JP2005169765A - Coated zn-al alloy plated steel sheet excellent in corrosion resistance - Google Patents

Coated zn-al alloy plated steel sheet excellent in corrosion resistance Download PDF

Info

Publication number
JP2005169765A
JP2005169765A JP2003411501A JP2003411501A JP2005169765A JP 2005169765 A JP2005169765 A JP 2005169765A JP 2003411501 A JP2003411501 A JP 2003411501A JP 2003411501 A JP2003411501 A JP 2003411501A JP 2005169765 A JP2005169765 A JP 2005169765A
Authority
JP
Japan
Prior art keywords
film
steel sheet
phosphate
coated
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003411501A
Other languages
Japanese (ja)
Other versions
JP4312583B2 (en
Inventor
Fumishiro Kumon
史城 公文
Yasusuke Tanaka
庸介 田中
Hiroshi Tsuburaya
浩 圓谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003411501A priority Critical patent/JP4312583B2/en
Publication of JP2005169765A publication Critical patent/JP2005169765A/en
Application granted granted Critical
Publication of JP4312583B2 publication Critical patent/JP4312583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated Zn-Al alloy plated steel sheet excellent in corrosion resistance and coating film adhesion without relying on a chromate film, a Cr type rustproof pigment or the like. <P>SOLUTION: The coated Zn-Al alloy plated steel sheet is constituted by forming an undercoating film 4 compounded with a magnesium salt and/or a phosphate on a Zn-Al alloy plating layer 2 through a chemical forming film 3 containing a titanium compound and/or a zirconium compound. As the titanium compound or the zirconium compound, at least one of a compound selected from hexafluorotitanic acid, hexafluorozirconic acid and metal salts of them is used. The chemical forming film may be an organic-inorganic composite film containing an organic resin such as a phenol resin, an acrylic resin, an acrylolefin resin, a polyurethane resin and the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、環境負荷の大きなクロム化合物を含まなくとも優れた耐食性を呈する塗装Zn-Al系合金めっき鋼板に関する。   The present invention relates to a coated Zn—Al-based alloy-plated steel sheet that exhibits excellent corrosion resistance even without containing a chromium compound with a large environmental load.

外装材,内装材,表装材等では、耐食性の良好な溶融亜鉛めっき鋼板が塗装原板として従来から使用されている。しかし、大気汚染の進行に伴ってイオウ酸化物,窒素酸化物等による大気や雨水の酸性化が著しい昨今、塗装鋼板の平坦部,加工部,切断端面,塗膜疵付き部等の塗膜下で溶融亜鉛めっき層の腐食が促進され、内装建材,外装建材等としての耐久性が懸念される状況になってきている。たとえば、平坦部の耐食性は、Clイオン等の腐食性イオンが塗膜を透過して溶融亜鉛めっき層の腐食を促進させ、体積膨張した亜鉛系腐食生成物によって塗膜が押し上げられ、塗膜フクレとして観察される。   Conventionally, hot-dip galvanized steel sheets with good corrosion resistance have been used as coating raw materials for exterior materials, interior materials, and exterior materials. However, with the progress of air pollution, acidification of the atmosphere and rainwater due to sulfur oxides, nitrogen oxides, etc. has been remarkable in recent years. As a result, corrosion of the hot dip galvanized layer is promoted, and there is a concern about durability as an interior building material, an exterior building material, and the like. For example, the corrosion resistance of the flat portion is such that corrosive ions such as Cl ions penetrate the coating film to promote corrosion of the hot dip galvanized layer, and the coating film is pushed up by the volume-expanded zinc-based corrosion product. As observed.

溶融亜鉛めっき鋼板よりも優れた耐食性を呈する材料として、溶融Zn-Al系合金めっき鋼板を塗装原板に使用する比率が増加している。溶融Zn-Al系合金めっき鋼板では、溶融めっき層のAl含有量を増加させると、平坦部や塗膜疵付き部の耐食性が向上する。しかし、Al含有量の増加によっても、加工部や切断端面の耐食性は必ずしも満足されない。たとえば、塗装溶融Zn-55%Alめっき鋼板を曲げ加工すると、延性が乏しいZn-Al系合金めっき層にクラックが発生し、クラックを介して露出した下地鋼が腐食の起点となりやすい。
めっき層欠陥部を起点とする腐食は、自己修復作用のある化成皮膜をめっき層表面に形成することにより抑制される。自己修復作用のある化成皮膜は、代表的には六価Cr→三価Crの酸化還元反応を利用したクロメート処理で形成されているが、クロメート処理では環境に有害な六価Crの溶出が懸念されることから、Crフリーの化成皮膜に置き換えられる傾向にある。本出願人は、Ti,Zr等のバルブメタルのフッ化物を含むCrフリーの化成皮膜を開発している(特許文献1,2)。化成皮膜に含まれるバルブメタルのフッ化物は、腐食性雰囲気に溶出した後で難溶性の化合物となって再析出することにより欠陥部を自己修復する。
As a material exhibiting corrosion resistance superior to that of a hot dip galvanized steel sheet, a ratio of using a hot dip Zn-Al alloy-plated steel sheet as a coating original sheet is increasing. In the hot-dip Zn—Al-based alloy-plated steel sheet, when the Al content of the hot-dip coating layer is increased, the corrosion resistance of the flat part and the part with the coating film wrinkles is improved. However, even if the Al content is increased, the corrosion resistance of the processed part and the cut end face is not always satisfied. For example, when a coated hot-melt Zn-55% Al-plated steel sheet is bent, cracks occur in the Zn-Al alloy plating layer with poor ductility, and the underlying steel exposed through the cracks is likely to be the starting point of corrosion.
Corrosion starting from a defective plating layer is suppressed by forming a chemical conversion film having a self-repairing action on the surface of the plating layer. A chemical conversion film with a self-repairing action is typically formed by chromate treatment using the oxidation-reduction reaction of hexavalent Cr → trivalent Cr, but there is a concern about the elution of hexavalent Cr harmful to the environment in the chromate treatment. Therefore, it tends to be replaced with a Cr-free chemical film. The present applicant has developed a Cr-free chemical conversion film containing a fluoride of valve metal such as Ti and Zr (Patent Documents 1 and 2). The valve metal fluoride contained in the chemical conversion film elutes into a corrosive atmosphere and then re-deposits as a poorly soluble compound, thereby self-repairing the defective portion.

耐食性に優れためっき鋼板として、Zn-6%Al-3%Mg合金めっき鋼板も使用されている。該めっき鋼板にCrフリー系の塗装を施した塗装鋼板は、加工部や切断端面においても優れた耐食性を呈する(特許文献3,4)。優れた耐食性は、本発明者等による調査・研究の結果、めっき層欠陥部や切断端面等の下地露出部を覆う緻密で難溶性のZn-Mg系腐食生成物に由来することが判った。
特開2002-30458号公報 特開2002-38280号公報 特開2002-69668号公報 特開2002-187234号公報
As a plated steel sheet having excellent corrosion resistance, a Zn-6% Al-3% Mg alloy plated steel sheet is also used. The coated steel sheet obtained by applying Cr-free coating to the plated steel sheet exhibits excellent corrosion resistance even in the processed part and the cut end face (Patent Documents 3 and 4). As a result of investigation and research by the present inventors, it has been found that excellent corrosion resistance is derived from a dense and poorly soluble Zn—Mg based corrosion product that covers the underlying exposed portion such as a plating layer defect portion or a cut end surface.
JP 2002-30458 A JP 2002-38280 A JP 2002-69668 Gazette JP 2002-187234 A

本発明は、Crフリー化成皮膜でZn-Al系合金めっき層を覆うことを前提とし、塗装Zn-6%Al-3%Mg合金めっき鋼板で得られた知見を発展させ、腐食抑制機能のあるZn-Mg系腐食生成物の生成に必要なMgを下塗り塗膜から補給することにより、めっき層がMgを含まない場合でも塗装Zn-6%Al-3%Mg合金めっき鋼板に匹敵する高耐食性を付与した塗装Zn-Al系合金めっき鋼板を提供することを目的とする。   The present invention is based on the premise that a Zn-Al based alloy plating layer is covered with a Cr-free chemical conversion film, and has developed a knowledge obtained with a coated Zn-6% Al-3% Mg alloy plated steel sheet and has a corrosion inhibiting function. By replenishing Mg, which is necessary for the production of Zn-Mg corrosion products, from the undercoat, high corrosion resistance comparable to that of the coated Zn-6% Al-3% Mg alloy-plated steel sheet even when the plating layer does not contain Mg An object of the present invention is to provide a coated Zn—Al-based alloy-plated steel sheet to which is added.

本発明の塗装Zn-Al系合金めっき鋼板は、Zn-Al系合金めっき層の上に、チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜を介し、マグネシウム塩及びリン酸塩が配合された下塗り塗膜が積層されていることを特徴とする。
チタン化合物,ジルコニウム化合物には、ヘキサフルオロチタン酸,ヘキサフルオロジルコニウム酸及びそれらの金属酸塩から選ばれた1種又は2種以上が使用される。化成皮膜は、フェノール樹脂,アクリル樹脂,アクリルオレフィン樹脂,ポリウレタン樹脂等の有機樹脂を含む有機-無機複合皮膜であっても良い。下塗り塗膜に含まれるマグネシウム塩にはリン酸水素マグネシウム,リン酸マグネシウム,トリポリリン酸マグネシウムの1種又は2種以上,リン酸塩にはリン酸亜鉛,トリポリリン酸二水素アルミニウム,リン酸アルミニウム,リン酸カルシウムの1種又は2種以上が使用される。
The coated Zn-Al alloy-plated steel sheet of the present invention contains magnesium salt and phosphate on the Zn-Al alloy plating layer with a chemical film containing a titanium compound and / or a zirconium compound and fluoride. The prepared undercoat film is laminated.
As the titanium compound and the zirconium compound, one or more selected from hexafluorotitanic acid, hexafluorozirconic acid, and metal acid salts thereof are used. The chemical conversion film may be an organic-inorganic composite film containing an organic resin such as a phenol resin, an acrylic resin, an acrylic olefin resin, or a polyurethane resin. The magnesium salt contained in the undercoat film is one or more of magnesium hydrogen phosphate, magnesium phosphate, and tripolymagnesium phosphate, and the phosphate is zinc phosphate, aluminum trihydrogen phosphate, aluminum phosphate, calcium phosphate 1 type (s) or 2 or more types are used.

本発明に従った塗装Zn-Al系合金めっき鋼板は、下地鋼1の上にあるZn-Al系合金めっき層2の表面に、化成皮膜3を介して下塗り塗膜4,上塗り塗膜5を積層した表面構造(図1)をもっている。化成皮膜3はチタン化合物及び/又はジルコニウム化合物とフッ化物とを含み、下塗り塗膜4はマグネシウム塩及びリン酸塩を含んでいる。該表面構造によって加工部耐食性,塗膜密着性が改善されるが、特性改善に表面構造が及ぼす影響は次のように推察され、後述の実施例によっても支持される。   The coated Zn—Al alloy-plated steel sheet according to the present invention has an undercoat film 4 and a topcoat film 5 formed on the surface of the Zn—Al-based alloy plated layer 2 on the base steel 1 with a chemical conversion film 3 interposed therebetween. It has a laminated surface structure (FIG. 1). The chemical conversion film 3 includes a titanium compound and / or a zirconium compound and a fluoride, and the undercoat film 4 includes a magnesium salt and a phosphate. Although the surface structure improves the corrosion resistance of the processed part and the adhesion of the coating film, the influence of the surface structure on the improvement of properties is presumed as follows, and is supported by the examples described later.

化成皮膜3に含まれているチタン化合物,ジルコニウム化合物は、下塗り塗膜4中のリン酸塩と反応し、化成皮膜3に対する下塗り塗膜4の付着性を向上させる。化成皮膜3に含まれているフッ化物は、チタン化合物,ジルコニウム化合物とリン酸塩との反応を促進させる作用を呈する。一部のリン酸塩は、化成皮膜3の欠陥部から露出しているめっき層2の表面にも析出し、めっき層2の表面を不動態化する。その結果、付着性,耐水性に優れた下塗り塗膜4が形成され、塗膜フクレやZnリッチ相の選択腐食が抑制される。   The titanium compound and the zirconium compound contained in the chemical conversion film 3 react with the phosphate in the undercoat film 4 to improve the adhesion of the undercoat film 4 to the chemical film 3. The fluoride contained in the chemical conversion film 3 exhibits the action of promoting the reaction between the titanium compound, zirconium compound and phosphate. A part of the phosphate is also deposited on the surface of the plating layer 2 exposed from the defect portion of the chemical conversion film 3 to passivate the surface of the plating layer 2. As a result, an undercoat coating film 4 excellent in adhesion and water resistance is formed, and selective corrosion of coating film swelling and Zn-rich phase is suppressed.

また、エッチング作用のあるフッ化物含有化成処理液の塗布により化成皮膜3が形成されるので、めっき層2の表層に濃化したAlが化成処理液の酸成分によってイオン化、溶出する。化成皮膜3として有機-無機複合皮膜を形成する場合、めっき層2から溶出したAlイオンが化成処理液中のチタン化合物,ジルコニウム化合物と共に有機樹脂と複合化する。その結果、難溶性,付着性に優れた有機-無機複合皮膜が形成される。   Moreover, since the chemical conversion film 3 is formed by application | coating of the fluoride containing chemical conversion treatment liquid which has an etching effect | action, Al concentrated on the surface layer of the plating layer 2 is ionized and eluted by the acid component of a chemical conversion treatment liquid. When an organic-inorganic composite film is formed as the chemical conversion film 3, Al ions eluted from the plating layer 2 are combined with an organic resin together with the titanium compound and the zirconium compound in the chemical conversion treatment liquid. As a result, an organic-inorganic composite film excellent in poor solubility and adhesion is formed.

塗装Zn-Al系合金めっき鋼板に曲げ,深絞り等の加工を施すと、延性に乏しいZn-Al系合金めっき層2が下地鋼1の塑性変形に追従できずクラックが生じやすい。クラック発生部分では下地鋼1が露出して腐食されやすい環境になるが、化成皮膜3,下塗り塗膜4の皮膜構成によって下地鋼露出部の腐食も抑制される。下地鋼露出部の腐食抑制は次のように推察され、同様な機構によって切断端面等の腐食抑制も図られる。   When the coated Zn—Al alloy-plated steel sheet is subjected to processing such as bending and deep drawing, the Zn—Al alloy plating layer 2 having poor ductility cannot follow the plastic deformation of the base steel 1 and is likely to crack. Although the base steel 1 is exposed and easily corroded in the cracked portion, the corrosion of the base steel exposed portion is also suppressed by the coating composition of the chemical conversion coating 3 and the undercoat coating 4. The corrosion suppression of the exposed portion of the base steel is presumed as follows, and the corrosion of the cut end face and the like is also suppressed by the same mechanism.

曲げ加工等でクラック6が発生しているZn-Al系合金めっき鋼板が腐食性雰囲気に曝されると、腐食性イオン7が下地鋼1の露出表面に向けてクラック6に侵入する(図2)。下塗り塗膜4に含まれているMgは、イオン化傾向が高いことからクラック6に侵入した腐食性イオン7と優先的に反応しMgイオンとなって溶出する。化成皮膜3に含まれているチタン化合物,ジルコニウム化合物は、Mgの溶出反応を促進させる。Mgの溶出反応に伴いリン酸イオン,Znイオンの溶出も進行し、Mg,Pを含むZnリッチ系の難溶性腐食生成物8で下地鋼1の露出表面が覆われる。   When a Zn—Al-based alloy-plated steel sheet in which a crack 6 is generated by bending or the like is exposed to a corrosive atmosphere, corrosive ions 7 enter the crack 6 toward the exposed surface of the base steel 1 (FIG. 2). ). Since Mg contained in the undercoat film 4 has a high ionization tendency, it preferentially reacts with the corrosive ions 7 that have entered the cracks 6 and is eluted as Mg ions. The titanium compound and the zirconium compound contained in the chemical conversion film 3 promote the elution reaction of Mg. With the elution reaction of Mg, elution of phosphate ions and Zn ions proceeds, and the exposed surface of the base steel 1 is covered with a Zn-rich hardly soluble corrosion product 8 containing Mg and P.

クラック6に臨むめっき層2の破面も、Znの選択腐食と相俟ってMgイオンや燐酸イオンが同様に作用し、めっき層2からのAl,Zn及び下塗り塗膜4からのMg,Pを含む難溶性腐食生成物9で覆われる。
難溶性腐食生成物8,9が緻密皮膜として生成するため、以後の腐食を抑制するバリア層として働く。バリア層が形成された後でも、クラック6に臨む下地鋼1の露出表面やめっき層2の破面の腐食抑制に有効なMgイオン,リン酸イオンが恒常的に供給され、欠陥部が自己修復される。
The fracture surface of the plating layer 2 facing the crack 6 also acts similarly to Mg ions and phosphate ions coupled with the selective corrosion of Zn, and Al, Zn from the plating layer 2 and Mg, P from the undercoat film 4. It is covered with a hardly soluble corrosion product 9 containing
Since the hardly soluble corrosion products 8 and 9 are formed as a dense film, it functions as a barrier layer for suppressing subsequent corrosion. Even after the barrier layer is formed, Mg ions and phosphate ions, which are effective in inhibiting corrosion of the exposed surface of the base steel 1 facing the crack 6 and the fracture surface of the plating layer 2, are constantly supplied, and the defect is self-repaired. Is done.

下塗り塗膜4中のリン酸塩と化成皮膜中のチタン化合物,ジルコニウム化合物との反応も腐食抑制に期待できる。リン酸塩とチタン化合物,ジルコニウム化合物との反応によって生成する化合物は、化成皮膜3に対する下塗り塗膜4の密着性を向上させ、曲げ加工等の際に伸ばされた部位に腐食性イオンが侵入することによる塗膜フクレやZnリッチ相の腐食生成物に起因する塗膜の持上げ等が抑制される。   Reaction of the phosphate in the undercoat film 4 with the titanium compound and zirconium compound in the chemical conversion film can also be expected to suppress corrosion. The compound formed by the reaction of the phosphate with the titanium compound and the zirconium compound improves the adhesion of the undercoat film 4 to the chemical conversion film 3, and corrosive ions penetrate into the stretched part during bending. As a result, the lifting of the coating film caused by the coating film swelling and the corrosion product of the Zn-rich phase is suppressed.

塗装原板には、Zn-5%Al,Zn-55%Al等のZn-Al系合金めっき鋼板がある。Zn-Al-Mg系合金めっき鋼板も、同様な機構による腐食抑制を期待できるが、バリア層として機能するMg含有腐食生成物の供給源としてZn-Al-Mg系合金めっき層があることから、下塗り塗膜4に敢えてマグネシウム塩を配合しなくても良い。
化成皮膜3の形成に先立って、塗装原板を脱脂,酸洗,表面調整して洗浄する。清浄化されためっき層2に化成処理液を塗布し、水洗することなく乾燥させると自己修復作用のある化成皮膜3が形成される。
Examples of the coating original plate include Zn-Al alloy-plated steel plates such as Zn-5% Al and Zn-55% Al. The Zn-Al-Mg alloy-plated steel sheet can also be expected to suppress corrosion by a similar mechanism, but there is a Zn-Al-Mg-based alloy plating layer as a source of Mg-containing corrosion products that function as a barrier layer. It is not necessary to add a magnesium salt to the undercoat coating 4.
Prior to the formation of the chemical conversion film 3, the coating original plate is cleaned by degreasing, pickling, and surface adjustment. When a chemical conversion treatment liquid is applied to the cleaned plating layer 2 and dried without washing with water, a chemical conversion film 3 having a self-repairing action is formed.

Crフリー化成処理液には、本出願人が開発したエッチング作用のあるチタン化合物,フッ化物,有機樹脂を含む処理液(特開2002-38280号公報),同様にエッチング作用のあるチタン化合物,ジルコニウム化合物,フッ化物を含む処理液(特開2002-30458号公報)等がある。たとえば、ヘキサフルオロチタン酸(H2TiF6),ヘキサフルオロジルコニウム酸(H2ZrF6)及びそれらの金属酸塩等のフッ化物をプロポキシプロパノール(有機樹脂)に溶解したアミノメチル置換ポリビニルフェノールの水溶液として用意される。 The Cr-free chemical conversion treatment liquid includes a treatment liquid containing an etching action titanium compound, fluoride, and organic resin developed by the present applicant (Japanese Patent Laid-Open No. 2002-38280), as well as an etching action titanium compound, zirconium. There are treatment liquids containing compounds and fluorides (JP 2002-30458 A). For example, an aqueous solution of aminomethyl-substituted polyvinylphenol in which fluorides such as hexafluorotitanic acid (H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), and metal acid salts thereof are dissolved in propoxypropanol (organic resin) Prepared as.

チタン化合物,フッ化物,フェノール樹脂を含む有機-無機複合皮膜をCrフリー皮膜として形成する場合、チタン化合物をTi換算付着量で1〜100mg/m2,フッ化物をF換算付着量で1〜200mg/m2の範囲に調整することが好ましい。チタン化合物は、塗装原板の溶融めっき層表面から溶出したAl,Zn等の金属イオンと反応し,耐食性に優れた化成皮膜を形成する。有機樹脂を含む系では、チタン化合物,ジルコニウム化合物,Al,Zn等の金属イオンが有機樹脂と反応し、難溶性の有機-無機複合皮膜を形成する。以下、有機-無機複合皮膜を例にとって説明するが、有機樹脂を含まない化成皮膜でも同様な機構によった耐食性,塗膜密着性等が改善される。 When an organic-inorganic composite film containing a titanium compound, fluoride, and phenol resin is formed as a Cr-free film, the titanium compound is 1-100 mg / m 2 in terms of Ti and fluoride is 1-200 mg in terms of F. / M 2 is preferably adjusted in the range. The titanium compound reacts with metal ions such as Al and Zn eluted from the surface of the hot-plated layer of the coating original plate to form a chemical conversion film having excellent corrosion resistance. In a system including an organic resin, metal ions such as a titanium compound, a zirconium compound, Al, and Zn react with the organic resin to form a hardly soluble organic-inorganic composite film. Hereinafter, although an organic-inorganic composite film will be described as an example, a chemical film containing no organic resin can improve the corrosion resistance, coating film adhesion and the like by the same mechanism.

少なすぎるチタン化合物では有機-無機複合皮膜の性能が劣り、優れた塗膜密着性,耐食性が得られない。逆に過剰量のチタン化合物では、有機-無機複合皮膜の性能改善効果が飽和し、却って塗装後の加工性や塗膜密着性が低下することにもなる。多すぎるチタン化合物は、化成処理コストからも好ましくない。フッ化物は化成処理液中でフッ素イオンに解離し、塗装原板の表面に接触した状態では化成処理液中の酸成分と共に溶融めっき層表面をエッチングする作用を呈する。フッ素イオンが少ないと、溶融めっき層表面のエッチングが不足し、溶融めっき層表面に対する有機-無機複合皮膜の密着性が低下する。逆に多すぎるフッ素イオンでは、過剰量の溶出金属が皮膜に取り込まれ、有機-無機複合皮膜が脆くなり、溶融めっき層に対する有機-無機複合皮膜の密着性が低下する。   If the amount of the titanium compound is too small, the performance of the organic-inorganic composite film is inferior, and excellent coating adhesion and corrosion resistance cannot be obtained. On the other hand, an excess amount of the titanium compound saturates the performance improvement effect of the organic-inorganic composite film, and on the contrary, the workability after coating and the coating film adhesion also deteriorate. Too much titanium compound is not preferable from the chemical conversion treatment cost. Fluoride dissociates into fluorine ions in the chemical conversion treatment solution, and exhibits an action of etching the surface of the hot-dip plating layer together with the acid component in the chemical conversion treatment solution in a state where it is in contact with the surface of the coating original plate. When the amount of fluorine ions is small, etching on the surface of the hot-dip plating layer is insufficient, and the adhesion of the organic-inorganic composite film to the surface of the hot-dip plating layer is lowered. On the other hand, if the amount of fluorine ions is too large, an excessive amount of eluted metal is taken into the coating, the organic-inorganic composite coating becomes brittle, and the adhesion of the organic-inorganic composite coating to the hot-dip coating layer decreases.

有機-無機複合皮膜は、チタン化合物に替え、或いは更にZr換算付着量で0.1〜30mg/m2のジルコニウム化合物を含むことができる。ジルコニウム化合物は、チタン化合物と同様な作用を呈し、溶融めっき層から溶出したAl,Zn等の金属イオンを共に有機樹脂と反応し、難溶性の有機−無機複合皮膜を形成する。ジルコニウム化合物の付着量が少ないと密着性,耐食性に及ぼす効果が十分でないが、過剰量のジルコニウム化合物では塗装後の加工性や塗膜密着性が低下し、化成処理コストも高くなる。 The organic-inorganic composite film may contain a zirconium compound in an amount of 0.1 to 30 mg / m 2 in terms of the amount of Zr conversion instead of the titanium compound. The zirconium compound exhibits the same action as the titanium compound, and reacts with metal ions such as Al and Zn eluted from the hot dipped layer together with the organic resin to form a hardly soluble organic-inorganic composite film. If the adhesion amount of the zirconium compound is small, the effect on adhesion and corrosion resistance is not sufficient. However, if the zirconium compound is excessive, the workability after coating and the adhesion of the coating film are lowered, and the chemical conversion treatment cost is increased.

化成処理後、Crフリー化成皮膜の上に下塗り塗膜が設けられる。下塗り用の塗料組成物は、エポキシ,エポキシ・ウレタン,ポリエステル,アクリル,エポキシ変性ポリエステル,フェノキシ等をベース樹脂とし、マグネシウム塩,リン酸塩等の非クロム系防錆顔料が配合することにより調製される。マグネシウム塩系防錆顔料にはリン酸水素マグネシウム,リン酸マグネシウム,トリポリリン酸マグネシウム等があり、リン酸塩系防錆顔料にはリン酸亜鉛,トリポリリン酸二水素アルミニウム,リン酸アルミニウム,リン酸カルシウム等がある。   After the chemical conversion treatment, an undercoat coating film is provided on the Cr-free chemical conversion film. The coating composition for undercoating is prepared by blending non-chromium rust preventive pigments such as magnesium salts and phosphates based on epoxy, epoxy-urethane, polyester, acrylic, epoxy-modified polyester, phenoxy, etc. The Magnesium salt rust preventive pigments include magnesium hydrogen phosphate, magnesium phosphate, and magnesium tripolyphosphate. Phosphate rust preventive pigments include zinc phosphate, aluminum trihydrogen phosphate, aluminum phosphate, and calcium phosphate. is there.

非クロム系防錆顔料は、塗料不揮発分に対し2〜50質量%(好ましくは、5〜40質量%)の割合で添加することが好ましい。2質量%以上の添加量で防錆効果がみられるが、50質量%を超える過剰量の非クロム系防錆顔料を添加すると塗装後の加工性や塗膜密着性が低下することがある。下塗り塗料には、非クロム系防錆顔料の他に酸化チタン等の着色顔料,シリカ,炭酸カルシウム,硫酸バリウム等の体質顔料,有機ビーズ,有機樹脂粉末,無機骨材等の各種添加剤が必要に応じて配合される。ベース樹脂の分子量,ガラス転位温度,顔料,骨材の配合量等は、塗装鋼板の用途に応じて適宜調整される。   The non-chromium rust preventive pigment is preferably added at a ratio of 2 to 50% by mass (preferably 5 to 40% by mass) with respect to the non-volatile content of the paint. Although the rust preventive effect is seen at an addition amount of 2% by mass or more, when an excessive amount of non-chromium rust preventive pigment exceeding 50% by mass is added, the workability after coating and coating film adhesion may be lowered. In addition to non-chromium anticorrosive pigments, the undercoat paint requires various additives such as colored pigments such as titanium oxide, extender pigments such as silica, calcium carbonate, and barium sulfate, organic beads, organic resin powder, and inorganic aggregates. Depending on the formulation. The molecular weight of the base resin, the glass transition temperature, the pigment, the blending amount of the aggregate, and the like are appropriately adjusted according to the application of the coated steel sheet.

下塗り塗膜は、下地の隠蔽,塗膜密着性,耐食性のため3μm以上の膜厚で形成することが好ましい。しかし、20μmを超える厚膜では、塗料消費量が多くなることは勿論、塗装鋼板の加工時に塗膜剥離が生じやすくなる。
下塗り塗料の上に、好ましくは10〜300μmの上塗り塗膜が設けられる。上塗り用には、ポリエステル,ウレタン,アクリル,シリコーン変性ポリエステル,シリコーンアクリル,ポリ塩化ビニル,ポリフッ化ビニリデン-アクリル等の熱硬化性又は熱可塑性樹脂をベースとし,必要に応じ着色顔料,体質顔料,有機系骨材,無機系骨材,メタリック粉末,潤滑剤,汚れ防止剤,防かび剤,紫外線吸収剤,光安定剤(酸化防止剤),光触媒粒子,艶消し剤等の各種添加剤が配合した塗料組成物が使用される。該塗料組成物には、下塗り塗料と同様にマグネシウム塩,リン酸塩系防錆顔料の1種又は2種以上を添加しても良い。
The undercoat coating film is preferably formed with a film thickness of 3 μm or more for concealing the base, adhesion of the coating film, and corrosion resistance. However, in the case of a thick film exceeding 20 μm, not only the paint consumption is increased, but coating film peeling is likely to occur during the processing of the coated steel sheet.
A top coat film of preferably 10 to 300 μm is provided on the undercoat paint. For top coating, it is based on thermosetting or thermoplastic resin such as polyester, urethane, acrylic, silicone-modified polyester, silicone acrylic, polyvinyl chloride, polyvinylidene fluoride-acrylic, and as necessary, colored pigment, extender pigment, organic Various additives such as mineral aggregates, inorganic aggregates, metallic powders, lubricants, antifouling agents, fungicides, UV absorbers, light stabilizers (antioxidants), photocatalyst particles, matting agents, etc. A coating composition is used. One or more of magnesium salts and phosphate-based anticorrosive pigments may be added to the coating composition in the same manner as the undercoat coating.

上塗り塗料をロールコータ等で塗布し焼き付けると、上塗り塗膜が下塗り塗膜に積層される。上塗り塗膜に替え、樹脂フィルムの貼付けで上層樹脂膜を形成しても良い。
このように、Zn-Al合金めっき層が形成された溶融めっき鋼板を塗装原板に用い、塗装原板の表面に有機-無機複合皮膜を介して非クロム系の下塗り塗膜を形成するとき、従来のクロメート皮膜の上にクロム系下塗り塗膜を設けた塗装鋼板に匹敵する塗膜密着性,加工性が得られる。しかも、クロムを含んでいないことから、環境に優しい素材として種々の分野で使用される。
When the top coat is applied and baked with a roll coater or the like, the top coat is laminated on the undercoat. Instead of the top coat film, an upper resin film may be formed by pasting a resin film.
In this way, when a hot-dip plated steel sheet with a Zn-Al alloy plating layer is used as a coating original plate and a non-chromium undercoat is formed on the surface of the coating original plate via an organic-inorganic composite coating, Coat adhesion and workability comparable to a coated steel sheet with a chromium-based primer coating on the chromate coating. And since it does not contain chromium, it is used in various fields as an environmentally friendly material.

板厚:0.5mm,片面当りめっき付着量:73g/m2のZn-55%Al合金めっき鋼板を塗装原板に使用した実施例で本発明を具体的に説明するが、Zn-5%Al,Zn-6%Al-3%Mg等、他のZn-Al系合金めっき鋼板やZn-Al-Mg系合金めっき鋼板を用いた場合でも同様な結果が得られている。
〔表面調整〕
Zn-55%A1合金めっき鋼板に、液温65℃に調整したアルカリ脱脂水溶液(サーフクリーナー155:日本ペイント株式会社製)をスプレーして5秒間接触させた後、湯洗・水洗により洗浄して乾燥した。
The present invention will be described in detail with reference to an example in which a Zn-55% Al alloy-plated steel sheet having a thickness of 0.5 mm and a coating amount per side of 73 g / m 2 is used as a coating original sheet. Similar results are obtained even when other Zn-Al alloy-plated steel sheets such as Zn-6% Al-3% Mg, etc. or Zn-Al-Mg alloy-plated steel sheets are used.
[Surface adjustment]
After spraying an alkaline degreasing aqueous solution (Surf Cleaner 155: manufactured by Nippon Paint Co., Ltd.) adjusted to a liquid temperature of 65 ° C. on a Zn-55% A1 alloy-plated steel sheet for 5 seconds, it is washed with hot water and water. Dried.

〔化成処理〕
ヘキサフルオロチタン酸:55g/l,ヘキサフルオロジルコニウム酸:10g/l,アミノメチル置換ポリビニルフェノール:72g/lを含む温度20℃の塗布型Crフリー化成処理液を表面調整後のめっき層表面に塗布し、水洗することなく100℃で乾燥した。乾燥後のめっき層表面を分析すると、Ti換算付着量:10mg/m2のチタン化合物,Zr換算付着量:2.5mg/m2のジルコニウム化合物,F換算付着量:20mg/m2のフッ化物,ポリビニルフェノール換算付着量:40mg/m2の有機成分を含む有機−無機複合皮膜が形成されていた。
[Chemical conversion treatment]
Application of a coating-type Cr-free chemical conversion treatment solution containing hexafluorotitanic acid: 55 g / l, hexafluorozirconic acid: 10 g / l, aminomethyl-substituted polyvinylphenol: 72 g / l to a plated layer surface after surface adjustment And dried at 100 ° C. without washing with water. When the surface of the plated layer after drying is analyzed, the amount of Ti converted deposit: 10 mg / m 2 of titanium compound, the amount of Zr converted deposit: 2.5 mg / m 2 of zirconium compound, the amount of F converted deposit: 20 mg / m 2 fluoride , Polyvinylphenol equivalent adhesion amount: An organic-inorganic composite film containing an organic component of 40 mg / m 2 was formed.

比較のため、チタン化合物,ジルコニウム化合物を含まない水分散性シリカ及びフェノール樹脂を含む温度20℃の塗布型Crフリー化成処理液を表面調整後のめっき層表面に塗布し、水洗することなく100℃で乾燥したところ、Si換算付着量:70mg/m2の化合物を含む有機-無機複合皮膜が形成されていた。また、塗布型クロメート処理液(サーフコートNR-C300NS:日本ペイント株式会社製)をロールコーターで塗布し、水洗することなく100℃で乾燥させたところ、全Cr換算付着量:40mg/m2のクロメート皮膜が形成されていた。 For comparison, a coating-type Cr-free chemical conversion treatment solution containing a titanium compound, a water-dispersible silica not containing a zirconium compound, and a phenol resin and having a temperature of 20 ° C. is applied to the surface of the plated layer after the surface adjustment, and 100 ° C. without washing with water. When dried, an organic-inorganic composite film containing a compound having an Si equivalent adhesion amount of 70 mg / m 2 was formed. Moreover, when a coating type chromate treatment liquid (Surfcoat NR-C300NS: manufactured by Nippon Paint Co., Ltd.) was applied with a roll coater and dried at 100 ° C. without washing with water, the total Cr equivalent adhesion amount was 40 mg / m 2 . A chromate film was formed.

〔下塗り塗装〕
エポキシ樹脂をベースとし、防錆顔料の他に酸化チタン(着色顔料),硫酸バリウム(体質顔料),シリカ粉末(体質顔料)を配合した下塗り塗料を化成処理後の塗装原板に塗布し、215℃の乾燥・焼付けにより乾燥膜厚5μmの下塗り塗膜を形成した。
チタン化合物,ジルコニウム化合物と有機成分を含む有機-無機複合皮膜が設けられた塗装原板には、リン酸水素マグネシウム,リン酸マグネシウム,リン酸亜鉛,トリポリリン酸アルミニウムを配合したCrフリー下塗り塗料を塗布した。
[Undercoating]
Based on epoxy resin, in addition to rust preventive pigment, undercoat paint containing titanium oxide (colored pigment), barium sulfate (external pigment), silica powder (external pigment) is applied to the coated original plate after chemical conversion treatment, and 215 ° C An undercoat film having a dry film thickness of 5 μm was formed by drying and baking.
A Cr-free undercoating compound containing magnesium hydrogen phosphate, magnesium phosphate, zinc phosphate, and aluminum tripolyphosphate was applied to the original coating provided with an organic-inorganic composite coating containing a titanium compound, zirconium compound and organic components. .

比較のため、同様な有機-無機複合皮膜を設けた塗装原板に変性シリカ配合Crフリー下塗り塗料を塗布した。また、Crフリー系の比較として、チタン化合物,ジルコニウム化合物を含まない有機-シリカ複合皮膜が形成された塗装原板に、リン酸水素マグネシウム,リン酸マグネシウム,リン酸亜鉛,トリポリリン酸アルミニウムを配合したCrフリー下塗り塗料を塗布した。クロム系の比較として、クロメート皮膜が形成された塗装原板に、クロム酸ストロンチウムを配合したクロメート系下塗り塗料を塗布した。下塗り塗膜に含まれる防錆顔料の種類及び配合量を表1に示す。   For comparison, a modified silica-blended Cr-free undercoating was applied to a coating original plate provided with the same organic-inorganic composite film. In addition, as a comparison of Cr-free systems, Cr containing magnesium hydrogen phosphate, magnesium phosphate, zinc phosphate, and aluminum tripolyphosphate in a coating original plate on which an organic-silica composite film containing no titanium compound or zirconium compound was formed. Free undercoat paint was applied. As a comparison with chromium, a chromate-based undercoating compound containing strontium chromate was applied to a coating original plate on which a chromate film was formed. Table 1 shows the types and amounts of the rust preventive pigments contained in the undercoat coating film.

Figure 2005169765
Figure 2005169765

〔上塗り塗装〕
次いで、ポリエステル樹脂をベースとする上塗り塗料を塗布し、215℃の乾燥・焼付けにより乾燥膜厚15μmの上塗り塗膜を下塗り塗膜に積層した。
作製された各塗装鋼板から試験片を切り出し、塗膜密着性試験,促進腐食試験,屋外暴露腐食試験に供した。
[Top coating]
Next, a top coating material based on a polyester resin was applied, and a top coating film having a dry film thickness of 15 μm was laminated on the bottom coating film by drying and baking at 215 ° C.
Test pieces were cut out from each of the prepared coated steel sheets and subjected to a coating adhesion test, an accelerated corrosion test, and an outdoor exposure corrosion test.

〔塗膜密着性試験〕
評価対象の塗膜面を外側に設定し、20℃に調整された室内で2t密着折曲げ加工し、折曲げ部に対する粘着テープの貼付け・引剥がしにより塗膜の剥離状況を観察した。剥離しなかった塗膜を◎,5%以下の剥離が発生した塗膜をO,5〜20%の剥離が発生した塗膜を△,21%以上剥離が発生した塗膜を×として塗膜密着性を評価した。
なお、加工ままの状態においては、何れの塗膜構成でもめっき層のクラックが下塗り,上塗り塗膜に伝播して塗膜のクラックが加工部に視認されたが、塗膜自体に剥離等の異常は生じていなかった。
[Coating adhesion test]
The surface of the coating film to be evaluated was set on the outside, 2t contact bending was performed in a room adjusted to 20 ° C., and the peeling state of the coating film was observed by applying / peeling the adhesive tape to the bent portion. The coating film which did not peel is ◎, the coating film where 5% or less peeling occurred is O, the coating film where 5-20% peeling occurred is Δ, the coating film where peeling occurs 21% or more is × Adhesion was evaluated.
In the as-processed state, cracks in the plating layer were propagated to the undercoat and topcoat films in any coating composition, and cracks in the coating film were visually recognized in the processed part. Did not occur.

〔促進腐食試験〕
塗装鋼板の上部塗膜面を外側に保持して4t折曲げ加工した後、左右,下部の切断端面部及び裏面を塗料で補修した試験片を用意した。150サイクルの酸性雨複合腐食試験〔1サイクル:0.1%NaC1腐食液噴霧(35℃×1時間,硫酸でpH調整)→乾燥(50℃×4時間)→湿潤(50℃×3時間,相対湿度98%)〕した後、折曲げ加工部を観察して白錆発生状況を調査した。試験対象部の面積に対する白錆発生率(面積%)を算出し、白錆が発生していない試験片を◎,白錆発生面積率が5面積%以下を○,5〜15面積%を△,15面積%以上を×として折曲げ加工部の耐食性を評価した。
また、折曲げ加工部に発生しためっき層の塗膜下腐食を光学顕微鏡で観察し、試験対象部のめっき層断面に対する塗膜下腐食の比率(面積%)を算出した。折曲げ加工部のめっき層が腐食していない試験片を◎,塗膜下腐食率が3面積%以下を○,3〜5面積%を△,5面積%以上を×として塗膜下耐食性を評価した。
[Accelerated corrosion test]
After holding the upper coating film surface of the coated steel sheet on the outside and bending it for 4t, a test piece was prepared in which the left and right, lower cut end surfaces and the back surface were repaired with paint. 150 cycles acid rain combined corrosion test [1 cycle: spraying with 0.1% NaC1 corrosive solution (35 ° C. × 1 hour, pH adjustment with sulfuric acid) → drying (50 ° C. × 4 hours) → wetting (50 ° C. × 3 hours, (Relative humidity 98%)], and the bent portion was observed to investigate the occurrence of white rust. Calculate the white rust occurrence rate (area%) with respect to the area of the test object, ◎ for the test piece without white rust, ◯ for white rust occurrence area ratio of 5 area% or less, △ 5-15 area% , 15 area% or more was evaluated as x, and the corrosion resistance of the bent portion was evaluated.
Moreover, the undercoat corrosion of the plating layer generated in the bent portion was observed with an optical microscope, and the ratio (area%) of the undercoat corrosion to the plating layer cross section of the test target portion was calculated. Corrosion resistance under coating is defined as ◎ for specimens where the plating layer of the bent part is not corroded, ○ for a corrosion rate under the coating film of 3 area% or less, △ for 3 to 5 area%, or × for 5 area% or more. evaluated.

〔屋外暴露腐食試験〕
暴露試験角度:35度の屋外暴露腐食試験では、促進耐食性試験とは逆に、腐食性飛来物を含む雨水が溜まりやすい下部の腐食が促進される状況になる。そこで、塗装鋼板の下部塗膜面を外側に保持して2t折曲げ加工した後、左右,上部の切断端面及び裏面を塗料で補修した試験片を用意した。千葉県市川市の東京湾岸から約5m内陸にある暴露試験場で6ヵ月間屋外暴露試験した後、折曲げ加工部を観察して白錆発生状況を調査した。試験対象部の面積に対する白錆発生率(面積%)を算出し、白錆発生率が5面積%以下を◎,6〜10面積%を○,11〜20面積%を△,20面積%以上を×として折曲げ加工部の耐食性を評価した。
また、折曲げ加工部に発生しためっき層の塗膜下腐食から塗膜下腐食の比率(面積%)を算出し、促進腐食試験と同じ基準で塗膜下耐食性を評価した。
[Outdoor exposure corrosion test]
Exposure test angle: In the 35 ° outdoor exposure corrosion test, contrary to the accelerated corrosion resistance test, the corrosion of the lower part where rainwater containing corrosive flying objects tends to accumulate is accelerated. Therefore, after holding the lower coating surface of the coated steel plate outside and bending it for 2 tons, a test piece was prepared in which the left and right and upper cut end surfaces and the back surface were repaired with paint. After an outdoor exposure test for 6 months at an exposure test site located about 5m inland from Ichikawa City, Chiba Prefecture, we observed the bending process and investigated the occurrence of white rust. Calculate the white rust occurrence rate (area%) with respect to the area of the test object, the white rust occurrence rate is 5 area% or less ◎, 6-10 area% ○, 11-20 area% △, 20 area% or more The corrosion resistance of the bent portion was evaluated with x.
Moreover, the ratio (area%) of undercoat corrosion was calculated from the undercoat corrosion of the plating layer generated in the bent portion, and the undercoat corrosion resistance was evaluated according to the same criteria as the accelerated corrosion test.

表2の試験結果にみられるように、試験番号1〜5(本発明例)では、チタン化合物,ジルコニウム化合物とフッ化物を含むCrフリー化成皮膜をマグネシウム塩,リン酸塩等のCrフリー防錆顔料が配合された下塗り塗膜と組み合わせると、促進腐食試験及び屋外暴露腐食試験の何れにおいても従来のクロメート系の試験番号8(比較例)に匹敵する加工部耐食性が得られた。他方、同じCrフリー化成処理液を用いても変性シリカを防錆顔料として配合した下塗り塗膜を設けた試験番号6(比較例)では、耐白錆性に不足していた。また、シリカ,有機樹脂系の化成皮膜を設けた試験番号7(比較例)では、塗膜密着性,加工部耐食性の何れにも劣っていた。   As can be seen from the test results in Table 2, in test numbers 1 to 5 (examples of the present invention), Cr-free conversion coatings containing titanium compounds, zirconium compounds and fluorides were made of Cr-free rust prevention such as magnesium salts and phosphates. When combined with an undercoat film containing a pigment, processed part corrosion resistance comparable to that of the conventional chromate test number 8 (Comparative Example) was obtained in both the accelerated corrosion test and the outdoor exposure corrosion test. On the other hand, even when the same Cr-free chemical conversion treatment solution was used, Test No. 6 (Comparative Example) provided with an undercoat film in which modified silica was blended as a rust preventive pigment had insufficient white rust resistance. Moreover, in test number 7 (comparative example) which provided the silica and the organic resin type chemical conversion film, it was inferior to both coating-film adhesiveness and a process part corrosion resistance.

Figure 2005169765
Figure 2005169765

以上の例では、フッ化物と共にチタン化合物,ジルコニウム化合物の両者を含む化成皮膜を介して下塗り塗料を設けた場合を説明したが、チタン化合物,ジルコニウム化合物の何れか一方をフッ化物と共存させた化成皮膜でも同様に優れた耐食性,塗膜密着性が得られた。また、有機-無機複合皮膜に替えて有機樹脂を含まない化成皮膜を形成した場合でも、耐食性,塗膜密着性に優れた塗装Zn-Al系合金めっき鋼板が製造された。   In the above example, the case where an undercoat paint is provided through a chemical conversion film containing both a titanium compound and a zirconium compound together with fluoride has been described. However, a chemical conversion in which either a titanium compound or a zirconium compound coexists with fluoride. In the same manner, excellent corrosion resistance and adhesion to the coating film were obtained. Moreover, even when a chemical conversion film not containing an organic resin was formed instead of the organic-inorganic composite film, a coated Zn—Al-based alloy-plated steel sheet excellent in corrosion resistance and coating film adhesion was produced.

以上に説明したように、チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜をマグネシウム塩及びリン酸塩が配合された下塗り塗膜とを組み合わせることによって、腐食抑制作用のあるZn-Mg系腐食生成物を緻密なバリア層となって下地鋼の露出表面やめっき層の破断面が被覆される。その結果、製品形状に加工する際にめっき層にクラックが発生しても、下地鋼の露出表面が腐食起点となることが抑えられ、Zn-Al系合金めっき層本来の優れた耐食性が長期にわたって維持され、塗膜の密着性も改善されているので、過酷な腐食環境に曝される外装材,内装材,表装材等として広範な分野に使用される。しかも、化成皮膜,塗膜共にクロム化合物を含んでいないため、環境保全が重視される傾向に適した素材となる。   As explained above, by combining a chemical conversion film containing a titanium compound and / or a zirconium compound and a fluoride with an undercoat film containing a magnesium salt and a phosphate, Zn-Mg having a corrosion-inhibiting action. The corrosion product becomes a dense barrier layer, and the exposed surface of the base steel and the fracture surface of the plating layer are covered. As a result, even if cracks occur in the plating layer when processing into a product shape, the exposed surface of the base steel is suppressed from becoming a starting point of corrosion, and the original excellent corrosion resistance of the Zn-Al alloy plating layer is maintained for a long time. Since it is maintained and the adhesion of the coating film is improved, it is used in a wide range of fields such as exterior materials, interior materials, and cover materials that are exposed to severe corrosive environments. Moreover, since neither the chemical conversion film nor the coating film contains a chromium compound, it is a material suitable for a tendency where environmental conservation is important.

本発明に従った塗装Zn-Al系合金めっき鋼板表層の層構成を示す模式図The schematic diagram which shows the layer structure of the coating Zn-Al type alloy plating steel plate surface layer according to this invention クラックに臨む下地鋼の露出表面,めっき層の破面が腐食抑制されることを説明する図Diagram explaining that corrosion of the exposed surface of the base steel facing the crack and the fracture surface of the plating layer is suppressed

符号の説明Explanation of symbols

1:下地鋼 2:めっき層 3:化成皮膜 4:下塗り塗膜 5:上塗り塗膜 6:クラック 7:腐食性イオン 8,9:難溶性腐食生成物 1: Base steel 2: Plating layer 3: Chemical conversion film 4: Undercoat film 5: Topcoat film 6: Crack 7: Corrosive ions 8, 9: Slightly soluble corrosion product

Claims (5)

Zn-Al系合金めっき層の上に、チタン化合物及び/又はジルコニウム化合物とフッ化物とを含む化成皮膜を介し、マグネシウム塩及びリン酸塩が配合された下塗り塗膜が積層されていることを特徴とする耐食性に優れた塗装Zn-Al系合金めっき鋼板。   An undercoat film containing magnesium salt and phosphate is laminated on a Zn-Al alloy plating layer through a chemical film containing a titanium compound and / or a zirconium compound and a fluoride. A coated Zn-Al alloy-plated steel sheet with excellent corrosion resistance. チタン化合物及び/又はジルコニウム化合物がヘキサフルオロチタン酸,ヘキサフルオロジルコニウム酸及びそれらの金属酸塩から選ばれた1種又は2種以上である請求項1記載の塗装Zn-Al系合金めっき鋼板。   The coated Zn-Al-based alloy-plated steel sheet according to claim 1, wherein the titanium compound and / or the zirconium compound is one or more selected from hexafluorotitanic acid, hexafluorozirconic acid and metal acid salts thereof. 化成皮膜がフェノール樹脂,アクリル樹脂,アクリルオレフィン樹脂,ポリウレタン樹脂から選ばれた1種又は2種以上の有機樹脂を含む有機−無機複合皮膜である請求項1記載の塗装Zn-Al系合金めっき鋼板。   The coated Zn-Al alloy-plated steel sheet according to claim 1, wherein the chemical conversion film is an organic-inorganic composite film containing one or more organic resins selected from phenol resin, acrylic resin, acrylic olefin resin, and polyurethane resin. . マグネシウム塩がリン酸水素マグネシウム,リン酸マグネシウム,トリポリリン酸マグネシウムの1種又は2種以上である請求項1記載の塗装Zn-Al系合金めっき鋼板。   The coated Zn-Al alloy-plated steel sheet according to claim 1, wherein the magnesium salt is one or more of magnesium hydrogen phosphate, magnesium phosphate, and magnesium tripolyphosphate. リン酸塩がリン酸亜鉛,トリポリリン酸二水素アルミニウム,リン酸アルミニウム,リン酸カルシウムの1種又は2種以上である請求項1記載の塗装Zn-Al系合金めっき鋼板。   The coated Zn-Al alloy-plated steel sheet according to claim 1, wherein the phosphate is one or more of zinc phosphate, aluminum trihydrogenphosphate, aluminum phosphate, and calcium phosphate.
JP2003411501A 2003-12-10 2003-12-10 Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance Expired - Lifetime JP4312583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411501A JP4312583B2 (en) 2003-12-10 2003-12-10 Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411501A JP4312583B2 (en) 2003-12-10 2003-12-10 Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2005169765A true JP2005169765A (en) 2005-06-30
JP4312583B2 JP4312583B2 (en) 2009-08-12

Family

ID=34732213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411501A Expired - Lifetime JP4312583B2 (en) 2003-12-10 2003-12-10 Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4312583B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042621A1 (en) 2007-09-28 2009-04-01 HONDA MOTOR CO., Ltd. Coated metal product and manufacturing method thereof
JP2009072695A (en) * 2007-09-20 2009-04-09 Nisshin Steel Co Ltd Precoated steel sheet
JP2009521608A (en) * 2005-12-27 2009-06-04 ポスコ A chromium-free surface-treated steel sheet for a fuel tank, a method for producing the same, and a treatment liquid used therefor.
JP2009172553A (en) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Coated steel plate excellent in corrosion resistance
JP2009172958A (en) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Coated steel sheet excellent in corrosion resistance
JP2010208067A (en) * 2009-03-09 2010-09-24 Nisshin Steel Co Ltd Coated steel sheet and sheath member
JP2011000745A (en) * 2009-06-17 2011-01-06 Nisshin Steel Co Ltd Coated steel sheet, and facing material using the same
WO2014175194A1 (en) 2013-04-22 2014-10-30 日本パーカライジング株式会社 Substrate treating composition for coated metal plate, plated metal plate subjected to substrate treatment and method for manufacturing said plate, coated and plated metal plate and method for manufacturing said plate
JP2016176118A (en) * 2015-03-20 2016-10-06 Jfe鋼板株式会社 Coating galvanized steel sheet
CN111733410A (en) * 2020-07-07 2020-10-02 奎克化学(中国)有限公司 Chromium-free passivation solution for zinc-aluminum-magnesium steel plate and preparation method thereof
KR20230082043A (en) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg coated steel sheet, surface treated steel sheet and painted steel sheet
KR20230082045A (en) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg-Sr coated steel sheet, surface treated steel sheet and painted steel sheet
KR20230082044A (en) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg coated steel sheet, surface treated steel sheet and painted steel sheet
KR20230109706A (en) 2021-03-11 2023-07-20 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg coated steel sheet and its manufacturing method, surface-treated steel sheet and its manufacturing method, and coated steel plate and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521608A (en) * 2005-12-27 2009-06-04 ポスコ A chromium-free surface-treated steel sheet for a fuel tank, a method for producing the same, and a treatment liquid used therefor.
JP4774442B2 (en) * 2005-12-27 2011-09-14 ポスコ Chromium-free surface-treated steel sheet for fuel tank and manufacturing method thereof
JP2009072695A (en) * 2007-09-20 2009-04-09 Nisshin Steel Co Ltd Precoated steel sheet
EP2042621A1 (en) 2007-09-28 2009-04-01 HONDA MOTOR CO., Ltd. Coated metal product and manufacturing method thereof
JP2009172553A (en) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Coated steel plate excellent in corrosion resistance
JP2009172958A (en) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Coated steel sheet excellent in corrosion resistance
JP2010208067A (en) * 2009-03-09 2010-09-24 Nisshin Steel Co Ltd Coated steel sheet and sheath member
JP2011000745A (en) * 2009-06-17 2011-01-06 Nisshin Steel Co Ltd Coated steel sheet, and facing material using the same
WO2014175194A1 (en) 2013-04-22 2014-10-30 日本パーカライジング株式会社 Substrate treating composition for coated metal plate, plated metal plate subjected to substrate treatment and method for manufacturing said plate, coated and plated metal plate and method for manufacturing said plate
KR20150132558A (en) 2013-04-22 2015-11-25 니혼 파커라이징 가부시키가이샤 Substrate treating composition for coated metal plate, plated metal plate subjected to substrate treatment and method for manufacturing said plate, coated and plated metal plate and method for manufacturing said plate
US10450468B2 (en) 2013-04-22 2019-10-22 Nihon Parkerizing Co., Ltd. Surface treatment composition for coated steel sheet, surface treated plated steel sheet and method of production of same, and coated plated steel sheet and method of production of same
JP2016176118A (en) * 2015-03-20 2016-10-06 Jfe鋼板株式会社 Coating galvanized steel sheet
CN111733410A (en) * 2020-07-07 2020-10-02 奎克化学(中国)有限公司 Chromium-free passivation solution for zinc-aluminum-magnesium steel plate and preparation method thereof
KR20230082043A (en) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg coated steel sheet, surface treated steel sheet and painted steel sheet
KR20230082045A (en) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg-Sr coated steel sheet, surface treated steel sheet and painted steel sheet
KR20230082044A (en) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg coated steel sheet, surface treated steel sheet and painted steel sheet
KR20230109706A (en) 2021-03-11 2023-07-20 제이에프이 스틸 가부시키가이샤 Hot-dip Al-Zn-Si-Mg coated steel sheet and its manufacturing method, surface-treated steel sheet and its manufacturing method, and coated steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP4312583B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4312583B2 (en) Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance
JP5055822B2 (en) Painted steel sheet with excellent coating adhesion
JP4344222B2 (en) Chemical conversion metal plate
JP2001234391A (en) Zn-Mg ELECTROPLATED METALLIC SHEET AND ITS MANUFACTURING METHOD
JP5380033B2 (en) Painted metal material with excellent corrosion resistance and paint adhesion
JP4312635B2 (en) Painted aluminized steel sheet with excellent corrosion resistance
JP2002187234A (en) Non-chromium coated steel plate having excellent corrosion resistance
JP3567430B2 (en) Painted metal plate with excellent corrosion resistance
US20140054518A1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JP5398310B2 (en) Painted steel sheet and exterior member
JP2006116736A (en) Coated stainless steel sheet excellent in corrosion resistance
JP2008163364A (en) Chemical conversion-treated steel sheet having excellent coating film adhesive strength and film adhesion after forming
JP2011168855A (en) Polyvinyl chloride coated steel sheet having excellent end face corrosion resistance
EP2785469B1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JP3810677B2 (en) Coating plate, surface preparation method of coating plate and method of manufacturing coated steel plate with excellent corrosion resistance
JP2005126812A (en) Galvanized steel sheet superior in corrosion resistance, coating applicability and adhesiveness
US20150176135A1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JP3900070B2 (en) Non-chromic treatment of galvanized steel sheet
JP2009051196A (en) Coated steel sheet
JP2005139532A (en) Chromate-free treated plated steel having excellent corrosion resistance and contamination resistance
JP2006336088A (en) Surface-treated steel material
JP2004238699A (en) Surface-conditioning method, non-chromium coated original sheet and production method of non-chromium coated steel sheet
JP2001348673A (en) Organic-coated surface treated metallic material excellent in corrosion resistance, and its production method
JP2005248310A (en) Rust prevention treatment liquid for steel sheet and rust prevention treatment method
WO2016085799A1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4312583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term