JP2005126812A - Galvanized steel sheet superior in corrosion resistance, coating applicability and adhesiveness - Google Patents

Galvanized steel sheet superior in corrosion resistance, coating applicability and adhesiveness Download PDF

Info

Publication number
JP2005126812A
JP2005126812A JP2004064349A JP2004064349A JP2005126812A JP 2005126812 A JP2005126812 A JP 2005126812A JP 2004064349 A JP2004064349 A JP 2004064349A JP 2004064349 A JP2004064349 A JP 2004064349A JP 2005126812 A JP2005126812 A JP 2005126812A
Authority
JP
Japan
Prior art keywords
phosphate
film
chemical conversion
steel sheet
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004064349A
Other languages
Japanese (ja)
Other versions
JP4795647B2 (en
Inventor
Hirobumi Taketsu
博文 武津
Masaya Yamamoto
雅也 山本
Tadashi Nakano
忠 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2004064349A priority Critical patent/JP4795647B2/en
Publication of JP2005126812A publication Critical patent/JP2005126812A/en
Application granted granted Critical
Publication of JP4795647B2 publication Critical patent/JP4795647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvanized steel sheet superior in corrosion resistance and coating applicability, by combining a phosphate film with a Cr-free chemical conversion coating as a substitute for chromate sealing hazardous to the environment. <P>SOLUTION: This galvanized steel sheet employs a galvanized steel sheet or a zinc-alloy-plated steel sheet as a substrate, and has the phosphate film and the Cr-free chemical conversion coating formed on the surface of the substrate. In the Cr-free chemical conversion coating, there coexist an oxide or hydroxide of a valve metal and a fluoride of a valve metal. The valve metal includes Ti, Zr, Hf, V, Nb, Ta, Mo and W. The phosphate film is preferably formed so as to cover 50% or more by an area rate of the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、環境に有害な六価Crを含まず優れた耐食性,塗装性,接着性を呈し、外装材,内装材,表装材,車両用鋼板等として有用な亜鉛系めっき鋼板に関する。   The present invention relates to a zinc-based plated steel sheet that does not contain hexavalent Cr that is harmful to the environment, exhibits excellent corrosion resistance, paintability, and adhesion, and is useful as an exterior material, interior material, surface material, vehicle steel sheet, and the like.

亜鉛めっき鋼板,亜鉛合金めっき鋼板(以下、亜鉛系めっき鋼板で総称する)は、海塩粒子飛散雰囲気や高温多湿雰囲気で使用すると、外観劣化の原因となる白錆が鋼板表面に発生し、めっき層の犠牲防食作用も損なわれる。白錆の発生は、クロメート処理,リン酸塩処理等によって防止できる。しかし、クロメート処理は、生成した皮膜からの六価Crの溶出が避けられない。リン酸塩処理でも、リン酸塩処理後にクロメート処理を通常必要とすることから、六価Cr溶出の問題は未解決である。   When galvanized steel sheets and zinc alloy plated steel sheets (hereinafter collectively referred to as zinc-based plated steel sheets) are used in a sea salt particle scattering atmosphere or a high-temperature and high-humidity atmosphere, white rust that causes appearance deterioration occurs on the steel sheet surface. The sacrificial anticorrosive action of the layer is also impaired. Generation of white rust can be prevented by chromate treatment, phosphate treatment, and the like. However, in chromate treatment, elution of hexavalent Cr from the formed film is inevitable. Even in the phosphate treatment, the chromate treatment is usually required after the phosphate treatment, so the problem of hexavalent Cr elution is unsolved.

環境に有害な六価Crを含まない化成皮膜を形成するため、リン酸塩処理の改良が検討されている。たとえば、特許文献1は、ヒドラジン誘導体,シリカ微粒子,金属表面に対してエッチング作用のある酸を含む処理液でリン酸塩皮膜を後処理することを紹介している。特許文献2では、リン酸塩処理皮膜を介しチオカルボニル基含有化合物を含む有機樹脂皮膜を亜鉛系めっき鋼板に設けることを紹介している。
特開2001-207271号公報 特開2000-248367号公報
In order to form a chemical conversion film that does not contain hexavalent Cr, which is harmful to the environment, improvement of phosphate treatment has been studied. For example, Patent Document 1 introduces post-treatment of a phosphate film with a treatment liquid containing a hydrazine derivative, silica fine particles, and an acid having an etching action on the metal surface. Patent Document 2 introduces the provision of an organic resin film containing a thiocarbonyl group-containing compound on a zinc-based plated steel sheet via a phosphate treatment film.
JP 2001-207271 A JP 2000-248367 A

従来のリン酸塩皮膜では、皮膜構成成分である無機質のリン酸塩が硬質で延性がないため、化成処理後の亜鉛系めっき鋼板を成形加工するとリン酸塩皮膜に亀裂,剥離等の皮膜欠陥が導入されやすい。皮膜欠陥は、腐食発生の起点となり、化成皮膜の耐食性改善作用が極端に低下する。皮膜欠陥に起因する腐食発生を抑制するため、チオカルボニル基含有化合物を含む有機樹脂でリン酸塩皮膜をシーリングしても、十分な塗装後耐食性が得られない。   In conventional phosphate coatings, the inorganic phosphate, which is a component of the coating, is hard and not ductile. Therefore, when a zinc-plated steel sheet after chemical conversion treatment is formed, film defects such as cracks and delamination occur in the phosphate coating. Is easy to introduce. The film defect becomes a starting point of corrosion occurrence, and the corrosion resistance improving action of the chemical conversion film is extremely lowered. In order to suppress the occurrence of corrosion due to film defects, even if the phosphate film is sealed with an organic resin containing a thiocarbonyl group-containing compound, sufficient post-coating corrosion resistance cannot be obtained.

本発明は、バルブメタルの酸化物又は水酸化物及びバルブメタルのフッ化物を共存させたCrフリー化成皮膜が自己修復作用を呈することに着目し、リン酸塩皮膜をCrフリー化成皮膜でシーリングすることにより、製品形状に加工された後でもリン酸塩皮膜の欠陥がCrフリー化成皮膜で修復され、優れた耐食性,塗装性,接着性を呈する亜鉛系めっき鋼板を提供することを目的とする。   The present invention pays attention to the fact that a Cr-free chemical conversion film coexisting a valve metal oxide or hydroxide and a valve metal fluoride exhibits a self-healing action, and seals a phosphate film with a Cr-free chemical conversion film. Accordingly, an object of the present invention is to provide a zinc-based plated steel sheet in which defects in a phosphate film are repaired with a Cr-free chemical film even after being processed into a product shape, and exhibit excellent corrosion resistance, paintability, and adhesion.

亜鉛系めっき鋼板をリン酸塩処理するとリン酸塩皮膜が基材表面に形成されるが、リン酸塩皮膜は基材表面から起立する多数の析出結晶からなり、析出結晶間では基材表面が通常露出する。本発明では、リン酸塩処理後のCrフリー化成処理によって、バルブメタルの酸化物又は水酸化物及びバルブメタルのフッ化物が共存した化成皮膜で基材の露出表面を覆っている。リン酸塩皮膜は50面積%以上の被覆率で亜鉛系めっき層上に、化成皮膜はリン酸塩の突出高さの10%以下の膜厚で形成することが好ましい。バルブメタルは、酸化物が高い絶縁抵抗を示す金属元素であり、Ti,Zr,Hf,V,Nb,Ta,Mo,W等が挙げられる。   When galvanized steel sheets are subjected to phosphate treatment, a phosphate film is formed on the surface of the substrate. The phosphate film consists of a large number of precipitated crystals rising from the surface of the substrate. Usually exposed. In the present invention, the exposed surface of the base material is covered with a chemical conversion film in which valve metal oxide or hydroxide and valve metal fluoride coexist by Cr-free chemical conversion treatment after phosphate treatment. The phosphate film is preferably formed on the zinc-based plating layer with a coverage of 50 area% or more, and the chemical conversion film is formed with a film thickness of 10% or less of the protruding height of the phosphate. The valve metal is a metal element whose oxide exhibits high insulation resistance, and examples thereof include Ti, Zr, Hf, V, Nb, Ta, Mo, and W.

リン酸塩処理した亜鉛系めっき層1の表面には、多数のリン酸塩結晶2からなるリン酸塩皮膜3が形成されている(図1a)。リン酸塩結晶2は、亜鉛系めっき層1の表面から起立する方向に沿って成長し、先端が尖った結晶になっている。隣接するリン酸塩結晶2の間では、亜鉛系めっき層1が露出している。
バルブメタルのフッ化物を含むCrフリー化成処理液でリン酸塩皮膜3形成後の亜鉛系めっき層1を処理すると、処理液のエッチング作用によりリン酸塩結晶2の一部が溶解し、溶解したリン酸塩成分が処理液成分と共に亜鉛系めっき層1の露出表面と反応し、Crフリーの化成皮膜4が生成する。亜鉛系めっき層1は、露出表面がCrフリー化成皮膜4で覆われるため、リン酸塩皮膜3,Crフリー化成皮膜4によって亜鉛系めっき鋼板が環境から遮断される。亜鉛系めっき層1から起立しているリン酸塩結晶2の表面にも粒状の反応生成物5が沈積する(図1b)。
On the surface of the zinc-based plating layer 1 subjected to the phosphate treatment, a phosphate film 3 composed of a large number of phosphate crystals 2 is formed (FIG. 1a). The phosphate crystal 2 grows along the direction rising from the surface of the zinc-based plating layer 1 and has a sharp tip. The zinc-based plating layer 1 is exposed between the adjacent phosphate crystals 2.
When the zinc-based plating layer 1 after the formation of the phosphate coating 3 was treated with a Cr-free chemical conversion treatment liquid containing a valve metal fluoride, a part of the phosphate crystal 2 was dissolved and dissolved by the etching action of the treatment liquid. The phosphate component reacts with the exposed surface of the zinc-based plating layer 1 together with the treatment liquid component, and a Cr-free chemical conversion film 4 is generated. Since the exposed surface of the zinc-based plated layer 1 is covered with the Cr-free chemical conversion film 4, the zinc-based plated steel sheet is shielded from the environment by the phosphate film 3 and the Cr-free chemical conversion film 4. The granular reaction product 5 is also deposited on the surface of the phosphate crystal 2 rising from the zinc-based plating layer 1 (FIG. 1b).

Crフリー化成皮膜4には、バルブメタルの酸化物又は水酸化物及びバルブメタルのフッ化物が共存している。バルブメタルの酸化物又は水酸化物は、優れた環境遮断能を呈し、腐食性雰囲気から亜鉛系めっき層1を保護する。バルブメタルのフッ化物は、腐食性雰囲気に曝されると溶出し、難溶性の酸化物又は水酸化物となって再析出する過程でリン酸塩皮膜3,化成皮膜4の欠陥部を自己修復する。   In the Cr-free chemical conversion film 4, valve metal oxide or hydroxide and valve metal fluoride coexist. The oxide or hydroxide of the valve metal exhibits an excellent environmental barrier ability and protects the zinc-based plating layer 1 from a corrosive atmosphere. Valve metal fluoride dissolves when exposed to corrosive atmospheres and self-repairs defects in phosphate coating 3 and chemical conversion coating 4 in the process of reprecipitation as a sparingly soluble oxide or hydroxide. To do.

Crフリー化成皮膜4は、隣接リン酸塩結晶2の間で露出している亜鉛系めっき層1の表面に形成されるため、未処理の亜鉛系めっき層1に形成される化成皮膜に比べ成長が促進され、環境遮断能,自己修復作用が格段に向上する。環境遮断能,自己修復作用は膜厚0.001μm以上の化成皮膜4でみられるが、化成皮膜4が厚く成長しすぎると塗料や接着剤の密着性に及ぼすリン酸塩結晶2の効果が損なわれるので、亜鉛系めっき層1の表面から起立するリン酸塩結晶2の平均高さの10%以下に化成皮膜4の膜厚を制御することが好ましい。化成皮膜4の膜厚は、Crフリー化成処理液の濃度や処理時間等で制御できる。リン酸塩結晶2の突出高さは1〜2μmの微細サイズから5〜20μmの通常サイズまであるので、該突出高さに応じて化成皮膜4の膜厚を選定する。   Since the Cr-free chemical conversion film 4 is formed on the surface of the zinc-based plating layer 1 exposed between the adjacent phosphate crystals 2, it grows in comparison with the chemical conversion film formed on the untreated zinc-based plating layer 1. Is promoted, and the ability to shut off the environment and the self-healing action are significantly improved. Although the environmental barrier ability and self-healing action are observed in the chemical conversion film 4 having a film thickness of 0.001 μm or more, if the chemical conversion film 4 grows too thick, the effect of the phosphate crystal 2 on the adhesion of the paint or adhesive is impaired. Therefore, it is preferable to control the film thickness of the chemical conversion film 4 to 10% or less of the average height of the phosphate crystal 2 rising from the surface of the zinc-based plating layer 1. The film thickness of the chemical conversion film 4 can be controlled by the concentration of the Cr-free chemical conversion treatment liquid, the processing time, and the like. Since the protrusion height of the phosphate crystal 2 ranges from a fine size of 1 to 2 μm to a normal size of 5 to 20 μm, the film thickness of the chemical conversion film 4 is selected according to the protrusion height.

化成皮膜4は、無機質で延性のない皮膜ではあるが、リン酸塩結晶2で分断されているため、亜鉛系めっき層1に対する密着性低下も軽減される。リン酸塩結晶2の表面に析出している粒状反応生成物5も、自己修復作用を呈するフッ化物の供給源となる。更に、硬質で延性のないリン酸塩結晶2のシャープな角部がCrフリー化成処理液のエッチング作用で消失するので、プレス成形等の加工時に亀裂や剥離がリン酸塩皮膜3に生じにくくなる。そのため、化成処理鋼板上に形成される塗膜の密着性やフィルムをラミネートするときの接着性の向上に有効なリン酸塩皮膜3の機能が維持される。   Although the chemical conversion film 4 is an inorganic and non-ductive film, it is divided by the phosphate crystal 2, so that a decrease in adhesion to the zinc-based plating layer 1 is also reduced. The granular reaction product 5 deposited on the surface of the phosphate crystal 2 is also a fluoride supply source exhibiting a self-repairing action. Furthermore, since the sharp corners of the hard and non-ductile phosphate crystal 2 disappear due to the etching action of the Cr-free chemical conversion treatment liquid, cracks and peeling are less likely to occur in the phosphate coating 3 during processing such as press molding. . Therefore, the function of the phosphate film 3 effective for improving the adhesion of the coating film formed on the chemical conversion treated steel sheet and the adhesion when laminating the film is maintained.

化成処理される原板としては、電気めっき法,溶融めっき法,蒸着めっき法で製造された亜鉛系めっき鋼板が使用される。亜鉛合金めっきには、Zn−Al,Zn−Mg,Zn−Ni,Zn−Al−Mg等がある。また、溶融めっきした後で合金化処理を施した合金化亜鉛めっき鋼板も化成処理用原板として使用できる。   As the original plate subjected to the chemical conversion treatment, a zinc-based plated steel plate manufactured by an electroplating method, a hot dipping method, or a vapor deposition method is used. Examples of zinc alloy plating include Zn—Al, Zn—Mg, Zn—Ni, and Zn—Al—Mg. An alloyed galvanized steel sheet that has been subjected to alloying treatment after hot dipping can also be used as a raw sheet for chemical conversion treatment.

リン酸塩処理液には、リン酸イオンの他に必要に応じてZn,Mn,Mg,Ca,Ni,Co等の金属イオンを添加した水溶液が使用される。処理促進剤として硝酸イオンをリン酸塩処理液に含ませても良い。リン酸塩処理液は、リン酸イオン濃度を0.03〜0.5モル/l,金属イオン濃度を0.01〜0.5モル/lの範囲に調整することが好ましい。硝酸イオンを含ませる場合には、硝酸イオン濃度を0.01〜1.0モル/lの範囲に調整する。   As the phosphating solution, an aqueous solution to which metal ions such as Zn, Mn, Mg, Ca, Ni, Co and the like are added in addition to phosphate ions as required is used. Nitrate ions may be included in the phosphate treatment solution as a treatment accelerator. In the phosphating solution, it is preferable to adjust the phosphate ion concentration to a range of 0.03 to 0.5 mol / l and the metal ion concentration to a range of 0.01 to 0.5 mol / l. When nitrate ions are included, the nitrate ion concentration is adjusted to a range of 0.01 to 1.0 mol / l.

リン酸イオン濃度:0.03モル/l未満では短時間処理でリン酸塩結晶が充分に析出せず、逆に0.5モル/lを超えるとリン酸塩処理液の安定性が低下し、スラッジが発生し易くなる。金属イオン濃度:0.01〜0.5モル/lは各種金属イオンを合計した値であり、0.01モル/l未満では短時間処理でリン酸塩結晶を充分に析出させることができず、逆に0.5モル/lを超えるとリン酸塩処理液の安定性が低下する。硝酸イオンによる反応促進効果は0.01モル/l以上でみられるが、1.0モル/lを超える過剰量の硝酸イオンが含まれると酸化作用により亜鉛系めっき層の表面が不活性化し、却って反応性が低下する。   When the phosphate ion concentration is less than 0.03 mol / l, phosphate crystals are not sufficiently precipitated in a short time treatment. Conversely, when the concentration exceeds 0.5 mol / l, the stability of the phosphate treatment solution decreases. Sludge is likely to occur. Metal ion concentration: 0.01 to 0.5 mol / l is a total value of various metal ions. If it is less than 0.01 mol / l, phosphate crystals cannot be sufficiently precipitated in a short time treatment. On the other hand, if it exceeds 0.5 mol / l, the stability of the phosphating solution is lowered. The reaction promoting effect by nitrate ions is observed at 0.01 mol / l or more, but if an excessive amount of nitrate ions exceeding 1.0 mol / l is included, the surface of the zinc-based plating layer is inactivated by oxidation action, On the contrary, the reactivity decreases.

Alを含むめっき層が形成された亜鉛系めっき鋼板をリン酸塩処理する場合、めっき層から溶出したAlがリン酸塩反応を阻害する傾向がみられるが、リン酸塩処理に及ぼす溶出Alの悪影響はリン酸塩処理液にフッ化物を添加することにより抑制できる。フッ化物としてはフッ化ナトリウム、フッ化カリウム、フッ化水素ナトリウム等があり、フリーのフッ素イオン濃度が30ppm以上でフッ化物の添加効果が顕著になる。連続的な操業を可能とする上では、一定量のフッ化物を連続的にリン酸塩処理液に添加し、フッ素イオン濃度を30ppm以上に維持することが好ましい。   When phosphating a zinc-based plated steel sheet on which a plating layer containing Al is formed, there is a tendency for Al eluted from the plating layer to inhibit the phosphate reaction. Adverse effects can be suppressed by adding fluoride to the phosphating solution. Fluoride includes sodium fluoride, potassium fluoride, sodium hydrogen fluoride and the like, and the effect of adding fluoride becomes remarkable when the free fluorine ion concentration is 30 ppm or more. In order to enable continuous operation, it is preferable that a certain amount of fluoride is continuously added to the phosphating solution to maintain the fluorine ion concentration at 30 ppm or more.

リン酸塩処理は、好ましくは液温40〜80℃の範囲で実施される。液温が40℃に達しない場合、短時間処理ではリン酸塩結晶の析出が不充分となる。逆に、80℃を超える液温ではリン酸塩処理液の安定性が低下し、スラッジの発生や水分の蒸発が多くなり連続操業での濃度管理が難しくなる。液温が40〜80℃のリン酸塩処理液を使用する限り、スプレー処理であれば2〜6秒程度、浸漬処理であれば3〜9秒程度で必要とするリン酸塩皮膜が形成される。処理時間を長く設定しても、リン酸塩の析出が飽和状態になり外観に変化は無く問題は無い。   Phosphate treatment is preferably carried out at a liquid temperature in the range of 40 to 80 ° C. When the liquid temperature does not reach 40 ° C., phosphate crystals are not sufficiently precipitated by short-time treatment. On the other hand, when the liquid temperature exceeds 80 ° C., the stability of the phosphating solution decreases, and sludge generation and water evaporation increase, making it difficult to manage the concentration in continuous operation. As long as a phosphating solution having a liquid temperature of 40 to 80 ° C. is used, the necessary phosphate film is formed in about 2 to 6 seconds for spraying and about 3 to 9 seconds for immersion. The Even if the treatment time is set long, there is no problem because the precipitation of phosphate becomes saturated and the appearance does not change.

リン酸塩結晶2は亜鉛系めっき層1の表面にある析出起点から成長し、表面全体がリン酸塩結晶2で覆われて飽和状態に達すると析出反応が停止する。リン酸塩皮膜3の被覆率,付着量はリン酸塩処理液との接触時間及び結晶の成長速度の調整により制御でき、析出起点の増加、ひいては結晶サイズの調整によっても制御できる。たとえば、接触時間の短縮、或いは同じ接触時間でも処理液温度を低くして結晶の成長速度を遅くすると、リン酸塩皮膜3の被覆率,付着量が減少する。また、リン酸塩処理に先立つ表面調整処理に使用される処理液濃度の上昇やリン酸塩処理液の昇温により析出起点を増加でき、結果としてリン酸塩結晶2が微細となるためリン酸塩皮膜3の付着量が減少する。
リン酸塩皮膜3は,亜鉛系めっき層1の表面に対して50面積%以上の被覆率で形成することが好ましい。リン酸塩皮膜3の被覆率は膜厚やリン酸塩結晶2のサイズに影響されるが、50面積%以上でリン酸塩皮膜3を設けることにより十分な塗膜密着性,塗装後耐食性が得られる。
The phosphate crystal 2 grows from the precipitation starting point on the surface of the zinc-based plating layer 1, and the precipitation reaction stops when the entire surface is covered with the phosphate crystal 2 and reaches a saturated state. The coverage and adhesion amount of the phosphate coating 3 can be controlled by adjusting the contact time with the phosphating solution and the growth rate of the crystal, and can also be controlled by increasing the precipitation starting point and thus adjusting the crystal size. For example, when the contact time is shortened or the treatment liquid temperature is lowered and the crystal growth rate is slowed even at the same contact time, the coverage rate and the adhesion amount of the phosphate coating 3 are reduced. Moreover, since the precipitation starting point can be increased by increasing the concentration of the treatment solution used for the surface conditioning treatment prior to the phosphate treatment or by raising the temperature of the phosphate treatment solution, the phosphate crystal 2 becomes finer, resulting in phosphoric acid. The adhesion amount of the salt film 3 is reduced.
The phosphate film 3 is preferably formed with a coverage of 50 area% or more with respect to the surface of the zinc-based plating layer 1. The coverage of the phosphate film 3 is affected by the film thickness and the size of the phosphate crystal 2, but by providing the phosphate film 3 at 50 area% or more, sufficient coating film adhesion and post-coating corrosion resistance can be obtained. can get.

リン酸塩皮膜3を形成した後、Crフリー化成処理液で亜鉛系めっき鋼板を処理する。Crフリー化成処理液自体は、本発明者等が特許第3305703号で紹介した処理液を使用でき、可溶性ハロゲン化物又は酸素酸塩をバルブメタルのソースとして含んでいる。バルブメタルには、Ti,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれた1種又は2種以上の金属がある。たとえば、Tiのフッ化物はTiソース,Fソースとしても有効であるが、(NH4)F等の可溶性フッ化物をCrフリー化成処理液に別途添加しても良い。Ti以外のバルブメタルについても同様であるが、以下ではTiを例にとって説明する。 After forming the phosphate coating 3, the galvanized steel sheet is treated with a Cr-free chemical conversion treatment solution. The Cr-free chemical conversion treatment solution itself can use the treatment solution introduced by the present inventors in Patent No. 3305703, and contains a soluble halide or oxyacid salt as a source of valve metal. The valve metal includes one or more metals selected from Ti, Zr, Hf, V, Nb, Ta, Mo, and W. For example, although a fluoride of Ti is effective as a Ti source and an F source, a soluble fluoride such as (NH 4 ) F may be added separately to the Cr-free chemical conversion treatment solution. The same applies to valve metals other than Ti, but Ti will be described below as an example.

Tiソースとしては、KnTiF6(K:アルカリ金属又はアルカリ土類金属,n:1又は2),K2[TiO(COO)2],(NH4)2TiF6,TiCl4,TiOSO4,Ti(SO4)2,Ti(OH)4等がある。Tiソースは、化成処理液を塗布した後で乾燥・焼付けするときに所定組成の酸化物又は水酸化物とフッ化物からなる化成皮膜が形成されるように各成分の配合比率が選定される。 The Ti source, K n TiF 6 (K: an alkali metal or alkaline earth metal, n: 1 or 2), K 2 [TiO ( COO) 2], (NH 4) 2 TiF 6, TiCl 4, TiOSO 4 , Ti (SO 4 ) 2 , Ti (OH) 4 and the like. In the Ti source, the blending ratio of each component is selected so that a chemical conversion film composed of oxide or hydroxide and fluoride having a predetermined composition is formed when the chemical conversion treatment liquid is applied and then dried and baked.

Tiソースを化成処理液中にイオンとして安定的に維持する上で、キレート作用のある有機酸を添加することが好ましい。有機酸を添加する場合、金属イオンをキレート化して化成処理液を安定させることから、有機酸/金属イオンのモル比が0.02以上となる添加量に定められる。有機酸としては、酒石酸,タンニン酸,クエン酸,蓚酸,マロン酸,乳酸,酢酸等が挙げられる。なかでも、酒石酸等のオキシカルボン酸やタンニン酸等の多価フェノール類は、処理液を安定化させると共に、フッ化物の自己修復作用を補完する作用も呈し、塗膜密着性の向上にも有効である。   In order to stably maintain the Ti source as ions in the chemical conversion solution, it is preferable to add an organic acid having a chelating action. In the case of adding an organic acid, metal ions are chelated to stabilize the chemical conversion solution, so that the organic acid / metal ion molar ratio is set to 0.02 or more. Examples of the organic acid include tartaric acid, tannic acid, citric acid, succinic acid, malonic acid, lactic acid, acetic acid and the like. Among them, polyphenols such as tartaric acid and other oxycarboxylic acids and tannic acid stabilize the treatment liquid and also complement the self-healing action of fluoride, which is also effective in improving coating film adhesion. It is.

任意成分としての可溶性又は難溶性金属リン酸塩又は複合リン酸塩を化成皮膜に含ませるため、各種金属のオルソリン酸塩やポリリン酸塩を添加してもよい。
可溶性金属リン酸塩又は複合リン酸塩は、化成皮膜から溶出して皮膜欠陥部に溶出し、亜鉛系めっき層1と反応して不溶性リン酸塩を析出することによって、チタンフッ化物の自己修復作用を補完する。また、可溶性リン酸塩が解離する際に雰囲気が若干酸性化するため、チタンフッ化物の加水分解、ひいては難溶性チタン酸化物又は水酸化物の生成が促進される。可溶性リン酸塩又は複合リン酸塩を生成する金属にはアルカリ金属,アルカリ土類金属,Mn等があり、各種金属リン酸塩又は各種金属塩とリン酸,ポリリン酸,リン酸塩として化成処理液に添加される。
In order to include a soluble or poorly soluble metal phosphate or composite phosphate as an optional component in the chemical conversion film, orthophosphates and polyphosphates of various metals may be added.
Soluble metal phosphate or composite phosphate elutes from the chemical conversion film, elutes to the film defect, reacts with the zinc-based plating layer 1 and precipitates insoluble phosphate, thereby self-repairing action of titanium fluoride To complement. Further, since the atmosphere is slightly acidified when the soluble phosphate is dissociated, the hydrolysis of titanium fluoride, and hence the generation of hardly soluble titanium oxide or hydroxide, is promoted. Metals that produce soluble phosphates or composite phosphates include alkali metals, alkaline earth metals, Mn, etc., various metal phosphates or various metal salts and chemical conversion treatment as phosphoric acid, polyphosphoric acid, phosphate Added to the liquid.

難溶性の金属リン酸塩又は複合リン酸塩は、化成皮膜に分散し、皮膜欠陥を解消すると共に皮膜強度を向上させる。難溶性リン酸塩又は複合リン酸塩を形成する金属にはAl,Ti,Zr,Hf,Zn等があり、各種金属リン酸塩又は各種金属塩とリン酸,ポリリン酸,リン酸塩として化成処理液に添加される。
亜鉛合金系めっき鋼板のうちAlを含むめっき層が形成されためっき鋼板では黒変色が発生しやすいが、この場合にFe,Co,Niから選ばれた1種又は2種以上の金属塩を皮膜に存在させることにより黒変色を防止できる。また、厳しい加工等によってめっき層に大きなクラックが生じたものでは、フッ化物,リン酸塩の自己修復作用だけでは不充分な場合が生じる。この場合には、Mo,Wの可溶性六価酸素酸塩を皮膜中に多量存在させることにより、六価クロムと同様の作用を発現させてめっき層のクラックを補修し、耐食性を向上させる。
The hardly soluble metal phosphate or composite phosphate is dispersed in the chemical conversion film to eliminate film defects and improve the film strength. There are Al, Ti, Zr, Hf, Zn, etc. as metals that form poorly soluble phosphates or composite phosphates. Various metal phosphates or various metal salts and phosphoric acid, polyphosphoric acid, and phosphate Added to the treatment solution.
Of the zinc alloy plated steel sheets, plated steel sheets with an Al-containing plating layer are prone to black discoloration. In this case, one or more metal salts selected from Fe, Co, and Ni are coated. It is possible to prevent black discoloration by making it exist in the surface. Further, when a large crack is generated in the plating layer due to strict processing or the like, the self-repairing action of fluoride and phosphate may be insufficient. In this case, the presence of a large amount of Mo, W soluble hexavalent oxyacid salt in the film causes the same action as hexavalent chromium to repair cracks in the plating layer and improve the corrosion resistance.

Zn,Mn,Mg,Ca等の酸化物,水酸化物,リン酸塩,フッ化物,炭酸塩,有機酸塩を添加したリン酸塩処理液を使用すると、処理液中からZn,Mn,Mg,Ca等の金属がリン酸塩結晶2に取り込まれる。Mn,Mg,Ca等の金属成分を含まないリン酸塩処理液で形成されたリン酸塩結晶2がリン酸亜鉛単独のホパイト〔Zn3(PO4)・4H2O〕であるのに対し、Mn,Mg,Ca等を取り込んだリン酸塩結晶2は亜鉛系めっき層1に対する密着性,耐水性に優れた複合リン酸塩となり、耐食性の向上に有効なリン酸塩皮膜3を形成する。 When a phosphate treatment liquid to which oxides, hydroxides, phosphates, fluorides, carbonates, organic acid salts such as Zn, Mn, Mg, and Ca are added is used, Zn, Mn, Mg is added from the treatment liquid. , Ca and the like are incorporated into the phosphate crystal 2. Whereas the phosphate crystal 2 formed with the phosphate treatment liquid not containing metal components such as Mn, Mg, Ca is zinc phosphate alone [Zn 3 (PO 4 ) · 4H 2 O]. The phosphate crystal 2 incorporating Mn, Mg, Ca, etc. becomes a composite phosphate having excellent adhesion and water resistance to the zinc-based plating layer 1, and forms a phosphate film 3 effective in improving corrosion resistance. .

以上のように、ハロゲン化物や酸素酸塩からなるTiソース化合物を含む処理液をベースとし、必要に応じてイオン安定化作用のある有機酸や、チタンフッ化物の自己修復作用を補完し耐食性を向上させる作用のあるリン酸塩を配合する。
調製された処理液をリン酸塩処理された亜鉛系めっき鋼板に塗布すると、フッ素イオンと亜鉛系めっき層1又はTiと反応したCrフリー化成皮膜4がリン酸塩結晶2の間にある亜鉛系めっき層1の露出表面に優先的に形成される。Crフリー化成皮膜4は、リン酸塩結晶2のない亜鉛系めっき層1に析出する場合に比較して成長が促進され、自己修復作用のあるフッ化チタンを十分な量含む皮膜になる。
化成皮膜4の膜厚は、化成処理液の濃度で制御できる。また、ロールコート方式で塗布する場合、ロール表面の粗さ,硬さ,塗布時の周速等によりロール表面のウエット量を調整することによっても界面反応層4の膜厚を制御できる。
生成したCrフリー化成皮膜4は、リン酸塩結晶2で分断されているので、加工時等に加えられる応力を分散させる作用を呈し、亜鉛系めっき層1に対する密着性も低下しない。しかも、亜鉛系めっき層1から突出しているリン酸塩結晶2の大半が化成皮膜4で覆われていないので、その上に設けられる塗膜や接着剤層の密着性,塗装後耐食性等が格段に向上する。
As described above, based on treatment liquid containing Ti source compound consisting of halide and oxyacid salt, organic acid with ion stabilizing action and self-healing action of titanium fluoride are complemented as needed to improve corrosion resistance The phosphate which has the effect | action which makes it mix | blend.
When the prepared treatment liquid is applied to a phosphate-treated zinc-based plated steel sheet, a zinc-based coating in which a Cr-free chemical conversion film 4 reacted with fluorine ions and zinc-based plating layer 1 or Ti is present between phosphate crystals 2 Preferentially formed on the exposed surface of the plating layer 1. The Cr-free chemical conversion film 4 is a film containing a sufficient amount of titanium fluoride having a self-repairing effect because growth is promoted as compared with the case where it deposits on the zinc-based plating layer 1 without the phosphate crystal 2.
The film thickness of the chemical conversion film 4 can be controlled by the concentration of the chemical conversion solution. Moreover, when apply | coating by a roll coat system, the film thickness of the interface reaction layer 4 can also be controlled by adjusting the wet amount of a roll surface with the roughness of a roll surface, hardness, the peripheral speed at the time of application | coating, etc.
Since the produced Cr-free chemical conversion film 4 is divided by the phosphate crystal 2, it exhibits an action of dispersing stress applied during processing or the like, and adhesion to the zinc-based plating layer 1 does not decrease. Moreover, since most of the phosphate crystals 2 protruding from the zinc-based plating layer 1 are not covered with the chemical conversion film 4, the adhesion of the coating film or adhesive layer provided thereon, the corrosion resistance after coating, etc. are remarkably high. To improve.

リン酸塩結晶2,Crフリー化成皮膜4で亜鉛系めっき層1が被覆された亜鉛系めっき鋼板は、Crフリー化成皮膜4で皮膜欠陥が自己修復されるため環境遮断能が高く、塗膜密着性,塗装後耐食性が格段に向上している。
Crフリー化成処理液の塗布量は、十分な耐食性を確保するため0.1mg/m2以上のチタン付着量となるように調整することが好ましい。
形成された化成皮膜を蛍光X線,ESCA等で元素分析すると、化成皮膜に含まれているO及びF濃度が測定される。測定値から算出した濃度比F/O(原子比率)と耐食性との関係を調査したところ、濃度比F/O(原子比率)1/100以上で皮膜欠陥部を起点とする腐食の発生が大幅に減少した。これは、自己修復作用のあるチタンフッ化物が十分な量で化成皮膜中に含まれていることによるものと推察される。
Zinc-based plated steel sheet coated with zinc-based plating layer 1 with phosphate crystal 2 and Cr-free conversion coating 4 has a high environmental barrier because the coating defects are self-repaired with Cr-free conversion coating 4, and the coating adheres well. And post-painting corrosion resistance are significantly improved.
The coating amount of the Cr-free chemical conversion treatment liquid is preferably adjusted so that the amount of titanium adhered is 0.1 mg / m 2 or more in order to ensure sufficient corrosion resistance.
When the formed chemical conversion film is subjected to elemental analysis by fluorescent X-ray, ESCA, etc., the O and F concentrations contained in the chemical conversion film are measured. When the relationship between the concentration ratio F / O (atomic ratio) calculated from the measured values and the corrosion resistance was investigated, the occurrence of corrosion starting from the film defects was significantly observed at a concentration ratio F / O (atomic ratio) of 1/100 or more. Decreased. This is presumably due to the fact that a sufficient amount of titanium fluoride having a self-repairing action is contained in the chemical conversion film.

Crフリー化成皮膜4は、5〜300nm程度の厚みをもっていることが好ましい。Crフリー化成皮膜4は、膜厚5nm以上で十分な環境遮断能を、10nm以上で良好な防食能を発現するが、300nmを超える厚膜に成長すると成形加工時に加わる応力によってクラックが発生しやすくなり、却って耐食性を低下させる。なお、Crフリー化成皮膜4の厚みは、AESによる深さ方向の元素分析,TEM観察等によって測定できる。
亜鉛系めっき鋼板に塗布したCrフリー化成処理液を常温で乾燥することもできるが、連続操業を考慮すると80℃以上に保持して乾燥時間を短縮することが好ましい。ただし、300℃を超える乾燥温度では、Crフリー化成皮膜4が厚膜の場合に凝集破壊が生じ耐食性が損なわれる虞がある。
The Cr-free chemical conversion film 4 preferably has a thickness of about 5 to 300 nm. The Cr-free chemical conversion film 4 exhibits a sufficient environmental barrier ability at a film thickness of 5 nm or more and a good anticorrosion ability at a film thickness of 10 nm or more. However, when it grows to a thick film exceeding 300 nm, cracks are likely to occur due to stress applied during molding. On the contrary, the corrosion resistance is lowered. The thickness of the Cr-free chemical conversion film 4 can be measured by elemental analysis in the depth direction by AES, TEM observation, or the like.
Although the Cr-free chemical conversion treatment solution applied to the zinc-based plated steel sheet can be dried at room temperature, it is preferable to keep the temperature at 80 ° C. or higher to shorten the drying time in consideration of continuous operation. However, at a drying temperature exceeding 300 ° C., when the Cr-free chemical conversion film 4 is a thick film, cohesive failure may occur and the corrosion resistance may be impaired.

化成皮膜を形成した後、更に耐食性に優れた有機皮膜を形成することもできる。この種の皮膜として、たとえばウレタン系樹脂,エポキシ樹脂,ポリエチレン、ポリプロピレン,エチレン−アクリル酸共重合体等のオレフィン系樹脂,ポリスチレン等のスチレン系樹脂,ポリエステル,或いはこれらの共重合物又は変性物,アクリル系樹脂等の樹脂皮膜を膜厚0.1〜5μmで化成皮膜の上に設けると、クロメート皮膜を凌駕する高耐食性が得られる。或いは、導電性に優れた樹脂皮膜を化成皮膜の上に設けることにより、潤滑性が改善され、溶接性も付与される。この種の樹脂皮膜としては、たとえば有機樹脂エマルジョンを静電霧化して塗布する方法で形成できる。   After forming the chemical conversion film, an organic film having further excellent corrosion resistance can be formed. As this type of film, for example, urethane resin, epoxy resin, polyethylene, polypropylene, olefin resin such as ethylene-acrylic acid copolymer, styrene resin such as polystyrene, polyester, or a copolymer or modified product thereof, When a resin film such as an acrylic resin is provided on the chemical film with a film thickness of 0.1 to 5 μm, high corrosion resistance surpassing that of the chromate film can be obtained. Alternatively, by providing a resin film having excellent conductivity on the chemical conversion film, lubricity is improved and weldability is also imparted. This type of resin film can be formed by, for example, applying an organic resin emulsion by electrostatic atomization.

原板として二種類の亜鉛系めっき鋼板A,Bを用意した。
(A) 片面当りめっき付着量60g/m2でZn−6質量%Al−3質量%Mgの合金めっき層が形成された板厚0.8mmの溶融めっき鋼板
(B) 片面当りめっき付着量20g/m2でZnめっき層が形成された板厚0.8mmの電気めっき鋼板
Two types of galvanized steel sheets A and B were prepared as original sheets.
(A) Hot-dip galvanized steel sheet having a thickness of 0.8 mm on which an alloy plating layer of Zn-6 mass% Al-3 mass% Mg is formed at a coating adhesion amount of 60 g / m 2 per side.
(B) An electroplated steel sheet having a thickness of 0.8 mm on which a Zn plating layer is formed with a coating weight of 20 g / m 2 per side.

Zn−Mnを主成分とするリン酸塩処理液(表1)を用いて各めっき鋼板をリン酸塩処理した後、Crフリー化成処理液(表2)を塗布し乾燥することによりリン酸塩皮膜をCrフリー化成皮膜でシーリングした。リン酸塩処理とCrフリー化成処理の組合せを表3に、亜鉛系めっき鋼板の表面に形成されたリン酸塩皮膜,Crフリー化成皮膜を表4に示す。   Phosphate treatment is carried out by applying a Cr-free chemical conversion treatment solution (Table 2) after drying each plated steel sheet using a phosphate treatment solution (Table 1) mainly composed of Zn-Mn. The film was sealed with a Cr-free chemical film. Table 3 shows the combinations of phosphate treatment and Cr-free chemical conversion treatment, and Table 4 shows the phosphate coating and Cr-free chemical conversion coating formed on the surface of the galvanized steel sheet.

Figure 2005126812
Figure 2005126812

Figure 2005126812
Figure 2005126812

Figure 2005126812
Figure 2005126812

Figure 2005126812
Figure 2005126812

Crフリー処理後の亜鉛系めっき鋼板から試験片を切り出し、各種腐食試験に供した。
〔平坦部腐食試験〕
試験片の端面をシールし、JIS Z2371に準拠して35℃の5%NaCl水溶液を試験片表面に噴霧した。塩水噴霧を72時間又は240時間継続した後、試験片表面を観察し白錆発生状況を調査した。試験片表面に占める白錆の面積占有率が5面積%未満を◎,5〜10面積%を○,10〜30面積%を△,30〜50面積%を▲,50面積%以上を×として平坦部耐食性を評価した。
Test pieces were cut out from the zinc-based plated steel sheet after the Cr-free treatment and subjected to various corrosion tests.
[Flat corrosion test]
The end face of the test piece was sealed, and a 5% NaCl aqueous solution at 35 ° C. was sprayed on the test piece surface in accordance with JIS Z2371. After spraying salt water for 72 hours or 240 hours, the surface of the test piece was observed to investigate the occurrence of white rust. The area occupancy ratio of white rust on the surface of the test piece is less than 5 area%, ◎, 5-10 area% is ◯, 10-30 area% is △, 30-50 area% is ▲, and 50 area% or more is x. The flat part corrosion resistance was evaluated.

〔加工部腐食試験〕
リン酸塩皮膜が部分的に損傷を受ける180度曲げ加工を施した試験片について,平坦部腐食試験と同じ塩水噴霧を24時間,120時間継続し、加工部に発生した白錆の面積占有率を求めた。面積占有率が5面積%未満を◎,5〜10面積%を○,10〜30面積%を△,30〜50面積%を▲,50面積%以上を×として加工部耐食性を評価した。
[Processed part corrosion test]
The test piece subjected to 180-degree bending work that partially damaged the phosphate coating was subjected to the same salt spray as the flat part corrosion test for 24 hours and 120 hours, and the area occupancy rate of white rust generated in the processed part Asked. The area occupancy rate was evaluated as corrosion resistance of a processed part, where を is less than 5%, 5〜 is 5 to 10%, △ is 10 to 30%, ▲ is 30 to 50% and x is 50% or more.

〔塗装後腐食試験〕
化成処理した亜鉛系めっき鋼板をメラミンアルキッド塗装し、膜厚30μmの塗膜を形成した。塗膜にクロスカットを入れ、1000時間の塩水噴霧に供した後、クロスカット部に接着テープを貼り付け瞬時に引き剥がすテープ剥離試験し、塗膜が剥離した幅を腐食幅として測定した。腐食幅が2mm未満を◎,5mm未満を○,10mm未満を△,10mmを超える腐食幅を×として塗装後耐食性を評価した。
[Corrosion test after painting]
The galvanized steel sheet subjected to chemical conversion treatment was coated with melamine alkyd to form a coating film having a thickness of 30 μm. After the crosscut was put into the coating film and subjected to salt water spraying for 1000 hours, a tape peeling test was performed in which an adhesive tape was applied to the crosscut portion and peeled off instantaneously, and the width at which the coating film was peeled was measured as the corrosion width. Corrosion resistance after coating was evaluated with ◎ when the corrosion width was less than 2 mm, ◯ when it was less than 5 mm, Δ when it was less than 10 mm, and x when the corrosion width was more than 10 mm.

表5の腐食試験結果にみられるように、リン酸塩処理後にCrフリー化成処理した亜鉛系めっき鋼板は、平坦部耐食性,加工部耐食性,塗装後耐食性の何れにも優れた特性を示した。なかでも、被覆率の高いリン酸塩皮膜とCrフリー化成皮膜とを組み合わせた試験Nos.2A〜4Bでは、加工部耐食性が格段と改善されており、Crフリー化成皮膜の自己修復作用が発現していることが窺われる。   As can be seen from the corrosion test results in Table 5, the zinc-based plated steel sheet subjected to the Cr-free conversion treatment after the phosphate treatment exhibited excellent properties in all of the flat portion corrosion resistance, the processed portion corrosion resistance, and the post-painting corrosion resistance. In particular, in the tests Nos. 2A to 4B in which a high-coverage phosphate film and a Cr-free chemical film are combined, the corrosion resistance of the processed part is remarkably improved, and the self-repairing action of the Cr-free chemical film is exhibited. It is redeemed that

他方、リン酸塩処理せずにCrフリー化成皮膜4を設けた試験Nos.7A,7Bや、Ti(バルブメタル)を含まない試験Nos.8A,8Bでは、平坦部耐食性,塗装後耐食性に劣り、塩水噴霧が長期になるほど平坦部,加工部共に白錆発生が助長された。バルブメタルのフッ化物を含まないCrフリー化成皮膜を形成した試験Nos.9A,9Bでも、塩水噴霧が長期になると平坦部に多量の白錆が発生した。リン酸塩処理をクロメート処理でシーリングする従来の化成処理を施した試験Nos.10A,10Bでは、短時間の塩水噴霧によっても加工部に白錆が発生し、平坦部耐食性,塗装後耐食性も十分でなかった。   On the other hand, the test Nos. 7A and 7B in which the Cr-free chemical conversion film 4 is provided without phosphating and the tests No. 8A and 8B that do not contain Ti (valve metal) are inferior in flat portion corrosion resistance and post-coating corrosion resistance. The longer the salt spray, the more the white rust was generated in the flat and processed parts. Even in Test Nos. 9A and 9B in which a Cr-free chemical conversion film containing no valve metal fluoride was formed, a large amount of white rust was generated on the flat portion when salt spray was applied for a long time. In the tests Nos. 10A and 10B, which have been subjected to the conventional chemical conversion treatment that seals the phosphate treatment with chromate treatment, white rust is generated in the processed part even with a short salt spray, and the flat part corrosion resistance and post-coating corrosion resistance are also sufficient. It was not.

Figure 2005126812
Figure 2005126812

リン酸塩皮膜,Crフリー化成皮膜の相乗作用は、塩水噴霧時間に応じて白錆の面積占有率が変化することを示した図2からも明らかである。図2では、電気亜鉛めっき鋼板Bを原板に使用し、各種化成処理を施した後の耐食性を示すグラフであるが、リン酸塩処理では早期に多量の白錆が発生し、Crフリー化成処理やリン酸塩,クロム酸塩の複合処理では塩水噴霧時間が長くなるに応じて白錆が増加した。他方、リン酸塩処理に次いでCrフリー化成処理した場合、300時間の塩水噴霧後にも白錆の発生が抑えられていた。
更に、エポキシ系接着剤を用いてPETフィルムをラミネートした場合でも、貼り合わされたPETフィルムの剥離強度が高く、リン酸塩皮膜が健全な状態に維持されていることが確認された。
The synergistic action of the phosphate coating and the Cr-free chemical conversion coating is also apparent from FIG. 2 which shows that the area occupancy of white rust changes according to the salt spray time. FIG. 2 is a graph showing the corrosion resistance after using various types of chemical conversion treatment using electrogalvanized steel sheet B as the original plate, but a large amount of white rust is generated early in the phosphate treatment, and Cr-free chemical conversion treatment is performed. In the combined treatment of phosphate, chromate and chromate, white rust increased as the salt spray time increased. On the other hand, when the Cr-free chemical conversion treatment was performed after the phosphate treatment, the generation of white rust was suppressed even after 300 hours of salt water spraying.
Furthermore, even when the PET film was laminated using an epoxy adhesive, it was confirmed that the peel strength of the bonded PET film was high and the phosphate film was maintained in a healthy state.

実施例1の亜鉛系めっき鋼板Aを原板に用い、表1のNo.1処理液でリン酸塩処理した。本実施例では、リン酸塩処理に先立つ表面調整やリン酸塩処理時の液温,処理時間等をを調整することにより、平均高さを1〜15μmの範囲で変化させたリン酸塩結晶を生成させた。クロムフリー処理には、No.2の処理液を用い、希釈率,ロールコート条件等を変えることによってリン酸塩皮膜の上に膜厚を変化させたクロムフリー化成皮膜を形成した。   The zinc-based plated steel sheet A of Example 1 was used as a base plate, and was subjected to phosphate treatment with the No. 1 treatment solution shown in Table 1. In this example, phosphate crystals whose average height was changed in the range of 1 to 15 μm by adjusting the surface adjustment prior to the phosphate treatment, the liquid temperature during the phosphate treatment, the treatment time, etc. Was generated. In the chromium-free treatment, a treatment solution of No. 2 was used, and a chromium-free chemical conversion film having a changed film thickness was formed on the phosphate film by changing the dilution rate, roll coating conditions, and the like.

作製した化成処理鋼板から試験片を切り出し、次の試験でフィルム接着性を調査した。エポキシ系接着剤を用いてPETフィルムを試験片にラミネートした後、荷重200kgfのドロービード摺動変形試験後にフィルムの先端を強制的に引き剥がす引張試験によって剥離強度を測定した。試験結果を図3に示すが、何れのリン酸塩結晶高さにおいても化成皮膜が厚膜化するほど剥離強度が低下する傾向が伺われ、起立するリン酸塩結晶の平均高さに対して10%以下の厚みで化成皮膜を形成した場合に良好な剥離強度を維持できた。   A test piece was cut out from the produced chemical conversion treated steel sheet, and the film adhesion was investigated by the following test. After laminating a PET film on a test piece using an epoxy adhesive, the peel strength was measured by a tensile test in which the tip of the film was forcibly peeled after a draw bead sliding deformation test with a load of 200 kgf. The test results are shown in FIG. 3, and it is observed that the peel strength tends to decrease as the chemical conversion film becomes thicker at any phosphate crystal height, and the average height of the standing phosphate crystals is When the chemical conversion film was formed with a thickness of 10% or less, good peel strength could be maintained.

以上に説明したように、リン酸塩皮膜を自己修復作用のあるCrフリー化成皮膜でシーリングするとき、リン酸塩結晶の間の露出している亜鉛めっき層の表面に化成皮膜が生成し、リン酸塩結晶の表面にも粒状の反応生成物が析出する。リン酸塩結晶の間に生成した化成皮膜は、リン酸塩処理していない表面に生成するCrフリー化成皮膜と比較して厚く成長している。そのため、プレス加工等の際に生じる皮膜欠陥を自己修復するのに必要なバルブメタルのフッ化物が十分な量確保され、長期にわたって優れた耐食性,塗装性,接着性を呈する化成処理亜鉛系めっき鋼板が得られ、環境に与える影響の少ない外装材,内装材,表装材,車両用鋼板等として使用される。   As described above, when sealing a phosphate film with a Cr-free conversion film having a self-repairing effect, a conversion film is formed on the surface of the exposed galvanized layer between the phosphate crystals, A granular reaction product is also deposited on the surface of the acid crystal. The chemical conversion film formed between the phosphate crystals grows thicker than the Cr-free chemical conversion film formed on the surface not subjected to the phosphate treatment. Therefore, a sufficient amount of valve metal fluoride necessary for self-repairing film defects that occur during press working, etc. is secured, and a chemically treated galvanized steel sheet that exhibits excellent corrosion resistance, paintability, and adhesion over a long period of time. And is used as an exterior material, interior material, cover material, vehicle steel plate, etc. that have little impact on the environment.

亜鉛系めっき鋼板の表面化成皮膜が形成される過程を説明する模式図Schematic diagram explaining the process of forming a surface chemical conversion coating on galvanized steel sheet リン酸塩処理,Crフリー化成処理の組合せにより白錆の発生が大幅に抑えられることを示すグラフGraph showing that the generation of white rust can be greatly suppressed by the combination of phosphate treatment and Cr-free chemical conversion treatment リン酸塩結晶の高さと化成皮膜の膜厚との比率が密着性に及ぼす影響を表したグラフA graph showing the effect of the ratio between the height of phosphate crystals and the film thickness of the conversion coating on adhesion

符号の説明Explanation of symbols

1:亜鉛系めっき層 2:リン酸塩結晶 3:リン酸塩皮膜 4:化成皮膜 5:粒状反応生成物 1: Zinc-based plating layer 2: Phosphate crystal 3: Phosphate film 4: Chemical conversion film 5: Granular reaction product

Claims (5)

亜鉛めっき鋼板又は亜鉛合金めっき鋼板を基材とし、基材表面に形成されたリン酸塩皮膜の析出結晶間で露出した亜鉛系めっき層が化成皮膜で覆われ、該化成皮膜にバルブメタルの酸化物又は水酸化物とバルブメタルのフッ化物が共存していることを特徴とする耐食性,塗装性,接着性に優れた亜鉛系めっき鋼板。   Zinc-plated steel sheet or zinc alloy-plated steel sheet is used as the base material, and the zinc-based plating layer exposed between the deposited crystals of the phosphate film formed on the surface of the base material is covered with a chemical conversion film, and oxidation of valve metal is performed on the chemical conversion film. Zinc-based galvanized steel sheet with excellent corrosion resistance, paintability and adhesiveness, characterized by the presence of metal or hydroxide and valve metal fluoride. 基材表面の50面積%以上がリン酸塩皮膜で被覆されている請求項1記載の亜鉛系めっき鋼板。   The galvanized steel sheet according to claim 1, wherein 50% by area or more of the substrate surface is coated with a phosphate film. Zn,Mn,Mg,Ca,Ni,Coから選ばれた1種又は2種以上の金属がリン酸塩皮膜の析出結晶に含まれている請求項1又は2記載の亜鉛系めっき鋼板。   The galvanized steel sheet according to claim 1 or 2, wherein one or more metals selected from Zn, Mn, Mg, Ca, Ni and Co are contained in the precipitated crystals of the phosphate coating. Ti,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれた1種又は2種以上の金属をバルブメタルに使用する請求項1記載の亜鉛系めっき鋼板。   The galvanized steel sheet according to claim 1, wherein one or more metals selected from Ti, Zr, Hf, V, Nb, Ta, Mo, and W are used for the valve metal. 亜鉛系めっき層から起立するリン酸塩結晶の平均高さに対して10%以下の膜厚で化成皮膜が形成されている請求項1記載の亜鉛系めっき鋼板。   The zinc-based plated steel sheet according to claim 1, wherein the chemical conversion film is formed with a film thickness of 10% or less with respect to the average height of the phosphate crystals rising from the zinc-based plating layer.
JP2004064349A 2003-10-01 2004-03-08 Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion Expired - Lifetime JP4795647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064349A JP4795647B2 (en) 2003-10-01 2004-03-08 Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003343578 2003-10-01
JP2003343578 2003-10-01
JP2004064349A JP4795647B2 (en) 2003-10-01 2004-03-08 Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion

Publications (2)

Publication Number Publication Date
JP2005126812A true JP2005126812A (en) 2005-05-19
JP4795647B2 JP4795647B2 (en) 2011-10-19

Family

ID=34655793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064349A Expired - Lifetime JP4795647B2 (en) 2003-10-01 2004-03-08 Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion

Country Status (1)

Country Link
JP (1) JP4795647B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290551A (en) * 2004-03-08 2005-10-20 Nisshin Steel Co Ltd Chemical conversion-treated steel sheet having excellent film adhesion after forming
JP2005290552A (en) * 2004-03-08 2005-10-20 Nisshin Steel Co Ltd Chemical-conversion-coated steel sheet superior in corrosion resistance, and adhesiveness and adhesivity to paint film
JP2007039736A (en) * 2005-08-03 2007-02-15 Nisshin Steel Co Ltd Galvanized steel sheet having excellent corrosion resistance and suitability for post-coating
WO2014104442A1 (en) * 2012-12-27 2014-07-03 주식회사 포스코 Phosphate solution for zinc- or zinc-based alloy-plated steel sheet, and zinc or zinc-based alloy-plated steel sheet using same
JP2019026929A (en) * 2017-07-28 2019-02-21 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Steel sheet having chemical conversion coating, manufacturing method of conversion-coated steel sheet, and treatment agent for applying chemical conversion coating to steel sheet
JP2021127475A (en) * 2020-02-12 2021-09-02 日本製鉄株式会社 Surface-treated steel sheet and method for producing surface-treated steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309881A (en) * 1999-04-21 2000-11-07 Nisshin Steel Co Ltd Production of black color galvanized steel sheet excellent in hue stability
JP2000328258A (en) * 1999-05-12 2000-11-28 Sumitomo Metal Ind Ltd High corrosion resistance surface treated steel sheet and its production
JP2001515959A (en) * 1997-09-10 2001-09-25 日本パーカライジング株式会社 Pretreatment of painting of composite metal structures with aluminum parts
JP2002146506A (en) * 2000-11-07 2002-05-22 Nisshin Steel Co Ltd Aluminum based plated steel sheet for fuel tank
JP2002194559A (en) * 2000-12-21 2002-07-10 Nisshin Steel Co Ltd Chemical conversion coated steel sheet superior in corrosion resistance
JP2002194558A (en) * 2000-10-16 2002-07-10 Nisshin Steel Co Ltd Chemical conversion coated steel sheet superior in corrosion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515959A (en) * 1997-09-10 2001-09-25 日本パーカライジング株式会社 Pretreatment of painting of composite metal structures with aluminum parts
JP2000309881A (en) * 1999-04-21 2000-11-07 Nisshin Steel Co Ltd Production of black color galvanized steel sheet excellent in hue stability
JP2000328258A (en) * 1999-05-12 2000-11-28 Sumitomo Metal Ind Ltd High corrosion resistance surface treated steel sheet and its production
JP2002194558A (en) * 2000-10-16 2002-07-10 Nisshin Steel Co Ltd Chemical conversion coated steel sheet superior in corrosion resistance
JP2002146506A (en) * 2000-11-07 2002-05-22 Nisshin Steel Co Ltd Aluminum based plated steel sheet for fuel tank
JP2002194559A (en) * 2000-12-21 2002-07-10 Nisshin Steel Co Ltd Chemical conversion coated steel sheet superior in corrosion resistance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290551A (en) * 2004-03-08 2005-10-20 Nisshin Steel Co Ltd Chemical conversion-treated steel sheet having excellent film adhesion after forming
JP2005290552A (en) * 2004-03-08 2005-10-20 Nisshin Steel Co Ltd Chemical-conversion-coated steel sheet superior in corrosion resistance, and adhesiveness and adhesivity to paint film
JP4579715B2 (en) * 2004-03-08 2010-11-10 日新製鋼株式会社 Chemically treated steel sheet with excellent corrosion resistance, coating adhesion, and adhesion
JP4579714B2 (en) * 2004-03-08 2010-11-10 日新製鋼株式会社 Chemically treated steel sheet with excellent film adhesion after forming
JP2007039736A (en) * 2005-08-03 2007-02-15 Nisshin Steel Co Ltd Galvanized steel sheet having excellent corrosion resistance and suitability for post-coating
WO2014104442A1 (en) * 2012-12-27 2014-07-03 주식회사 포스코 Phosphate solution for zinc- or zinc-based alloy-plated steel sheet, and zinc or zinc-based alloy-plated steel sheet using same
US20150329972A1 (en) * 2012-12-27 2015-11-19 Posco Phosphate solution for zinc or zinc-based alloy plated steel sheet, and zinc or zinc-based alloy plated steel sheet using the same
US9957619B2 (en) * 2012-12-27 2018-05-01 Posco Phosphate solution for zinc or zinc-based alloy plated steel sheet, and zinc or zinc-based alloy plated steel sheet using the same
JP2019026929A (en) * 2017-07-28 2019-02-21 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Steel sheet having chemical conversion coating, manufacturing method of conversion-coated steel sheet, and treatment agent for applying chemical conversion coating to steel sheet
JP2021127475A (en) * 2020-02-12 2021-09-02 日本製鉄株式会社 Surface-treated steel sheet and method for producing surface-treated steel sheet
JP7385119B2 (en) 2020-02-12 2023-11-22 日本製鉄株式会社 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet

Also Published As

Publication number Publication date
JP4795647B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4579715B2 (en) Chemically treated steel sheet with excellent corrosion resistance, coating adhesion, and adhesion
JP4579714B2 (en) Chemically treated steel sheet with excellent film adhesion after forming
WO2006098359A1 (en) Surface-treated metallic material
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JP3302684B2 (en) Chemical treated steel sheet with excellent corrosion resistance
JP2005169765A (en) Coated zn-al alloy plated steel sheet excellent in corrosion resistance
JP4795647B2 (en) Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion
JP4795646B2 (en) Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion
JP3302680B2 (en) Steel plate with excellent corrosion resistance
JP2003293165A (en) Welded steel pipe having excellent corrosion resistance
JP4027848B2 (en) Painted stainless steel plate with excellent corrosion resistance
JP4312635B2 (en) Painted aluminized steel sheet with excellent corrosion resistance
JP2007023309A (en) Hot-dip zinc alloy plated steel sheet having excellent corrosion resistance
JPH11200066A (en) Surface treatment of galvanized steel sheet
JP2008163364A (en) Chemical conversion-treated steel sheet having excellent coating film adhesive strength and film adhesion after forming
JP2968147B2 (en) Acid displacement plating solution composition for zinc-containing metal plated steel sheet
JP3219453B2 (en) Manufacturing method of galvanized steel sheet with excellent blackening resistance
JP3302676B2 (en) Chemical treated steel sheet with excellent corrosion resistance
JP2006116736A (en) Coated stainless steel sheet excellent in corrosion resistance
JP2004143549A (en) Chemical treatment liquid for zinc plated steel plate
JP2003293162A (en) Coated plated steel sheet having excellent corrosion resistance
JP3886913B2 (en) Chemically treated steel plate with excellent corrosion resistance
JP2003277945A (en) Nonchromium type surface treated steel sheet
JP3302679B2 (en) Steel structure with excellent corrosion resistance
JP4354851B2 (en) Antirust treatment liquid for steel plate and antirust treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Ref document number: 4795647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term