peeled area ratio, "Δ": 5% to 50% peeled area ratio, "x": More than 50% peeled area ratio .
[0030]
(7) Weldability: Using a Cu-Cr CF electrode tip (5 mmφ), an appropriate current range was measured at a pressure of 1960 N and an energization time of 13 cycles.
The evaluation criteria were “◎”; more than 1.5 kA, “○”: 1.0 to 1.5 kA, “△”; 0.3 to less than 1.0 kA, “×”: less than 0.3 kA.
[0031]
[Table 1]
Figure 2004197113
[0032]
The rust preventive additives (*) shown in Table 1 are the same as those of Example No. Nos. 1 and 2 and Comparative Example Nos. 9, 11 and 12 are calcium bentonite, Inventive Example No. 3 to 4 are talc; 5 is montmorillonite, Inventive Example No. 5 No. 6 is vermiculite, and Inventive Example No. 7 is attapulgite, Inventive Example No. 7 No. 8 was a mixture of calcium bentonite and talc in a mass ratio of 50:50. In addition, the comparative example No. No rust preventive additive was added to 10.
The evaluation results are shown in Table 1. In the examples of the present invention, good characteristics were obtained, but in the comparative examples out of the range of the present invention, some performance was deteriorated.
[0033]
【The invention's effect】
According to the present invention, it is possible to obtain an organic composite zinc-based plated steel material having extremely excellent properties such as corrosion resistance and workability. The steel material of the present invention has a simple manufacturing method and is excellent in cost, and is suitable for various uses such as automation, home appliances, and building materials.

Claims (7)

鋼材表面の少なくとも一部に、亜鉛系めっき皮膜、0.3g/m2 以上のリン酸亜鉛系皮膜、0.3〜2g/m2 の有機皮膜が順次形成されてなる有機複合亜鉛系めっき鋼材であって、前記リン酸亜鉛系皮膜が、20mg/m2 以上のMgを含有し、及び、Mg/P(質量比)が0.15以上であり、前記有機皮膜が、防錆添加剤として層状珪酸塩を主とする粘土鉱物を含有することを特徴とする有機複合亜鉛系めっき鋼材。At least a portion of the steel material surface, zinc-based plated coating, 0.3 g / m 2 or more zinc phosphate coating, 0.3 to 2 g / m 2 of the organic film is formed by sequentially forming an organic composite galvanized steel Wherein the zinc phosphate-based coating contains Mg of 20 mg / m 2 or more, and Mg / P (mass ratio) is 0.15 or more, and the organic coating is used as a rust preventive additive. An organic composite galvanized steel material containing a clay mineral mainly composed of a layered silicate. 前記粘土鉱物が、Ca又はMgの内の1種以上を含有する層状珪酸塩粘土鉱物である請求項1記載の有機複合亜鉛系めっき鋼材。The organic composite zinc-plated steel material according to claim 1, wherein the clay mineral is a layered silicate clay mineral containing at least one of Ca and Mg. 前記防錆添加剤として、更にコロイダルシリカを含有する請求項1記載の有機複合亜鉛系めっき鋼材。The organic composite zinc-based plated steel material according to claim 1, further comprising colloidal silica as the rust preventive additive. 前記有機皮膜が、防錆添加剤と、エポキシ樹脂又は変性エポキシ樹脂を少なくとも含有する請求項1〜3のいずれかに記載の有機複合亜鉛系めっき鋼材。The organic composite zinc-based plated steel material according to any one of claims 1 to 3, wherein the organic film contains at least a rust preventive additive and an epoxy resin or a modified epoxy resin. 前記有機皮膜の成分が、有機樹脂の固形分100質量部に対して、コロイダルシリカと他の防錆添加剤合計の固形分で10質量部以上100質量部以下であり、かつ、コロイダルシリカ以外の防錆添加剤の固形分が5質量部以上50質量部以下である請求項1〜4のいずれかに記載の有機複合亜鉛系めっき鋼材。The component of the organic film is, based on 100 parts by mass of the solid content of the organic resin, from 10 parts by mass to 100 parts by mass in total solid content of colloidal silica and other rust-preventive additives, and other than colloidal silica. The organic composite zinc-based plated steel material according to any one of claims 1 to 4, wherein a solid content of the rust preventive additive is 5 parts by mass or more and 50 parts by mass or less. 前記亜鉛系めっき皮膜が、Cr、Mn、Fe、Co、Niの内の1種又は2種以上を、質量%の合計で0.05〜15%含有する請求項1に記載の有機複合亜鉛系めっき鋼材。The organic composite zinc-based composition according to claim 1, wherein the zinc-based plating film contains one or more of Cr, Mn, Fe, Co, and Ni in a total of 0.05 to 15% by mass%. Plated steel. 前記亜鉛系めっき皮膜が、Ca、Mg、Ce、Y、Zr、Laの内の1種又は2種以上を、質量%の合計で0.01〜1%含有する請求項1又は5に記載の有機複合亜鉛系めっき鋼材。The zinc-based plating film according to claim 1 or 5, wherein one or more of Ca, Mg, Ce, Y, Zr, and La are contained in an amount of 0.01 to 1% by mass in total. Organic composite zinc-based plated steel.
JP2002363348A 2002-12-16 2002-12-16 Organic composite galvanized steel Pending JP2004197113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363348A JP2004197113A (en) 2002-12-16 2002-12-16 Organic composite galvanized steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363348A JP2004197113A (en) 2002-12-16 2002-12-16 Organic composite galvanized steel

Publications (1)

Publication Number Publication Date
JP2004197113A true JP2004197113A (en) 2004-07-15

Family

ID=32761517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363348A Pending JP2004197113A (en) 2002-12-16 2002-12-16 Organic composite galvanized steel

Country Status (1)

Country Link
JP (1) JP2004197113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055498A1 (en) * 2005-11-11 2007-05-18 Korea Institute Of Industrial Technology Organo clay containing anticorrosive coating composition and preparation method thereof
JP2009503253A (en) * 2005-07-25 2009-01-29 ポスコ Pre-shielded steel plate with excellent corrosion resistance and weldability and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503253A (en) * 2005-07-25 2009-01-29 ポスコ Pre-shielded steel plate with excellent corrosion resistance and weldability and method for producing the same
JP4943432B2 (en) * 2005-07-25 2012-05-30 ポスコ Pre-shielded steel plate with excellent corrosion resistance and weldability and method for producing the same
WO2007055498A1 (en) * 2005-11-11 2007-05-18 Korea Institute Of Industrial Technology Organo clay containing anticorrosive coating composition and preparation method thereof

Similar Documents

Publication Publication Date Title
AU2001284461B2 (en) Hexavalent chromium-free surface-treating agent for Sn- or Al-based coated steel sheet, and surface treated steel sheet
JP2010528176A (en) Anticorrosive structure for metal and pigment for anticorrosive structure
AU771501B2 (en) Organic composite galvanized steel sheet
KR20060097032A (en) Chemically treated metal plate
JP4312583B2 (en) Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
CN100494495C (en) Metal surface processing agent and steel plates with aluminum-zinc plated alloys processed thereby
JP3872621B2 (en) Galvanized steel sheet for automobile bodies
JP2002363764A (en) Coating surface preparation agent, surface preparation method, metallic material, machining method and metallic product
JP4312635B2 (en) Painted aluminized steel sheet with excellent corrosion resistance
JP2000129460A (en) Organic coated galvanized steel sheet
JP2004197113A (en) Organic composite galvanized steel
JP2004027330A (en) Organic composite galvanized steel plate
JP2006116736A (en) Coated stainless steel sheet excellent in corrosion resistance
JP2005126812A (en) Galvanized steel sheet superior in corrosion resistance, coating applicability and adhesiveness
JPS6026835B2 (en) Zinc-manganese alloy electroplated steel sheet with excellent corrosion resistance in salt water environments
JP4344219B2 (en) Inorganic organic composite-treated zinc-coated steel sheet with excellent corrosion resistance after electrodeposition coating
JP2000256870A (en) Non-chromium type surface treated steel sheet excellent in corrosion resistance
JP4354851B2 (en) Antirust treatment liquid for steel plate and antirust treatment method
JPS61194195A (en) Highly-corrosion resistant two-layer plated steel plate
JP2010242155A (en) Corrosion-proof steel, and method for producing the same
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JP3600759B2 (en) Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same
JP2000248374A (en) Rust preventing treated steel
JP4143019B2 (en) Inorganic organic composite treated zinc-based plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040902

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522